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Abstract

We review growth, percolation, and spatial correlations in deposition models of disordered fiber networks. We first
consider 2D models with effective interactions between the deposited particles represented by simple parametrization.
In particular, we discuss the case of single cluster growth, growth of uniformly random networks, and flocculated
networks with nontrivial spatial correlations. We also consider a 3D deposition model of flexible fibers that describes
the growth of multilayer structures of disordered networks. We discuss the statistical properties of such structures,
transport of fluid through the network, and the asymptotics of growth in the limit of infinite thickness. © 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

There are many phenomena in nature that can
be viewed as deposition processes where various
transport mechanisms bring particles to a surface.
These include deposition of colloidal, polymer
and fiber particles [1–8]. In some cases, such
deposition phenomena involve particles whose
size is large compared with the their mutual inter-

action range, and so that the main deposition
mechanism is due to particle exclusion. Among
the most studied models in this class of phenom-
ena are the random and cooperative sequential
adsorption models [1,2]. There particles are de-
posited on a surface and either stick or are re-
jected according to certain exclusion rules, with a
maximum coverage (the ‘jamming limit’) less than
the close-packing limit. These types of models
should be contrasted with the case of multilayer
surface growth [1,6,7], where the main focus is in
the asymptotic behavior of the growing surface in
the continuum limit [9].
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A particularly interesting and challenging ex-
ample involving particle deposition can occur in
the case of colloidal suspensions. For some such
systems, the inter-particle repulsion is strong
enough to prevent multilayer growth [3]. How-
ever, the existence of dispersion forces can cause
the particles to flocculate, or aggregate, and to
precipitate out of the suspension [7,10]. For larger
particles or clusters of particles, gravity often
induces sedimentation out of the suspension. Ex-
periments reveal that sedimentation produces
nontrivial spatial structures [11]. A full micro-
scopic treatment of sedimentation is a formidable
task, however [12].

An interesting deposit forms during the prepa-
ration of laboratory-made paper. Such paper is
manufactured from a suspension, out of which
fibers filtrate onto a wire mesh, leaving behind a
disordered fiber network [4]. Recently, sheets of
such paper with varying basis weights (areal mass
densities) ranging from 6.6 to 120 g m−2 were
examined using the beta-radiography technique
[13]. Fig. 1 shows an example of a typical radio-
graph from a sheet of basis weight of 80 g m−2.

To study spatial correlations, the two-point den-
sity correlation function

G(r� )=�[m(x� )−m̄ ][m(x� +r� )−m̄ ]� (1)

was calculated, where m(x� ) is the local mass
density, m̄ its average and �·� an average over
each sheet. Fig. 2 shows G(r) for four basis
weights on a log–log plot. It was found that for
all the data there is a regime where G(r) is well
approximated by

G(r)#r−a, (2)

where a=0.3790.07. The remarkable finding
was that for low basis weight sheets, the power
law behavior extends up to more than ten times
the average fiber length. Thus, the properties of
G(r) reflect the complex processes occurring dur-
ing paper-making, such as fiber flocculation in
suspension, sedimentation and filtration that lead
to nontrivial spatial correlations. A microscopic
understanding of this is currently missing. Be-
cause of this, phenomenological deposition mod-
els may be useful in studying how various
effective interactions influence the mass density
distributions of the consequent deposits.

In addition to their practical applications, 2D
deposition models have been the topic of intense
study in their own right. In particular, they have
been extensively studied in the context of contin-
uum percolation theory [14–27]. These models
have included both uniformly random networks
of various objects as well as some that include
hard and soft-core interactions between the con-
stituent particles. The quantity of central impor-
tance in these studies is the percolation threshold
or critical particle density, which for permeable
objects can be related to the excluded volume of
the particles [20]. This quantity depends on the
geometrical shape of the deposited particles as
well as on interactions between them in a nontriv-
ial way.

In reality, disordered fiber networks such as
paper are actually three-dimensional, and thus
many properties of such networks need appropri-
ate modeling. For this purpose, it is important to
understand the crossover from 2- to 3D behavior
by studying models which can grow networks of
finite thickness that have pores in the direction

Fig. 1. A 10×10 cm2 sample radiograph of a paper sheet with
basis weight 80 g m−2. The grayscale has ten shades, starting
from zero basis weight and increasing with steps of 14.5 g
cm−2.
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Fig. 2. A log–log plot of the correlation function G(r) for four paper sheets of basis weights 7.2, 70.4, 86.3, and 118.9 g m−2 (from
top to bottom). The vertical line indicates the average fiber length l=2.7 mm. The curves have been shifted for clarity. For the
lowest densities, the power law extends up to about 14 times the fiber length.

perpendicular to the deposit plane [5]. Such mod-
els are important when e.g. examining transport
processes in fiber networks [28].

In this review, we address the fundamental
properties of deposition phenomena using simple
two- and three-dimensional deposition models. In
particular, in 2D we examine simple deposition
models with effective interactions between the de-
posited objects. Using such models, we study the
generic structural properties of disordered net-
works of rectangles, disks and needles. We com-
pare and contrast the properties of disordered
needle networks with those of real paper sheets.
To better understand the three-dimensional na-
ture of fiber networks, we review the properties of
a simple 3D deposition model that takes into
account the finite flexibility of fibers. This creates
a pore structure along with the growth of the
deposit, and highlights how the geometry begins
to differ from the 2D case. With a 3D model, it
also becomes possible to discuss interesting issues

such as transport of liquid through a fiber net-
work, and the asymptotics of surface roughening.

2. Fiber deposition models

In this section, we review the properties of 2D
deposition models which have been introduced
and discussed in detail in Refs. [29–31]. In the
first model, the tendency of the deposited particles
to form clusters is taken into account through an
effective attractive interaction. The effect of clus-
tering is in part motivated by the tendency of
fibers to form clusters in paper-making, a prop-
erty known as flocculation. Hence, we have coined
this model the ‘flocculation model’. Note that this
implies an effective description of clustering, since
in real deposition phenomena flocs form in the
suspension before ending up to the deposit. In the
second case, there is an effective repulsive interac-
tion between the deposited objects, that in the
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limit of a strict non-overlap condition leads to the
random sequential adsorption (RSA) case. This
model is called the ‘rejection model’. We review
the growth dynamics, percolation thresholds and
spatial correlations in the two models for disor-
dered networks of needles, fibers of various as-
pects ratios, and discs.

2.1. Flocculation model

A simple way of enhancing cluster formation of
deposited objects in 2D networks is to favor the
accumulation of deposited objects in areas where
deposition has already taken place. This is
achieved by the following deposition rules. Ob-
jects are deposited in a two-dimensional system of
linear dimension L. Both the orientation and the
spatial coordinate of the objects are drawn out of
a uniformly random distribution. If a deposited
object lands on another object already on the
surface, the attempt is always accepted. However,
if it lands on empty space the attempt is accepted
only with a given probability p, called the accep-
tance probability.

In the limit p=1 the model reduces to the
extensively studied case of a uniformly random
network [4,14–18,24,32]. However, for pB1 there
are effective interactions between the particles
that tend to enhance cluster formation. In particu-
lar, for the extreme case of p=0, only particles
that touch each other are accepted, leading to a

single cluster (growing from an initial seed
object).

The important statistical properties of these
individual clusters are the mean radius R(N), the
radial mass density r(r, N), and the roughness
W(N) of the cluster edge [33,29], where N denotes
the number of objects in the cluster. The statisti-
cally spherically symmetric radius R(N) was
shown to follow the growth law [29,33]

R(N)=BN1/(d+1), (3)

for N�1, where d is the spatial dimension of the
deposit. In particular, for 2D planar deposits the
growth follows a 1/3 law. The constant B depends
only on the object shape. In the same limit, r(r,
N) is given by

r(r,N)=
3K
pB3R(N)f(r/R(N)), (4)

where K is the mass flux per unit area, and the
scaling function f(r/R(N))=1−r/R(N) in a
mean-field approximation [29]. Fig. 3 shows a plot
of the scaling function f(x) for fiber clusters for
five different values of N. The vertical bar at the
origin, from the cusp up, is an artifact arising due
to the fact that the seed fibre always intersects the
origin. As a result, statistical averaging of the
origin will always have an offset. An interesting
feature not captured by the mean-field approxi-
mation of f(x) is that the cluster edge is rough. Its
width was shown to follow, in 2D, the same
growth law as R(N), i.e. W(N)=�(R0 (N)−
R(N))2�1/2�N1/3, since W/R=const.

We next examine the percolation properties of
the flocculation model for p\0. Typical configu-
rations of needle deposits are shown in Fig. 4.
When enough objects are deposited in a finite
system, its edges become connected and a contin-
uum percolation transition [20,34] occurs. In the
thermodynamic limit when N�� and L��,
with h=N/L2=const., percolation occurs at a
critical number density hc. For the case of the
flocculation model, a detailed exposition of its
percolation properties has been given in Refs.
[29,35]. These works examined percolation in net-
works of needles, fibers and discs. The results are
summarized here.

Fig. 3. The scaling function of Eq. (4)) f(x) vs. x=r/R(N) for
N=1500, 2000, 2500, 3000 and 4000 fibers, with an aspect
ratio of 50/1.
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Fig. 4. Snapshots of configurations of disordered networks as generated from the flocculation model with N=2000 needles of unit
length, with (a) p=1 (a uniformly random network); (b) p=0.1, and (c) p=0.001.

There are two interesting regimes in the perco-
lation properties of the model. The first occurs
when p�0, and the second, when p�1. An
illustration of the percolation threshold hc(p) for
needles is shown in Fig. 5; results for fibers and
discs are qualitatively similar [29,35]. The behav-
ior of hc for p�1 can be understood using mean
field arguments [29] that predict a universal diver-
gence of hc(p) in the limit p�0 as

hc(p)8p−1/2 (5)

The divergence results because when a single con-
nected cluster grows, percolation occurs when the
cluster radius R=L, which means that the total
number of deposited objects in the cluster is
Nc8L3. As a result, hc=Nc/L28L�� in the
thermodynamic limit.

In the opposite limit when the deposit is close
to a uniformly random network, i.e. p close to 1,
hc(p) was found to increase linearly as

hc(p)=Ap+B, (6)
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where A and B are constants. This can be under-
stood by the following mean-field argument. Let
us imagine a uniformly random network (i.e. p=
1) at its percolation threshold hc(p=1). One effect
of decreasing p is to remove those fibers that are
not connected to the percolating cluster, while the
backbone of the percolating cluster can be as-
sumed to stay intact. It can be shown [29] that the
number of fibers removed is proportional to 1−
p, and therefore leads to a linear change in hc(p)
It should be stressed that this behavior is found
for all object geometries studied. It is interesting
to note that due to the competition between clus-
tering and uniform filling, there is an ‘optimal’
way of forming the cluster at some intermediate
value of 0BpB1, where the critical density is
minimal.

2.2. Rejection model

The case of the ‘rejection model’ is opposite to
that of the flocculation model, in that an effective
particle–particle repulsion is generated. In this
case, if a deposited object lands on empty space,
the attempt is always accepted. However, if it
lands on another object already on the surface,

the attempt is rejected with a probability 05q5
1.

In the limit q=0 the rejection model produces
uniformly random networks, just as the floccula-
tion model does for p=1. However, the limit
q=1 is more interesting, since only particles that
do not touch each other are accepted. This is the
well known case of random sequential adsorption
(RSA) models [1]. In this case, percolation with
connectivity defined through particle overlap is
never achieved, and for particles having a finite
area the deposition terminates to a finite density
called the ‘jamming limit’. However, if one defines
the connectivity rule to require only that particles
are within a certain distance of each other to be in
the same cluster it is possible to have a percolat-
ing cluster [36].

Typical configurations of needles generated by
the rejection model are shown in Fig. 6 for vari-
ous values of q, and can be contrasted to those of
Fig. 4. In Ref. [30], the percolation properties of
the model were studied in detail analytically, and
numerically. The corresponding critical densities
for needles are shown in Fig. 7. Using arguments
similar to the case of the flocculation model, it
was shown than for q�1, the critical density
increases linearly as

hc(q)=A %q+B %, (7)

where A % and B % are constants. This result follows
because for weak repulsion, there are added non-
intersecting particles in the system as compared to
a uniformly random network.

In the other limit, the critical density in Fig. 7
shows an apparent divergence when the RSA limit
is approached, since the deposited needles have no
width. It was indeed shown that the expected
behavior for q�1 is given by

hc(q)8 (1−q)−g, (8)

where g:0.32 is known numerically only [37]. In
the case of fibers and other objects with a finite
area, however, there is no divergence of hc(q=1),
since a finite jamming limit hj will be reached. An
upper limit for the percolation threshold can thus
be approximately given by hc(q=1)5hc(q=0)+
hj.

Fig. 5. The critical percolation threshold hc(p) vs. p for a
network of needles of unit length, extrapolated to L��. The
error bars are of the same order as the size of the points.
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Fig. 6. Snapshots of configurations of disordered networks as generated from the rejection model with needles of unit length, with
(a) q=0.9, N:2800; (b) q=0.99, N:3600, and (c) q=0.999, N:6300.

2.3. Spatial correlations

An interesting question concerns the nature of
spatial correlations induced by the effective inter-
actions in the 2D deposition models. We review
here the properties of the two-point density corre-
lation functions, and the pair distribution func-

tions in networks produced by the flocculation
and rejection models.

2.3.1. Two-point mass density correlations
In Ref. [29], a general expression was derived

for the two-point mass density correlation func-
tion of Eq. (1). This form of G(r) was shown to
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decompose into two contributions. The first part
is due to the effect of the self-correlation of single
deposited objects. The second term comes from
the effective spatial interactions between the de-
posited objects. In the simplest case of uniformly
random deposits, this second term vanishes and
G(r) depends on the particle geometry only.

In Fig. 8(a) and (b) we show a series of correla-
tion functions G(r) for the case of fiber networks
as calculated numerically from the flocculation
and rejection models, respectively. The form of
G(r) is rather well approximated by

G(r)�r−a(N), for 0BrBL(N), (9)

where L is an effective cutoff which depends on
the probabilities p and q in the two models. For
the flocculation model, the effective exponent
a(N, p) (with pB1) attains a minimum as N
increases, while exactly the opposite is true for
a(N, q) in the rejection model (q\0). The cutoffs
behave differently also, with a(N, p) being

smallest when L(N, p) for the flocculation model
is maximal, while a(N, q) is largest when L(N, q)
is smallest.

Fig. 9(a) shows a series of effective exponents
a(N, p) versus N for the flocculation model. The
behaviour of a can be understood as a competi-
tion between individual fiber clusters and uni-
formly random fibers, both of which coexist for
0BpB1. The approach of the correlation expo-
nent toward a:1 as N�� is caused because in
this limit the effect of p gradually becomes unim-
portant [29], and the network tends towards a
uniformly random one. On the other hand, the
initial decrease of the effective a(N, p) for small
values of N (as well as the increase of the range of
the corresponding power law regime) is due to the
growth of essentially independent fiber clusters.

A better understanding of the low N behaviour
of a(N, p), as well as the increase in the power
law regime, can be obtained by considering the
particular case of p=0. In this limit, only a single
cluster emerges. It was found that G(r), as aver-

Fig. 7. The critical percolation threshold hc(q) vs. q for a network of needles of unit length, extrapolated to L��.
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Fig. 8. A plot of ln (G(r)) vs. ln (r) for fibers of length l=20 and width v=1, for (a) p=0.001 in the flocculation model, and (b)
q=0.999 in the rejection model. From bottom to top for (a) N increases with N=25, 50, 300, 1500, 3000, 5000, 8000, 20 000, 25 000;
for (b) N=25, 50, 300, 1500, 3000, 5000, 10 000. The system size L=400, and Nc:5000 for the flocculation model, and Nc:2000
for the rejection model.

Fig. 9. A plot of the effective exponent (a) a(N, p) (flocculation model), and (b) a(N, q) (rejection model) vs. N for various values
of p and q. The aspect ratio is L/l/v=400/20/1.

aged over an ensemble of clusters of size N, is also
well approximated by a power law form, and as N
increases, a decays to a fixed value of about 0.05.

Moreover, the range of the power law is propor-
tional to the radius of the cluster, with a constant
of proportionality of about 0.7 [29]. The exponent
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a reaches its saturated value approximately at the
same value of N where the scaling laws of single
cluster growth start to become valid.

In Fig. 9(b) we show the effective exponents
a(N, q) versus N for the rejection model, for
various values of q. Behavior rather different
from that of the flocculation model can be seen.
For increasing q, the fibers tend to pack together
and form locally aligned structures. This is
reflected in anticorrelations of the mass density at
distances just larger than the fiber width, and in
the increase of the effective value of a(N, q).

In addition to fibers, density correlations were
also studied for rectangles of smaller aspect ratios
(20/5), and isotropic discs. For the flocculation
model it was found that the power-law type of
form for G(r) remains, but emerges for smaller
values of p if the objects are more isotropic. For
the rejection model, it was found that correlations
become so weak that a power law form is in
practice not observed.

It is interesting to examine the results above in
light of the experiments on paper a real mass
density measurements discussed in the Section 1,
with G(r)8r−0 37, and the cutoff increasing with
decreasing basis weight. The flocculation model
can give similar values of a:0.37 for experimen-
tally relevant values of N, by suitably adjusting p.
However, the range of the power law in this case
does not vary with areal mass density as in the
experiment. There are thus at least two possibili-
ties of obtaining longer range correlations such as
in the low mass density samples. The first is that
such paper comprises small clusters between
which there is an effective interaction giving rise
to such correlations as explained in Ref. [33]. The
second is that the emergence of longer ranged
correlations can be thought to arise from larger
clusters with no inter-cluster orrelations, but with
internal correlations of power law type, with a:
0.37.

2.3.2. The pair distribution function
An important function that is closely related to

G(r) and yields information about spatial correla-
tions in the deposits, is the pair distribution func-
tion V(r) of the centers of mass of the deposited
objects. It is defined by

V(r)dr

=
Á
Ã
Ä

N

2

Â
Ã
Å

−1

×
#%

x� 0

DNCM(x� 0)DNCM(x� 0+x� )$,

(10)
where DNCM(x� ) is the number of centers of
masses within the area element DA(x� ) around the
position vector x� , and r= �x� � (brackets denote
configuration averaging). For the case of a uni-
formly random network, there exists an exact
result derived by Ghosh [39] as

Va(r)=

(4r/L4)[L2(arcsin(L/r)−arccos(L/r))

Á
Ã
Í
Ã
Ä

(4r/L4)[pL2/2−2rL+r2/2], for 05r5L ;

+2L
r2−L2−
1
2

(r2+2L2)] , for L5r5
2L,

(11)

where L is the linear system size. For the case of
the flocculation model close to p=0, this result
has been generalized based on the approximation
that V(r) can be written as a weighted sum of
contributions coming from the inner correlations
in single clusters, and uniform random deposition
of such clusters [29]. In particular,

V(r)=v1(N,p)g(r)+v2(N,p)Va(r,L), (12)

where

g(r)

=

ÁÃ
Í
ÃÄ

(30r/42R5)(3r3−6Rr2+4R3), for 05r5R ;

(30r/42R5)(2R−r)3, for R5r52R,

0, for 2R5r

(13)

The quantities v1(N, p)=ncNc(Nc−1)/[N(N−
1)], and v2(N, p)=1−v1(N, p), where nc is the
number of effective clusters in the network. This
is treated as a fitting parameter thus fixing Nc, the
number of fibers in a given cluster, by Nc=N/nc.
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In Fig. 10 we show comparisons between the
theoretically calculated and numerically obtained
functions for the flocculation model, for values of
N well below percolation (above percolation V(r)
rapidly approaches Eq. (11)). The position of the
peak near the origin reflects the average cluster
size in the system. The peak vanishes in the limit of
large N.

The behavior of V(r) for the rejection model is
quite different. For the case of needles, the series
of functions are shown in Fig. 11(a). Within the
numerical accuracy, V(r) was found to be indepen-

dent of q. This can be understood by the fact that
widthless needles can be deposited arbitrary
closely together (when aligned), and thus the dis-
tribution of centers of masses very closely follows
that of a uniformly random deposit. However, the
situation changes for the case where the deposited
objects have a finite area [40]. In Fig. 11(b) we
show a series of distribution functions for 2D
spheres of radius R=0.5. Approaching the RSA
limit, the increasing penalty for overlap causes the
distribution function to be sharply cut off at rc=
2R. This behavior can be approximated by writing

Fig. 10. Comparison between analytic (solid lines) and simulated (dotted lines) pair distribution functions for the flocculation model
(p=0.001) with (a) N=250; (b) N=500, and (c) N=750. Here L=20, l=1 and v=1/4.
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Fig. 11. (a) Pair distribution functions as calculated numeri-
cally for the rejection model with q=0.9, 0.99, and 0.999. The
solid line denotes the exact Ghosh function of Eq. (11) with
L=20. In the present case of widthless needles of unit length
the results are independent of q within the accuracy of the
data. (b) Corresponding functions for the case of circles of
unit diameter. The solid line denotes the analytic approxima-
tion of Eq. (14). System size L=5.

3. 3D fiber deposition model

In this section we examine the growth of 3D
fiber networks out of fibers that have finite flexi-
bility [5]. This is motivated by the fact that fiber
network will be truly three-dimensional only af-
ter pores start to form inside the structure. We
consider here structures such as real paper, so
that the fibers are primarily oriented along
planes perpendicular to the direction of deposi-
tion in the growth model.

We start with substrates which form a square
lattice in 2D, or a linear array of sites in 1D.
The particles deposited are initially straight
fibers, typically of unit width and thickness (wf=
tf=1). Emphasis is given to fiber lengths Lf�1.
Fibers are positioned at random in such a way
that the local coverage c (number of fibers cover-
ing each lattice site) is an integer. Periodic
boundary conditions are applied in the plane of
deposition.

Non-trivial porous structures arise when the
fibers have a non-zero stiffness. A bending fiexi-
bility Tf of the fibers is defined through a con-
straint on the height of local ‘steps’ that the
fibers can form:

�zi−zj �5Tf, (15)

Fig. 12. Deposition of a fiber with length Lf=5 and flexibility
Tf=3/4.

Vr(r)=CVa(r)u(r−rc), (14)

where u(r) is the step function, and C a
normalization constant that depends on L and rc.
The analytic approximation is also plotted in Fig.
11(b). We note that it does not reproduce the
strong peak just beyond rc, which is due to the
fact that the objects tend to be as close as possible
when the RSA limit is approached.
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Fig. 13. An example of a 2D fiber network constructed with
the 3D fiber deposition model. The porosity of the network is
about 0.83.

Characterizing a stochastic structure with
the aid of just a few parameters is a highly
nontrivial task. It turns out, however, that many
of the statistical properties of the network
structure can be expressed as a function of the
coverage c and a dimensionless flexibility number
F [5], related to previously introduced fiexibility,
as follows:

F=Tfwf/tf (16)

The flexibility dependence of several quantities
related to the pore structure has been studied in
Refs. [5,41,42].

The model we are considering here is similar to
many growth models and particularly to the Vold
model [43,44]. As the local interactions in our
fiber deposition model are replaced with F (or Tf)
we are ignoring many effects present in real sedi-
mentation processes. These include clustering or
flocculation of the fibers as discussed earlier in
this review, and reordering along the surface be-
cause of hydrodynamic or gravitational forces
[45]. Moreover, the simple bending rule does not
accurately describe the hydrostatic pressure [46]
and the underlying network does not change
when new fibers are deposited. It has also been
shown that the model does not reproduce the
surface roughness properties of real paper sheets
[47]. Ordinary paper sheets are usually com-
pressed mechanically. Such effects are hard to

where zi and zj are the elevations of the top
surface of the fiber above any two nearest neigh-
bor cells i and j covered by the fiber (cf. Fig. 12).
In the simulations fibers are deposited one at a
time with no in-plane correlations. The fibers are
placed down directly on the already formed net-
work and deformed to lie as low as possible while
still obeying Eq. (15). Fig. 13 shows what the
disordered network looks like in 2D. Formation
of pores inside a one-dimensional network is illus-
trated in Fig. 14.

Fig. 14. Typical fiber networks with (a) Tf=0.1 and (b) Tf=1.0. The system size L=500 and the fiber length Lf=5. The white
areas are pores and the grey areas indicate the fibers. The number of fibers is 5000 and each layer marked by either of the two shades
of grey contain 500 fibers.
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take into account as they depend on the actual
initial spatial structure of the deposit itself [46].
The distribution of mass per unit area is Poisso-
nian, unlike in real paper which has nontrivial
spatial correlations, as discussed in the Introduc-
tion [13]. Such weak correlations should however
be of negligible importance with respect to self-av-
eraging transport properties which we will discuss
in Section 3.2 below.

3.1. Statistical properties of networks

In the following we discuss the differences be-
tween 2- and 3D fiber networks. We consider the
in-plane percolation properties of deposits, the
connectivity of the networks (where connectivity
means fiber–fiber contacts per fiber) and pore
statistics in 3D networks. These issues are well
understood in strictly 2D networks [48], whereas
analytical models [38,49] for fiber networks with
finite thickness are not accurate due to the fact
that contacts between fibers are controlled by the
random pore structure.

At low coverage c the fiexibility F is not a
relevant quantity to describe the in-plane proper-
ties of a planar network. Instead, these properties
should be controlled by c/hc, where hc is the
percolation threshold of the corresponding 2D
network [50,51]. In our model the computed
threshold is given by

hc:5.7/Lf (17)

for long and flexible fibers (Lf]30−40). For
short fibers

hc:4/Lf , for Lf=7 and Tf\1; (18)

hc:3.5/Lf , for Lf=3 and Tf]5 (19)

In the latter case the non-zero width wf lowers the
percolation threshold at high Tf [5]. A random
walk argument suggests that in the opposite limit,
i.e. when Tf�0, the radius r of a cluster with N
fibers goes like r�Lf
N, and therefore the out-
of-plane thickness of a percolating cluster is
roughly given by tf(L/Lf)2�L. Thus, hc diverges
and no longer characterizes its structure appropri-
ately and the network becomes three-dimensional.
The crossover between the flexible and stiff fiber

percolation behavior occurs at Tf�4tf/Lf, since
the maximum vertical deflection per unit length of
a fiber is Tf.

With increasing coverage c, a cross-over from a
2D network to a pore-controlled 3D structure
occurs at c=c0:1+2F. At c\c0 3D pores de-
velop in the network, as opposed to the 2D
vacancies. In the asymptotic high-coverage region
the flat substrate no longer has any effect. The
pore number pn i.e. the number of missing fiber–
fiber contacts, increases linearly with coverage as

pn=p %�(c−c0) (20)

Here p %� is the slope of pore number relative to
the coverage. The expression

p %�=1−n�#
1−exp(−2F)

2F
, (21)

gives a surprisingly good match to the simulated
data, where n� is the fraction of fiber surface in
contact with others, i.e. the coordination number
[41].

Various measurements [41,42] yield that the
pore-height distribution is essentially exponential,

G(h)=h0
−1exp(−h/h0) (22)

with h0�1/n�. The same also holds for the distri-
bution of pore areas:

P(A)�exp(−A/A0), (23)

with A0�1/F.
Given that the pore heights and cross-sectional

areas are only weakly correlated, the average pore
volume V( is close to the product of the average
area and height of the pores. One obtains V( :1.5/
n2
�. The average surface area S( of the pores

becomes S( =2A( +4h( 
A( , and the surface area of
the pores per unit volume S( p %�:2(3+
n�)(1−
n�)/n�1.5 in the asymptotic high coverage region.
The quantity S has a non-trivial weak maximum
as a function of F [41], which has e.g. implications
for gas adsorption in porous networks.

3.2. Transport through networks

The mechanical and transport properties of dis-
ordered materials depend on their geometry. This
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Fig. 15. The in-plane velocity field of the fiber network shown
in Fig. 13. Lighter shades of grey indicate high fluid velocities.

A good example in which the geometry of the
pore system plays a crucial role is permeability. If
the pore system can be assumed to be well-con-
nected then the capillary approximation should
hold. That means that the permeability depends
only on the effective hydraulic radius of a typical
pore and the contact angle of the fluid phase
[61,62]. The capillary approximation is not useful
when the pore system consists of large cavities
that are connected through narrow pore throats.
Other ideas may then be useful, e.g. trying to
relate the distribution of the throats to the perco-
lation threshold in connectivity [58,59,63].

For 3D fiber networks, a variational bound for
the hydraulic conductivity g in the out-of-plane
direction can be estimated by using the typical
pore structures [41]. The hydraulic conductance gh

of an individual pore is given by [58,59]

gh(A,h)=
A2

8phm
, (24)

where A is again the pore area, h the pore height,
and m the fluid viscosity. Using a variational trial
solution, the pore statistics G(h), P(A) (Section
3.1), and the approximation that the pore height
and area are independent, one gets in the asymp-
totic high coverage region

g� (1−exp(−2F))/F3 (25)

This is a rapidly and monotonically decreasing
function of F.

Log–normal distributions for pore sizes are
often observed in experiments [64,65], in contrast
to the exponential distributions given above.
However, such observations are based on ‘thin’
sheets of paper for which the capillary approxima-
tion used may not be appropriate [64]. One can
illuminate the differences caused by differently
structured disordered media by considering direct
lattice-Bolzmann simulations of fluid flow in 3D
networks (cf. Fig. 15) [28]. Assuming creeping
flow, and Darcy’s law [66–68]

q= −
k
m

9p (26)

the permeability coefficient k, a measure of the
fluid conductivity through the pore system, can be
simulated. Here q is the flux of the fluid through

Fig. 16. The simulated non-dimensional permeabilities k/a2 as
a function of porosity (black triangles). White boxes and
circles show the experimental results for fibrous filters [69] and
compressed fiber mats [70,69], respectively. Curve 1 is an
analytical prediction for cubical lattice geometry [69], curve 2
is the simulated result with fcc geometry [71] and curve 3
shows the prediction given by the Kozeny–Carman Eq. (27).

makes modelling difficult since one may need a
complete characterization of the geometry of the
medium including higher-order statistics [52]. Re-
cently, developed methods include variational
bounds, for which 2nd and 3rd order correlation
functions are needed [53], effective medium tech-
niques [54–57] and percolation-type ideas [58,59].
Simulated fiber networks may enable one to study
transport properties of disordered media effi-
ciently [28,41,60].
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the porous medium, m is the viscosity of the fluid
and p is the fluid pressure.

The simulated dimensionless permeabilities in
the in-plane direction are shown as a function of
porosity f in Fig. 16, where each black triangle
represents the simulated permeability of one sin-
gle fiber network [28]. The fiber network resem-
bles fibrous filters, for which experimental
permeability results [69] are shown in Fig. 16 with
open squares. The simulated points are seen to
agree well with the experimental set of data. The
open circles in Fig. 16 correspond to experimental
data for compressed random fiber mats [69,70].

The simulated permeabilities are also compared
with analytical and numerical results for disor-
dered fiber networks. Curve (1) in Fig. 16 shows
an analytical prediction of permeability for a cu-
bic lattice model, namely k/a2= − ln (1−f)−
0.931+O(1/ln (1−f)) [69]. Curve (2), which has
been computed numerically for a regular fiber
array with a face-cantered-cubic (fcc) geometry
[71], shows that disorder leads to a larger perme-
ability of the network [69]. In the same figure we
also present a fit to the data which utilizes the
semiempirical Kozeny–Carman equation [66]

k=f3/cS2, (27)

where S is the specific surface area of the porous
medium and c is the so called ‘Kozeny constant’,
which is known to be porosity dependent for
fibrous media [72]. Curve (3) in Fig. 16 uses the
experimental fit for the Kozeny constant c=
3.5f3[1+57(1−f)3]/(1−f)1/2, which has been
suggested for fibrous materials for porosities
higher than 0.6 [70,72]. These comparisons show
that the simulated networks can be indeed be used
to study transport properties.

3.3. Kinetic roughening of growing networks

An interesting question concerns the asymptotic
properties of the growing network in the 3D
deposition model. This can be discussed in terms
of the theory of kinetic roughening of growing
interfaces [9,73]. In the following we outline the
physics of the surface roughness for the particular
example of porous fiber networks grown on a 1D
substrate [74].

For many cases of interest, the kinetics of
growing surfaces can be described by the follow-
ing type of equation of motion, called the Kar-
dar–Parisi–Zhang (KPZ) equation [75]:

(h(r� ,t)
(t

=92h(r� ,t)+
l

2
�9h(r� ,t)�2+h(r� ,t)+60 (28)

Here h(r� ,t) is a single-valued height variable that
defines the position of the interface, h(r� ,t) is a
Gaussian (white) noise term and 60 is a constant.
The nonlinear term proportional to l arises in the
growth process if the local velocity of the growing
surfaces depends on the tilt. In fact, in the 3D
fiber deposition model this is easily seen to be the
case when the fibers are not infinitely flexible. This
process is thus intimately related to the formation
of pores.

In the present case we are now only interested
in the free top surface of the network. It is defined
by the set of local height variables h(x, t) at each
lattice site x. Thus, the curve defined by h(x, t) is
a single-valued function so that overhangs in the
surface structure are ignored.

In the growth simulations time is defined in
terms of coverage c which is the amount of mass
deposited per unit substrate length. Since the mass
of a fiber is Lf, the deposition of N fibers on a 1D
lattice of size L takes t=N(Lf/L) time steps. If
the number of particles deposited in a unit time is
kept constant, the spatial average of the surface
height, h( (t)=�i=1

L h(xi, t)/L, grows linearly in
time. This assumes that the porosity is constant in
the new deposit that is being formed.

A convenient way to characterize the surface
roughness is through the average interface width

w2(L,t)=�[h(r� ,t)−h( (t)]2� , (29)

where h( (t) denotes the spatial average of h(r� , t),
and the brackets denote average over the noise.
The width obeys the scaling form

w(L,t)=Lxf(t/Lz), (30)

where the scaling function f(y) behaves as

f(y)�
Á
Í
Ä

yb, for y�1;

const., for y�1
(31)
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The relevant set of scaling exponents are the
dynamical exponent z, the roughness exponent x

and the growth exponent b, which are linked by
x=zb, and the exact relation x+z=2. For a 1D
interface, the stationary probability distribution
associated with Eq. (28) is known, and the expo-
nents are given by b=1/3, x=1/2, and z=3/2.
In the case of the 1D substrate, the scaling expo-
nents were determined from the surface width and
from the relevant height–height correlation func-
tions [9,76]. The results are in excellent agreement
with the expected KPZ universality class, with
b=0.33890.003, and x=0.4990.02.

The key factor determining the universality
class of growth in the model is the flexibility
parameter Tf. In the limit where Tf��, the local
surface height just depends on the number of
fibers at a site, and the model is equivalent to the
so-called (trivial) random deposition (RD) case,
with b=1/2 and x undefined [9]. For TfB�,
however, the finite rigidity of the fibers leads to
nontrivial correlations that manifest themselves as
bulk defects (pores) in analogy to some other
surface deposition models [73,77]. This makes it
possible to extract the crossover time tc from RD
to the KPZ regime due to the formation of pores
as follows. Since each deposition event simulta-
neously fills Lf sites, the width in the RD regime is

WRD(t): (t/Lf)1/2 (32)

In the RD regime, the surface has no spatial
correlations, and hence wRD is a measure also of
the nearest neighbor height differences. The RD
regime ends when these become of the order Tf,
such that the finite flexibility of the fibers is felt.
Setting wRD(tc):Tf, it was concluded that

tc:T f
2Lf (33)

Note, in particular, that for any non-zero fiexibil-
ity an extended RD regime appears for sufficiently
long fibers, Lf�1/T f

2.
The average KPZ growth velocity can be writ-

ten in terms of the macroscopic tilt m�h to the
network as

6(m)=6(0)+
l

2
m2 (34)

Thus, by measuring 6 as a function of m one can
get an estimate for l as a function of Tf. Through
the relation 6(m)=1/r(m) this also provides in-
formation on the deposit density r [77].

Fig. 17 shows the typical behavior of 6(m) for
both small and large values of m. It demonstrates
that 6(m) has two regimes. For small values of m,
it follows Eq. (34) as shown by the dashed line,
while for large values of m the dependence be-
comes linear. We can define the crossover tilt mc

between these two regions by the point of inter-
section of Eq. (34) and the linear fit, as shown in
the figure. It turns out that mc:Tf.

The linear regime for the growth velocity as a
function of tilt evident in Fig. 17 is easy to
understand: the fibers tend to conform along the
surface according to the amount given by the
stiffness parameter Tf. An equation for 6(m) has
been derived in Ref. [74] and reads as

6(m)=
1
2

(Lf−1)(m−Tf)+2, m\Tf, (35)

where 6�6(Tf=�)=1 in our units. The valid-
ity of Eq. (35) was verified quantitatively for
a system with L=2500, Tf=1.0 and Lf=11
for which it gives 6(m)=5.0m−3.0 as m\1.0.
This equation is indicated in Fig. 17 as a dot-
dashed line and it shows perfect agreement with
the data.

Fig. 17. Typical data for 6(m) (solid line) as a function of the
tilt m of the substrate as L=2500, Tf=1.0 and Lf=11. The
dashed line is a fit of the form of Eq. (34) and the dot-dashed
line is calculated from Eq. (35). Their intersection defines mc.
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Fig. 18. The ratio l/ls as a function of Lf Tf. This curve was obtained by collapsing four l(Tf) curves corresponding to Lf=3, 11,
19 and 27 (shown in the inset) into a single curve. In the simulations the number of layers deposited was 500 and the number of
runs was 10. The solid line obeys l/ls� (Lf Tf)

−3.

For small tilts and with m�Tf, the growth rate
6(m) is of the form of Eq. (34). The nonlinearity
parameter l can be then determined by least-
squares fitting. Fig. 18 shows how l depends on
the fiber fiexibility Tf for four fiber lengths Lf

when the system size is L=2500. The original
data (shown in the inset) collapse into a single
scaling curve by multiplying Tf by Lf and dividing
l by lsl(Tf=0) corresponding to a stiff fiber.
In this limit, ls was calculated separately as a
function of Lf and the phenomenological scaling
form ls=c(Lf−1)2 was obtained where c=
0.4090.03.

According to Fig. 18, in the case of small tilts l

has two regimes roughly separated by LfTf:1.
As LfTf�1, l:ls and it does not depend on Tf.
On the other hand, in the LfTf�1 regime there is
clearly an inverse power law behavior as a func-
tion of Tf. When the running exponent method

was applied to l/ls corresponding to the case of
Lf=27, it gave for the value of the exponent of
this power law −2.890.4 implying that l/ls�
(LfTf)−2.8. Thus, we can summarize the scaling
behavior of l as

l�
Á
Í
Ä

(Lf−1)2, for LfTf�1;

L f
−1T f

−2.890.4, for LfTf�1
(36)

We note that this form correctly satisfies the RD
limits of the model where l�0 for either Lf=1
or Tf��.

To explain Eq. (36) a simple scaling theory was
developed in Ref. [74]. There it was shown that

l�
Á
Í
Ä

Lf
2, for LfTf�1;

L f
−1T f

−3, for LfTf�1
(37)
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These limits agree well with the numerical result
in Eq. (36). The solid line in Fig. 18 shows
l/ls� (LfTf)−3.

To conclude, the surface roughening of porous
fiber networks in one substrate dimension obeys
KPZ type of scaling. It has been possible to
establish scaling arguments to explain the scaling
of the KPZ nonlinearity l with Tf that is on the
other hand related to the formation of pores.
These arguments make it seem natural that even
higher-dimensional variants are in the KPZ uni-
versality class.

4. Summary and discussion

To summarize, this review discusses 2- and 3D
deposition models of fibers and other extended
objects. In 2D a simple parametrization of effec-
tive fiber–fiber interaction is capable of producing
a variety of phenomena interpolating between
restricted sequential adsorption and single cluster
growth. Similarly, in 3D a simple growth rule
captures the essential physics in the formation of
porous deposits.

For 2D models, our emphasis was on two
phenomena, namely percolation and spatial corre-
lations. The percolation threshold of the 2D floc-
culation model shows an interesting minimum as
a function of the interaction parameter p, whereas
no such minimum was found for the rejection
model.

The spatial correlations found in the networks
are well approximated by a power-law type form
in a certain length scale regime, a feature also
observed in the mass density distribution of real
laboratory-made paper sheets. However, the
range of correlations found in real paper cannot
be reproduced by the simple deposition models
considered here. To this extent, more elaborate
models are needed, such as, for example, making
the acceptance probability of the deposition at-
tempt of a single fiber dependent on its neigh-
bourhood [78,79] might give rise to power-law
correlations over longer distances.

To complement the analysis of 2D networks,
the properties of a 3D deposition model were

discussed. In particular, the interesting questions
concerning the structure of the pore space and the
geometric properties of the top surface were ad-
dressed. As a practical application of the model, it
has been demonstrated that such a simple deposi-
tion model can be used to quantitatively simulate
some of the transport properties of disordered
fiber networks, such as permeability. Analysis of
the roughening of the top surface reveals that it
belongs to the ubiquitous Kardar–Parisi–Zhang
universality class.

To conclude, we hope to have demonstrated
that simple deposition models can be used to
qualitatively and, in some cases, quantitatively
understand the properties of two- and three-di-
mensional disordered networks. However, a better
quantitative understanding requires more elabo-
rate microscopic models, an avenue for future
work.
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Räisänen, E. Seppälä, J. Timonen, J. Vinnurva, J.
A, ström for fruitful collaboration, and the
Academy of Finland MATRA program for finan-
cial support.

References

[1] J.W. Evans, Rev. Mod. Phys. 65 (1993) 1281.
[2] V. Privman, in: D. Stauffer (Ed.), Annual Reviews in

Computational Physics, vol. 3, World Scientific, Singa-
pore, 1995.

[3] (a) G.Y. Onoda, E.G. Liniger, Phys. Rev. A 33 (1986)
715. (b) A. Schmit, R. Varoqui, S. Uniyal, J.L. Brash, C.
Pusiner, J. Colloid Interface Sci. 92 (1983) 25. (c) J.
Feder, I. Giaever, J. Colloid Interface Sci. 78 (1980) 144.

[4] M. Deng, C.T.J. Dodson, Paper: An Engineered Stochas-
tic Structure, Tappi Press, Atlanta, 1994.

[5] K.J. Niskanen, M.J. Alava, Phys. Rev. Lett. 73 (1994)
3475.

[6] P. Nielaba, V. Privman, Phys. Rev. E 51 (1995) 2022.
[7] N. Ryde, H. Kihira, E. Matijevic, J. Colloid Interface Sci.

151 (1992) 421.
[8] P. Wojtaszczyk, E.K. Mann, B. Senger, J.C. Voegel, P.

Schaaf, J. Chem. Phys. 103 (1995) 8285.



N. Pro6atas et al. / Colloids and Surfaces A: Physicochem. Eng. Aspects 165 (2000) 209–229228

[9] A.-L. Barabási, H.E. Stanley, Fractal Concepts in Sur-
face Growth, Cambridge University Press, Cambridge,
1995.

[10] C.A. Murray, D.G. Grier, Am. Sci. 83 (1995) 238.
[11] (a) M.L. Kurnaz, J.V. Maher, Phys. Rev. E 53 (1996)

978. (b) K.V. McCloud, M.L. Kurnaz, J.V. Maher,
Phys. Rev. E 56 (1997) 5768.

[12] S. Schwarzer, Phys. Rev. E 52 (1995) 6461.
[13] N. Provatas, M.J. Alava, T. Ala-Nissila, Phys. Rev. E 54

(1996) R36.
[14] G.E. Pike, C.H. Seager, Phys. Rev. B 10 (1974) 1421.
[15] I. Balberg, N. Binenbaum, Phys. Rev. B 28 (1983) 3799.
[16] P.C. Robinson, J. Phys. A 16 (1983) 605.
[17] I. Balberg, C.H. Anderson, S. Alexander, N. Wagner,

Phys. Rev. B 30 (1984) 3933.
[18] P.C. Robinson, J. Phys. A 17 (1984) 2823.
[19] A.L.R. Bug, S.A. Safran, G.S. Grest, Phys. Rev. Lett. 55

(1985) 1896.
[20] I. Balberg, Philos. Mag. B 56 (1987) 991.
[21] D. Ları́a, F. Vericat, Phys. Rev. B 40 (1989) 353.
[22] S.B. Lee, S. Torquato, Phys. Rev. A 41 (1990) 5338.
[23] U. Alon, I. Balberg, A. Drory, Phys. Rev. Lett. 66

(1991) 2879.
[24] C. Vanneste, A. Gilabert, D. Sornette, Phys. Lett. A 155

(1991) 174.
[25] A. Drory, I. Balberg, B. Berkowitz, Phys. Rev. E 49

(1994) 949.
[26] H.S. Choi, J. Talbot, G. Tarjus, P. Viot, Phys. Rev. E

51 (1995) 1353.
[27] M.D. Rintoul, S. Torquato, Phys. Rev. E 52 (1995)

2635.
[28] A. Koponen, D. Kandhai, E. Hellen, M. Alava, A.

Hoekstra, M. Kataja, K. Niskanen, P. Sloot, J. Timo-
nen, Phys. Rev. Lett. 80 (1998) 716.

[29] N. Provatas, M. Haataja, E. Seppälä, S. Majaniemi, J.
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