
A Comparison of Techniques for Automatic Clustering of
Handwritten Characters

Vuokko Vuori and Jorma Laaksonen
Helsinki University of Technology

Laboratory of Computer and Information Science
P.O. Box 9800, FIN-02015 HUT, Finland
{vuokko.vuori,jorma.laaksonen}@hut.fi

Abstract

This work reports experiments with four hierarchical
clustering algorithms and two clustering indices for on-
line handwritten characters. The main motivation of the
work is to develop an automatic method for finding a
set of prototypical characters which would represent well
the different writing styles present in a large international
database. One of the major obstacles in achieving this goal
is the uneven representation of different writing styles in the
database. On the basis of the results of the experiments,
we claim that a good set of prototypes can be formed from
the combined results of the different clustering algorithms.
However, the number of clusters cannot be determined au-
tomatically but some human intervention is required.

1. Introduction

One of the main problems in automatic handwriting
recognition is the vast variety of different personal writing
styles. A recognition system should simultaneously be able
to model the differences by which words or characters of
different classes can be distinguished from each other, and
the variations which can be found within the classes. As
recognition accuracy is one of the key factors in determin-
ing the usability of a handwriting recognition system and
the whole application in which it is implemented, it should
be as high as possible for all potential users.

If the recognition is based on comparison of the sys-
tem’s input to a set of known examples, say prototypical
handwritten character samples, the higher accuracies can be
achieved the better the different writing styles are covered
and represented by the prototypes [10]. The same is true
when recognition is based on statistical models, say Hidden
Markov Models (HHMs). Better results can be obtained if
each writing style is modeled with its own HMM instead

of using one model per class and for several, sometimes
significantly different, writing styles [3]. Initial recognition
accuracies can be improved by adapting the recognition sys-
tem to new writing styles. Nevertheless, a high initial accu-
racy is crucial – the user might not have enough patience to
write many new training samples and to wait for the system
to learn them. Therefore, all prior knowledge of different
writing styles is of paramount importance, even with adap-
tive recognition systems.

In this work, we concentrate on the problem of automat-
ically characterizing the possible ways of writing isolated
alphanumeric characters. Two different approaches to this
problem can be taken. We can try to understand what are
the underlying reasons or mechanisms causing the different
writing styles. Some of the obvious ones are the handed-
ness, origin, education, age, and health of the writer, fine
motorics of hands, and writing equipment. Alternatively,
we can use data-driven clustering algorithms to divide the
character classes into subclasses each corresponding to a
different style of writing. We have taken the latter ap-
proach. We have performed experiments with a large char-
acter database, four clustering algorithms, and two cluster-
ing indices in order to automatically determine the number
of different writing styles for digits and upper and lower
case letters and to find good prototypes for them. We try to
find a set of character prototypes which captures the within-
class style variations well. Therefore, the character classes
are treated separately. In this approach, the between-class
variations are not taken in account and the found prototypes
are not optimized in the sense of their classification capac-
ity.

The rest of this paper is organized as follows: the dissim-
ilarity measure between characters, clustering methods and
indices are explained in sections 2 and 3, the database used
in the experiments is described in section 4, the experiments
are introduced and their results are reported in sections 5
and 6, and finally, conclusions are drawn in section 7.

tsonkkil
Copyright 2002 IEEE. Reprinted, with permission, from Proceedings of the 16th International Conference on Pattern Recognition, Volume 3, pp. 168-171.

2. Clustering methods

The dissimilarity measure used in the clustering of the
characters is based on the Dynamic Time Warping (DTW)
algorithm [8]. Connected parts of a drawn curve in which
the pen is pressed down on the writing surface are consid-
ered as strokes. DTW dissimilarity measure is defined on
stroke basis so that it is infinite between two characters hav-
ing different numbers of strokes. Strokes and data points
are matched in the same order as they have been drawn and
the first and last data points of the two curves are matched
against each other. The DTW algorithm finds the point-
to-point correspondence between the curves which satisfies
these constraints and yields the minimum sum of the costs
associated with the matchings of the data points. The cost
for matching two data points is their squared Euclidean dis-
tance. Prototype-based classifiers using DTW-based dis-
tances have been shown to be well suited for handwriting
recognition task by several researchers and high recognition
accuracies can be obtained if the prototype set has a good
coverage of the different handwriting styles [10].

We have developed four different algorithms for cluster-
ing character samples: TreeClust [11], MinSwap, and two
variations of C-means algorithm [5], named here CMeans 1
and CMeans 2. All the four clustering algorithms are
agglomerative and hierarchical. Clusters are represented
by prototypes which are the samples having the minimum
sum of distances to the other samples in the same cluster.
TreeClust, MinSwap, and CMeans 2 start form a situation
in which all the samples are prototypes, i.e. form their own
clusters, while in the beginning of CMeans 1-algorithm,
only a random subset of the samples is selected to be an
initial prototype set. As the clustering algorithms proceed,
the number of clusters is reduced by merging clusters. In
TreeClust-, CMeans 1-, and CMeans 2-algorithms those
two clusters whose prototypes are the most similar pair are
merged into one. MinSwap-algorithm tries several alterna-
tive mergings, first the clusters with the most similar proto-
type pair, then with the next similar pair etc. Next, a pro-
totype is selected among the samples which belong to the
new cluster. After that, MinSwap, CMeans 1, and CMeans 2
reassign the samples into the clusters according to the clos-
est prototypes and then reselect the prototypes. This is re-
peated until a stable division is found. MinSwap does the
same thing but also calculates how many of the samples are
swapped out from the new cluster into the other clusters, or
vice versa, and selects that merging which causes the mini-
mum number of these swappings.

3. Clustering indices

For determining the number of clusters automatically,
two indices were measured: Davies and Bouldin (DB) [4]
and Calinski and Harabasz (CH) [2]. Both the indices were

modified so that the squared Euclidean distances between
two samples or a sample and cluster prototype were re-
placed by DTW-based distances. In addition, the sample
which had the minimum sum of distances to the other sam-
ples was used as mean. The DB-index was selected because
it is one of the most commonly used clustering indices. It
is the average of the similarity measures between each clus-
ter and its most similar cluster. Hence, a sensible number
of clusters can be determined by minimizing the DB-index.
The CH-index was selected as it outperformed several other
clustering measures, including the DB-index, in a thorough
comparison carried out by Milligan et al. [7]. In our work,
the CH-index is defined as follows:

CH
������� �	�
�����
�� ���
���� �������������

� �
��� �	�! " �� � �#�
$�&% "
 ����� � �'��� �

where � �$(� ()� is a DTW-based distance,
�

is the number of
clusters, � is the total number of samples, �
 is the num-
ber of samples in the * th cluster,

�
 is the prototype of the
* th cluster, � is the mean sample, and % "
 is the + th sam-
ple in the * th cluster. The numerator part of the CH-index
measures how much the cluster prototypes differ from the
mean sample and the denominator part tells how much the
samples differ from their cluster prototypes. Therefore, a
reasonable number of clusters can be found by maximizing
the CH-index.

4. Character database

The experiments were performed with two pub-
lic databases, named IRONOFF [9] and UNIPEN
train_r01_v07 [6]. Only isolated digits and upper and
lower case letters were used in the experiments. The two
databases were combined into one, all the character sam-
ples were manually checked and obviously erroneous ones
were removed. Most of the erroneous samples were incor-
rectly segmented (a whole word instead of a letter, several
digits of the same class, lower case letter consisting of sin-
gle vertical stroke and labeled, for example, as ’k’). In total,
3 174 erroneous samples were found. The total number of
samples in the cleaned database is 130 831. These samples
were written by 728 subjects. The subjects were of vari-
ous ages and from several countries, and both genders and
handedness groups were represented. In our opinion, it is
justified to assume that the database has a rather good cov-
erage of the possible writing styles.

The character samples were collected with pressure sen-
sitive displays or tablets which were able to record the x-
and y-coordinates of the moving pen point. As there were
several contributors and therefore many different collection
softwares and devices, all the samples were preprocessed so
that their data points were similarly equidistant in space. In
addition, the size and location variations of the characters

were normalized. This way, all the characters could be rea-
sonably compared with each other using the DTW distance.

5. Experiments

First, all the characters were divided into subclasses ac-
cording to their classes and stroke numbers. Next, all the
subclasses were clustered independently using the four al-
gorithms introduced in section 2. After that, the DB- and
CH-indices were evaluated and plotted for each of the char-
acter subclasses as functions of the number of clusters. The
minimum values of the DB-index and the maximum values
of the CH-index were found and the corresponding numbers
of clusters were recorded. These recorded cluster numbers
were the optimal prototype set sizes suggested by the clus-
tering indices. In the case MinSwap algorithm, 5 alternative
mergings were tried. CMeans 1 was initialized with 50 and
20 randomly selected prototypes in the case of digits and
letters, respectively. If there were less samples than that, all
the samples were selected as initial prototypes.

Our main objective was to find clearly distinct prototypes
for each character class which would represent well all the
writing styles present in the large database. No attention
was paid to how well the prototypes could capture differ-
ences between the classes i.e. would perform in a classi-
fication task. Missing rare styles were considered to be a
much worse problem than over-represented common styles.
Different clustering results were judged and compared with
each other on the basis of the knowledge on the writing
styles established during the manual examination and clean-
ing of the character database.

6. Results

Manual inspection of the clustering results showed that
only the solutions with less than 20 prototypes were inter-
esting: if the rare styles were not present among them, they
would not be found unless the number of clusters, and si-
multaneously the number prototypes representing similar
common styles, were increased considerably. Therefore
clustering indices were evaluated only for solutions with 20
clusters or less. The best DB- and CH-indices and corre-
sponding numbers of clusters for digits are shown in Ta-
ble 1. The table shows that the indices agree rarely and a
manual examination of the clustering results revealed that
neither one of them does make much sense in practice.
The plots of clustering indices were jagged with many lo-
cal optima and usually with no clear depressive or elevative
trend around the global optimum point. In addition, differ-
ent clustering algorithms found different rare writing styles.
Naturally, the same problems were present in the clustering
results of letters. Prototypes found for common styles were
not dependent on the choice of the clustering algorithm.

Table 1. The numbers of clusters yielding the
minimum and maximum values of the DB- and
CH-indices for digit subclasses. The number
of clusters picked by hand is given in the last
column.

CMeans 1 CMeans 2 TreeClust MinSwap
Class Strokes

DB CH DB CH DB CH DB CH
By hand

0 1 2 9 9 4 4 2 19 4 19
0 2 2 11 7 13 3 19 9 18 11
0 4 1 1 1 1 1 1 1 1 0
1 1 2 16 2 3 2 2 2 7 14
1 2 3 4 4 17 2 20 18 19 14
1 3 2 20 2 20 2 20 9 20 11
2 1 2 2 4 20 2 2 17 7 16
2 2 3 5 2 5 2 4 3 5 1
3 1 2 4 2 16 2 3 2 3 17
3 2 3 6 4 6 2 4 4 6 0
4 1 2 4 2 4 2 2 14 4 23
4 2 7 5 3 9 4 2 10 18 22
4 3 2 12 2 12 2 2 2 12 6
5 1 2 7 2 19 2 12 16 5 16
5 2 2 10 2 5 2 3 14 6 11
5 3 2 1 2 1 2 4 2 1 1
6 1 2 5 4 2 2 1 19 13 20
6 2 2 3 2 3 2 18 2 3 0
7 1 2 3 2 3 2 2 2 5 18
7 2 4 9 14 10 2 8 6 4 20
7 3 2 20 9 19 2 2 2 20 20
8 1 2 4 4 7 4 20 14 4 18
8 2 2 17 2 10 2 3 17 13 17
8 3 1 1 1 1 1 1 1 1 0
9 1 2 3 2 3 2 19 20 5 19
9 2 3 20 9 20 2 14 10 20 17

Sum - 59 200 97 231 55 188 233 222 330

CMeans 1 could find the rare styles hardly at all un-
less they were selected as initial prototypes, which was
not very probable as the common styles were heavily over-
represented. CMeans 2 performed little better in that sense
as initially all the samples were prototypes. However, due to
the reassignments of the samples into the clusters, the small
clusters of high internal variance were often absorbed into
the big clusters. There were no clear difference between
CMeans 2 and MinSwap – perhaps there should have been
some kind of normalization by the size of the new cluster
for the number of swappings. The current version of the
MinSwap-algorithm probably favors merging small clusters
as there simply can not be much swapping with its small
number of samples. Of all the four algorithms TreeClust
could best preserve the small clusters of rare styles in the
merging process. However, assignment of the samples into
the clusters is always final and the prototypes of common
styles are not always the best representatives of all the sam-
ples of that style. Instead of selecting one general proto-
type, TreeClust algorithm tends to select a couple of more
extreme samples of the same style. This problem can be al-
leviated by fine-tuning the final prototypes for example with
a Learning Vector Quantization-based algorithm [1, 11].

We also picked the prototypes by hand from the clus-
tering results obtained with the four clustering algorithms.
In total, 330, 851, and 1 410 prototypes were selected for

Figure 1. Hand-picked prototypes for one-
stroke digit ’4’.

digits, lower, and upper case letters, respectively. The pro-
totypes for rare styles were mainly picked from the results
of TreeClust-algorithm and prototypes for common styles
from the results of CMeans 2- and MinSwap-algorithms.
The number of picked prototypes per each digit subclass are
shown in the last column of Table 1. These numbers show
what is our idea of the correct number of clusters. This is
of course only a subjective opinion. The prototypes picked
for one-stroke digit ’4’ are shown in Figure 1. It should be
noted that the number of clusters determined automatically
by a clustering index and the number decided by a human
can not be compared straightaway. The DTW-based dis-
tance used by the clustering algorithms and indices and the
way how humans perceive the similarities and dissimilari-
ties between two characters are far from equal.

7. Conclusions

We performed experiments with four agglomerative
clustering algorithms and two clustering indices in order
to automatically find a good set of prototypes of different
handwriting styles from a large database of isolated hand-
written characters. The major problem was that different
writing styles are not equally represented in the database:
there are hundreds of examples of some common styles
but only a few samples of the rare, more personal styles.
If the samples were redistributed among the clusters after
a merging of clusters, the small cluster of the rare styles
were easily lost as they tended to be merged into the large
clusters. None of the four clustering algorithms performed
sufficiently by their own but a good prototype set could be
formed from their combined results. The examination of
the clustering results, approximately 12 000 character sam-
ples from which about 22% were selected as prototypes, re-
quired only a fraction of the time spent when going through
over 130 000 samples in the database.

The results obtained with the clustering indexes were not
promising at all: the number of different writing styles had
to be determined by a human inspector and the final pro-
totype set was picked by hand. However, the amount of

hand-work would be considerably reduced and the over-
representation problem alleviated by introducing a two-
phased clustering scheme. In the first phase, the database
would be clustered with several different algorithms and the
number of clusters would be left rather high. In the second
phase, the clustering results would be combined and a new
set of initial prototypes would be defined on the basis of
that. The clustering process would then be continued with
some automatic method. The decision on the size of the fi-
nal prototype set would still be left to humans. We have al-
ready performed some experiments with a two-phased clus-
tering algorithm. The preliminary results are encouraging.
We compared the automatically selected prototypes to the
hand-picked ones and noticed that in the early stages of the
two- and single-phased clustering algorithms there were no
significant differences if all the samples were used as initial
prototypes. However, the prototype set found with a two-
phased algorithm contained more rare styles and therefore
reminded more the hand-picked prototype set as the size of
the prototype set was decreased.

References
[1] F. Andrianasy and M. Milgram. A new learning scheme for

the recognition of dynamical handwritten characters. In Pro-
ceedings of the 5th IEEE Workshop on Neural Networks for
Signal Processing, pages 371–379, USA, 1995.

[2] T. Calinski and J. Harabasz. A dendrite method for cluster
analysis. Communications in Statistics, 3:1–27, 1974.

[3] S. D. Connell. Online handwriting recognition using multi-
ple pattern class models. PhD thesis, Michigan State Uni-
versity, 2000.

[4] D. L. Davies and D. W. Bouldin. A cluster separation mea-
sure. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 1(2):224–227, April 1979.

[5] R. O. Duda and P. E. Hart. Pattern Classification and Scene
Analysis. John Wiley & Sons, 1973.

[6] I. Guyon, L. Schomaker, R. Plamondon, M. Liberman, and
S. Janet. Unipen project of on-line data exchange and recog-
nizer benchmark. In Proceedings of International Confer-
ence on Pattern Recognition, pages 29–33, 1994.

[7] G. W. Milligan and M. C. Cooper. An examination of pro-
cedures for determining the number of clusters in a data set.
Psychometrika, 50(2):159–179, June 1985.

[8] D. Sankoff and J. B. Kruskal. Time warps, string edits, and
macromolecules: the theory and practice of sequence com-
parison. Addison-Wesley, 1983.

[9] C. Viard-Gaudin, P. M. Lallican, S. Knerr, and P. Binter. The
IRESTE on/off (IRONOFF) dual handwriting database. In
Proceedings of 5th International Conference on Document
Analysis and Recognition, pages 455–458, 1999.

[10] V. Vuori, J. Laaksonen, E. Oja, and J. Kangas. Experiments
with adaptation strategies for a prototype-based recognition
system for isolated handwritten characters. Int. Journal on
Document Analysis and Recognition, 3(3):150–159, 2001.

[11] V. Vuori and E. Oja. Analysis of different writing styles with
the self-organizing map. In Proceedings of the 7th Interna-
tional Conference on Neural Information Processing, vol-
ume 2, pages 1243–1247, November 2000.

