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I. Tero T. Heikkilä, Martti M. Salomaa, and Colin J. Lambert, Superconducting prox-

imity effect and universal conductance fluctuations, Phys. Rev. B 60, 9291 (1999).

II. Markku P. Stenberg and Tero T. Heikkilä, Nonlinear shot noise in mesoscopic
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VII. Tero T. Heikkilä, Jani Särkkä, and Frank K. Wilhelm, Supercurrent-carrying density

of states in diffusive mesoscopic Josephson weak links, Phys. Rev. B 66, 184513

(2002).

VIII. Jochem J. A. Baselmans, Tero T. Heikkilä, Bart J. van Wees, and Teun M. Klap-
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1 Introduction

An ordered medium, e.g., a crystal lattice, a ferromagnet, or a superconductor, exhibits

properties, such as the solid state, magnetism or infinite conductivity, that are absent

in the corresponding unordered system. The order can be described through an order

parameter F which measures the degree of order and distinguishes between the ordered

(F �= 0) and the unordered (F = 0) states. In the case of a crystal lattice, the order

parameter is the Fourier amplitude of the lattice vector describing the periodicity of the

lattice, in ferromagnets it is the magnetization, and in superconductors the degree of

the pairing of electrons. Typically, such order parameters are continuous functions in

space, the variations occurring smoothly within the length scale of a coherence length.

Therefore, if an unordered medium is placed in a strong contact with an ordered one, the

order parameter does not abruptly change from its bulk value to zero at the contact, but

leaks into the unordered material, changing its properties. Such effects are strongest in

superconductors [1,2] where at low temperatures the coherence length, being a few hun-

dred nanometers in typical experiments, is within the reach of present-day experimental

techniques. This work studies the variations in the physical systems lacking intrinsic

superconductivity due to this superconducting proximity effect.

The concept of the proximity effect has been known ever since the early days of su-

perconductivity, but its systematic study has become possible only through the develop-

ment of the major branches of contemporary condensed-matter physics: nanoelectronics

and mesoscopics. Residing between the macroscopic world where classical physics may

be applied and the microscopic phenomena for which a complete quantum-mechanical

treatment is required, mesoscopic systems allow quantum-mechanical effects such as in-

terference to be studied in an otherwise classical circuit composed of resistors, capacitors

and voltage sources. A major advance for the foundation of mesoscopic physics has been

the observation that elastic scattering is not phase breaking but the phase coherence

length λϕ in normal metals is only limited by such inelastic effects as electron-phonon or

electron-electron scattering. At the sub-Kelvin temperatures reached rather easily in to-

day’s experiments, the latter are small enough for the phase information of the electrons

in metals to persist up to some microns. Therefore, interference effects can be observed in

conductors of submicron scale. Such phase coherence is also required for the persistence

of the superconducting proximity effect, being ultimately caused by interference.

The field of superconducting mesoscopics focuses on the effects of superconducting

proximity on normal, non-superconducting phase-coherent material [3–5] (see Fig. 1 and

micrographs of the experimental setups studied in this Thesis, Figs. 11, 14 and 17). An

alternative viewpoint to the penetration of the pairing correlations is given by studying

how the superconducting charge carriers, the Cooper pairs, are transmitted into the

normal-metal side. At the contact between a superconductor (S) and a normal-conducting

(N) material, they leak into N by creating correlated electron-hole pairs. From the point

of view of the normal metal, an electron reflects from the interface in this Andreev

reflection [6] as a hole and vice versa. Therefore, pair correlations on the N side depend

on the interference of the electrons and holes. As a result, the conductivity of the normal
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Superconductor
Normal metal

F (x)

ξ

x

Figure 1: Typical normal-superconductor contacts for the study of the
proximity effect are deposited as overlap junctions of two materials, for
example superconducting aluminum or niobium and normally conducting
copper or silver. As a result, Cooper pairs leak from the superconductor to
the normal-metal side, creating correlated electron-hole pairs and changing
the local properties of the normal metal.

metal increases [7], the local density of states is altered [8, 9], the magnetic response

changes [10], and supercurrents may flow through SNS weak links [11].

In a diffusive conductor, the proximity effect persists up to length scales determined

by the minimum of the phase-coherence length λϕ and a thermal coherence length ξT ,

dependent on the diffusive motion of the electrons and holes and on their average excita-

tion energy. Typical experiments are conducted at temperatures around and below one

Kelvin, where λϕ is of the order of microns in metals, and ξT hundreds of nanometers.

The interference effects in a sample of length L bring in a novel energy scale which

depends on the average time spent by an electron traversing the distance L. In the

diffusive case, most often encountered in metallic nanostructures, the electrons suffer

multiple elastic reflections, on length scales of the order of the mean free path lel � L,

before reaching the distance L. Thus, their motion is diffusive with the diffusion constant

D and the average diffusion time is given by L2/D. Therefore, interference effects taking

place within the length scale L show a characteristic energy scale given by the inverse

of this time, εT = �D/L2, usually referred to as the Thouless energy [12]. This energy

scale shows up, for example, in the temperature dependence of the supercurrent, and it

defines the scale separating linear and nonlinear regimes of nonequilibrium effects.

At present the equilibrium properties of metallic NS heterostructures are fairly well

understood. Recently, the attention has turned into systems composed of superconduc-

tors and ferromagnets (F) [13–15]. Pairing correlations in conventional superconductors

are in the spin-singlet channel, coupling electrons of opposite spins. Therefore, ferromag-

nets favoring only one of the spins are expected to strongly suppress the superconducting

effects (see, e.g., Paper IV). However, opposite observations to this rule also exist [14,15]

and the situation has remained elusive.

The study of effects far from equilibrium is another topic which has recently received

a lot of interest [7,16,17]. When voltages V across the mesoscopic wires in contact with

superconductors exceed a few εT/e, the currents are no longer proportional to V , but



– 3 –

rather the transport coefficients start to depend on the applied voltage. Such nonequilib-

rium effects have also been studied within the Josephson effect [18], where supercurrents

flow through N-metal weak links between two superconductors. By applying a voltage

between the transverse ends of the weak link [17,19], the maximal obtained supercurrent

— the critical current of the weak link — can be tuned through the nonequilibrium. One

of the remarkable consequences of this is the possibility to drive the weak link out of the

conventional state to a π-state, where the direction of the supercurrent is reversed. In

principle, such states could be used in quantum computing [20, 21].

Outline of the Thesis

This dissertation presents the author’s work on the superconducting proximity effect in

phase-coherent normal metals, presented in Papers I through IX. The overview serves to

provide an introduction to these papers and is structured into three parts.

The first part, covering Secs. 2 and 3, introduces the basic phenomenology of NS het-

erostructures, the proximity effect and Andreev reflection, and outlines the microscopic

theory developed for their description. Section 2 offers a phenomenological discussion

of these effects, including a semiclassical treatment for the description of nonequilibrium

effects with Andreev reflection. In Sec. 3, the microscopic theory applied in Papers I –

IX is presented, and two approaches to describe proximity-affected transport properties

are shown. The first of these, the scattering approach, is applied in Papers I – III, and

the second one, based on quasiclassical Green’s functions, in Papers IV – IX.

Examples of equilibrium and linear-response phenomena are given in Sec. 4, the second

part of the overview. The basic phenomena and the theory applied to the description

of heterostructures fabricated from superconductors and ferromagnets are explained in

Subs. 4.1. Such systems are studied in Papers IV and V which consider the suppression

of the density of states in a superconductor due to the proximity of the ferromagnet and

the supercurrent through a ferromagnetic weak link, respectively. Exemplifying linear-

response phenomena, Subs. 4.2 considers the effect of Andreev reflection on a normal-

metal mesoscopic interference effect, the universal fluctuations of the linear conductance

through a disordered metal.

The third part, Sec. 5, takes the systems studied far from equilibrium by applying a

voltage V of the order of or greater than the Thouless energy. As a result of this voltage,

the quasiparticle distribution functions assume complicated spatial dependence, and due

to this nonequilibrium distribution, for example the supercurrent through an out-of-

equilibrium SNS weak link is altered and can be tuned by variations of V . Reciprocally,

the nonequilibrium distribution functions can also be controlled through the application

of a supercurrent. This leads to a large out-of-equilibrium thermoelectric effect. Another

example of a nonequilibrium transport phenomenon is the nonlinear behavior of the

differential conductance through a diffusive NS contact. Due to the energy-dependent

increased conductivity of the N wire, the conductance becomes voltage dependent [7].

In Paper II, we show that a similar voltage dependence can also be observed in the

differential shot noise, which describes the time-dependent fluctuations of the current.

Section 6 summarizes our findings and discusses some open problems.
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2 Phenomenology of superconducting

heterostructures

In this section, basic phenomena taking place in superconductor-normal metal heterostruc-

tures are discussed. These may be described within two alternative pictures, either a

picture of induced superconductivity due to the penetration of the pairing amplitude, or

that of Andreev reflection. These are explained in Subs. 2.1. The previous is most often

applied in the evaluation of equilibrium properties. For the description of nonequilibrium

phenomena on the normal-metal side, one may take as a first approximation a semiclassi-

cal approach neglecting the proximity effect such that the only effect of superconductivity

is a boundary condition given by the Andreev reflection. Such an approach, including the

solutions of the electron distribution functions in a few basic cases, is given in Subs. 2.2.

2.1 Andreev reflection and proximity effect

The theory of superconductivity is based on the picture of correlated electron pairs,

Cooper pairs, appearing in the conduction electron band of a metal. The quantity de-

scribing the amount of such ordering of pairs, i.e., the order parameter of the supercon-

ducting state, is called the pairing amplitude F (the rigorous definition of this quantity

is given in Subs. 3.1) and it may become finite whenever the electrons share an effective

attractive interaction between them1 [1, 2]. As a result of Cooper pairing, excitation

energies of non-paired single-quasiparticle states are lifted off from the Fermi energy by

the superconducting gap ∆ proportional to the pair potential, ∆ = λF , the parameter λ

characterizing the strength of the coupling interaction. This leads to a practical require-

ment for superconductivity: the temperature has to be low enough such that thermal

fluctuations into these single-electron states do not cause the order parameter to vanish.

What happens if we place a superconductor (S — a metal whose state in the bulk

material would exhibit a finite order parameter) in a metallic contact with a normal

(N), non-superconducting metal, such that the paired electrons may “leak” from S to

N? As long as the normal-state conductivities of these two metals are somewhat equal,

the pairing amplitude is a smooth function across the SN boundary (in contrast to the

pair potential ∆ since the interaction strength λ may change abruptly across an interface

between different materials). Therefore, it turns out that the correlations penetrate

quite deep into N, at low temperatures hundreds of nanometers from the interface. This

superconducting proximity effect induces superconductive properties into nearby region

of the N metal, modifying its properties [7, 8, 10], and allowing for the transport of

supercurrents through the N region [11].

The phenomenon can also be viewed from the normal-metal side. Consider a large

normal metal connected to a large superconductor with an energy gap ∆ by a metallic

contact. An electron-like quasiparticle with a momentum towards the NS interface and

energy below ∆ cannot enter the superconductor, but due to the scattering-free interface,

1In conventional superconductors, such an attractive interaction is mediated by the phonons formed
in the ion lattice.
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it also does not suffer an ordinary reflection. As was found by Andreev in 1964 [6],

something quite peculiar happens: the quasielectron is retroreflected as a quasihole,

reversing all its momentum components, not just the one orthogonal to the interface.

The net result of this Andreev reflection (AR) is an appearance of a Cooper pair in

the superconductor. The opposite may also happen: a reflection of a quasihole to a

quasielectron removes one Cooper pair from the superconductor. This is how the Cooper

pairs “leak” into the normal metal: by creation of particle-hole pairs (see Fig. 2).

NS

Figure 2: Proximity effect: Cooper pairs from a superconductor pop
in a normal metal by creating and destroying electron-hole pairs. The
superconducting correlations show up in the correlations between the wave
functions for the electrons and the holes (see Subs. 3.1).

The process of Andreev reflection is essentially of two-particle form, and the effective

current-carrying unit in an NS system (Cooper pair in the superconductor, an electron

moving towards the interface combined with a hole moving away from it or vice versa

in the normal metal) has double electron charge. Therefore, one might expect the con-

ductance of such an NS contact to be doubled with respect to the conductance of the

N wire. This is indeed observed if the normal wire is totally ballistic (free of elastic

scattering), but for a more typical diffusive N wire (which shows Ohmic behavior, i.e.,

the resistance scales linearly with length), the conductance is essentially unchanged since

also the effective path length for the quasiparticles is doubled: the Andreev reflected hole

has to traverse the same distance through the wire as the initial electron. However, the

doubling of effective charge can be observed also in diffusive wires, in current noise (see,

e.g., [22] and Paper II), or in universal conductance fluctuations (cf. [23] and Paper I).

Another major property of AR is the reflection of energy and entropy currents: the

Cooper pairs created in (or absorbed from) the superconductor do not carry energy nor

entropy and therefore superconductors are very poor conductors of heat. This naturally

breaks the usual coexistence of charge and thermal currents carried by the electrons

and as a result, the celebrated Wiedemann-Franz or Mott laws on the behaviour of
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thermoelectric transport coefficients are in general no longer valid (see Ref. [24] and

Paper III).

The combination of the electron and hole may be described by a single coherent wave

function, and thus they still contain the correlations carried by the Cooper pair. In other

words, their correlation takes the superconducting order parameter, the pairing ampli-

tude, to the normal-metal side. Therefore, Andreev reflection is a prerequisite for the

superconducting proximity effect. The actual penetration depth for the correlations is de-

termined by the properties of the normal metal: depending on the relative magnitude of

the different effects, it is the minimum of the thermal coherence length (in diffusive struc-

tures with diffusion constant D at temperature T , it is defined as ξT =
√
�D/πT ) and

the phase-coherence length λϕ determined by the inelastic scattering processes. Hence,

if the normal-metal wire is much longer than either of these lengths, one may neglect the

proximity effect but, in general, not the Andreev reflection.2

In non-superconducting metals, macroscopic currents are formed when the distribu-

tion of quasiparticles is distorted from its typical spherical shape in the momentum space,

e.g., such that there are more left- than right-moving charges. This change of the dis-

tribution function is accomplished by applying a voltage between two points, say A and

B, of the structure. In this case, the established currents are dissipative: they make the

increased chemical potential at A relax into the chemical potential at B. In addition to

this quasiparticle current, the total current may also have a non-dissipative component,

a supercurrent, in the presence of the proximity effect. This can be invoked in the normal

metal if it is connected to two superconducting segments with different phases of the or-

der parameter. As a result, current-carrying bound states appear between these segments

containing an Andreev reflection at each NS contact [26, 27]. Even in the absence of a

voltage at zero temperature, these states are populated and for a finite phase difference

ϕ between the S segments, a net current can be maintained.

2.2 Semiclassical Boltzmann equation with Andreev reflection

The equilibrium phenomena in proximity-affected normal-metal structures may be de-

scribed by the microscopic formalism outlined in Subs. 3.1. However, taking into account

only Andreev reflection but assuming an incoherent normal-metal wire, such that the

proximity effect may be neglected, allows for a rather simple study of nonequilibrium ef-

fects in the presence of superconductivity. Such an approach also serves as a starting point

for the description of quasiparticle distributions in phase-coherent NS structures [28]3 ow-

2The characteristic length scale ξ =
√
�D/E for the decay of the proximity effect depends on the

relevant energy scale E in a given problem. For equilibrium quantities, this energy scale is given by the
temperature, but for such nonequilibrium observables as the conductance, the low-energy quasiparticles
residing very near the Fermi energy have an important contribution. This leads to the “long-range coher-
ent effects” observed in normal-superconducting systems: proximity-induced effects in the conductance
decay only algebraically as a function of temperature as long as phase breaking may be neglected (see,
for example, Refs. [5, 25] and Subs. 5.3).

3This paper takes interactions into account fully quantum-mechanically, but the superconducting
effects by this phenomenological approach.
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ing to the fact that phase-coherent interference effects on the diffusive-limit normal-metal

distributions are typically small, second-order deviations from the incoherent case [29].

This kind of an approach has been recently utilized for example in the study of the effect

of superconductivity on current noise [30, 31].

The semiclassical Boltzmann equation [32,33] describes the average occupation num-

ber of particles f(r,p) in the element {dr, dp} around the point {r,p} in the six-

dimensional position-momentum space,

f(r,p)
drdp

(2π)3
. (1)

The kinetic equation for this distribution function is a continuity equation for particle

flow, such that (
d

dt
+ v · ∂r + eE · ∂p

)
f(r,p; t, ε) = Iel[f ] + Iin[f ]. (2)

Here E is the electric field driving the charged particles and the elastic and inelastic

collision integrals Iel and Iin, functionals of f , act as source and sink terms (they illustrate

the fact that scattering breaks translation symmetries in space and time — the total

particle numbers expressed through the energy and momentum integrals of f still remain

conserved).

In the metallic time-independent diffusive limit, Eq. (2) may be simplified as fol-

lows [34, 35]. Time independence entitles us to neglect the first term in the left-hand

side, df/dt = 0. The electric field term can be absorbed in the space derivative by the

substitution ε → ε − µ(r) in the argument of the distribution function, such that ε de-

scribes the total (kinetic and potential) energy of the electron. Therefore, we are only

left with the full r-dependent derivative v ·∇f = v ·∂rf +eE ·∂pf on the left-hand side of

Eq. (2). In the diffusive regime, one may concentrate on length scales much larger than

the mean free path lel. There, the particles quickly lose the memory of the direction of

their initial momentum (Fig. 3), and the distribution functions become nearly isotropic

functions of the direction of v. Therefore, expanding the distribution function f in the

two lowest spherical harmonics in the dependence on v̂ ≡ v/v, f(v̂) = f0 + v̂ · δf , and

making the relaxation-time approximation to the elastic collision integral with the elastic

scattering time τ yields the time-independent diffusion equation with a source term,

D∇2
rf0(r; ε) = Iin[f0]. (3)

Here we assume that the particles move with the Fermi velocity, i.e., v = vF and their

diffusive motion is characterized by the diffusion constant D = v2
F τ/3.

For given boundary conditions, one may solve Eq. (3) to obtain the distribution

function f0(r; ε). The desired dynamical observables can be evaluated from this solution,

for example the charge current density is

jc = −eDN0

∫ ∞

−∞
∇rf0(r; ε)dε (4)
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lel

Figure 3: A particle loses its memory on its initial direction within the
scale of an elastic mean free path.

and the energy current density is

jQ = DN0

∫ ∞

−∞
ε∇rf0(r; ε)dε. (5)

Here N0 denotes the density of states (including spin) at the Fermi energy, in the absence

of superconductivity. Note that the charge current depends only on the even part of f0(ε)

with respect to the Fermi energy, whereas the energy current depends on the odd part.

Assume a normal-metal wire connected to a large normal-metal reservoir, described

via an equilibrium distribution function with temperature T and potential µ. In this

case, the boundary condition to Eq. (3) at the wire-reservoir contact is given by the

Fermi function f 0 = (1 + exp((ε − µ)/T ))−1. At an interface between the N wire and a

superconducting reservoir, the Andreev reflection may be incorporated by two boundary

conditions for the symmetric and antisymmetric parts of the distribution function with

respect to the chemical potential µS of the superconductor. These are the requirements

of equal electron and hole occupation numbers (the type of quasiparticles being defined

with respect to µS),

f0(µS + ε) = 1 − f0(µS − ε) (6)

and a vanishing energy current into the superconductor for energies below ∆,

n̂ · ∇r(f0(µS − ε) − f0(µS + ε)) = 0. (7)

Both of these conditions are given at the position of the superconducting interface. Here

n̂ is the unit normal to the interface.

In multiterminal setups considered in Papers V– IX, additional boundary conditions

at the crossing points of many wires are required. If the crossing points do not contain any

extra scattering, these are the continuity of the distribution functions and Kirchoff-like

rules for the conservation of the spectral charge and energy currents.

The above kinetic equations assume that the only current present is dissipative, due

to the changes in the chemical potential. The effect of supercurrents on the distribution

functions, on the level of the kinetic equations such as Eq. (3) can to some extent be

taken into account by transforming to the system of co-moving coordinates where the

superfluid component is at rest, i.e., where the supercurrent vanishes [33]. However, on
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the level of the quasiclassical Keldysh formalism outlined in Subs. 3.3, one can accomplish

this much more systematically.

µP TP

IE IC

f(x; ε)

x

Figure 4: Schematic setup for finding the local chemical potential and
effective temperature characterizing the distribution function f(x; ε) of the
main wire.

Effective temperature and local chemical potential

Often the space-dependent solutions to the Boltzmann equation in the diffusive limit (3)

are not just Fermi functions with space-dependent temperatures and potentials. However,

they may still be characterized by effective local potentials µ(x) and temperatures Teff(x)

as outlined below. The same procedure may be applied in the coherent case, including

the proximity effect, described in Subs. 3.3, 5.2 and in Paper IX.

Consider a fictitious narrow normal-metal probe wire of length L, cross section A and

normal-state conductivity σN = e2N0D connected in position x of the main wire whose

distribution function f(x; ε) is characterized. From the other end, assume this probe wire

to be in contact with a large reservoir with chemical potential µP and temperature TP

(see Fig. 4). Neglect the possible proximity effect on this wire by assuming long enough

L and assume that A is much smaller than the cross section of the main wire, such that

the properties of the main wire are not changed, but a current may flow in the probe

wire. The electrical current in the probe wire is then

IC =
σNA

eL

∫ ∞

−∞
(f(ε, x) − f 0(ε;µP , TP ))dε, (8)

and the energy current is

IE =
σNA

e2L

∫ ∞

−∞
ε(f(ε, x) − f 0(ε;µP , TP ))dε, (9)

where f 0(ε;µP , TP ) is the equilibrium quasiparticle distribution function in the probe

reservoir. From these two currents [32], one obtains the thermal current IQ = IE−µIC/e,
where µ is the local chemical potential in the probe wire.
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The expressions for charge and energy currents depend on the symmetric and anti-

symmetric parts of the distribution function with respect to a reference energy, say µS.

Therefore, it is convenient to separate them to even and odd parts with respect to µS,4

fT (ε) = 1 − f(µS − ε) − f(µS + ε), fL(ε) = f(µS − ε) − f(µS + ε). (10)

In the reservoirs, where the electrons are described by Fermi distribution functions, the

equilibrium forms for fL and fT are (cf. Fig. 5)

f 0
L/T =

1

2

(
tanh

(
E + µ

2kBT

)
± tanh

(
E − µ

2kBT

))
, (11)

where µ denotes the chemical potential with respect to µS, and T is the temperature.

fL

−µ µ ε −µ

fT

µ ε

Figure 5: Equilibrium longitudinal (antisymmetric) and transverse (sym-
metric) distribution functions in a reservoir with a chemical potential µ.

The local chemical potential µ(x) and the effective temperature Teff(x) are obtained

by defining them such that if µ(x) = µP , the electrical current in the probe wire vanishes,

and if Teff(x) = TP , the heat current vanishes. Hence, we obtain the condition for the

chemical potential, ∫ ∞

0

(
f 0

T (ε;µP , TP ) − fT (ε, x)
)
dε = 0. (12)

The relation can be simplified further, by integrating the first part of Eq. (12) to yield

µ(x) = µP =

∫ ∞

0

fT (ε, x)dε. (13)

This relation shows that the symmetric function fT (ε, x) describes the local chemical

potential.

The condition for the local effective temperature can be obtained analogously, by

requiring ∫ ∞

0

ε(f 0
L(ε;µP , TP ) − fL(ε, x))dε = 0. (14)

4In the theory of nonequilibrium superconductivity, the subscripts L and T refer to the “longitudinal”
and “transverse” changes of the superconducting order parameter, due to the two types of nonequilibrium
they describe [36].
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Now we can subtract from both sides of Eq. (14) the term

(πkBTP )2

6
=

∫ ∞

0

ε(f 0
L(ε, µP , TP ) − f 0

L(ε, µP , 0))dε (15)

to obtain

Teff(x) = TP =

√
6

πkB

[∫ ∞

0

ε(fL(ε, x) − f 0
L(ε, µP , T = 0))dε

]1/2

. (16)

This defines the local effective temperature as the deviation of the distribution function

from the corresponding zero-temperature equilibrium function with the local chemical

potential.

Distribution functions in the absence of proximity effect

The solutions to semiclassical kinetic equations cannot describe coherent phenomena due

to the superconducting proximity effect, but they yield a good starting point for the

exploration of these phenomena. Consider a diffusive normal wire placed between two

large normal-metal reservoirs, located at x = 0 and x = L with the chemical potentials

µ1 = µ/2 and µ2 = −µ/2 at the temperature T , i.e., one has applied a voltage V =

µ/e between the reservoirs. Moreover, assume that the inelastic scattering length is

much larger than L. In this case, the quasiparticle distribution function is described by

Eq. (3) with Iin = 0 and with boundary conditions given by Fermi distribution functions

f 0(ε;µi, T ). The resulting space-dependent distribution function in the wire interpolates

linearly between the reservoir functions,

f(ε; x) =
(
1 − x

L

)
f 0(ε;µ1, T ) +

(x
L

)
f 0(ε;µ2, T ) (17)

resulting in the staircase distribution function shown in Fig. 6a in the limit µ � kBT .

The corresponding symmetric and antisymmetric parts are

fT (ε; x) =

(
1

2
− x

L

)(
tanh

(
ε+ µ/2

2kBT

)
− tanh

(
ε− µ/2

2kBT

))
(18)

fL(ε; x) =
1

2

(
tanh

(
ε+ µ/2

2kBT

)
+ tanh

(
ε− µ/2

2kBT

))
. (19)

This function was measured by Pothier et al. [16], showing the importance of inelastic

scattering mainly due to electron-electron interactions for the shape of the distribution

function in long wires (for a detailed treatment of these effects, see [37]). As a second

example, replace the normal reservoir at x = 0 by a superconducting one, imposing the

boundary conditions (6,7) at the NS interface for ε < ∆. The resulting distribution

function is plotted in Fig. 6b; it is given by (for simplicity, choosing now µ1 = 0 and

µ2 = µ)

f(ε; x) =

{
1
2

(
1 + x

L

)
f 0(ε;µ) + 1

2

(
1 − x

L

)
f 0(ε;−µ), |ε| < ∆(

1 − x
L

)
f 0(ε;µ = 0) + x

L
f 0(ε;µ), |ε| > ∆.

(20)
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In this case the symmetric and antisymmetric parts are

fT (ε; x) =
x

2L

(
tanh

(
ε+ µ

2kBT

)
− tanh

(
ε− µ

2kBT

))
(21)

fL(ε; x) =




1
2

(
tanh

(
ε+µ
2kBT

)
+ tanh

(
ε−µ
2kBT

))
, ε < ∆(

1 − x
L

)
tanh

(
ε

2kBT

)
+ x

2L

(
tanh

(
ε+µ
2kBT

)
− tanh

(
ε−µ
2kBT

))
. ε > ∆.

(22)

In both cases, fL(ε) is constant in space (in the NS case, for ε < ∆), given by its value

in the N reservoir(s), and the total electrical current is

I =
AσN

L
µ/e (23)

i.e., we obtain Ohm’s law. The energy current disappears and the chemical potential

interpolates linearly between those of the reservoirs. In this incoherent case, the difference

between the two cases can only be observed in some other observables than the time-

averaged current, such as shot noise [30].

1  

0.5

0  

1   0.5 0   −0.5−1  
0

0.5

1

x/L
ε/eV

f
(x

;ε
)

0

0.5

1
−2 −1 0 1 2

0

0.5

1

x/L

f
(x

;ε
)

ε/eV

a) b)

Figure 6: Nonequilibrium quasiparticle distribution function in a middle
of a diffusive mesoscopic wire in the absence of inelastic scattering: a)
wire placed between two normal-metal reservoirs b) wire placed between
a normal-metal and a superconducting reservoir, neglecting the proximity
effect. In the latter, we assume µ � ∆.

The local temperature characterizing the width of the region where the value of the

average quasiparticle occupation number varies from unity to zero is always finite in some

part of a nonequilibrium system. With a vanishing lattice temperature T = 0, in the

N-N case

Teff =

√
3

πkB

√(
eV

2

)2

− µ(x)2. (24)

Thus, since µ(x) = ±eV/2 at the reservoirs, we have there Teff = 0, consistently with the

lattice temperature. If one of the reservoirs is replaced by a superconductor, we obtain

for voltages below ∆

Teff =

√
3

πkB

√
(eV )2 − µ(x)2, (25)
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where µ(x) interpolates between the value 0 in the superconducting reservoir, and eV in

the normal reservoir. Therefore, Teff =
√

3eV/πkB near the S reservoir, indicating that

since the energy current cannot flow into the superconductor, it is thermally decoupled

from the mesoscopic normal-metal wire.

Above, by setting Iin = 0 we assumed the presence of only elastic scattering, due

to impurities. In practice, the scattering times for electron-electron interaction [16, 37,

38] and other types of inelastic scattering such as electron-phonon or scattering due to

magnetic impurities [39–41], are finite and need to be taken into account when measuring

the quasiparticle distribution functions. As a general rule, these scatterings cause the

local distribution function to relax towards the equilibrium type, described by the lattice

temperature in the case of electron-phonon scattering and an effective temperature in the

other cases. For example, they cause the function fL to vary in space.

If one may neglect the inelastic effects, the semiclassical approach outlined above

describes phase-coherent diffusive normal-metal wires with a remarkable precision, ne-

glecting only such interference effects as weak localization. In the presence of supercon-

ductivity, the proximity effect slightly modifies the diffusion coefficients, making them

space and energy dependent. A much larger variation is obtained if a supercurrent is

applied through the normal-metal wire, since it couples the symmetric and antisymmet-

ric parts of the distribution function. Subsection 3.3 indicates how the proximity-effect

modifications are taken into account in the description of particle distributions, and

Subs. 5.2 shows an example of a system where supercurrent can be applied to control the

distribution functions.
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3 Microscopic theoretical formalism

In this section, the microscopic theory of inhomogeneous superconductivity is presented

and two approaches are described to quantitatively treat the transport properties of

hybrid structures containing both normal and superconducting segments. The first view-

point, taken in Subs. 3.2, is based on the approach by Landauer and Büttiker [42, 43],

relating the transport properties of a mesoscopic phase-coherent sample to its transmis-

sion properties: the conductance (as well as other transport coefficients) of such a sample

can be related to its scattering matrix. The second, a slightly more general approach

described in Subs. 3.3, is based on the description of the local distribution function for

electrons through a kinetic equation similar to the incoherent semiclassical approach,

but accounting for the lowest-order phase-coherent phenomena. In both cases, for the

exact calculation of the proximity-affected properties, one needs to invoke the micro-

scopic theory of inhomogeneous superconductivity. In the previous approach, this is

carried out by a direct numerical solution of the Bogoliubov-de Gennes equation [1], a

Schrödinger-like equation describing the inhomogeneous superconducting structure (ex-

plained in Subs. 3.1). In the latter formalism, we may take the analytical calculations

further by the quasiclassical approximation in the diffusive limit [5, 44, 45].

3.1 Andreev reflection within microscopic theory

Quasiparticle excitations in structures containing singlet superconductors with a space-

dependent coupling parameter λ(r) may be described with the Bogoliubov-de Gennes

equation [1, 46, 47] (below, we set � = 1)(
−∇2

2m
+ U(r) + EF ∆(r)

∆∗(r) ∇2

2m
− U(r) −EF

)(
u(r)

v(r)

)
= E

(
u(r)

v(r)

)
, (26)

where ∆(r) = λ(r)〈ψ↑(r)ψ↓(r)〉 ≡ λ(r)F (r) is the pair potential, λ(r) is the local at-

tractive interaction potential between the electrons, ψσ(r) is the local field operator an-

nihilating an electron at position r and F (r) is the pairing amplitude. The potential

U(r) describes deviations from a regular crystal lattice, e.g., due to disorder. The pairing

amplitude is obtained self-consistently from the eigensolutions of Eq. (26) via

F (r) =
∑

n

v∗n(r)un(r)(1 − 2f(En)), (27)

where f(En) is the Fermi function at the eigenenergy En, corresponding to the eigenfunc-

tions un(r), vn(r) of Eq. (26). It is customary to set the interaction potential λ(r) to a

finite constant in a superconductor and zero in a normal metal, since the change between

the bulk values takes place within a distance of the order of the minuscule scale of a Fermi

wavelength around the interface between the two materials. In the case ∆(r) ≡ 0, u(r) is

the wave function of an electron- and v(r) of a hole-like excitation and hence Eq. (26) is

a matrix equation in particle-hole space, often referred to as the Nambu space. For the

case of a bulk superconductor, λ = const., and one obtains the BCS energy gap ∆ in the

spectrum of states [1, 2, 48].
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At low temperatures, the important excitations contributing to physical observables

reside near the Fermi level, p ≈ pF . Therefore, we may concentrate on its neighborhood

in the dispersion relation by linearizing the kinetic energy, p2/2m ≈ vF · (pF + 2δp)/2,

where pF � δp. Separating the strongly oscillating part from the weakly oscillating one,

we may use the Ansatz u(r) = η(r) exp(ipF · r), v(r) = χ(r) exp(ipF · r), where η(r)

and χ(r) are slowly varying functions of the coordinate r (see Fig. 7). Inserting this to

Eq. (26) and making the Andreev approximation [6] by neglecting the second derivatives

(corresponding to quadratic terms p2) of η, χ yields

(
−ivF · ∇ + U(r) ∆(r)

∆∗(r) ivF · ∇ − U(r)

)(
η(r)

χ(r)

)
= (E −EF )

(
η(r)

χ(r)

)
. (28)

In what follows, we measure the energies with respect to the Fermi energy, i.e., ε ≡
E − EF .

Figure 7: In the Andreev approximation, a strongly oscillating function
(gray) is replaced by the product of a constant-period oscillating function
and the envelope function of the oscillations (black), neglecting the second
derivative of the envelope function.

As an example, consider a system of a one-dimensional clean (U(r) = 0) semi-infinite

superconductor (located at x > 0) in contact with a clean semi-infinite normal metal

(x < 0) through an insulating barrier of height U located on the interface, x = 0.

For this example, let us assume a non-self-consistent pair potential with a step-function

form, ∆(r) = ∆ϑ(x), where we choose ∆ ≡ ∆0 exp(iϕS). This problem can also be solved

directly from the Bogoliubov-de Gennes equation [49], Eq. (26), but let us use this as an

example indicating the benefits and limitations of the Andreev approximation.

We seek for a solution of the form ψ = ψleft + ψright (see Fig. 8) where

ψleft =

(
1

0

)
eikN x + ree

(
1

0

)
e−ikN x + rhe

(
0

1

)
e−ikNx (29)

is the wave function on the left-hand side of the interface, composed of an incident electron

moving towards the right, a normally reflected electron and an Andreev-reflected hole

moving towards the left, each with energy ε if inelastic processes are neglected. Their

wave number in the normal metal is given by kN ≡ ε/vF . On the superconducting side

the electron can get transmitted into the left- and right-moving quasiparticle eigenstates,
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ψleft ψright
N S(

1

0

)
eikNx

ree

(
1

0

)
e−ikNx

rhe

(
0

1

)
e−ikNx

t+

(
u0e

iφS

v0

)
eikSx

t−

(
v0e

iφS

u0

)
e−ikSx

Figure 8: Andreev reflection at a NS interface.

expressed by the probabilities t+ and t−,

ψright = t+

(
u0e

iφS

v0

)
eikSx + t−

(
v0e

iφS

u0

)
e−ikSx. (30)

The wave number in the superconductor is kS = Ω/vF , where Ω =
√
ε2 − ∆2

0 and the

“coherence factors” are u0 =
√

(ε+ Ω)/2 max(∆0, ε), v0 =
√

(ε− Ω)/2 max(∆0, ε). We

can find the transport coefficients ree, rhe, t+ and t− by matching the wave functions

ψleft and ψright at the interface. However, since the range of the interface potential U is

assumed to be very small (in practice, it would be of the order of the Fermi wavelength

λF ), Andreev approximation is not valid near x = 0, and we have to resort to the

Bogoliubov-de Gennes equation (26) to find the appropriate boundary conditions relating

ψleft and ψright. These are the continuity of the functions across the boundary, and

ikF

(
ψL

right(0) − ψR
right(0) − ψL

left(0) + ψR
left(0)

)
= 2mUψ(0), (31)

arising from the mismatch of the derivatives of the solutions to the Bogoliubov-de Gennes

equations across the boundary. Here the superscript L denotes a left-moving electron or

a right-moving hole, and vice versa for R (in the superconductor, an electron branch

denotes the eigensolution which tends to an electron-like wave function for large energies,

ε � ∆0, and the hole branch is the other eigensolution).

The resulting transport coefficients are tabulated in Table I. For a vanishing interface

resistance, U → 0, only Andreev reflection and transmission without branch crossing (t+)

are preserved. Thus, we find that not only we have the finite probability for Andreev

reflection, it is the only way to reflect from an ideal NS interface.

From the quantum-mechanical current operator, the quasiparticle charge current car-

ried by the established state in the normal metal can for ε < ∆ be found as

JQ = 2evF |rhe|2. (32)

Hence, an Andreev-reflected electron carries twice the current compared to a normally

transmitted one (evF ), since the reflected hole carries the charge current into direction

opposite to the incident electron. On the superconducting side, the quasiparticle states
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ε < ∆0 ε > ∆0

rhe
eiϕS

γ
∆0
ε
eiϕS

γ

ree
−2Z(iε+ ZΩ)

γ∆0

−2Z(iε+ ZΩ)
γε

t+

√
2(ε+ Ω)(1 − iZ)eiϕS

γ
√

∆0

√
2(ε+ Ω)(1 − iZ)eiϕS

γ
√
ε

t− i

√
2(ε− Ω)ZeiϕS

γ
√

∆0

i

√
2(ε− Ω)ZeiϕS

γ
√
ε

Table I: Wave function coefficients arising from an incident electron wave
traversing towards an NS interface. Here Z = mU/kF and γ = 2(u2

0(1 +
Z2) − v2

0Z
2). In the limit Z = 0, γ = exp(i arccos(ε/∆0)) for ε < ∆0 and

γ = 1 for ε > ∆0.

decay within the penetration depth vF/|Ω| due to the imaginary part of kS, and hence no

quasiparticle currents are carried far from the interface. Current conservation is, however,

not violated, since the quasiparticle currents are transformed into supercurrents carried

by the superconducting condensate [49].

Inserting Eq. (29) into Eq. (27), with u(x) the amplitude for the electron-like and

v(x) for the hole-like part of the total wave function, we find that the pairing amplitude

F on the normal-metal side is directly proportional to the Andreev-reflection amplitude

rhe. This holds also in the general case with an arbitrary impurity potential. Therefore,

Andreev reflection generates the superconducting proximity effect, the penetration of the

pairing amplitude into the normal-metal side.

3.2 Scattering approach to charge transport

In the previous subsection, an idealized example of a scattering problem was given and

the scattering coefficients were related to the current carried through the structure. This

neglected the elastic scattering due to disorder, or the momentum dependence of the

scattering coefficients. These may be included by utilizing the formalism created by

Landauer and Büttiker [42, 43, 50–54]. It describes a system where the sample under

scrutiny divides into three different kinds of parts (see Fig. 9): The interesting region

under study is the scattering region, where all the scattering events take place. This is

connected to large incoherent particle reservoirs through scattering-free leads (labeled

here by p, q). The latter define a set of basis states |n, α, p〉, transverse channels, between

which the scattering takes place (here, the transverse channel index is n and α denotes its

type — electron or hole). Scattering is described by a scattering matrix sαβ
np;mq, defined

through the correlation between the “incoming” and “outgoing” basis states far off the

scattering region. In the example of the previous subsection, rhe and ree are elements

of the scattering matrix but t+ and t− only for ε > ∆. The reservoirs are assumed
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to be in equilibrium, with well-defined, reservoir-dependent chemical potential µp and

temperature Tp and large enough such that the injected and absorbed quasiparticles do

not perturb their state. The reservoirs serve to inject the electrons and holes into the

transverse channels in the leads.

µ1

T1

µ2

T2

|n, α, 1〉 |m, β, 2〉

Figure 9: Two-terminal scattering geometry.

In what follows, let us consider a case where the scattering region is connected to two

reservoirs, 1 and 2 (as in Fig. 9). Treating the electron- and hole-like channels separately

allows one to define a matrix of scattering probabilities P αβ
pq between the electron- and

hole-like states,5

P αβ
pq ≡

∑
n∈p,m∈q

[sαβ
nm

†
sαβ

nm]. (33)

Thus, the probability for normal transmission of an electron in lead 1 to an electron in

lead 2 is T0 = P ee
21 and for Andreev reflection between an electron and hole it is RA = P he

11 .

Within linear response (assuming that the P -matrix elements do not depend on energy

on the scale of the applied voltage), one can now relate the transport coefficients of

the sample to the elements of its P -matrix. For example, the conductance of a spin

degenerate normal-metal wire is given by the Landauer formula,6

GN =
e2

π
T0 (34)

and in the case of an NS interface [4, 55],

GNS =
e2

π
(T0 + 2RA). (35)

A more complicated two-probe situation can be realized by assuming a large supercon-

ductor in contact with the scattering region such that the total current into it vanishes

(as in Paper I). In this case, the formula for the linear conductance between two normal

reservoirs is given by [4, 56]

GNSN =
e2

π

[
T0 + TA + 2

(
RAR

′
A − TAT

′
A

RA +R′
A + TA + T ′

A

)]
, (36)

where TA = P he
21 is the Andreev transmission probability from lead 1 to 2, and the primed

coefficients denote probabilities from lead 2 to lead 1.

5This is the sum of the probabilities for different channels, and thus the elements of the P -matrix
range between zero and the number of channels.

6In conventional units, where � is not chosen to unity, the prefactor is 2e2/h.
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The conductance G is defined by the ratio between the time-averaged current and

the applied voltage. However, also other types of observables can be expressed in terms

of the scattering probabilities. Corresponding scattering-matrix formulae for the zero-

frequency noise, describing the fluctuations of current in time, are given in [57], and

applied, for example, in Paper II. Thermoelectric coefficients, e.g., the thermopower

describing the voltage response to an applied temperature gradient, are related to the

scattering matrix in the presence of Andreev reflection in Ref. [24]. Such a study may

directly yield information on the effect of superconductivity on the relation between

different response functions. For example, it is shown in Paper III that the Mott relation

between the thermopower and the logarithmic energy derivative [32] of the conductance

is not in general valid in the presence of Andreev reflection.

In some idealized cases, one may find the dependence of the scattering-matrix elements

on the system parameters and energy analytically from rather simple considerations —

as was done in the previous subsection. However, for a complicated geometry of the

scattering region or in the presence of elastic scattering, one needs to resort to other

methods. A widely employed approach, originally borrowed from nuclear physics, is to

consider the behaviour of a whole distribution of scattering matrices, or especially of

their eigenvalues — an approach referred to as random matrix theory (for a review,

see [58]). Such a treatment is valid when the number of quantum channels is high as is

typical especially in the scattering regions formed by metallic wires. For many systems,

e.g., a diffusive normal-metal wire [59] and a dirty two-dimensional interface [60], one

has indeed found an analytical formula for the distribution of transmission eigenvalues.

Furthermore, at zero energy, one can relate the Andreev reflection probabilities to the

transmission probabilities through the normal-metal wire [55], and thus random matrix

theory yields the transport properties of NS systems under such conditions.

In many cases, the distribution of transmission eigenvalues is difficult to find ana-

lytically and one has to evaluate the scattering matrix using numerical methods. This

approach has been applied in Papers I – III. In the numerics, we replace the contin-

uum Bogoliubov-de Gennes equation (26) by its tight-binding version (for details, see

Ref. [54]), where lattice sites represent sites in the crystal lattice. A typical approxima-

tion is to take into account only the nearest-neighbour couplings of strength γ. In this

case, the Hamiltonian for the problem can be written in matrix form as

H =
∑

α=±1

α
[∑

i

εi|i, α〉〈i, α|+
∑
〈i,j〉

(
γ|j, α〉〈i, α|+h.c.

)]
+
∑

i

[
∆ii|i, 1〉〈i,−1|+h.c.

]
. (37)

Here i, j index the lattice site, 〈i, j〉 referring to the nearest neighbours i and j, and

α = ±1 refers to the type of the state, α = +1 for an electron and α = −1 for a hole.

To describe a disorder potential, the site energies εi may be chosen randomly from some

distribution7 of width w, such that w characterizes the amount of disorder. This model

(without the last part due to the pair potential matrix ∆ii) has been extensively applied,

e.g., in the context of Anderson localization in disordered wires [61].

7For most observables, it turns out that the detailed shape of the distribution is unimportant. In
Papers I – III, a uniform distribution is applied.
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A given scattering region can be characterized by its dimensions (yielding the dimen-

sions of the matrix H), disorder strength w, the phase of the nearest-neighbor coupling

γ due to a magnetic field and the form of ∆ii, usually assumed to be a step function.

The numerical technique applied in Papers I – III finds the scattering coefficients by

computing the retarded Green’s function (here η is a small positive real number)

GR = (E + iη −H)−1 (38)

and relating this to the scattering coefficients between the states n, α and m, β in leads

p and q through [54, 62–64]

sβα
mn = −δβα

m,q;n,p + i
√
vβ

m,qvα
n,p〈m, q, β|GR

qp|n, p, α〉. (39)

Finally, the desired physical observable is calculated by relating it to the scattering coeffi-

cients as in Eqs. (34–36). For a disordered system, an ensemble of observables is typically

calculated for different configurations of the disorder potential — i.e., different sets of

random site energies. In this way, one can describe the generic proximity-affected phe-

nomena, for example, in the ensemble average (as in Paper II) or the standard deviation

over the ensemble (as in Paper I).
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Figure 10: Mean free path can be related to the parameter w describing
the disorder in the tight-binding model by observing how the quantity
〈G〉L/M varies as the length L is varied in the system with M channels.
Circles: w = γ, squares: w = 1.25γ. The regions are labeled as follows: A.
Quasiballistic regime, B. Diffusive regime, and C. Localized regime. Here
M = 35 and L is expressed in terms of the lattice constant. The scatter
in the data is due to the finite number of disorder realizations.

The disorder strength w cannot be related directly to physical parameters, such as

the elastic mean free path lel, but the relation between the two depends on the geometry

of the studied sample, especially the number of propagating channels between which the

scattering occurs. Figure 10 indicates a method to relate w and lel by studying how

the ensemble-averaged conductance of a normal-metal wire behaves as the size of the
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sample is varied. For a nearly ballistic sample, i.e., if the mean free path is very long

compared to the sample size, such that most of the transmission probabilities are near

to one, the conductance does not essentially depend on the length L of the sample, but

only on its width M through the number of available channels for the transmission of

current. In the diffusive limit L � lel most relevant in our studies, the conductance is

Ohmic: it scales with the cross section of the sample divided by its length. Finally, in

the localized regime [65, 66] where the Anderson localization length λloc (which in the

two-dimensional systems simulated in Papers I – III is always finite) is of the order of

L or smaller, the conductance decreases exponentially with L/λloc, but increases only

linearly with the number of channels. Therefore, observing how the quantity 〈G〉L/M
behaves as a function of w and L, one can find the (quasi)ballistic, diffusive, and localized

regimes for a given w.8

In principle, in any given NS system an observable that can be related to the scattering

coefficients could be modelled by the numerical technique described above. However, the

inversion of the matrix in Eq. (38) is computationally quite demanding and in order

to sample enough statistics for the ensemble-averaged quantities, typically one has to

compute at least a few hundred realizations. Hence, the computational time sets severe

limitations on the sizes of the systems which can be studied. In practice, one is limited to

two-dimensional systems with size of some hundreds of lattice sites (with the typical size of

metallic crystal lattices, this would correspond to wires of size a few tens of nanometers).

Therefore, for the study of phenomena not strongly dependent on the system size, one

needs to take care of any finite-size effects by varying the structure size and checking

how the observables respond to the variation. In the diffusive limit, the distribution of

scattering matrices is universal [59], i.e., not dependent on the microscopic features of the

structure. Therefore, even these small systems can be used to study generic diffusive-limit

phenomena observed in wires much larger than the simulated ones.

Despite its limitations, the numerical scattering-matrix approach has some advan-

tages over the analytical methods, e.g., those based on quasiclassical Green’s functions.

The latter usually consider ensemble averaged quantities, whereas the scattering-matrix

approach can, in principle, describe any moment of the observable distribution, such as

the universal conductance fluctuations (see Paper I). There are also some quantities in

the diffusive limit for which proper analytical Green’s-function theories do not yet exist,

such as the proximity effect on current noise or some thermoelectric effects,9 but which

can be described within the scattering-matrix approach (see [24, 57] and Papers II and

III).

8In the diffusive limit, weak-localization effects may, however, still be present [67, 68].
9For the previous quantity, a novel counting-field approach based on quasiclassical Keldysh Green’s-

function theory has been recently developed [69].
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3.3 Quasiclassical Keldysh real-time formalism

In this subsection, the quasiclassical approach for studying inhomogeneous superconduc-

tivity is described, including nonequilibrium effects within the real-time Keldysh for-

malism. This formalism is applied in Papers IV – IX. Reviews of the nonequilibrium

quasiclassical theory can be found in Refs. [29] and [5, 70], the latter two including the

description of phenomena related to those considered in this Thesis. The fundamentals of

the theory can also be read in a few recent books on superconductivity, see Refs. [71,72].

Here we explain the main points of the formalism relevant to Papers IV – IX.

Quasiclassical approximation

In the presence of disorder or residual interactions in a Landau Fermi liquid, the most

convenient method to describe the electronic properties of condensed-matter systems is

through Green’s functions Ĝ. The treatment starts from the Gor’kov equation [73, 74],

a Green’s-function analogue to the Bogoliubov-de Gennes equation, but with the added

benefit of the description of scattering through self-energies Σ̂. In the time-independent

case, it can be written in the compact form∫
dr2(Ĝ

−1
0 − ∆̂ − Σ̂)(r1, r2)Ĝ(r2, r1′) = δ(r1 − r1′). (40)

Here Ĝ−1
0 (r1, r2) = δ(r1 − r2)(iετ̂3 + ∇2/2m − eφ(r1)) is the Green’s function for an

electron in a scattering-free normal metal in the potential φ(r1) and τ̂3 is the third Pauli

matrix in electron-hole space. The pair-potential matrix is of the form

∆̂ ≡
(

0 ∆(R)

∆∗(R) 0

)
, (41)

and the self-energy Σ̂ may describe any kind of scattering, apart from that responsible

for ∆̂.

The Gor’kov equation itself is rather difficult to solve for most inhomogeneous systems.

Eilenberger [44] introduced a simplifying approximation by using the fact that the Fourier

transform of Ĝ(r, r′; ε) with respect to the relative coordinate r − r′ is highly peaked

around momenta p for which |p| ≈ pF , i.e., Ĝ oscillates strongly as a function of r − r′

(the wavelength of these oscillations is thus the Fermi wavelength λF , typically of the

order of a nanometer). In metals, these oscillations are responsible for many second-

order interference effects but, for the majority of the low-order effects, the information

contained in them may be ignored. Defining ζ ≡ p2/2m−EF and R ≡ (r+ r′)/2 we may

introduce the quasiclassical Green’s function through

ĝ(p̂, R; ε) ≡ i

π

∫
dζĜ(ζ, p̂,R; ε). (42)

Now making the quasiclassical approximation of treating Ĝ as a δ-like function of p̂ yields

the Eilenberger equation (for details, see Refs. [5, 70])

−ivF · ∇ĝ =
[
−iετ̂3 + ∆̂ + Σ̂, ĝ

]
. (43)
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and Σ̂ denotes the scattering self-energy. This equation preserves the square of ĝ, and

using Eq. (42) in a bulk superconductor, one can show [75] that this equals ĝ2 = 1̂.

Both the quasiclassical approximation and the Andreev approximation discussed

above rely on the fact that the variations in the potentials (such as disorder or structural

variations) are on a scale much larger than the quasiparticle de Broglie wavelength, i.e.,

the Fermi wavelength. Therefore, it may not be a surprise that one can be derived from

the other without additional approximations [76,77]. Both of these are essentially pertur-

bation theories in the small parameter λF/ξ, the ratio between the Fermi wavelength and

the coherence length ξ = vF/ε
∗ in the clean limit and ξ =

√
D/ε∗ in the diffusive case.

Here ε∗ is the maximum of the energy scales important for the problem, such as kBT , ∆

or eV . In other words, the theory is constructed as an expansion in ε/EF ,
10 a limit valid

in the treatment of most of the phenomena related to metals and superconductors, with

the exceptions of the quantum Hall effect, typical thermoelectric effects (but not all: see

Subs. 5.2) and such interference effects as localization or the Aharonov-Bohm effect. The

interpretation of the quasiclassical approximation is discussed in detail in Refs. [77, 78].

The Eilenberger equation, and especially its parametrization leading to Riccatti-type

equations [79], are often applied to describe short-coherence-length superconductors, such

as the novel high-temperature superconductors, and other structures where the elastic

mean free path lel exceeds or is of the same order as the other length scales of the problem.

In these cases, Green’s function is highly direction-dependent, since the information of

the directions of the quasiparticles is retained up to lengths of the order of the size of the

structure. However, in the diffusive limit where the elastic-scattering self-energy exceeds

all the other energy scales, i.e., lel is much smaller than the coherence length ξ and the

variations in the considered structure, ĝ(p̂) is nearly isotropic and one may expand the

dependence on the direction of p in spherical harmonics, retaining only the s- and p-wave

parts. As a result, one arrives at an equation first derived by Usadel [45],

D∇ ·
(
Ĝ(R; ε)∇Ĝ(R; ε)

)
=
[
−iετ̂3 + ∆̂ + Σ̂in, Ĝ(R; ε)

]
, (44)

where Ĝ(R; ε) is the s-wave (isotropic) part of ĝ(p̂, R; ε) and Σ̂in describes inelastic scat-

tering.

Real-time Keldysh approach to nonequilibrium phenomena

Equilibrium systems at a finite temperature may be described in terms of Schrödinger-

type propagation in imaginary time [80], the length of the propagation being determined

by the inverse temperature. As a result, it turns out that the observables are found

by evaluating the Green’s functions at imaginary Matsubara fermion frequencies (ener-

gies) [74, 81] ωn = πkBT (2n + 1) and summing over n. However, for systems far from

equilibrium (as those considered in Papers V – IX), one needs, in addition to the infor-

mation of the spectral properties of the quasiparticle eigenstates in the system as in the

10The crucial assumption is that of the linearity of the dispersion relation around E ≈ EF , allowing one
to write ε(k) = vF · (k− kF ). Deviations from this linearity typically occur within energies comparable
to EF .
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equilibrium case, also the knowledge on the distribution of particles in the system. Such

phenomena may be described within the formalism derived by Keldysh [82], essentially

replacing the Green’s function Ĝ in Eq. (40) by one of the form [29,83]11

Ǧ ≡
(
ĜR ĜK

0 ĜA

)
. (45)

Here ĜR and ĜA are the retarded and advanced Green’s functions, respectively, con-

taining information on the eigenstates of the system, and ĜK is the Keldysh Green’s

function, which describes the occupation numbers of the different states and satisfies a

Boltzmann-type kinetic equation.

Carrying out quasiclassical and diffusive-limit approximations analogously to those

above, one obtains the Usadel equation for Ǧ, similar in form to Eq. (44), but expressed

in the Keldysh ⊗ Nambu space, i.e., with Ĝ being replaced by Ǧ, the Pauli matrix τ̂3
replaced by 1̌ ⊗ τ̂3 and the pair potential matrix by 1̌ ⊗ ∆̂. The normalization condition

Ǧ2 = 1̌ yields the conditions (ĜR)2 = (ĜA)2 = 1̂ and ĜK = ĜRĥ − ĥĜA, where ĥ is

a distribution function matrix containing two real-valued free parameters. The most

common choice for these parameters is to assume a diagonal ĥ = fL1̂ + fT τ̂3. Through

the symmetry of Ǧ, these two functions feature the symmetries fL(−ε) = −fL(ε) and

fT (−ε) = fT (ε) around the superconducting pair potential, chosen to define the point

ε = 0. These can be obtained from the distribution function f(ε) for electrons as in

Eq. (10).

Parametrization of the distribution matrix still leaves us with two 2 × 2 matrices in

particle-hole space, ĜR and ĜA, each satisfying the same normalization condition. By

the symmetry12 ĜA = −τ̂3(ĜR)†τ̂3 between them, we may parametrize these functions

with the two complex functions θ(x; ε) and χ(x; ε) as13

ĜR = cosh(θ)τ̂3 + sinh(θ) (cos(χ)iτ̂2 + sin(χ)iτ̂1) (46)

ĜA = − cosh(θ̄)τ̂3 − sinh(θ̄) (cos(χ̄)iτ̂2 + sin(χ̄)iτ̂1) . (47)

The parametrization is chosen such that the function θ(x; ε) describes the degree of

pairing through the magnitude of the order parameter and χ describes its phase, F (R) =

sinh(θ(R)) exp(iχ(R)). A frequently utilized alternative, especially useful in imaginary-

time calculations, is to use trigonometric functions (with the parameters θ̃ and χ̃, instead

of the hyperbolic ones) [84]. These two parametrizations are related through θ = iθ̃,

χ = χ̃− iπ/2.

With this parametrization, neglecting inelastic scattering, the Usadel equation for the

11Here and below, hat ˆ and check ˇ denote matrices in the Nambu and Keldysh spaces, respectively.
12Note that the imaginary number in the definition of the quasiclassical Green’s function in Eq. (42)

slightly changes the usual relations [78] between the retarded and advanced functions.
13Note the sign error in the definition of ĜA in Refs. [5, 70].



– 25 –

retarded and advanced components reads14

D∇2θ = −2iε sinh(θ) +
1

2
(∇χ)2 sinh(2θ) + i (∆ exp(−iχ) + ∆∗ exp(iχ)) cosh(θ)

D∇ · jE = −i sinh(θ) (∆ exp(−iχ) − ∆∗ exp(iχ)) , jE ≡ − sinh2(θ)∇χ.
(48)

In the absence of a supercurrent, or in the case of a superconducting reservoir to which

the “inverse” proximity effect is negligible, one can approximate ∆ = |∆| exp(iχ), i.e.,

assuming that the phase of the superconductor is independent of energy (see below for the

formula for ∆(R)). Then the last term in the first line of Eq. (48) becomes 2i|∆| cosh(θ)

and the second line reduces to D∇· jE = 0 denoting the spatial conservation of a spectral

supercurrent jE .

The Usadel equation for the Keldysh component of the Green’s function yields the

kinetic equations for the two distribution functions [5, 70, 85],

D∇ · jL = LfT , jL ≡ DL∇fL − T ∇fT + jSfT (49)

D∇ · jT = RfT , jT ≡ DT∇fT + T ∇fL + jSfL, (50)

where the kinetic coefficients depend on the solutions to the retarded and advanced parts

of the Usadel equation and are given in Table II. For example, the source/sink terms L
and R are nonzero only in a superconductor where ∆(x) �= 0.

DL
1
4
Tr[1 − ĜRĜA] 1

2
[1 + cosh(θ) cosh(θ̄) − sinh(θ) sinh(θ̄) cos(2Imχ)]

DT
1
4
Tr[1 − ĜRτ̂3Ĝ

Aτ̂3]
1
2
[1 + cosh(θ) cosh(θ̄) + sinh(θ) sinh(θ̄) cos(2Imχ)]

jS
1
4
Tr[τ̂3(Ĝ

R∇ĜR − ĜA∇ĜA)] Im{− sinh2(θ)∇χ} ≡ Im{jE}

T 1
4
Tr[ĜAĜRτ̂3] −1

2
sinh(θ) sinh(θ̄) sinh(2Imχ)

L 1
2
Tr[τ̂3∆̂(ĜA − ĜR)] −iIm(∆eiReχ(sinh(θ)e−Imχ + sinh(θ̄)eImχ))

R 1
2
Tr[∆̂(ĜR + ĜA)] Im(∆eiReχ(sinh(θ)e−Imχ − sinh(θ̄)eImχ))

Table II: Kinetic coefficients in terms of retarded and advanced Green’s
functions and in the {θ, χ}-parametrized form. The trace goes over the
particle-hole Nambu space. For a real-valued phase χ, T = 0 and L �= 0
only for ε > ∆.

In the absence of the supercurrent, ∇χ = Imχ = 0, thus jS = T = 0 and the

two kinetic equations are decoupled, describing independently the behavior of the two

distribution functions. In the limit of a vanishing proximity effect in a normal metal

14Additionally, this parametrization requires a gauge transformation from ∆ to ∆eiπ/2 compared to
Eq. (41).
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far away from the NS interface, DL → 1, DT → 1, we obtain the semiclassical kinetic

equation (3) with Iin[f ] = 0.

In particle or heat reservoirs, the boundary conditions for the kinetic equations are

given by the local equilibrium forms of Eq. (11). However, for ε < ∆, we have DL = 0

in a superconductor. Therefore, since also T = 0 and fT = 0 in a superconductor in the

absence of a charge imbalance [2], we find that jL vanishes identically and thus super-

conductors prohibit energy transfer for sub-gap energies. As a result, near an interface

between a narrow normal-metal wire and a superconducting reservoir, we obtain the

boundary conditions

fT (ε) = 0

n̂ · ∇fL(ε < ∆) = 0, fL(ε > ∆) = tanh

(
ε

2kBT

)
(51)

where n̂ is chosen perpendicular to the SN interface. These are the same conditions as

Eqs. (6–7) in the phenomenological theory.

If the inverse proximity effect into the superconductor becomes important (as is the

case considered in Paper IV), we need to calculate ∆(R) self-consistently from

∆ =
λN0

4i

∫ ∞

−∞
dεfL(ε)(FR − FA) =

λN0

2i

∫ ∞

−∞
dεfL(ε)Re

{
sinh(θ)eiχ

}
. (52)

At equilibrium (studied, e.g., in Paper IV), fL(ε) reduces to tanh(ε/(2kBT )) in which

case one may calculate the integral by summing over the poles of fL, corresponding to

the fermionic Matsubara frequencies ωn.

Observables

Perhaps the most usual “observable” discussed in the theory of inhomogeneous super-

conductivity is the local density of quasiparticle states N(x; ε). This can be directly

evaluated from the retarded part of the Keldysh Green’s function through

N(x; ε) =
N0

2
Re
{

Tr
[
τ̂3Ĝ

R(x; ε)
]}

= N0Re {cosh(θ(x; ε)} , (53)

Here, N0 denotes the density of states in the absence of superconductivity. Although not

directly measurable, the local density of states can be extracted from a tunnelling current

(see, for example, Refs. [2, 9] and Paper IV).

In a normal metal with ∆ = 0, the conserved quantities jT and jL denote spectral

charge and energy current densities, respectively, and the corresponding observable cur-

rent densities are

jc =
σN

2e

∫ ∞

−∞
dεjT =

σN

2e

[∫ ∞

−∞
dε(DT∇fT + T ∇fL) +

∫ ∞

−∞
dεjSfL

]
(54)

jQ = −σN

2e2

∫ ∞

−∞
dεεjL = −σN

2e2

[∫ ∞

−∞
dεε(DL∇fL − T ∇fT ) +

∫ ∞

−∞
dεεjSfT

]
. (55)

Both consist of a dissipative part (which vanishes if the distribution functions do not

vary in space) and a supercurrent part (for both currents, vanishes for space independent

phase χ and in the case of jQ, also in equilibrium). Here σN = e2N0D is the normal-state

conductivity of the metal.
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Boundary conditions for quasiclassical Green’s functions: combination of scat-

tering and quasiclassical theories

Designed to describe coarse-grained properties of superconducting heterostructures at

length scales much larger than the Fermi wavelength (and for the Usadel equation, longer

than the elastic mean free path), the quasiclassical theory cannot treat variations within

these small length scales. A typical large variation over a short distance is an interface

between different types of materials, containing some extra scattering either due to an

oxide layer formed on the interface, or due to a mismatch between the normal-state

conductivities of the two materials. In this case, the quasiclassical Green’s functions on

both sides of the interface have to be related by a boundary condition. An example of

such a boundary condition for the case of Andreev-approximated wave functions was given

in Subs. 3.1. For the Eilenberger functions, the boundary condition was first derived by

Zaitsev [86], and this condition was later simplified in the diffusive limit by Kuprianov and

Lukichev for a tunnelling interface [87]. A major invention was due to Nazarov [88], who

treated the boundary condition as a form of current conservation through the interface.

In the diffusive limit, a general relation between the Green’s function Ǧ1 on the left-

hand side of the interface and Ǧ2 on the right-hand side was obtained, given through the

transmission eigenvalues Tn of the interface,

σ1
NA1Ğ1∂xĞ1 = σ2

NA2Ğ2∂xĞ2 =
2e2

π

∑
n

Tn[Ğ1, Ğ2]

4 + Tn({Ğ1, Ğ2} − 2)
, (56)

where both interfaces are assumed perpendicular to the x-direction and Ai denote the

cross sections and σi
N the normal-state conductivities of the two wires (i ∈ 1, 2). This

boundary condition relates the matrix currents σi
NAiǦi∂xǦi to another matrix current

flowing across the interface. This equation is valid for any kind of an interface, as long as

its transmission eigenvalues are known. Thus, to fully account for the effects an interface

has on the quasiclassical Green’s functions, we need to apply scattering theory.

In most cases, it is impossible to know the individual transmission eigenvalues of a

given interface. However, applying random matrix theory [58], one may find the distribu-

tion of the eigenvalues for a given type of an interface. And since such interfaces typically

contain thousands of scattering channels, one may transform the sum in Eq. (56) to an

integral over the transmission eigenvalues, weighted by their distribution function (for

example, see Eqs. (8–11) in Paper VII and Eqs. (3-5) in Paper V).

With Eq. (56), one may also find the boundary condition in the case of a reservoir,

i.e., when its area A2 is much larger than the area A1 of the wire connecting to it. In

the limiting case A2/A1 → ∞ we obtain Ǧ2∂xǦ2 → 0, and therefore, Ǧ2 is given by

equating the rhs. of Eq. (44) to zero. In a superconductor with phase φ we then obtain

θ2 = artanh(|∆|/ε), χ2 = φ whereas in a normal metal, θ2 = 0 and χ2 is arbitrary.

Quasiclassical Keldysh and scattering-matrix approaches are powerful tools to treat

most of the transport phenomena taking place in NS heterostructures and they have

been applied to describe numerous phenomena. The following two sections show a few

examples of these, the first concentrating on equilibrium and linear-response effects and

the second one on systems far from equilibrium.
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4 Equilibrium and linear-response phenomena

This section considers two examples of equilibrium and linear-response properties of

superconductor-normal metal heterostructures. In equilibrium, the electron distribution

function is given by the Fermi function and it does not have to be separately evaluated

from a kinetic equation. In this case, the most natural observables in superconductor-

normal metal heterostructures are the space-dependent density of states (DOS), varying

between the bulk superconducting DOS [1, 2] and the essentially constant normal-metal

DOS, and the supercurrent through a normal-metal weak link. Such equilibrium effects

are described in the context of superconductor-ferromagnet heterostructures in Subs. 4.1

and in Papers IV and V.

A linear-response situation where currents can flow is obtained when such a small

voltage is applied that the distribution functions vary at most linearly between two equi-

librium functions with slightly different chemical potentials µ1 and µ2. In the framework

of the scattering-matrix approach, this corresponds to the case when the elements of the

P -matrix do not depend on the energy within the window between µ1 and µ2. In this case,

the equilibrium properties of the system determine the current obtained. An example

of a linear-response phenomenon which can be rather easily treated with the numerical

scattering-matrix approach but which is difficult to describe analytically with the Keldysh

Green’s-function methods is the description of universal conductance fluctuations (UCF)

in systems composed of normal and superconducting elements. In mesoscopic systems

smaller than or of the order of the phase coherence length, UCF show up as a seemingly

random but reproducible variation of the linear conductance as a function of magnetic

field or Fermi energy. Remarkably, the magnitude of these fluctuations, described by the

variance of the conductance values, has a universal value, of the order of the quantum of

conductance e2/h. This value depends on the symmetry of the system studied [89, 90],

but only weakly on its shape or the overall conductance. In Subs. 4.2 and in Paper I, we

discuss how Andreev reflection modifies the conductance fluctuations.

4.1 Superconductor-ferromagnet heterostructures

Superconductors (S) and ferromagnets (F) are both ordered materials, but with quite

different types of the order parameter. Whereas the ferromagnetic ordering expressed

through the magnetization tends to favor aligned spins of the conduction electrons, the

order parameter of a conventional superconductor is in the spin-singlet channel. There-

fore, in most cases ferromagnetic and superconducting order parameters tend to exclude

each other. One of the reasons for the difficulty of finding coexistent superconductivity

and ferromagnetism is also the different energy scales usually encountered in these two

phenomena. The conventional superconducting energy scales are typically at most some

10 K (for example, the critical temperature for bulk Nb is 9.3 K), still on the scale where

the deviations in the dispersion relation of electrons in the conduction band need not be

taken into account. In contrast, itinerant ferromagnets rely on these variations especially

through the variation of the density of states and, partially therefore, their critical tem-

peratures are much higher (the Curie temperatures of conventional ferromagnets Fe, Co
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and Ni are hundreds of Kelvin).

Concentrating on the “superconducting” temperature scales, the theory of SF het-

erostructures may usually assume ferromagnetism itself be unaffected by the proximity

of other materials, or variations in quantities such like temperature or voltage.15 In this

case, the ferromagnets may be described by the Stoner model [93] with a constant ex-

change field 2h separating the two spin bands. Here, we assume that superconductivity

and ferromagnetism are encountered in different materials, i.e., every time ∆ �= 0, we

must have h = 0 and vice versa. For the case of the interplay of ferromagnetism and

superconductivity, see for example Refs. [94, 95].

Compared to the usual picture of inhomogeneous superconductivity, the description

of ferromagnetism makes two additions to the theory. First of these is a new additional

field, exchange field h, entering the equations as a τ̂3 ⊗ σ̂3-term in the Nambu ⊗ spin

space, similar to the Zeeman splitting. The second new feature is the spin polarization:

since the Fermi levels for the two spins are different (separated by the h), also all the

effective quantities, such as the effective mass, the Fermi velocity, the density of states at

the Fermi level, may be spin dependent. On the large energy scales where one takes into

account the full information of the electronic band structure, exchange field and the spin-

dependent Fermi velocities are necessarily related. However, for low-temperature theories

involving superconductivity, one may neglect the large-scale band-structure effects, and

treat these two quantities independently.

The effect of spin polarization on superconductivity has been treated within the scat-

tering approach [96]. The clearest new phenomenon is the reduction of the Andreev

reflection probability due to the spin-dependent densities of states in the ferromagnet

(see [97,98] and the references therein). Conversely, the aim is to use Andreev reflection

to measure the spin polarization at the Fermi level to compare with electronic structure

calculations. Below, we concentrate on the unpolarized case neglecting the effects of spin

dependence of the Fermi velocities, and studying the effect of the exchange field. Assum-

ing that the magnetic length vF/h is much larger than the mean free path, one arrives at

a modified Usadel equation [99] with the term hτ̂3 ⊗ σ̂3 (the opposite regime is treated,

for example, in Refs. [100,101]). This is similar to a strong Zeeman-splitting term due to

a magnetic field and thus, an analogous situation would be observed in a very thin layer

of normal material, under a strong magnetic field parallel to the normal layer (such that

the orbital effects of the magnetic field may be neglected). The main effect of this field

is to suppress the proximity effect into a ferromagnet and introduce a new decay scale

ξm =
√
D/h in the problem, along with oscillations of the order parameter on the same

scale [102,103]. Since in a typical ferromagnet, such as Co, Ni, or Fe, ξm is at most of the

order of few nanometers, one expects that the proximity effect should not be observed at

all over typical experimental length scales of a few hundred nanometers.

Observations by Giroud et al. [14] and Petrashov et al. [15, 104] indicate a contrary

15There are, of course, a few exceptions to this rule: If the ferromagnets are extremely thin, of the
order of a few nanometers [91], or if one considers the effects of applied fields or temperature to the
domain structure in the ferromagnet. Furthermore, a large superconductor may make inhomogeneous
magnetic ordering near the SF interface more favourable than in the bulk of the ferromagnet [92].
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behavior to the predicted short-scale decay of the pairing amplitude: a long-range ef-

fect of a superconductor in the conductance through a strong ferromagnet (Co and

Ni, respectively). Some of these observations can be explained by the changes in the

superconductor-ferromagnet interface resistance when the temperature is decreased be-

low the superconducting transition temperature [105], but this cannot explain all of the

experimental results [106, 107]. Nevertheless, there also exist opposite observations sup-

porting the theory of a short-scale decay [108].

One of the possible explanations for the existence of the long-range proximity effect

into ferromagnets is given by a formation of a triplet pairing amplitude, containing terms

of type 〈ψσψσ〉, at the SF contact due to magnetic interface scattering [100, 109, 110]

— as opposed to the usual singlet amplitude 〈ψσψ−σ〉, the triplet pairing amplitude

contains a term diagonal in the spin space. This does not couple to the τ̂3 ⊗ σ̂3 term

given by the exchange field, and can hence penetrate to large distances, similar to the

usual proximity effect into a nonmagnetic metal. In a bulk of a singlet superconductor,

such a triplet part does not exist, but the magnetic scattering from possible magnetic

inhomogeneities at the interface between a superconductor and a ferromagnet may give

rise to a finite triplet pairing amplitude. Another alternative solution to the problem is

the long-range persistence of correlations between electrons and holes upon a “crossed”

Andreev reflection near a domain boundary [111]. Until some more insight on the nature

of magnetic interface scattering or on the domain-structure effects is obtained, the long-

range proximity effect cannot be considered totally explained.

Ferromagnetic proximity effect on superconductors

Since the singlet proximity effect is expected to be subdued in a ferromagnet during a very

short interval, this should also be seen in the superconducting side near the boundary.

As the pairing amplitude F (x) through an ideal interface between wires of equal cross

section is a smooth function, the boundary condition at a SF interface is a nearly vanishing

electron-hole correlation. The changes of F (x) in a superconductor take place typically

within the scales of the coherence length ξ0 (in the diffusive case, ξ0 =
√
�D/2∆), and

thus the suppression of F (x), and hence for example of the gap in the local density

of states, may be expected to persist up to at least a few ξ0. This inverse proximity

effect was measured in Paper IV (see Fig. 11), showing a very good agreement with the

predictions of the quasiclassical theory. In these calculations, the proximity effect on the

ferromagnetic Ni was assumed to be completely suppressed. The only fitting parameter

in the theory was the resistance of the interface at a temperature above the critical

temperature of the superconducting Al. The order of magnitude of this resistance could

be estimated from the measurements, and it was taken into account through the Nazarov

boundary condition for a dirty interface, explained in Subs. 3.3.

In addition to the inverse proximity effect due to the boundary condition given by

the rapid decay of the pairing amplitude into the ferromagnet, there may in principle

exist also other types of effects of the ferromagnetic proximity on the superconductor.

These are the penetration of spin polarization into the superconducting side (i.e., a ferro-

magnetic proximity effect [103,112,113]), and the magnetic field due to the spins aligned
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Figure 11: Top: local density of states in the superconducting side of
the SF heterostructure. At ε = ∆, N(x; ε) quickly increases, reflecting the
BCS divergence in a bulk sample. This has been cut around N(x; ε) ≈ 2 for
clarity. Bottom: closeup of the SF structure from experiments described
in Paper IV (courtesy of M. Sillanpää, texts and arrows added by the
author). There, the superconducting coherence length ξ0 = 150 nm.

in the ferromagnet. However, the excellent agreement between the experiments and the

simplified theory presented in Paper IV, and the weak response of the system to an ex-

ternal applied magnetic field, show that on the scale of the superconducting coherence

length, both of these effects may be neglected.

SFS supercurrent

One of the important effects of the exchange field on the usual superconducting properties

is the oscillation of the critical current through a ferromagnetic weak link as a function

of the width d of the weak link, superimposed on the exponential overall decay (see

Refs. [102, 114] and Paper V). Negative values of the critical current correspond to the

π-state where the supercurrent has a different sign and the ground state of the system

corresponds to a phase difference π between the superconducting contacts [115].

The oscillation in the supercurrent has been measured in a weak ferromagnet, an alloy

of Cu/Ni with a Curie temperature of the order of 20 K [116,117]. In these experiments,
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one cannot directly vary the exchange field, but the detailed theory of this phenomenon

(see Paper V) indicates that the exchange field required for the transition from the

conventional supercurrent state to the π-state depends on temperature and hence, by

varying the temperature, one can observe the very sharp behavior of the critical current,

including a cusp at the transition point.

The h-dependent Josephson supercurrent is formally analogous to a nonequilibrium-

controlled supercurrent, as shown in Paper V. This analogy along with a method to

combine both effects from (weak) ferromagnetism and nonequilibrium are explained in

detail in the following section.

Research on superconductor-ferromagnet heterostructures spans a broad range of phe-

nomena, of which many are important for large-scale applications (for example, the effect

of superconductivity on giant magnetoresistance used in memory elements has been re-

cently studied using the concepts outlined above [118]). The theoretical description of

these phenomena still contains many open problems, some of which are mentioned above.

Therefore, more research, both theoretical and experimental, is required for a detailed

understanding of the physics of SF structures.

4.2 Universal conductance fluctuations

One of the genuine mesoscopic effects taking place in phase-coherent wires is the fact

that the conductance of a disordered sample with size smaller than the phase coherence

length is not necessarily self-averaging [90]. Even if the wire is much larger than the

correlation length of disorder, i.e., the mean free path, its conductance does not tend

to the value averaged over the configurations of disorder. Rather, an ensemble of such

conductors shows a large variation of conductances, of the order of the squared conduc-

tance quantum16 (e2/h)2 (for an example, see Fig. 12). A similar, seemingly random but

reproducible variation can be observed in the conductance of such a wire by varying the

magnetic field [119] or the Fermi energy by tuning a gate voltage [120]. The magnitude

of these fluctuations has been shown to be universal [121–123], i.e., not to depend on the

actual average value of the conductance.

The origin of the conductance fluctuations lies in the quantum interference of the

different electron paths contributing to the current in the diffusive limit. If the inelastic

effects are weak on the scale of the size of the conductor, the phase memory of the

electrons is retained within these paths and, therefore, the interference pattern persists.

For example, displacing a single impurity in a two-dimensional conductor by a distance

of the order of the Fermi wavelength is sufficient to change the conductance of the whole

sample by an amount of the order of e2/(hn2
i l) (where ni is the impurity concentration),

independent of the size of the system.

The magnitude of the UCF in normal systems can be evaluated analytically through

diagrammatic methods [89,121–123] or through the random matrix theory [124–127], the

latter based on the Landauer conductance formula. Both of these yield for the variance of

conductances — in a quasi-1D system where the transverse directions are much smaller

16For clarity, in this discussion we return back to the conventional units where � �= 1
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Figure 12: Universal conductance fluctuations: conductances for differ-
ent realizations of disorder in conductors sharing the same dimensions and
mean free path fluctuate by an amount mostly dependent on symmetry.
Black dots represent an ensemble of conductances in the absence and grey
crosses in the presence of the magnetic field in an “open” interferometer
of Paper I. The latter have been shifted upwards for clarity.

than the longitudinal one — the universal numbers,

VarG =
8

15β

e2

h
. (57)

Here the parameter β depends on the symmetry [58] and it is β = 1 in the presence of

a time-reversal (TRS) and spin rotation (SRS) symmetry, β = 2 in the absence of TRS

and β = 4 in the absence of SRS.

These theories also yield the correlation energy and field for the fluctuations. Varying

the Fermi energy, the correlations between conductances persist to variations of the order

of the Thouless energy εT = �D/L2, depending on the diffusion constant D and length L

of the mesoscopic wire, and the characteristic magnetic field with which the conductance

fluctuates is of the order of the field producing a flux quantum φ0 = h/e through the

wire.

Besides the purely normal system, the conductance fluctuations in an NS contact in

the presence of Andreev reflection can also be described analytically, especially within

the random matrix theory [127]. For example, for an ideal contact, one finds that the

linear conductance at T = 0 is essentially unchanged compared to its value without the

superconductor, whereas the magnitude of UCF is greatly enhanced. The values of VarG

for the different symmetries are detailed in [128] and in Paper I.

In contrast to RMT, a diagrammatic approach to fluctuations in the presence of

Andreev reflection becomes difficult. Therefore, Ref. [129] made a simplifying assump-

tion that the average phase shift incurred during Andreev reflection vanishes, and could

thereby calculate the magnitude of the fluctuations of a NS system. However, the value
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that was obtained in the presence of TRS differs from the prediction of the random ma-

trix theory [128]. In Paper I, we studied the conductance fluctuations in an Andreev

interferometer where the phase difference between two superconducting segments can be

varied, and showed that this difference is indeed due to the phase-shift assumption.

A numerical study of the fluctuations based on the scattering-matrix approach in

normal-metal systems and in NS contacts has been conducted in Refs. [130] and [67],

respectively. These papers, as also Paper I, study fluctuations by computing the conduc-

tances through a diffusive wire with different configurations of disorder. In contrast to

Refs. [67, 130], which discuss two-terminal systems, a multiterminal situation composed

of a normal wire in contact to one or more superconducting segments is considered in

Paper I. No quasiparticle current is assumed to flow into the superconductors, and thus

the fluctuations remain universal. Such a setup allows one to tune the phase difference

between the two superconductors, for example by varying a magnetic field or driving a

supercurrent between them.

The effect of Andreev reflection on UCF has been studied experimentally in Refs. [23,

131] for a two-terminal NS sample, confirming the theoretical predictions in the absence of

TRS (see also [132]). Fluctuations in multiterminal samples were studied in Refs. [133,

134], where the magnitude of UCF is of the same order as that predicted in Paper I.

However, the latter papers do not include a comparison between the cases in the presence

and absence of superconductivity. Hence, a detailed experimental study on the effect of

Andreev reflection on UCF in multiterminal samples remains to be carried out.
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5 Effects far from equilibrium

The nature of equilibrium and linear-response phenomena is often known to much more

detail than the corresponding true nonequilibrium effects, since their theoretical study

contains a major simplifying feature: only the spectrum of a desired observable is needed

for the evaluation of the thermal average value of the observable — or, as in many cases,

one may apply analytic continuation to imaginary time and equate the observable at the

discrete Matsubara frequencies.

In a nonequilibrium situation, in addition to the spectrum, also the distribution of

quasiparticles needs to be solved for. As shown in Subs. 3.3, this is typically the solution

of a Boltzmann-type kinetic equation, whose coefficients may depend on the spectral

properties of the system, or even on the solution itself (as is the case with the collision

integrals). A counterexample to this rule is the scattering approach, which can treat

nonequilibrium effects but which relies on the existence of a local equilibrium in the

reservoirs.

In small metallic wires of size L, a novel energy scale, Thouless energy εT [12], becomes

important. It is defined as the inverse average time required to traverse through the

system. In diffusive metals, εT = �D/L2 and it shows up as a natural energy scale for

the superconducting proximity effect into such wires: for ε < εT , the pairing amplitude

extends throughout the size L whereas for ε > εT , its decay scale is less than L. Therefore,

a rule of thumb for separating between linear-response and true nonequilibrium effects in

such systems is given by the comparison between εT and the energy scales creating the

nonequilibrium, such as the one given by the voltage, eV .17

In this section, two examples of true nonequilibrium effects are considered. In Subs. 5.1

and in Papers V – VIII, we describe how the Josephson supercurrent through a normal-

metal weak link can be controlled by inducing a nonequilibrium quasiparticle distribution

from an additional normal-metal probe and, reciprocally in Subs. 5.2 and in Paper IX,

how the distribution function can be controlled by the supercurrent to yield a nonequi-

librium Peltier-like effect. In Subs. 5.3 and in Paper II, we show how superconducting

proximity effect changes the voltage dependence of current noise. Simultaneously, these

phenomena serve as examples of applications of the two theoretical approaches considered

in this Thesis: nonequilibrium supercurrent is described by the real-time quasiclassical

Green’s-function formalism, and shot noise by the scattering approach.

5.1 Nonequilibrium supercurrent

One of the consequences of the superconducting proximity effect is the possibility to

transport supercurrent through a non-superconducting medium, a weak link, placed be-

tween two superconductors. This Josephson effect was first predicted [18] for insulating

(I) weak links. The direction and the relative magnitude of this current depends on

the difference ϕ between the phases of the superconducting order parameters at the two

17If the metal is shorter than the superconducting coherence length such that ∆ < εT , the characteristic
energy scale becomes ∆.
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sides of the weak link. The behavior of the supercurrent in large SIS systems is fairly

well known [135], but the quantum effects observed in small Josephson junctions have

been recently under close scrutiny due to the suggestion of their probable use as quantum

bits [136].

S S

N

F (x)

ϕ/2 −ϕ/2

x

Figure 13: Superconductor-normal metal-superconductor (SNS) Joseph-
son junction.

Metallic weak links (see Fig. 13) contain many phenomena not present in SIS junc-

tions. There, the pairing amplitude penetrates to much greater distances than in insula-

tors: in the latter, a typical penetration depth is a few nanometers whereas supercurrents

have been observed through normal-metal weak links many microns long. The possibility

to vary the length d leads to two regimes of weak links, when d is compared to the su-

perconducting coherence length ξ0 ≡
√
D/2∆. In the short-junction regime d� ξ0, the

important energy scale for the temperature (or voltage) dependence of the supercurrent is

the superconducting order parameter ∆ [137]. For the opposite regime d� ξ0, ∆ ceases

to be important, but another energy scale, the Thouless energy ET = �D/d2 becomes

relevant [11, 138]. The spectrum of the supercurrent-carrying states, defined below, is

described in both of these regimes in Paper VII. Below, we mostly concentrate on the

long-junction regime since only there a diffusive weak link can be driven into a π-state.

Physical phenomena encountered in quantum many-body systems are often based

on probing the spectrum of states corresponding to the desired observable, the states

being filled according to an appropriate distribution function. Variation of either the

spectrum or the distribution function leads to a variation of the observable, yielding

information on the system. Such a viewpoint may also be taken on the SNS supercurrent

[19,139,140]. It is carried by a spectrum of states [27,141], spectral supercurrent, weighed

by their distribution function. The latter can be controlled, for example, by coupling an

extra normal terminal to the weak link. Varying the voltage between this terminal and

the superconductors allows one to control the occupation of the current-carrying states,

leading to a variation of the supercurrent. This phenomenon was experimentally first

realized in Ref. [17]. The observed supercurrent can be quantitatively evaluated in terms

of the diffusive-limit description of the supercurrent spectrum (Refs. [19,142] and Paper

VII), and the solution for the spatial dependence of the distribution function (Ref. [143]

and Paper VI), including both elastic and inelastic effects.
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Papers V – VIII study different aspects of the nonequilibrium supercurrent both

theoretically (all of them) and experimentally (VI and VIII). In Paper V, we show an

analogy between voltage-controlled and ferromagnetic Josephson weak links and suggest

that the voltage dependence of the supercurrent in a nonequilibrium ferromagnetic weak

link could be used for measuring the magnetic properties. This would also serve as a

useful test for the developing theories of electronic properties of itinerant ferromagnets.

The first quantitative calculations of the supercurrent spectrum [19] applicable to the

experimental systems, were carried out in an ideal two-probe geometry where the extra

control wires do not affect the spectrum. Paper VII takes into account factors important

in an actual quantitative comparison between the theory and the experiments. Knowing

these factors facilitates the design of new experimental setups, for example, to obtain

maximal control of the supercurrent by the applied voltage.

-eV/2

eV/2

N

N

S

S
qp

Figure 14: Four-probe controllable Josephson junction used in the ex-
periments for Ref. [17]. The quasiparticle distribution function in the Au
weak link between the two superconducting Nb wires is controlled by ap-
plying a quasiparticle current Iqp in the mesoscopic Au wire between two
large Au reservoirs creating the voltage V between the latter. (Courtesy
of J. Baselmans, texts and arrows added by the author.)

To avoid the effects of the (dissipative) quasiparticle current flowing in the control

wires on the supercurrent, other than through the control of the local distribution function

in the weak link, the first experiments separated them: whereas the previous current flows

between two normal-metal reservoirs, the latter flows between the superconductors (see

Fig. 14). This scheme requires at least a four-terminal setup. In Paper VI, we show

that this does not need to be the case but the same phenomenon is found even if the

normal and supercurrent flow in parallel, mixing with each other (see below and Paper

IX for details). Therefore, one can avoid the construction of the fourth terminal and,

furthermore, it can be argued that a three-terminal configuration is less vulnerable to the
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presence of electron-electron scattering (see Paper VI).

One of the most striking features of the nonequilibrium-controlled supercurrent is the

crossover between the conventional state of the junction to the π-state. At the crossover,

these two states can coexist, leading to the supercurrent-phase dependence of the form

IC sin(2ϕ) instead of the usual IC sin(ϕ). Such a halving of the current-phase period was

measured for the first time in s-wave weak links in Paper VIII. In paper VII, we offer a

qualitative physical explanation for the appearance of the higher harmonic contribution,

due to a correlated transfer of a cluster of many Cooper pairs.

Below, the origin of the supercurrent-carrying states is explained on a qualitative level

and it is described how one obtains the observable supercurrent from this spectrum and

a nonequilibrium distribution function.

Supercurrent-carrying density of states

In a normal-metal weak link, the supercurrent is carried by a spectrum of states which

correspond to quasiparticle trajectories containing an Andreev reflection at both ends of

the weak link [26,27,141,144]. This spectrum can be derived in the ballistic regime from

quite simple considerations and it characterizes also some properties of the supercurrent

in the diffusive limit. Consider the one-dimensional NS structure discussed in Subs. 3.1,

now in the case of a vanishing interface scattering U = Z = 0, but terminate the normal-

metal wire by another semi-infinite superconductor, located at x < −d, with phase ϕS−ϕ
of the order parameter. The quasihole Andreev reflected from the right interface may then

again Andreev reflect at the left interface, creating a quasiparticle which then traverses

back to the right interface. If the total phase acquired by the quasiparticle pair during

one cycle due to the dynamical phase and the phase acquired on Andreev reflection (see

Table I), φtot = 2εd/vF + ϕ− 2 arccos(ε/∆), is an integer multiple of 2π, a bound state

is formed. And since the net result of one such cycle is the transfer of a Cooper pair

from the left superconductor to the right, this bound state carries a supercurrent. For

εm � ∆, the bound-state condition yields the bound-state energies,

ε±m =
vF

2d

(
2π(m+

1

2
) ± ϕ

)
(58)

whereas for εm ≈ ∆, one needs to solve the bound-state condition numerically. The

bound states corresponding to the energies ε−m carry current from right to left, i.e., they

are composed of left-moving electrons and right-moving holes (the phase shift acquired in

Andreev reflection from a quasihole state to a quasiparticle state is −ϕS − arccos(ε/∆)).

In this case, we obtain a spectral supercurrent expressing the magnitude of the supercur-

rent carried by each state from

jS(ε;φ) ∝ −
∑
m

α=±

∂εα
m

∂ϕ
δ(ε− εα

m), (59)

i.e., a peak-like spectrum consisting of both positive (ε = ε+
m) and negative (ε = ε−m)

parts.
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Figure 15: The observable supercurrent is obtained by integrating over
the spectrum of supercurrent-carrying states (dashed, right axis), weighed
by the occupation number fL(ε) of correlated particle-hole pairs (solid, left
axis). An equilibrium distribution is shown in grey and a nonequilibrium
distribution in the absence of inelastic effects in black.

In a diffusive weak link similar Andreev bound states are still formed, but since elastic

scattering makes rise to a broad and continuous distribution of trajectory lengths between

successive Andreev reflections at the two NS interfaces, also the spectral supercurrent

becomes continuous. However, it still contains both such energies where supercurrent is

carried in the positive direction (e.g., from left to right) as well as energies with a negative

supercurrent (right to left).18 The diffusive-limit spectral supercurrent, calculated from

the quasiclassical theory with ϕ = π/2, is illustrated in the dashed line of Fig. 15.

Nonequilibrium control of the supercurrent

The observable supercurrent through a normal-metal weak link with a given phase ϕ is

obtained by integrating over the spectrum jS(ε;ϕ) of current-carrying states, weighted

by the occupation number of correlated electron-hole pairs, fL(ε) ≡ f(−ε) − f(ε) =

1 − (fh(−ε) + f(ε)), where fh(−ε) is the hole distribution function, obtained from the

electron distribution by fh(−ε) = 1−f(−ε). Therefore, breaking an electron-hole pair by

creating a negative-energy hole-like or a positive-energy electron-like excitation decreases

the magnitude of the supercurrent carried at energy ε. The observable supercurrent is

then given as

IS =
σNA

2de

∫ ∞

−∞
dεjS(ε, ϕ)fL(ε). (60)

Here σN is the normal-state conductivity of the weak link, A its cross section and d the

distance between the superconductors (jS(ε, ϕ) is chosen dimensionless). Note that in

18In the diffusive-limit calculations in Papers V – IX, we do not evaluate the spectral supercurrent
as a diffusive limit of Andreev bound states (ABS), but rather use jS(ε) = Im(jE(ε)) as in Subs. 3.3.
However, ABS are responsible for the physical phenomenon underlying the calculated observable.



– 40 –

some cases such as equilibrium and the four-probe setup considered in Ref. [19] where

fh(−ε) = f(ε), one may also write fL(ε) = 1 − 2f(ε).

The spectral supercurrent jS(ε), apart from its dependence on the phase ϕ, depends

only on the geometry and microscopic properties of the weak link (see Paper VII), such

that once the weak link is fabricated, it can no longer be varied. However, the distribution

function fL(ε) depends on the state of the system, such that it can be controlled through

the temperature or by creating a nonequilibrium through a voltage between extra control

probes.

0 10 20 30 40 50 60

-3

0

3

6

10

eV/εT , 2kBT/εT

eI
S
R

N
/ε

T

Figure 16: Voltage dependence of the supercurrent at ϕ = π/2 at a van-
ishing temperature T = 0 and in the absence of electron-electron inter-
actions (solid line). The corresponding temperature dependence is shown
for comparison (dashed).

As an example, consider the four-probe setup of Fig. 14. When the voltage V be-

tween the two normal-metal reservoirs is zero, the system is at equilibrium and fL(ε) =

tanh(ε/2kBT ) ≡ f 0
L(ε). In this case the integral in Eq. (60) can be converted to a sum

over the poles ωn of fL(ε), corresponding to the Matsubara frequencies applied in equilib-

rium systems19. Applying a voltage V symmetrically between the normal probes yields

the function fL(ε) given by Eq. (19) with µ = eV/2 in both reservoirs, and in the ab-

sence of inelastic scattering, this form persists into the control wires and the weak link.

Defining f 0
L = tanh(ε/2kBT ) we obtain

IS =
σNA

4d

∫ ∞

−∞
dεjS(ε)

(
f 0

L(ε+ eV/2) + f 0
L(ε− eV/2)

)
. (61)

For kBT � eV/2, fL(ε < eV/2) ≈ 0 and hence, spectral supercurrent from energies

below eV/2 is blocked (see Fig. 15). At a certain voltage V , due to the oscillating nature

19Such a treatment is valid as long as an analytical form may be found for fL(ε). In the presence of
inelastic scattering, this is seldom the case.
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of jS(ε), the supercurrent for a given phase ϕ changes sign. In this case, the junction

has turned into the π-state. The resulting voltage-dependent supercurrent at ϕ = π/2 is

depicted in Fig. 16.

1 µm

Reservoir
(Ag)

Reservoir
(Al)

Reservoir
(Al)

Ag

n

VSNS

j

x

j j

j

jn

l r

m

Figure 17: Three-probe structure for the study of nonequilibrium super-
current, measured in experiments for Paper VI. (Courtesy of F. Pierre,
some texts and arrows added by the author.)

In the four-probe system considered above, the quasiparticle current created by the

applied voltage20 is spatially separated from the supercurrent and thus we could obtain

fL(x) = const. and also IS(x) = const. As an alternative, consider the three-probe

setup of Fig. 17 studied in Paper VI. There, the quasiparticle current flows parallel to

the supercurrent. According to Eq. (50), only the sum of these two is conserved. How

is the supercurrent jm flowing between the superconductors evaluated? Since the total

spectral charge currents ji (i = m, l, r, n, see Fig. 17) in the three arms of the structure

are conserved, we can evaluate them anywhere, for example at the cross. There we have,

using the continuity of spectral coefficients and the fact jm = jl − jr

jm = DT (0)(∂xf
r
T (0) − ∂xf

l
T (0))/2 + jSf

0
L(ε;V, T ). (62)

20In typical experiments the voltage is created by driving the quasiparticle current.
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In order to show that jm depends on jn only through f 0
L(ε;V, T ) (i.e., jm = jSf

0
L(ε;V, T )),

we need to show that

∂xf
l
T (0) = ∂xf

r
T (0),

i.e., that the quasiparticle current is equally diverted into the two horizontal arms.

Now assume the solution of the kinetic equations (49,50) in the left horizontal arm to

be the functions

{f l
L(x, ε), f l

T (x, ε)}. (63)

Then it is straightforward to show that, assuming symmetric arms,

{f r
L(x, ε), f r

T (x, ε)} = {2f 0
L(ε;V, T ) − f l

L(x, ε), f l
T (x, ε)} (64)

is the solution of the kinetic equations in the right arm satisfying the boundary condi-

tions. Hence, we obtain that in the three-probe case, ∂xf
l
T (0) = ∂xf

r
T (0), i.e., the quasi-

particle current is equally divided into both S arms. Furthermore, due to the absence

of supercurrent in the vertical control arm, fL stays there constant, and in particular,

f l
L(x = 0) = f r

L(x = 0) = f 0
L(ε, V, T ). The supercurrent Im can thus be calculated at

the center of the structure by Eq. (61) as in the four-probe case. However, this example

shows that whereas mixing of the two kinds of currents is not important for the crit-

ical current (in the absence of interactions), it does drastically change the behavior of

the distribution functions in the horizontal arms. This phenomenon is discussed in the

following subsection.

Supercurrent through a ferromagnet

As mentioned in the previous section, heterostructures composed of weak ferromagnets

and superconductors may be described theoretically through the term hτ̂3⊗ σ̂3 due to the

exchange field. In the ferromagnet, this makes the parametrized Usadel equation take

the form (for simplicity, assuming translational invariance in y- and z-directions)

D∂2
xθ = −2i(ε± h) sinh(θ) +

1

2
(∂xχ)2 sinh(2θ)

jE = − sinh2(θ)∂xχ, ∂xjE = 0.
(65)

The term +h corresponds to the combination of an electron with spin ↑ and hole with spin

↓ and vice versa for −h. Finally, the observables are summed over these two combinations.

For example, the equilibrium supercurrent becomes

IS =
σNA

4d

∫ ∞

−∞
dε (jS(ε+ h) + jS(ε− h)) f 0

L(ε). (66)

In the first term, shifting the variable of integration by −h and in the second, by h,

yields the same form as in Eq. (61), but where eV/2 is replaced by h.21 Therefore, the

supercurrent through a weak ferromagnet (where h � ∆), first described in Refs. [102,

21For h � ∆, this is not strictly valid since the exchange field does not penetrate into the supercon-
ductors - such an analogy would apply better in the case of Zeeman splitting in an in-plane magnetic
field.



– 43 –

145], is formally analogous to the nonequilibrium controlled supercurrent, in the absence

of interactions. This analogy has been pointed out in Ref. [146] and in Paper V.

The analogy suggests that we can combine these two effects (as discussed in Paper

V and, independently, in Ref. [147]) by replacing the normal-metal wire, for example in

Fig. 14, by a weak ferromagnet. As a result, one obtains four terms,

IS(h;V ) =
1

4

[
IS(h+ eV/2) + IS(h− eV/2) + IS(−h + eV/2) + IS(−h− eV/2)

]
, (67)

where the first argument of IS tells the magnitude of the effective exchange field and

the second (if present) the control voltage. Thus, the supercurrent separates into four

parts, due to terms with combinations of electrons and holes with opposite spins coming

from the two reservoirs. Let us assume that h � ET , such that IS(h) is exponentially

suppressed. Tuning the voltage such that V = 2h/e, two of the terms in Eq. (67) yield

IS(±2h), and two IS(0). Since the first of these are very small and may be neglected

but the second do not contain the large field h, we simply obtain a supercurrent half

of the original one, without the effects of the exchange field and voltage. Therefore, the

nonequilibrium can be used to recover the exchange-field suppressed supercurrent, and

since IS(h;V ) obtains a maximum at V = 2h/e, this effect can be used to measure the

exchange field or Zeeman splitting in the weak link.22

Correlated transport of multiple Cooper pairs

Within n cycles, the Andreev bound states carry the total of n Cooper pairs through the

weak link in a correlated fashion. An alternative way to consider this phenomenon is a

transport of a group of n Cooper pairs, with the total phase nϕ. Each such a group yields

a supercurrent proportional to sin(nϕ) such that the total supercurrent can be written

as a Fourier series,

IS(ϕ) =
∞∑

n=1

IC,n sin(nϕ), (68)

where IC,n is the amplitude for carrying n correlated Cooper pairs through the weak link.

In the ballistic case, each additional cycle adds 2d to the total length of the quasiparticle

trajectory. Therefore, the amplitudes decay as IC,n ∝ 1/n, yielding a sawtooth total

current-phase dependence [139].

In the case of a tunneling weak link, the probability for a correlated transfer of multi-

ple Cooper pairs is much smaller than for a single pair, and hence one obtains the usual

SIS current-phase relation IS = IC sin(ϕ). In the diffusive case, the probability for trans-

ferring clusters of multiple Cooper pairs is finite, and therefore, the current-phase relation

deviates from the sinusoidal one especially at low temperatures (see, e.g., Refs. [11,137]).

Also the spectral supercurrent jS(ε) can be written as a Fourier sin-series and one finds

(see Paper VII) that at low temperatures, at least the few first harmonics can in principle

be observed. Since the control voltages V ∗
n where the amplitudes IC,n(Vn) change sign

22This picture is idealized: we assumed h � ∆ and no electron-electron interactions deforming the
distribution function. However, we expect that traces of this effect can be seen even for h � ∆, and with
short control wires compared to the electron-electron scattering length.
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depend on the index n, the point V = V ∗
1 where the first harmonic is suppressed may

still contain finite higher-harmonic contributions. Therefore, around the crossover volt-

age V ∗
1 , the critical current, i.e., the maximum observable supercurrent, does not totally

vanish, but the maximum is obtained at a phase different from π/2. The current-phase

dependence around the crossover voltage V ∗
1 was studied experimentally and theoretically

in Paper VIII, confirming the phase dependence IS ≈ IC,2 sin(2ϕ) around this voltage.

The analysis of the free energy of the junction in this case shows that around V ∗
1 , the

junction has two energy minima, at ϕ = 0 and at ϕ = π, with a degeneracy at V = V ∗
1 .

A similar behavior of higher harmonics in the Josephson current-phase relation has been

observed in YBa2Cu3O7−x grain boundary junctions [148] due to the d-wave pairing of

the order parameter.

5.2 Tuning distribution functions with supercurrent

In the previous subsection, we described how the supercurrent through a normal-metal

weak link can be tuned by varying the quasiparticle distribution function via additional

normal-metal probes. The three-probe setup, where the quasiparticle current and super-

current flow in parallel, shows that in the “horizontal” wires (see Fig. 17), the nonequilib-

rium distribution functions themselves depend on the supercurrent. This dependence is

studied in Paper IX, where we show that supercurrent may induce large nonequilibrium

thermoelectric effects. The kinetic equations (50) show that in a nonequilibrium situa-

tion, supercurrent contributes to the energy flow the term εjSfT (x). As this energy flow

cannot pass to the superconductors, it has to be counterbalanced by another energy flow,

driven by the gradient of the asymmetric distribution function, εDL∂xfL. As a result,

the charge nonequilibrium described by fT is mediated to an energy nonequilibrium.

The kinetic equations (50) cannot in general be solved in closed form — there exists

no analytical solution even for the kinetic coefficients. In most cases, one has to focus on a

numerical solution of both spectral (for the retarded and advanced functions which yield

the kinetic coefficients) and kinetic (for the distribution functions) equations. One can,

however, extract some symmetry properties of the distribution functions, such as those

given by Eqs. (63, 64). In the absence of a supercurrent, both the local chemical potential

(expressed through fT (x)) and the local effective temperature (expressed through fL(x))

are left-right symmetric. Passing a supercurrent through the horizontal arms retains the

symmetry of fT (x), but makes an asymmetric change to fL(x).

The numerically evaluated full distribution function f(ε, x) in the two arms is plotted

in Fig. 18 in the absence of supercurrent and in Fig. 19 for phase difference ϕ = π/2

yielding nearly the maximum supercurrent. The major change shows up in the anti-

symmetric part fL(ε) of the distribution function, reflecting the counterbalancing of the

energy flow carried by the supercurrent in the nonequilibrium state. The supercurrent

induces a small space-dependent variation δµeff(x) in the chemical potential, mostly due
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Figure 18: Quasiparticle distribution function in the three-probe case,
Fig. 17 (assuming each arm to be of length L/2), in the absence of super-
current (phase difference ϕ = 0). The behavior in the two horizontal arms
(x = 0 . . . L/2) is shown on the left, and in the vertical arm (x = L/2 . . . L)
on the right. For a left-right symmetric setup, the distribution function
is the same in both horizontal arms. The proximity effect on the kinetic
coefficients is present, but can mostly be seen in the space and energy
derivatives of the distribution functions (cf. Fig. 6 where we assumed no
proximity effect). The energies are plotted as a function of the Thou-
less energy εT corresponding to the length L, and the voltage and the
temperature are V = 20εT /e and T = 4εT /kB .
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Figure 19: Quasiparticle distribution function in the horizontal arm of
the three-probe case, Fig. 17, in the presence of supercurrent (phase dif-
ference ϕ = π/2): a) left horizontal arm, b) right horizontal arm.

to the fact that the kinetic coefficients are altered by the supercurrent, but a more
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dramatic change is induced in the effective temperature Teff . This can be expressed as

Teff(x) =
√
T 0

eff(x)2 + S(x;V ) + 3δµeff(x, ϕ)2/π2k2
B. (69)

Here T 0
eff(x) is the local effective temperature in the absence of the supercurrent (see

Paper IX) and S(x;V ) characterizes the supercurrent-induced change in fL(x), given by

S(x;V ) =
6

π2k2
B

∫ ∞

0

ε
(
fL(x; ε) − f 0

L(ε;V )
)
dε. (70)

The asymmetry of the supercurrent-induced variation of fL(x) implies that S(x;V ) is

asymmetric between the two wires, increasing the temperature in the left arm and de-

creasing it in the right arm. This phenomenon is similar to the Peltier effect, but much

larger than typically expected for metals.

In metals, thermoelectric effects such as the Peltier effect usually rely on electron-hole

symmetry breaking and are thus very small, of the order of (kBT )2/EF , whereas here, we

assume complete electron-hole symmetry. However, Eom et al. [149] measured another

thermoelectric effect, the thermopower Q in an Andreev interferometer, a mesoscopic

normal-metal wire doubly connected to a superconductor which forms a loop. Varying

the magnetic field through the loop and thus the phase difference ϕ of the order parame-

ters at the NS interfaces, they observed large-amplitude oscillations of Q as a function of

ϕ. Although the measured variable and the setup were slightly different, the underlying

mechanism — coupling of distribution functions through the supercurrent — is presum-

ably the same as considered in Paper IX. Hence, our results may partially explain the

findings in Ref. [149]. The thermopower in an Andreev interferometer has been theoreti-

cally studied in the regime of high tunnel barriers and within linear response in Ref. [150],

leading also to an unexpectedly large effect. However, besides minor corrections, there the

distribution functions are assumed in quasi-equilibrium and the transport is essentially

driven by the discontinuities at the tunneling barriers.

The large effect predicted above and in Paper IX resembles a phenomenon studied

in the turn of 1980’s in bulk superconductors [151–154]. There, a temperature gradient

along with a supercurrent generates a charge imbalance in the superconductor (which may

be described through fT ). Technically, this may be explained by inspection of Eq. (50)

in a superconductor, assuming that ∂xfT ≈ 0. There, the gradient of fL couples through

the term RfT to the symmetric distribution function fT . In the present case, we apply

Eq. (49) and couple a “charge imbalance”, described by fT �= 0, through a supercurrent

to a temperature gradient in a mesoscopic system.

In most of the discussion in this and the preceding subsection, we have neglected

the effects of inelastic scattering. In the quantitative fits to the experimental results in

Papers VI and VIII, this have to be taken into account. Typically, such effects blur the

nonequilibrium effects, but taking them quantitatively into account and comparing to

experiments may yield important information on their strength. Such an approach was

taken in Ref. [16], where the local distribution function in a normal-metal wire between

two N reservoirs was measured in a tunnelling measurement. In the three-probe case

with the mixing of the quasiparticle current (controlled by the external voltage) and
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the supercurrent (controlled by the phase difference between the superconductors), one

obtains an extra control parameter, the supercurrent, which may make the extraction of

the details of the interactions simpler. However, at present no quantitative theory of the

effect of the superconducting proximity on the inelastic collision integrals exists.

5.3 Nonlinear effects in current noise

In addition to the time-averaged steady flow, the electronic current fluctuates in time.

The fluctuations, current noise, at finite temperatures are partly due to the thermal noise,

fundamentally connected to dissipation through the fluctuation-dissipation theorem [80].

In mesoscopic wires in the absence of inelastic scattering, also another noise term, shot

noise, appears and at a vanishing lattice temperature, it is the only source of noise.

This noise component reflects the discreteness of the charge carriers and it vanishes in

the classical limit of a macroscopic conductor [57]. Current noise is one of the main

obstacles in the quantum-mechanical manipulations of condensed-matter structures [136,

155] leading to decoherence, ultimately destroying quantum-mechanical superpositions

and entanglement. However, especially shot noise can also reflect many features of the

systems under scrutiny, some of which may not be present in the conductance [57]. In this

subsection and in Paper II, we discuss the behavior of current noise in diffusive metallic

wires, and especially study how the superconducting proximity affects the noise.

The shot noise in diffusive metallic wires both in the presence and in the absence of

Andreev reflection can be described by the incoherent semiclassical Boltzmann-equation

approach where the noise is described by a random Langevin source [30, 34] or by the

scattering-matrix approach [156,157]. In the linear-response regime where the latter can

be accompanied with the arsenal of the random matrix theory, these two very different

methods yield the same results, indicating that, in the lowest order, phase-coherent effects

are not important at linear response.

The nonlinear-response shot noise in the presence of the superconducting proximity

effect cannot be described by the semiclassical approach and the random-matrix theory

predictions do not exist in this regime. Paper II describes these nonlinear effects by the

numerical scattering approach, studying how the proximity effect changes the current

noise.

Current noise is characterized by its spectral density or power spectrum S(ω, t), which

is the Fourier transform of the current-current correlation function

S(ω, t) =

∫
dt′eiωt′〈δÎ(t+ t′)δÎ(t) + δÎ(t)δÎ(t+ t′)〉. (71)

Here δÎ(t) ≡ Î(t)−〈Î(t)〉 describe the fluctuations in the current and the brackets denote

an impurity average and an average over the state of the system. Below and in Paper II,

we only consider the fluctuations in a time independent system and in the zero-frequency

limit, i.e.,

S(ω = 0) = 2

∫
dt〈δÎ(t)δÎ(0)〉. (72)

Typically the frequency dependence becomes important if ω is of the same order as the

dynamic energy scales in the studied systems, e.g., Thouless energy εT .
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In the linear regime, the zero-frequency shot noise is typically directly proportional

to the time-averaged current. A characteristic quantity for the description of shot noise

in different types of materials is the Fano factor F . It is defined as the ratio between the

zero-frequency shot noise and the time-averaged current I, such that

S = 2eFI. (73)

In many cases, F depends only on the type of the system, not on its microscopic details.

For example, for the tunneling current through an insulator, F = 1, and in a diffusive

normal-metal wire, one obtains F = 1/3 (as shown below). It also reflects the type of

charge carriers: for example, at an NS contact F is doubled indicating the fact that

charge is carried by units with double electronic charge.

In the semiclassical theory, the zero-frequency noise for a mesoscopic wire of length

L, cross section A and normal-state conductivity σN can be found from [34,35, 158]

S =
4AσN

L2

∫ ∞

−∞
dε

∫ L

0

dxf(x, ε)(1 − f(x, ε)), (74)

assuming translational invariance in the transverse (y, z) directions and that the cur-

rent flows in the x-direction. Substituting the calculated distribution functions from

Eqs. (17,20) in the limit T = 0 yields in a diffusive normal wire connected to two normal-

metal reservoirs

S =
2AσN

3L
µ =

2e

3
I (75)

and connected to a normal and a superconducting reservoir,

S =
4AσN

3L
µ =

4e

3
I. (76)

In the latter eV < ∆ was assumed. Thus, we have in the normal case, F = 1/3. In the

presence of Andreev reflection, the Fano factor is doubled to F = 2/3.

In the scattering approach, noise can be obtained from the elements of the scattering

matrix s similarly as in Subs. 3.2 in the case of conductance. The shot noise is expressed

in terms of the eigenvalues of different parts of s, in the spin-degenerate normal case it

is given through the transmission eigenvalues Tn [57],

SN =
4e2

h

∫ eV

0

dε
∑

n

Tn(ε)(1 − Tn(ε)). (77)

In the case of an NS interface the sub-gap shot noise can be related to the Andreev-

reflection eigenvalues RA,n via [156, 157]

SNS =
16e2

h

∫ eV

0

dε
∑

n

RA,n(ε)(1 −RA,n(ε)). (78)

In the linear response, we only need to find the scattering-matrix elements at the Fermi

level and thus we get

SN =
2e3V

h

∑
n

Tn(1 − Tn) (79)

SNS =
8e3V

h

∑
n

RA,n(1 − RA,n) (80)
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If the transmission eigenvalues Tn do not depend on energy, i.e., in the linear-response

limit, we may apply the random matrix theory to find their distribution in the diffusive

limit [59]. This is given by

ρ(T ) =
h

2e2RN

1

T
√

1 − T
, (81)

where RN is the resistance of the mesoscopic wire. Integrating Eqs. (34,79) over the

transmission eigenvalues weighed by their distribution directly yields S = 2eGNV/3, i.e.,

the Fano factor F = 1/3. A similar procedure may be carried out in the NS case, at

ε = 0. In this case, the Andreev-reflection amplitudes RA,n may be related to the normal

transmission amplitudes Tn through the diffusive N wire [55], such that (at a vanishing

magnetic field)

RA,n =
T 2

n

(2 − Tn)2
. (82)

Substituting this relation into Eqs. (35,80) yields GNS = GN and SNS = 2SN, i.e., the

same as given by the semiclassical approach.

Nonlinear-response noise in the presence of the superconducting proximity effect, i.e.,

in a NS wire with eV exceeding the Thouless energy, cannot be described by a semi-

classical Boltzmann-Langevin approach. Also the analytical scattering approach with

the random matrix theory can no longer be applied, since Eq. (82) is strictly valid only

with ε = 0. Such nonlinear effects were measured in recent experiments [22, 159], which

also confirmed the doubling of noise in the linear regime. A numerical scattering-matrix

study of the nonlinear effects is given in Paper II. It shows that at nonlinear response,

shot noise becomes voltage dependent, following the (nonlinear) voltage dependence of

the time-averaged current.

Recently, a quasiclassical method for the study of the current fluctuations has been

developed [69]. This method is not only suited for the study of the current noise, defined

as the second moment of current fluctuations, but it can describe all its moments. The

numerical results obtained using this approach for the description of proximity affected

noise in a diffusive NS contact are in agreement with the results of Paper II.

With the enhanced resolution in experiments, shot noise is turning from an unwanted

obstacle towards an important observable. To obtain a comprehensive understanding of

the nonlinear effects superconductivity has on the noise, both methods based on quasi-

classical formalism and the scattering approach are required.
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6 Discussion

This dissertation discusses physical phenomena taking place in phase-coherent metallic

conductors in contact to superconductors and the theory constructed for their description.

The basic phenomena responsible for the effects of superconductivity are the proximity

effect, i.e., the penetration of the superconducting order parameter into the normal-metal

side, and Andreev reflection. These effects are closely related but not exactly two sides of

the same coin: the overall magnitude of the proximity effect depends on that of Andreev

reflection, but its penetration depth is determined by the properties of the metal into

which it penetrates. On the other hand, even if the proximity effect is limited only into the

vicinity of the interface such that most of the normal-metal wire does not show induced

superconductivity, the presence of Andreev reflection affects the form of quasiparticle

distribution functions throughout the normal-metal wire.

The dissertation focuses on the study of the proximity effects (i) in heterostructures

of superconducting and ferromagnetic material, on the effect of superconductivity (ii) on

the fluctuations of the linear conductance of mesoscopic wires and (iii) on the fluctua-

tions of currents in time, and, as a major part, (iv) on nonequilibrium supercurrent in

controllable weak links and (v) on supercurrent-induced nonequilibrium thermoelectric

effects. Except for the inverse proximity effect due to ferromagnetism, the phenomena

considered essentially take place in the normal-metal side, and superconducting features

found in these wires are induced by the nearby superconductors. The main results of this

work and some of the open problems are summarized below.

(i) Superconductor-ferromagnet (SF) heterostructures

Superconductors and ferromagnets fabricated in close contact with each other ex-

hibit mutual proximity effects due to their ordered nature. In most cases, super-

conducting proximity effect is strongly suppressed by the ferromagnet, and the

magnetic proximity effect, penetration of spin polarization, has not been observed.

Therefore, as indicated in Paper IV, the strongest effect in the superconducting side

is the inverse proximity effect induced by the suppression of the pairing amplitude

in the ferromagnet. Observations of long-range effects in the ferromagnetic side still

need to be clarified. The local density of states, indicating the extent of the mutual

proximity effects, was measured in Paper IV using a normal-metal tunnel probe.

For a complete study of the possible magnetic proximity effect, a ferromagnetic

probe should be used.

Placing a low-TCurie ferromagnet between two superconductors allows to transport

supercurrents through this ferromagnetic weak link. At certain values of tempera-

ture and exchange field, these junctions turn into the π-state [117]. In Paper V, we

show how, with a temperature independent exchange field, the crossover between

the conventional and π-states can take place as a function of temperature. We also

show that formally, the π-state formed in a SFS junction has the same origin as

that formed in a nonequilibrium-controlled junction [17]. Combining the effects of

nonequilibrium and ferromagnetism in a suitable range of parameters, one can, for

example, study the strength of the ferromagnetic exchange field.
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Combining both conventional and π-junctions in an array, one can construct an

intrinsically frustrated system where supercurrents flow spontaneously [160]. It has

been suggested that such arrays could be used for quantum computing [20, 161].

(ii) Andreev reflection and universal conductance fluctuations

In Paper I, we numerically study conductance fluctuations (CF) in multiterminal

samples, where current flows between two normal-metal reservoirs, but the meso-

scopic wire is connected to further, superconducting reservoirs which induce An-

dreev reflection. It is shown that such fluctuations are universal, independent on

the average conductance. Andreev reflection in these systems is shown to decrease

the fluctuations, whereas for NS contacts, CF are typically increased compared to

the purely normal samples. An analytical study of fluctuations in such Andreev

interferometers is lacking. A field-theoretical approach has been constructed for

studying the fluctuations around the solution to the Usadel equation [162]. This

could in principle be applied for the study of universal conductance fluctuations in

multiterminal systems.

(iii) Proximity effect on shot noise

Besides being an unwanted obstacle in quantum manipulations of condensed-matter

systems, shot noise S can serve as a spectroscopic tool for characterizing mesoscopic

structures. In Paper II, we show that in the presence of the proximity effect, for

voltages V of the order of the Thouless energy εT/e, S becomes a nonlinear func-

tion of V . Using a numerical scattering approach, we find that S exhibits similar

reentrance and reflectionless tunnelling effects as the time-averaged current [4]. Our

findings are in agreement with the numerical results of the recently developed qua-

siclassical counting-field technique [69]. An analytical evaluation of the observed

effects has not yet been carried out.

(iv) Nonequilibrium supercurrent

Major part of the Papers in this Thesis, V – IX, deals with nonequilibrium effects in

supercurrent and controllable weak links. The supercurrent through a normal-metal

weak link may be expressed as a convolution between a spectrum of supercurrent-

carrying states and a distribution function. Paper VII describes how the spectrum

depends on the measurement setup, thereby helping to optimize the construction

of the samples. Connecting additional normal-metal reservoirs to the weak link

through mesoscopic wires allows one to control the quasiparticle distribution func-

tion with an applied voltage, and thereby vary the critical current of the weak link.

Paper VI shows that such a control is possible also if the supercurrent is allowed to

mix with a quasiparticle current driven through the control wires.

The detailed shape of the distribution functions depends on the various scattering

mechanisms in the sample, for example due to electron-electron interaction, and

these need to be taken into account in a quantitative comparison between the theory

and experiments. Conversely, such a comparison may yield information about the

strengths of these scattering mechanisms. However, a theoretical treatment of the
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proximity effect on the interactions themselves still remains to be accomplished —

in Papers VI and VIII, normal-state collision integrals are applied. In the case

of the equilibrium supercurrent, the quasiclassical theory and the experiments are

in an excellent agreement even without the inclusion of such interaction effects

[11]. Therefore, it seems that the largest effect of these scattering mechanisms is

encountered in distribution functions, not in the spectral supercurrent.

One of the consequences of the nonequilibrium tuning is the fact that with certain

control voltages, the π-state may become energetically more favourable than the

conventional state of the weak link. In the π-state the phase across the weak link

is π in the absence of supercurrent flow, and the direction of the supercurrent

at a given phase is reversed. Around the crossover from the conventional to the

π-state, both of these yield free-energy minima, and the resulting supercurrent-

phase relation has a dominant second harmonic sin(2ϕ) component. The crossover

regime was measured in Paper VIII for the first time in Josephson junctions with

conventional (s-wave) superconductors. At low enough temperatures, this regime

of voltages could be used to study possible hysteretic effects in these junctions or

even quantum superpositions, and the effect of the quasiparticle current noise on

this behavior. The use of such junctions (or SQUIDS with controllable Josephson

junctions) as quantum bits working in the phase regime [21] would be limited by

the dissipative control currents acting as noise sources. The strength of the induced

decoherence due to this noise requires further study.

(v) Proximity effect and thermoelectrics

In normal metals, thermoelectric coefficients typically are very small since they

depend on the nonlinearities in the quasiparticle dispersion relation (i.e., electron-

hole symmetry breaking). These variations typically take place at scales of the order

of εF , and thus the effects are of the order of kBT/εF . The presence of Andreev

reflection changes the usual relations between the thermoelectric coefficients, for

example Wiedemann-Franz law [24] and Mott’s law (Paper III), but its presence

alone is not enough to make the thermoelectric effects essentially stronger.

In Paper IX, we show that the presence of supercurrents can lead to large ther-

moelectric effects. There, we discuss a nonequilibrium Peltier effect: supercurrent

tunes the space-dependent distribution functions such that the local effective tem-

perature can be driven in a normal-metal weak link between two superconductors.

Such a large thermoelectric effect has been observed in mesoscopic normal-metal

structures as a function of the phase difference between two superconductors con-

necting to the normal wires. Our findings indicate a qualitative explanation for

these observations. The predicted Peltier effect could also presumably be used for

electronic cooling at low temperatures.

At low temperatures, the space dependence of the distribution functions is strongly

affected by the electron-electron interactions. In recent experiments [16, 28], these

have been measured in a normal-metal wire through tunnel measurements by vary-

ing the voltage across the wire. Typically, the different scattering mechanisms are
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difficult to separate from each other. Our findings yield another control parameter

for this study, the supercurrent.

In nanoelectronics of the near future, the wide-scale applications and contemporary

basic research on quantum phenomena are set to meet as the size of the devices contin-

ues to shrink. The quantum-mechanical properties of these systems, such as the phase

coherence of electrons or the quantization of charge, may on the one hand limit the per-

formance of the tiny devices, but can, on the other hand, be applied in a novel way in the

fabrication and use of new kinds of devices. Prime examples of the latter are some of the

most prominent suggestions for the quantum bit, based on the use of the phase-coherent

Josephson effect in a single-electron device or in superconducting arrays of loops con-

taining conventional and π-junctions. Such quantum engineering targets at a fine control

of quantum-mechanical phenomena in condensed-matter structures. With the detailed

knowledge of the supercurrent spectrum and of the nonequilibrium distribution functions,

tunable Josephson junctions are starting to fulfill this goal

Phase-coherent nanostructures are also intriguing for basic physics research. The in-

terest does not lie only on the device properties themselves, but also on the fact that they

can be used to test fundamental solid-state theories, such as that on interactions in met-

als, and to demonstrate many basic physical principles, such as universality, symmetry,

scaling and quantum phase transitions.
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Abstracts of publications I–IX

I We examine universal conductance fluctuations (UCF’s) in mesoscopic normal-

superconducting-normal (N-S-N) structures using a numerical solution of the Bogo-

liubov-de Gennes equation. We discuss two cases depending on the presence (”open”

structure) or absence (”closed” structure) of quasiparticle transmission. In contrast

to N-S structures, where the onset of superconductivity increases fluctuations, we

find that UCF’s are suppressed by superconductivity for N-S-N structures. We

demonstrate that the fluctuations in ”open” and ”closed” structures exhibit dis-

tinct responses to an applied magnetic field and to an imposed phase variation of

the superconducting order parameter.

II We study differential shot noise in mesoscopic diffusive normal-superconducting

(NS) heterostructures at finite voltages where nonlinear effects due to the supercon-

ducting proximity effect arise. A numerical scattering-matrix approach is adopted.

Through an NS contact, we observe that the shot noise shows a reentrant depen-

dence on voltage due to the superconducting proximity effect but the differential

Fano factor stays approximately constant. Furthermore, we consider differential

shot noise in the structures where an insulating barrier is formed between normal

and superconducting regions and calculate the differential Fano factor as a function

of barrier height.

III We examine the influence of the superconducting proximity effect on the thermo-

electric response of hybrid mesoscopic normal metal - superconductor nanostruc-

tures. We demonstrate that Andreev scattering can break the well-known Mott

relation between the thermopower and the logarithmic energy derivative of the

conductance. We also consider the effect of superconductivity on the temperature

dependence of the thermopower.
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IV We study the electronic density of states in a mesoscopic superconductor near

a transparent interface with a ferromagnetic metal. In our tunnel spectroscopy

experiment, a substantial density of states is observed at sub-gap energies close to

a ferromagnet. We compare our data with detailed calculations based on the Usadel

equation, where the effect of the ferromagnet is treated as an effective boundary

condition. We achieve an excellent agreement with theory when non-ideal quality

of the interface is taken into account.

V We consider a mesoscopic normal metal, where the spin degeneracy is lifted by

a ferromagnetic exchange field or Zeeman splitting, coupled to two superconduct-

ing reservoirs. As a function of the exchange field or the distance between the

reservoirs, the supercurrent through this device oscillates with an exponentially de-

creasing envelope. This phenomenon is similar to the tuning of a supercurrent by

a non-equilibrium quasiparticle distribution between two voltage-biased reservoirs.

We propose a device combining the exchange field and non-equilibrium effects,

which allows us to observe a range of novel phenomena. For instance, part of the

field-suppressed supercurrent can be recovered by a voltage between the additional

probes.

VI Recently Baselmans et al. [Nature, (London) 397, 43 (1999)] showed that the di-

rection of the supercurrent in a superconductor/normal/superconductor Josephson

junction can be reversed by applying, perpendicularly to the supercurrent, a suffi-

ciently large control current between two normal reservoirs. The unusual behavior

of their 4-terminal device (called a controllable junction) arises from the nonequi-

librium electron energy distribution established in the normal wire between the two

superconductors. We have observed a similar supercurrent reversal in a 3-terminal

device, where the control current passes from a single normal reservoir into the two

superconductors. We show theoretically that this behavior, although intuitively

less obvious, arises from the same nonequilibrium physics present in the 4-terminal

device. Moreover, we argue that the amplitude of the -state critical current should

be at least as large in the 3-terminal device as in a comparable 4-terminal device.
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VII Recent experiments have demonstrated the nonequilibrium control of the supercur-

rent through diffusive phase-coherent normal-metal weak links. The experimental

results have been accurately described by the quasiclassical Green’s function tech-

nique in the Keldysh formalism. Taking into account the geometry of the structure,

different energy scales and the nonidealities at the interfaces allows us to obtain a

quantitative agreement between the theory and the experimental results in both the

amplitude and the phase dependence of the supercurrent, with no or very few fitting

parameters. Here we discuss the most important factors involved with such com-

parisons: the ratio between the superconducting order parameter and the Thouless

energy of the junction, the effect of additional wires on the weak link, and the

effects due to imperfections, most notably due to the nonideal interfaces.

VIII We measure the full supercurrent-phase relation of a controllable π junction around

the transition from the conventional 0 state to the π state. We show that around the

transition the Josephson supercurrent-phase relation changes from Isc � Ic sin(ϕ)

to Isc � Ic sin(2ϕ). This implies that, around the transition, two minima in the

junction free energy exist, one at ϕ = 0 and one at ϕ = π whereas only one

minimum exists at the 0 state (at ϕ = 0) and at the π state (at φ = π). Theoretical

calculations based on the quasiclassical theory are in good agreement with the

observed behavior.

IX The local nonequilibrium quasiparticle distribution function in a normal-metal wire

depends on the applied voltage over the wire and the type and strength of different

scattering mechanisms. We show that in a setup with superconducting reservoirs,

in which the supercurrent and the dissipative current flow (anti)parallel, the distri-

bution function can also be tuned by applying a supercurrent between the contacts.

Unlike the usual control by voltage or temperature, this leads to a Peltier-like ef-

fect: the supercurrent converts an externally applied voltage into a difference in

the effective temperature between two parts of the system maintained at the same

potential. We suggest an experimental setup for probing this phenomenon and

mapping out the controlled distribution function.
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