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ABSTRACT

The main goal of the work presented in this thesis has been the development of an on-
line handwriting recognition system which is able to recognize handwritten characters of
several different writing styles and is able to improve its performance by adapting itself to
new writing styles. The recognition method should be applicable to hand-held devices of
limited memory and computational resources. The adaptation process should take place
during normal use of the device, not in some specific training mode. For the usability
aspect of the recognition system, the recognition and adaptation processes should be easily
understandable to the users.

The first part of this thesis gives an introduction to the handwriting recognition. The
topics considered include: the variations present in personal handwriting styles; automatic
grouping of similar handwriting styles; the differences between writer-independent and
writer-dependent as well as on-line and off-line handwriting recognition problems; the dif-
ferent approaches to on-line handwriting recognition; the previous adaptive recognition
systems and the experiments performed with them; the recognition performance require-
ments and other usability issues related to on-line handwriting recognition; the current
trends in on-line handwriting recognition research; the recognition results obtained with
the most recent recognition systems; and the commercial applications.

The second part of the thesis describes an adaptive on-line character recognition system
and the experiments performed with it. The recognition system is based on prototype
matching. The comparisons between the character samples and prototypes are based on
the Dynamical Time Warping (DTW) algorithm and the input characters are classified
according to the k Nearest Neighbors (k-NN) rule. The initial prototype set is formed
by clustering character samples collected from a large number of subjects. Thus, the
recognition system can handle various writing styles. This thesis work introduces four
DTW-based clustering algorithms which can be used for the prototype selection. The
recognition system adapts to new writing styles by modifying its prototype set. This
work introduces several adaptation strategies which add new writer-dependent prototypes
into the initial writer-independent prototype set, reshape the existing prototypes with a
Learning Vector Quantization (LVQ)-based algorithm, and inactivate poorly performing
prototypes. The adaptations are carried out on-line in a supervised or self-supervised
fashion. In the former case, the user explicitly labels the input characters which are used
as training samples in the adaptation process. In the latter case, the system deduces the
labels from the recognition results and the user’s actions. The latter approach is prone to
erroneously labeled learning samples.
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The different adaptation strategies were experimented with and compared with each
other by performing off-line simulations and genuine on-line user experiments. In the
simulations, special attention has been paid to the various erroneous learning situations
likely to be encountered in real world handwriting recognition tasks. The recognition
system is able to improve its recognition accuracy significantly on the basis of only a few
additional character samples per class. Recognition accuracies acceptable in real world
applications can be attained for most of the test subjects.

This work also introduces a Self-Organizing Map (SOM)-based method for analyzing
personal writing styles. Personal writing styles are represented by high-dimensional vec-
tors, the components of which indicate the subjects’ tendencies to use certain prototypical
writing styles for isolated characters. These writing style vectors are then visualized by a
SOM which enables the detection and analysis of clusters of similar writing styles.

c© All rights reserved. No part of the publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the author.
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1 INTRODUCTION TO THE THESIS

1.1 Goals and scope of the thesis

The scope of the thesis is the adaptive on-line recognition methods for isolated characters,
the emphasis being on prototype-based recognition methods and Latin characters, i.e. lower
and upper case letter and digits. Isolated characters can be obtained from a handwritten
text which has been produced in such a way that there is no need for automatic segmen-
tation but it is clear which parts of the pen trace belong to which characters prior to their
classification. Alternatively, isolated characters can be segmented manually from cursively
written words.

The main goal of the work presented in this thesis has been the development of an
on-line handwriting recognition system which is able to recognize handwritten characters
of several different writing styles and is able to improve its performance by adapting itself
to new writing styles. The recognition method should be applicable to hand-held devices
of limited memory and computational resources. The adaptation process should take place
during normal use of the device, not in some specific training mode. For the usability
aspect of the recognition system, the recognition and adaptation processes should be easily
understandable to the users. In such a case, the recognition errors seem less random, and
therefore, are less annoying to the users. In addition, the users have some insight how
to adapt their writing styles to be more easily recognized by the system. If the users
understand the exact way how the system adapts to new writing styles, they can control
the adaptation process and explicitly teach the recognition system.

In order to create a recognition system which works well with all kinds of writers
already in the very beginning of its use, it is essential to establish as much knowledge
as possible on the different writing styles. One of the goals of the thesis was to gain such
knowledge by analyzing large databases of character samples collected from several subjects
and to enumerate the different writing styles. The performed analyses included simple but
laborious manual examinations of the whole databases and not so human labour-intensive
final inspections of the results of various automatic clustering algorithms applied to the
databases. As a result, a prototypical character was selected for each distinctly different
style of writing a character of each class.

The prototypical characters are used as a core of the recognition system. The prototype-
based recognition system can easily be adapted to new writing styles by modifying its
prototype set as the users provide new character samples. The adaptation can be carried
out in a supervised or self-supervised fashion. In the former case, the user explicitly labels
the input characters which are used as training samples in the adaptation process. In
the latter case, the system deduces the labels from the recognition results and the user’s
actions. The latter approach is prone to erroneously labeled learning samples. In this
thesis, different on-line adaptation strategies, both supervised and self-supervised ones,
were experimented with and compared with each other by performing off-line simulations
and genuine on-line user experiments.

Another approach to improve the ability of the recognition system to handle different
writing styles is to devise a method for dividing the personal writing styles into meaningful
groups and then to dedicate a specialized recognizer for each group. One of the goals of
the thesis was to study if such a grouping of personal writing styles can be observed by
measuring the subjects’ tendencies to use different prototypical styles for writing isolated
characters.
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1.2 Contributions of the thesis

The main contributions of this thesis are:

• A comprehensive literature survey of the various topics related to automatic recog-
nition of handwriting, including the generative models of handwriting, the sources of
variations within and between personal handwriting styles, the automatic grouping
of similar personal handwriting styles, the handwriting data acquisition and process-
ing methods, the performance requirements and the other usability issues concerning
handwriting recognition, the recognition methods themselves, and the results ob-
tained with the most recent recognition systems. The emphasis of the survey is on
on-line handwriting data and adaptive recognition methods for isolated Latin char-
acters.

• The development of an adaptive prototype-based recognition system for isolated Latin
characters. The initial prototype set has been formed by clustering character samples
provided by a large number of subjects. Thus, the recognition system can handle
various writing styles already at the beginning. The recognition system can adapt to
new writing styles in a self-supervised fashion by modifying its prototype set during
its normal use. The recognition system is able to improve its recognition accuracy
significantly on the basis of only a few additional character samples per class written
by the current user.

• The performance of the developed recognition system and its adaptation strategies
have been evaluated in off-line simulations, and more importantly, in genuine user
experiments. In the simulations, special attention has been paid to the various erro-
neous learning situations likely to be encountered in real-world handwriting recogni-
tion tasks.

• The Self-Organizing Map (SOM)-based method for analyzing personal writing styles.
Personal writing styles are represented by high-dimensional vectors, the components
of which indicate the subjects’ tendencies to use certain prototypical writing styles
for isolated characters. These writing style vectors are then visualized by a SOM
which enables the detection and analysis of clusters of similar writing styles.

1.3 Outline of the thesis

This thesis consists of:

• An introductory chapter in which the motivations, scope, goals, and main contribu-
tions of the thesis work are described.

• A literature survey chapter which gives the essential background knowledge for the
on-line handwriting recognition problem, reviews the state-of-the-art methods used
in the various stages of the recognition process and recognition results reported in
the literature, introduces alternative adaptation approaches, and discusses usability
issues concerning handwriting recognition.

• A chapter which describes the various components of the adaptive prototype-based
on-line character recognition system developed during the thesis project and the
experiments performed with them, and reports the main results and the conclusion
drawn from the individual experiments.
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• A chapter which gives the main conclusions of this thesis work.

• A set of original publications giving the details of the methods and results.

1.4 Included publications

The published conference and journal articles listed below are included in this thesis. This
section briefly describes the motivations and contents of the articles and declares the con-
tributions of the author of this thesis. The articles are introduced here in nearly the same
order as the works described in them have been carried out – article 7 is the only exception.

1. Vuori, V., J. Laaksonen, E. Oja, and J. Kangas (2001a). Experiments with adap-
tation strategies for a prototype-based recognition system for isolated handwritten
characters. International Journal on Document Analysis and Recognition 3 (3), 150–
159.

2. Vuori, V., J. Laaksonen, and J. Kangas (2002). Influence of erroneous learning
samples on adaptation in on-line handwriting recognition. Pattern Recognition 35 (4),
915–925.

3. Vuori, V., J. Laaksonen, E. Oja, and J. Kangas (2000b). Controlling on-line adapta-
tion of a prototype-based classifier for handwritten characters. In Proceedings of the
15th International Conference on Pattern Recognition, Volume 2, pp. 331–334.

4. Vuori, V., M. Aksela, J. Laaksonen, E. Oja, and J. Kangas (2000a). Adaptive char-
acter recognizer for a hand-held device: implementation and evaluation setup. In
Proceedings of the 7th International Workshop on Frontiers in Handwriting Recogni-
tion, pp. 13–22.

5. Vuori, V., J. Laaksonen, E. Oja, and J. Kangas (2001b). Speeding up on-line recog-
nition of handwritten characters by pruning the prototype set. In Proceedings of 6th
International Conference on Document Analysis and Recognition, pp. 501–505.

6. Vuori, V. and J. Laaksonen (2002). A comparison of techniques for automatic clus-
tering of handwritten characters. In Proceedings of the 16th International Conference
on Pattern Recognition, Volume 3, pp. 168–171.

7. Vuori, V. and E. Oja (2000). Analysis of different writing styles with the self-
organizing map. In Proceedings of the 7th International Conference on Neural Infor-
mation Processing, Volume 2, pp. 1243–1247.

8. Vuori, V. (2002). Clustering writing styles with a self-organizing map. In Proceedings
of the 8th International Workshop on Frontiers in Handwriting Recognition, pp. 345–
350.
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Journal article 1 describes several important parts of the prototype-based recognition
system developed during the thesis project: 1) the preprocessing and normalization meth-
ods for isolated on-line characters, 2) a clustering algorithm for selecting prototypical char-
acters, 3) various alternative dissimilarity measures which can be used both in the prototype
selection and in the prototype-based recognition of unknown characters, and 4) alterna-
tive supervised on-line adaptation strategies which modify the prototype set by adding
new prototypes, reshaping and inactivating existing prototypes as users provide new char-
acter samples. After selecting the best-performing combination of the preprocessing and
normalization methods and the dissimilarity measure, the performances of the adaptation
strategies were evaluated and compared with each other by performing off-line simulations
of the first data collection. In addition, the performance of the most promising, i.e. fastest
learning strategy was evaluated in genuine on-line user experiments. The author of the
thesis had a major role in the design and implementation of all the methods but the clus-
tering algorithm. She organized the second data collection, and designed and performed
all the experiments. The first coauthor helped in all these tasks, planned and implemented
the clustering algorithm, and provided useful comments in the reporting phase as did the
two other coauthors of the article.

The other journal article 2 carries on the topics of article 1. The goal of the work
reported in this article was to examine how well the on-line adaptation strategies would
perform in more realistic situations in which the correctness of all the learning samples
cannot be guaranteed. In this work, the erroneously labeled learning samples were assumed
to occur with a certain probability and to be caused by either uncorrected recognition errors
or wrongly interpreted writing mistake corrections. The influences of the erroneous learning
samples on the recognition performance and the size of the prototype set of the adaptive
recognition system were studied via simulations. The author of this thesis both planned
and performed all the experiments. The coauthors helped in the reporting phase.

Conference paper 3 also tackles the problem of erroneous learning samples in the adap-
tation process. The purpose of the work described in the article was to study and exper-
iment with controlling methods which can increase the classifier’s tolerance to malformed
or mislabeled learning samples and limit the growth of the prototype set. The introduced
controlling methods either set an upper limit for the number of prototypes per class or
switch the adaptation of a particular character class on or off depending on the earlier
performance of the classifier. Again, the coauthors participated just in the reporting of
the work and the author of this thesis designed, implemented and experimented with the
controlling methods.

Conference paper 4 describes a character recognition system implemented in a hand-held
PDA (Personal Digital Assistant) device for performing genuine user experiments with a
self-supervised adaptation method. In the experiments, the prototype set of the recognizer
was adapted on-line to each user’s personal writing style by adding new prototypes into
the prototype set and reshaping the existing ones. Adaptation was performed after a user
had finished his or her answer to a question posed by a special questionnaire program. The
adaptation process was supervised by the user’s reactions to the recognition results and
other indirect information obtained from the user interface of text input. The article also
discusses the practical problems encountered in the implementation of a computationally
heavy recognition method into a device with limited memory resources and computational
power. The author of this thesis devised the adaptation method, performed the experiments
with the constrained character matching algorithm, and made a tool for analyzing the
results of the user experiments. The second author of the article implemented all the
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required methodology in the hand-held device and programmed the questionnaire program.
All the coauthors helped in the reporting.

Conference paper 5 introduces a new preprocessing method for on-line characters and
a two-phased recognition scheme aimed to speed up the prototype-based recognition. The
new preprocessing method heavily down-samples the data points of on-line characters so
that only the corners and some other geometrically meaningful points of the pen trace are
kept. As the computational complexity of the character and prototype matching method
is proportional to the square of the average number of data point per character, down-
sampled characters can be handled considerably faster than characters not preprocessed in
such a way. The two-phased recognition scheme is based on that fact. In the first phase, the
prototype set is pruned and ordered on the basis of preclassification performed with heavily
down-sampled characters and prototypes. In the second phase, the final classification is
performed without any down-sampling and on the basis of a reduced set of prototypes.
Two down-sampling methods, a basic linear method and the introduced nonlinear method,
have been compared with each other. The author of this thesis devised the down-sampling
methods and the two-phased classification scheme and performed the experiments. The
coauthors took part in the reporting phase of the work.

The main goal of the work reported in conference paper 6 was to develop automatic
methods for finding a set of prototypical characters which would represent well the different
writing styles present in a large character database. One of the major obstacles in achieving
this goal was the uneven representation of different writing styles in the database: there
were hundreds of examples of some common styles but only a few samples of the rare styles.
The work describes four hierarchical clustering algorithms and two clustering indices and
the experiment performed with them in order to find a good prototype set which covers
all the different writing styles for isolated characters present in the database but does not
contain many redundant prototypes. The work was mostly done by the author of this
thesis, the second author of the article provided useful insights in the planning of one of
the clustering algorithms and provided assistance in preparing the article.

Conference papers 7 and 8 describe a method for examining clustering properties of per-
sonal handwriting styles. Handwriting styles were represented by vectors, the components
of which reflect the writer’s tendencies to use certain prototypical writing styles for iso-
lated characters. The resulting very high-dimensional writing style vectors were analyzed
by projecting them nonlinearly onto a two-dimensional plane by using Self-Organizing Map
(SOM) algorithm. The main difference between the two works is the size of the analyzed
database. The former work was a pilot study with 45 subjects in which the viability of the
representation method for handwriting styles was examined. As the results were promising
and much larger database with character samples from over 700 subjects became available
to us, the same ideas were reused in the latter work in order to test scalability of the
approach. Both works were nearly solely carried out by the author of this thesis while the
second author of article 7 contributed in the reporting phase.
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2 INTRODUCTION TO HANDWRITING RECOGNITION

Traditionally, interactions between humans and computers have been based on a display,
printer, keyboard, and pointing device. However, a keyboard can be very inconvenient
when the device is only slightly bigger or the same size as the human palm. In addition, a
keyboard is difficult to integrate in small devices and it usually determines the size of the
whole apparatus. This is especially true when the number of the characters is very high as
in Chinese and Japanese languages. A pointing device, for example a track ball or a pen,
is insufficient or very slow when used alone in applications in which textual input is also
desired.

Because of these problems, new methods for input have been developed, for example
systems that recognize speech and handwriting. Because both are very natural ways to
communicate, people can easily learn to use them. Unfortunately, these recognition tasks
are not that easy for computers whose artificial intelligence is different from that of humans.
Neither one of the recognition problems has been completely solved yet. Very high accuracy
is needed for such systems before they can be commonly accepted. Handwriting recognition
is the more attractive input method, especially in noisy environment and when privacy is
needed.

Automatic on-line recognition of handwritten text has been an on-going research prob-
lem for over four decades. Naturally, the first approaches were rather simple because of
immature technology for recording pen point movements, and the limited memory and
computational resources of the existing computers. In those early years, there were no
mass-market applications and therefore no serious demand for on-line handwriting recog-
nition systems. However, due to the emergence and increasing popularity of hand-held
computers, such as Personal Digital Assistants (PDAs) and advanced cellular phones, on-
line handwriting recognition has been gaining more and more interest since the 1990’s.
(Tappert et al. 1990)

At first sight, handwriting recognition does not appear to be a difficult problem. A
recognition system should just choose the correct answer, usually the one that most resem-
bles the written one, from a limited set of characters or words. Unfortunately, this approach
faces a number of difficulties. The most prominent problem in handwriting recognition is
the vast variation in personal writing styles. There are also a lot of variation within a
writing style of one person. The These variations depend for example on the context of
the writing, writing equipment, writing situation, and the mood of the writer. The writing
style may also evolve with time or practice. The performance of the automatic recognition
system thus depends heavily on how well the different personal writing styles and their
variations are modeled.

A recognition system should be insensitive to meaningless variations and still be able to
distinguish different but sometimes very similar looking characters. Recognition systems
should, at least in the beginning, be able to recognize many writing styles. Such multi-user
systems usually have problems with recognition accuracy. One way to increase perfor-
mance is adaptation, which means that the system learns its user’s personal writing style.
Alternatively, multiple recognition systems each specializing in handling a group of writing
styles sharing some group-specific properties can be designed. The way of obtaining the
final recognition decision from the recognition results of the specialized system would then
depend on which group of writing styles the current user’s style of writing belongs to.

This chapter gives an introduction to the handwriting recognition problem and reviews
the state-of-the-art methods used in the various stages. In addition, the applications and
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some usability issues of handwriting recognition are discussed. The emphasis is on on-line
recognition of isolated Latin characters written in natural handwriting style and on adap-
tive methods. Section 2.1 discusses the variations present in personal handwriting styles.
Section 2.2 introduces the two main categories of handwriting recognition problems: on-line
and off-line recognition. Section 2.3 is about the differences between writer-independent
and writer-dependent handwriting recognition problems. Section 2.4 considers the auto-
matic grouping of similar handwriting styles. The collection, segmentation, preprocessing,
normalization, features, and representations of on-line handwriting data are considered in
section 2.5. Section 2.6 discusses the different approaches to on-line handwriting recognition
and describes recognition systems based on various methodologies. Section 2.7 considers
issues related to adaptation and reviews the previously developed adaptive recognition sys-
tems and the experiments performed with them. Section 2.8 briefly discusses the language
models used in handwriting recognition. Section 2.9 considers the recognition performance
requirements and other usability related issues of handwriting recognition systems. Section
2.10 discusses the current trends in on-line handwriting recognition research, reviews what
kind of recognition accuracies can be obtained with the recent recognition methods, and
briefly describes some commercial recognition softwares.

2.1 Handwriting style variations

A writing style is based on the alignment and variable forms of characters. Both on-line
and off-line handwritten characters have enormous variety in shape compared to machine-
printed characters. Handwriting style variations occur mostly between different writers
but also within the handwriting of any individual writer. Handwritten characters may be
regarded as distorted versions of idealized character models, which are called allographs, and
the distortions can be interpreted to be caused by several factors. According to Kuklinski
(1984), sources of variations can be classified into personal background factors, situational
factors, and material factors. These factors affect both the generation and recognition of
the characters. Therefore, they should be considered in the collection of handwriting data
which is used in designing of a handwriting recognition system. The handwriting data
should be produced in situations similar to those in which the recognition system will be
used.

2.1.1 Variations of characters

Handwritten characters can vary in both their static and dynamic properties. Static prop-
erties are the underlying, ideal models of the characters, the allographs, and the geometrical
properties such as relative positions and sizes of the strokes, corners, retraces, ornamentals,
sizes and aspect ratios of the characters, and the general slant of the writing. Dynamic
properties are more involved with the generative aspects of the characters. Characters can
look similar although their number of strokes, and the drawing order and direction of the
strokes may vary considerably. (Tappert et al. 1990)

Allographs are alternative ways of writing a character; Figure 1 shows some examples
for digit ’4’. The reasons why a writer uses some particular allographs can be positional,
contextual, dialectical, and stylistic (Herrick 1979). In some languages, the position of a
character in a word matters. Different allographs are systematically used for characters
which are written in isolation or which are in the middle, beginning, or end of a word (Her-
rick 1979). In the scripts of the Araboid genus, for example the Naskhi script, there are
four different position-dependent allographs for almost every letter. In Bengali script, each
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Figure 1: Some examples of alternative ways of writing digit ’4’.

vowel letter has two allographs: one for vowels which form an entire syllable by themselves,
and one for those which form a syllable together with one or more consonants. Writer’s as-
pirations to optimize the ease and the speed of writing or the legibility of the script effect on
which allographs are used. Thus, there are some preference differences between left-handed
and right-handed writers for using allographs (Ansell 1979). Also, different allographs can
be used for a letter when it is a part of a very frequently occurring letter combination or
when it is used in some other context. Sometimes, the letters in frequent combinations are
so slurred together that perhaps the combinations of letters should be considered as single
characters instead (Wing 1979). Some languages have dialectical variations in their written
form (Herrick 1979). For example, there are two dialects of Devanagari script used in India.
The different dialects use different allographs for several letters. In practice, many writers
use mixtures of the two dialects. Naturally, writers can choose to use different allographs
also for purely stylistic reasons.

The number of strokes in a character varies as sequential strokes have a tendency to
be connected within a character. This is caused by pen lifting failures. Stroke connecting
is more likely to occur between sequential vertical or horizontal strokes whose ends are
close to each other than between two strokes of which one is horizontal and the other
is vertical (Kuklinski 1984). Stroke connecting is very common in Asian languages, for
example with the Kanji characters, as these characters typically consist of several short
and straight strokes (Kobayashi et al. 2001). Retraces of strokes are also caused by the
errors in detecting pen liftings. Very short retraces at the beginning and end of the strokes
are called hooks and continuations, respectively. Retraces, hooks, and continuations are
illustrated in Figures 2 and 3. On the other hand, the number of strokes in a character
increases when a stroke is broken by an unintentional pen lift.

The directions of the strokes vary if a writer tries to minimize the time the pen is lifted
up or has some other personal preferences for using certain drawing directions. Usually,
vertical strokes are drawn before horizontal strokes and strokes on the left before strokes
on the right (Ward and Kuklinski 1988). Vertical or tilted linear strokes are usually drawn
from top to bottom as they are taught to be written in that way in primary schools.
Northeast- and southeast-ward handwriting movements are preferred to southwest- and
northwest-ward movements due to the motoric properties of right wrist and hand (Lorette
1999).
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Figure 2: Characters with retraces.

Figure 3: Characters with hooks and continuations.

In addition to the stroke number variations, the shape of the strokes varies – nominally
straight strokes can be curved as bows or s-curves. The shapes of loops and cusps change
as loops have a tendency to collapse into cusps and, on the contrary, cusps can change
into loops. Distinguishing cusps and loops is a difficult problem because they often pro-
duce similar features (Ward and Kuklinski 1988). These and other more or less random
variations in the shapes of strokes may be attributed to the inherent accuracy and speed
limitations of the fine motorics of the hand and wrist (Wing 1979).

2.1.2 Alignment of characters

Handwriting styles can be classified into four basic classes: boxed discrete, spaced discrete,
run-on discrete, and connected or pure cursive handwriting (Tappert 1984). The discrete
handwriting styles are sometimes called printing. Boxed discrete style means that all
characters are written in guideline boxes. Spaced discrete style means that the writing
is less constricted and the characters are separated spatially by a significant space or
temporally by a predefined time difference between the characters. In the run-on discrete
style, the characters can touch each other but a stroke cannot be included in more than
one character. This means that pen must be lifted at least between characters. In the
cursive style, all the letters in one word are connected. Usually, natural handwriting style
is a mixture of discrete and cursive styles, called mixed handwriting style (Bellegarda
et al. 1994; Fujisaki et al. 1991). Some examples of text samples with differently aligned
characters are shown in Figure 4. All the samples have been written by the same writer.

2.1.3 Personal background factors

One of the most important personal background factors of writing style variations is hand-
edness as left-handed and right-handed writers use muscle and tendon groups involved in
writing differently. For example, left-handers prefer to draw horizontal lines from right to
left and right-handers prefer to do it in the opposite direction. This can be explained by
the fact that writers usually prefer dragging the pen behind the hand to pushing it ahead.
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Figure 4: Different alignments of characters.

Also age and health affect motor control of writing and thereby the resulting writing style.
The education and origin of the writer have important roles in the writing style because
different type characters are taught in different schools. In addition, some professions affect
the person’s handwriting style, especially when a neat writing style is needed. (Kuklinski
1984; Ward and Kuklinski 1988)

2.1.4 Situational factors

Some examples of situational factors are stress, haste, motivation, distractions from the
writing task, and the method of presentation (Kuklinski 1984; Wing 1979). Haste can be
caused by several reasons and it has major effects on style as many people have different
styles for different writing speeds. In addition, fatigue and mood affect the writing speed.
The motivation of the writer also determines how carefully characters are written, for
example, the address of an important letter is very likely to be written carefully while
an ordinary shopping list can be almost unreadable even to the writer himself. Text can
be written differently depending on whether it is self generated or copied. For example,
Kassel (1995) mentioned in his thesis an interesting copying effect which he observed while
designing a data collection setup: the subjects were copying the font of the visual writing
prompt. Naturally, this had a limiting effect on the variability of character shapes and
sizes. An example of a situational factor which has an effect on how the writers use different
character allographs is the feedback provided by a handwriting recognition system. If the
system does not recognize its user’s natural handwriting style, the user is tempted to try
out alternative styles in order to increase the system’s performance. This phenomenon is
called user adaptation.

2.1.5 Material factors

The writing instrument, surface, and form constitute the material factors of the writing
style. The writing instrument has an effect on the writing style depending on its size and
overall comfort. Writing surface’s friction and position also affect the style. The form
factors, such as the size of the blank writing area, the length of the writing line, or the size
of the writing boxes for characters, can have a dramatic effect on the handwriting style
(Kuklinski 1984).

2.1.6 Constraints on writing

As the variations are the key problem of automated handwriting recognition, writing style
is usually more or less constrained in such systems. Usually, characters are written in boxes
to ease their separation, or the system provides guiding lines to help the users write more
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Figure 5: Graffiti characters.

consistently. These constraints are designed to improve the performance of the recognizer
and they can be seen as mediate a priori decision rules. If the constraints are too strict, they
may cause the system to be rejected by the users. According to experiments carried out by
Suen (1979), the constraints do affect the style and speed of writing and the recognition
results.

In the most constrained systems, users are expected to use specific character allographs.
These systems perform very well assuming that users do write in the required style. The
drawback of such systems is that users tend to write in their own styles and, as personal
writing styles vary a lot, these systems are awkward for most of the users (Ward and Blesser
1985). Figure 5 shows an example of a constrained writing style, namely Graffiti character
set used in PDA devices running Palm Operating System. The Graffiti characters are so
called unistroke characters meaning that they are drawn with a single stroke. The pen
should not be lifted within characters. The advantages of using unistroke characters is
that there is no need for any other character segmentation than the pen lifts. Therefore,
characters can be even drawn on each other and thus only a small input area is necessary.
In addition, unistroke character are faster to write and less prone to recognition errors
than ordinary characters (Goldberg and Richardson 1993). The drawback of unistroke
characters is that they do not always represent natural ways of writing and thus they need
to be learned and remembered. In addition, a requirement for simple shapes limits the
number of the character classes which can be input using unistroke characters.

2.2 On-line vs. off-line handwriting recognition

There are two categories of handwriting recognition problems: on-line and off-line prob-
lems (Tappert et al. 1990). These categories are based on the nature of the handwriting
data. On-line recognition means that handwriting is collected and recognized in real time,
i.e. at the same time it is produced. The writing medium is usually a tablet or a flat display
which can capture information on the location and motion of a pen-like pointing device
moving on its surface. The locations and movements of the pen point, and possibly its
pressure on the writing surface, are frequently sampled and sent to the recognition system.
The applications of on-line handwriting recognition include various kinds of interactive
user-interfaces in which a method for textual input is needed but a keyboard would not
be a practical solution, for example as in the case hand-held computers. For good surveys
concerning on-line handwriting recognition, see articles (Nouboud and Plamondon 1990;
Tappert et al. 1990; Plamondon and Srihari 2000).

In the case of off-line recognition, handwriting has been produced using an ordinary pen



19

and paper well before its recognition. Thus, the off-line recognition methods use scanned
images of the handwriting. The features used in the recognition are first enhanced and then
extracted from bitmap images by means of digital image processing. Off-line handwriting
recognition is often called Optical Character Recognition (OCR) (Tappert et al. 1990).
OCR includes also the recognition of machine printed characters. Off-line handwriting
recognition methods are used for automatic conversion of paper documents to electronic
ones which then may be interpreted or postprocessed by computers. Typical applications
of off-line handwriting recognition are used for handling of huge amounts of information
in paper form, for example automatic sorting of mail (D’Amato et al. 2000) and handling
of financial documents such as cheques (Gorski et al. 1999). For more information on off-
line handwriting recognition, see review articles (Arica and Yarman-Vural 2001; Govindan
1990; Trier et al. 1996; Plamondon and Srihari 2000; Vinciarelli 2002).

The main advantage of on-line handwriting data over off-line is the dynamic information
on writing process. Off-line data is just static images of handwriting. The image pixels do
not contain any information on the writing direction or the writing order of the strokes.
The values of pixels tell only if the pen point has ever visited the locations the pixels
correspond to. It is not always clear which pixels belong to which strokes, or even what is
the number of strokes. The quality of off-line data depends heavily on how well the pen
trace image can be segmented from the background. In addition, too thick or smudged pen
trace cannot capture small details of characters. In the case of off-line data, the pen trace is
captured together with an image of the paper it has been written on. Thus, special image
processing algorithms are needed for removing the background information and enhancing
the actual handwriting information. None of these problems occurs with on-line data. The
on-line data requires less memory resources than off-line data as only the coordinates of
the sampled pen point positions and possibly some other features are stored.

However, on-line data does not contain explicit higher-order spatial information which
is readily available in off-line data, for example, whether two data points far from each
other in the time domain are close to each other in the spatial domain. Therefore, broken
and delayed strokes, such as a cross in letter ’t’ or a dot in letter ’i’, and other completions
and insertions which are added to the main bodies of characters with some delay, are more
problematic in on-line than in off-line data. In addition, the differences in writing order
and direction of strokes of similar looking characters are not always useful information but
just natural and meaningless variation.

On-line data can be easily converted to off-line data of high quality, for an example see
(Laaksonen et al. 1999). Thus, recognition methods developed for off-line handwriting can
be used for on-line data too, and probably with better results due to the lack of typical
visual noise. The best results can be obtained if features extracted from both on-line and
off-line representations of handwriting data are used together (Jaeger et al. 2001; Prevost
and Milgram 1997; Yaeger et al. 1998).

2.3 Writer-independent and writer-dependent handwriting recog-

nition

Handwriting recognition systems can be divided into two categories on the basis of the
data they have been trained with. In this thesis, the categories are writer-independent and
writer-dependent recognition systems. In the case of writer-independent system, train-
ing data is collected from different subjects than those who will be the end-users of the
recognition system. Therefore, a writer-independent system should be trained with data
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collected from as many subjects as possible with various kinds of writing styles in order to
guarantee that the recognition system will perform well with all the potential users. On
the contrary, writer-dependent systems are specialized in recognizing only certain writing
styles. A writer-dependent system is trained with data collected from the same writers
whose handwriting the system will be recognizing in the future use. The training database
of a writer-dependent system should be large enough to contain all the important variations
and peculiarities of the writing styles in its repertoire. As the writer-dependent recogni-
tion systems do not try to model all the possible variations and features present in natural
handwriting, higher recognition accuracies can be obtained for individual subjects than
with writer-independent systems based on the same recognition methodology (see Sub-
rahmonia, 2000 for results obtained with Hidden Markov Models). A writer-independent
system can serve as a starting point in the development of a writer-dependent system if it
can be adapted to new writing styles. That kind of adaptation will be dealt with in more
detail in section 2.7.

2.4 Automatic grouping of similar handwriting styles

One way to try to improve the performance of a handwriting recognition system is to cluster
writers with similar writing styles and to design a specialized system for each of the writing
style clusters. Such a multi-expert system should also include a way of automatically
identifying in which of handwriting style clusters the current user belongs to and which
of the experts should be used for recognizing his or her handwriting. Of course, such a
style-dependent recognition system can be further adapted into a writer-dependent one.
The advantage of the grouping of similar writing styles and style-dependent recognition is
that less handwriting data is required from the current user. This is important as it might
not be practical, and it definitely does not improve the system’s walk-up acceptance, to
collect a large amount of data before the system starts to perform well with a new user.
For the same reason, the automatic writing style identification should not depend on what
are the particular words and character which have been written and it should not require
a large amount of data to work reliably.

Subrahmonia (2000) argues that the writing style clustering should not be done inde-
pendently of the handwriting models used for recognition. Otherwise, there is a possibility
that writing styles similar in respect to the writing style clustering algorithm will not cor-
respond to similar handwriting models. In such a case, it would be unrealistic to assume
higher recognition accuracies with a style-dependent system than with a writer-independent
one. Most likely, a writer-independent system trained with all the available data would
perform better than a style-specific trained only with some subset of the data. The experi-
ment performed by Kassel (1995) is a good example of such a phenomenon. Kassel carried
out an experiment in order to study whether a grouping of the writers according to their
gender or handedness would improve recognition rates. He used a database of isolated
characters collected from 159 subjects. The character samples were represented by a fixed
number of evenly distributed coordinate points of the pen trace. The statistical recog-
nition system modeled the character classes with mixtures of Gaussian distribution with
diagonal covariance matrices. The results of the experiments showed that the assumption of
some handwriting properties specific to gender or handedness is not completely unjustified:
recognition systems trained with data collected solely from female, right- or left-handed
subjects performed best with the test subjects belonging to the same categories. However,
the best recognition results for all the writer categories were obtained when the recognition
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system was trained with all the available data.
In the next two sections, some earlier works on automatic grouping of personal writing

styles are reviewed. Writing style clustering has also been studied in this thesis, namely
in (Vuori and Oja 2000, included publication 7) and (Vuori 2002, included publication 8).
These works are described and their result are discussed in more detail in section 3.7.

2.4.1 Automatic writing style clustering with on-line data

In her experiments, Subrahmonia (2000) used Hidden Markov Models (HMMs) (Rabiner
1989) for representing isolated handwritten characters. She compared the performances of
the recognition system based on writer-independent, writer-dependent and style-dependent
character models. The similarity measure between the personal writing styles was based
on the principal angles of the writer-dependent feature spaces, on the likelihood ratios
of writer-dependent character models, or on the linear combination of the two. Accord-
ing to the results, the highest recognition accuracies were achieved with writer-dependent
character models and the style-dependent models performed significantly better than the
writer-independent models. On average, the error rates of the writer-dependent and style-
dependent systems were 41% and 25–29%, respectively, of the error rate of the writer-
independent system. The experiments were performed with a database containing hand-
writing samples from 113 subjects. It should be noted, that Subrahmonia used only a
single HMM per character class in her experiments. The comparison between the writer-
independent and writer-dependent systems would have have been fairer, if she had trained
a HMM for each character allograph instead. A single writer hardly uses all the character
allographs present in the multi-writer database and thus the modeling task of a single
HMM is much easier in the case of a writer-dependent recognition systems than in the case
of writer-independent system. Nevertheless, her results are encouraging for using style-
dependent recognition systems. Subrahmonia did not comment how to select the best
performing style-dependent system for a new user.

Schomaker et al. (1994) have developed a method suitable for automatic writing style
classification or writer identification. They modeled handwriting on stroke-level with Self-
Organizing Map (SOM) algorithm (Kohonen 1997). The pen trajectories were segmented
into strokes according to the velocity minima and a set of prototypical strokes was found
with the SOM algorithm. Isolated characters were modeled by using sequences of the pro-
totypical strokes and probabilistic stroke transition networks. The personal writing styles
were represented by the subjects’ histograms of prototypical stroke usage. Schomaker et al.
claimed that the histograms of different writers really were different while the histograms
estimated by using different writing samples of the same writer were comparable with each
other. They applied an agglomerative clustering algorithm to 60 histograms formed from
a database containing character samples written by 30 subjects. Each subject had written
two sets of handwriting samples and two histograms were formed per subject. At the lowest
level of the clustering, the histograms corresponding to the same writers formed their own
isolated clusters. Groupings of handwriting styles which could be explained by the gender
and nationality of the writers were observed at the higher levels of clustering. A random
subset of only 40 prototypical strokes was sufficient for error-free writer identification.

Vuurpijl and Schomaker (1997b) have devised a method for detecting generic writing
styles, i.e. mixed, cursive, and discrete hand print. Their method is based on three features:
a cursivity index and the average distances of the observed strokes to cursive and hand print
prototypical strokes. The cursivity index reflects the writer’s tendency to produce isolated
hand print characters or fully-connected cursive script. It measures what is the average
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relative difference between the number of letters and the number of pen lifts in a word. The
value of cursivity index is one for writers using pure cursive style and zero for those using
pure hand printing style. For writers with mixed style, the values of the cursivity index
are somewhere between the two extremes. The prototypical cursive and hand print strokes
were obtained by training separately two SOMs, one for subjects who were known to use
cursive style and the other for subjects using hand print style. Personal writing styles
were classified into the three generative style categories by combining the three features
nonlinearly into one feature and thresholding its values. Vuurpijl and Schomaker performed
experiments with their method by using a database containing handwriting samples from
187 subjects. According to the results, the introduced method was able to distinguish hand
print and cursive styles from each other perfectly. Only some mixed and cursive styles,
or mixed and hand printing styles, were confused with each other. These errors are quite
understandable and unavoidable as the borders between the pure and mixed styles are
rather vague also for human experts.

2.4.2 Automatic writing style clustering with off-line data

Crettez (1995) has studied handwriting style recognition for off-line data. He used a set
of nearly one thousand scanned images of literal amounts on cheques, in total nearly four
thousand words, as a handwriting database. Crettez used following features to characterize
handwritten words: thickness of the pen trace, height of the main body of the word,
spatial density of characters, four main directions of the pen trace directions (reflecting
the general slant, inter- and intra-letter ligatures, retroactive and reverse bindings, and
pseudo-horizontal parts of tracing), and the relative intensities of the main directions.
Crettez applied a fuzzy clustering algorithm to the database and found out that the local
optima for the number of handwriting style families were 10, 23, 34, and 44. According
to his results, if 23 style families were defined, approximately 30% of the samples were
written in homogeneous style, i.e. the words in them had similar degrees of membership
to the style families. Therefore, his method would not be suitable for writer identification
but for selecting a proper recognizer expert for each word.

Bouletreau et al. (1997) have also studied writing style classification methods for off-line
handwriting. They characterized personal writing styles with four parameters based on the
fractal properties of the handwriting data. The parameters were derived from two fractal
dimensions defined for different scalings. The fractal dimensions measure the irregularity
and fragmentation of the pen trace. By performing a statistical test, they found out that
the parameters were highly writer-specific and stable over time. They did not comment
at all how many writing style families could be found on the basis of the four parameters.
Their method would be well suited for writer identification.

2.5 On-line handwriting data acquisition and processing

The following sections will discuss the acquisition of on-line handwriting data and its dif-
ferent processing stages performed prior to the actual recognition stage. Section 2.5.1
concentrates on data collection, section 2.5.2 introduces different approaches to the seg-
mentation of the handwriting data into characters, section 2.5.3 is about preprocessing and
normalization methods used for isolated character samples, and section 2.5.4 discusses dif-
ferent types of features and representations used for on-line handwriting data. It should be
emphasized that these processing stages are not independent from each other and should
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be planned together. Naturally, the choices made and performances of the methods used
in the earlier stages affect what can be done and achieved in the later stages.

2.5.1 Raw data

A typical format of on-line handwriting data is a sequence of coordinate points of the
moving pen point. In addition to location, the pressure between the pen point and writing
surface can be measured. Sometimes, not only the events when the pen point is actually
touching the writing surface are detected and recorded but handwriting data is collected
also when the pen point is hovering just above the writing surface. Connected parts
of the pen trace in which the pen point is touching the writing surface, or the pressure
between them exceeds some threshold value, are called strokes. (Note that sometimes trace
segments defined not only by pen lifts but also by other critical points of the pen trace such
as curvature maxima, velocity minima, and local horizontal minima are called strokes.) If
the touching detection is too sensitive and is activated with too low pressures, hooks and
retraces are likely to appear in the beginnings and the ends of strokes and some strokes
might be unintentionally connected. On the contrary, if the pressure limit is set too high
for touching detection, strokes tend to break accidentally.

The pen trace is usually sampled with a constant rate and thus data points are evenly
distributed in time but not in space. When the speed of writing is slow, the sample points
are located densely on the true pen trace, whereas quick writing produces more sparsely
located points. Typically, writing speed slows down in sharp corners, in other points of
extremal curvature, at the beginning and the end of the stroke, but also by hesitation and
pausing of the writer. Sampling rate and resolution should be so high that the sampled
data points represent the true pen trace faithfully. Naturally, the selection of suitable
level of sampling rate and resolution depends on the writing speed and the scale of the
meaningful pen trace features. If sampling rate is too low, odd corners will be introduced
on the sampled pen trace and some of the real corners and miniscule trace features can
be missed. In practice, sampling resolution has to be finite and that causes some errors in
the recorded pen point locations. If sampling resolution is too low, the sampled pen traces
are jagged. Data collection hardware can sometimes introduce erroneous points clearly out
of the real pen trace. Such points are called wild points (Guerfali and Plamondon 1993).
Wild points can be introduced for example when the writer rests his or her hand on the
pressure sensitive writing surface.

Figure 6 shows some examples of characters collected with different sampling rates and
resolutions. Characters in the upper row are collected with sufficiently high resolutions as
there is no jagging in the captured pen traces. Characters in the lower row are collected by
using much poorer resolution and the captured pen traces are clearly jagged. The sampling
rates seem to be high enough for all but perhaps the two last characters in the upper row
as the captured pen traces in those cases have some corners which most probably were not
in the real pen traces. Effects of varying writing speed on data point density can be seen
most clearly in the second character on the left in the upper row.

2.5.2 Segmentation

Before anything else, handwriting data is segmented at least into words. That is not
difficult as words are spatially separated from each other. The major difficulty lies in the
segmentation of words into characters, especially in the case of cursive writing style. The
segmentation approaches can be either external or internal (Tappert et al. 1990).
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Figure 6: Examples of character collected with different temporal sampling rates and
spatial resolutions.

In internal approaches, the segmentation and recognition of handwriting are performed
simultaneously. Internal segmentation approach is used in the recognition of whole words
written in cursive or mixed style. Typically, the recognition methods are based on Hidden
Markov Models (HMMs) (Rabiner 1989), Time Delayed Neural Networks (TDNN) (Haykin
1999, pp 640–663), Multi-State Time Delayed Neural Networks (MS-TDNN) (Jaeger et al.
2001), or Convolutional Neural Networks (CNN) (Bengio et al. 1993). First, these models
are used for evaluating character probabilities, or some other matching scores, for highly
overlapping segments of the handwriting data. The best segmentation and the correspond-
ing character interpretations are then found by using dynamic programming techniques,
for example Viterbi algorithm (Theodoridis and Koutroumbas 1999, pp 309–312), and lan-
guage models. For some examples of internal segmentation approaches, see (Bengio et al.
1995; Guyon et al. 1992; Hu et al. 2000; Jaeger et al. 2001; LeCun and Bengio 1994;
Schenkel et al. 1995).

In external approaches, the segmentation of words into characters is performed prior to
the recognition. External segmentation of cursive or mixed style writing is usually based
on critical points of the pen trace such as pen lifts, curvature maxima, velocity minima,
and local horizontal minima. External segmentation provides either a single solution or
several tentative solutions which are then evaluated and ranked by the recognition system.
The latter approach has been used, for example, by Morasso et al. (1992). By posing some
constraints on the writing style, external segmentation can be made much easier. The
recognition system might require that characters are separated by pen lifts, time pauses,
or empty spaces. Usually, some writing guidelines are provided to make the segmentation
easier for the writer. Typically, characters are written into boxes or onto lines marked with
ticks. Without any guidelines, users tend to connect successive characters (Goldberg and
Goodisman 1991).
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2.5.3 Preprocessing and normalization methods

The purpose of preprocessing and normalization methods is to simplify the recognition task
by reducing the amount of information, eliminating imperfections, and removing uninfor-
mative variations in handwriting data. In this section, only methods useful in recognition
of isolated characters are concerned. Methods used for whole words or longer portions of
handwritten text, for example baseline drift and slant normalization methods, are omitted
here. Such methods have been reviewed by Guerfali and Plamondon (1993) along the other
principal preprocessing and normalizing methods used for on-line handwriting data.

On-line handwriting data collected with a high sampling rate contains redundant infor-
mation as the pen trace could be represented well enough with fewer data points. Therefore,
the data points are usually either down-sampled or resampled. Down-sampling means that
only some of the original data points are kept while the rest are abandoned. In linear
down-sampling, the data points to be kept are selected in a linear manner from the data
point sequence. For example, only every nth point can be kept. Nonlinear down-sampling
methods select the data points in a nonlinear fashion instead. For example, the criterion
for keeping a data point can be a minimum distance along the pen trace to the previous
preserved point. Resampling means that new data points are calculated on the basis of
the original ones. For example, new spatially equidistant data points can be obtained by
interpolation from temporally equidistant original data points. For both resampling and
down-sampling methods, it is important not to lose data points of geometrical or percep-
tual importance, for example corner points, which are useful for the recognition. Several
methods for detecting such points have been developed, for some examples, see (Brault
and Plamondon 1993; Freeman and Davis 1977; Kobayashi et al. 2001; Li and Hall 1993;
Pavlidis et al. 1997; Zhang et al. 2000). Resampling and down-sampling may destroy or
severely distort implicit dynamic information in the original data points. Therefore, all
dynamic features should be evaluated prior to such preprocessings.

Various preprocessing methods have been designed for removing imperfections in the
on-line handwriting data caused by hardware problems or erratic hand motions. Acciden-
tally broken strokes can be detected by the angular continuity, high velocity and temporal
and spatial proximity of their endpoints. Broken strokes can be simply concatenated or
a straight line segment can be interpolated between their endpoints. The jagging phe-
nomenon caused by too low a sampling resolution can be reduced by various smoothing
methods. These methods are typically based on low-pass filtering, i.e. weighted averaging
of neighboring data points. Also more sophisticated methods based on curve fitting, for ex-
ample on local cubic spline approximation (Hu et al. 1996), have been developed. It should
be noted that smoothing operations reduce also the real angular discontinuities of the pen
trace. Wild points can be detected by high velocities out of the limits of normal hand
motions. Hooks can be detected by their location, size, and large angular variations. For
some examples of hook removal methods, see (Kharma and Ward 2001; Loy and Landay
1982; Narayanaswamy 1996; Veltman and Prasad 1994).

Handwritten character samples must be normalized in respect to the variations in their
size and location. Otherwise, they cannot be reasonably compared with each other and
would not be compatible with the recognition system. Size normalization of isolated char-
acters is typically just a linear scaling to a standard height preserving the aspect ratios of
the characters. The size normalization improves the recognition rates in general but makes
the recognition of similarly-shaped upper and lower case letters very difficult without any
contextual information. Translation variations are normalized by moving the centers of
the characters into the origin of the coordinate system. A character center can be defined
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to be the center of mass of the data points or the center point of the smallest box drawn
around the character. The general slant of handwriting can be estimated from a histogram
of the directions of the pen point movements. However, as a single character does not
contain much directional information as opposed to a whole word, usually no deslanting is
performed for isolated characters.

If characters are compared to each other or recognized in a stroke-wise manner, varia-
tions in the drawing order and direction of the strokes must be considered. These variations
can be normalized by reordering and reversing the strokes in some systematic way. For an
example, see Narayanaswany’s Ph. D. thesis in which strokes are reordered from left-to-
right (Narayanaswamy 1996). Such a normalization approach is better suited for characters
consisting of simple straight strokes, for example the Kanji characters, than for characters
made of more complicated curvilinear strokes. Alternatively, different stroke order and
direction variations can be tried out in an exhaustive way. This brute force solution can be
computationally too demanding for practical applications. A more sophisticated approach
is to set some limits on how much the stroke order can vary from the standard stroke order,
as was done by Lin et al. (1993) in case of isolated Chinese characters. The most common
approach is to handle the different stroke order and direction variations as character sub-
classes, or allographs, and to train the recognition system with a database large enough to
be likely to include all the principal variations.

2.5.4 Features and representations

The recognition of handwritten patterns is based on the features extracted from the pre-
processed and normalized raw data. The features are selected so that they represent the
handwriting well and emphasize the inter-class differences and intra-class similarities. In
the case of on-line handwriting data, features developed for off-line data are also applica-
ble as on-line data can easily be converted into off-line data. This section concentrates on
features which are specific to on-line data. The off-line features are reviewed in (Arica and
Yarman-Vural 2001; Trier et al. 1996).

Typically on-line handwriting data is represented by time series, i.e. sequences of fea-
ture vectors corresponding to the data points of the sampled pen trace. In the simplest
case, the only features are the x- and y-coordinates of the sampled pen point positions.
Point-oriented feature vectors are often augmented with some higher level features. Mere
positional features of pen trace are not sufficient if some of the character classes differ
from each other only by small-sized subpatterns as in the case of the Kanji characters
(Kobayashi et al. 2001). The additional data point features can be of either local or global
nature. Local features are estimated by using only a few neighboring data points. Typical
examples of local features include the tangential direction and curvature of the pen trace.
Global features can capture phenomena of larger scale than local features. Global features
are based on data points temporally farther away from each other, and in some cases, on
data points close to each other only spatially. For example, Hu et al. (2000) have intro-
duced global features which indicate whether a data point belongs to a loop, or measure
how close the data point is to a crossing or a cusp. These global features are used along
with some local features in a HMM-based recognition system. Jaeger et al. (2001) have
also used local and global features together in their MS-TDNN-based recognition system.
They used a global feature which indicates whether a data point is below a delayed stroke,
and a feature which measures whether there is an ascender or descender above or below the
data point. They used also low-resolution images centered on the data points to capture
their spatial contexts.
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In some cases, higher-level feature extraction and recognition are integrated into one
process and they are learned together. Typically such recognition systems are based on
TDNN in which the first neuron layers act as high-level feature detectors and the last layers
act as a nonlinear classifier. Feature detection is made position and time-shift invariant
by weight sharing (Bengio et al. 1995; Guyon et al. 1992; Jaeger et al. 2001; LeCun and
Bengio 1994; Matíc et al. 1993).

On-line handwriting data patterns can also be represented by simple feature vectors,
symbol strings, or graph structures. The components of feature vectors can either indicate
the existence or absence of certain features or give measured values for them. These
features can be as simple as the number of strokes and the rough orientations and the
lengths of the strokes, or more complicated, such as the existence of loops, cusps, and
different kinds of junctions of strokes. The major drawback of feature vectors is that they
are not well suited for representing either the temporal or the two-dimensional spatial
structure of handwriting. They are also rather inflexible for representing handwriting
samples of varying complexity and varying number of interesting features, for example
Asian characters.

The temporal structure of handwriting can be captured with symbol strings. Such
strings are obtained by dividing handwriting data into successive segments which are then
coded by symbols. The symbols can correspond to different types of lines, curves, loops,
cusps, and corners. Such symbol strings can be seen as a special case of time series rep-
resentations of the pen trace and are often called chain codes (Freeman 1961). Graphs
can well represent the spatial structure of handwriting. Their nodes can represent dif-
ferent subpatterns, for example strokes, and their arcs different relationships between the
subpatterns.

2.6 On-line handwriting recognition methods

On-line handwriting recognition has been an actively researched problem for decades during
which several different approaches have been attempted in order to achieve systems able
to perform well with various kinds of natural writing styles. Some of the applied methods
have been developed especially for on-line handwriting recognition but most of them are
borrowed from other fields of pattern recognition, image analysis, and signal processing.
Especially many ideas have been taken from automatic speech recognition which shares
many similarities with on-line handwriting recognition: the temporal nature of the signal
to be recognized and the underlying language of the message being communicated (Starner
et al. 1994).

The following sections describe various approaches to handwriting recognition. Even
though the recognition methods are here divided into distinct categories, the different cat-
egories share many similarities. Ultimately, all the different recognition methods try to
define decision boundaries in the pattern space which minimize the number of misrecog-
nitions or the expected cost involved in the decisions. In addition, in practice many of
the developed handwriting recognition systems are hybrids based on several different tech-
niques. For example, computationally simpler methods are often used for preclassification
and final decision is made with more sophisticated and computation-intensive methods in
order to decrease computational burden and speed-up the recognition process. Sometimes,
the recognition problem can be divided into subtasks which can be dealt more or less sepa-
rately with recognition methods belonging to different categories. Each of the recognition
method categories have their special properties, advantages and limitations. These will be
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discussed next. In addition, some application examples will be briefly reviewed.

2.6.1 Statistical methods

In statistical methods variations present in natural handwriting are assumed to be of
stochastic nature. Statistical recognition methods are based on the prior probabilities of
the classes, class-specific probabilities of the observed handwriting samples, and Bayesian
decision theory. In a statistical recognition system the classification criterion is so de-
signed that it minimizes the probability of erroneous classifications or the expected cost
involved in the decisions, both in the correct and incorrect ones. The classification criterion
of a statistical classifier defines decision boundaries in the pattern space. These decision
boundaries can be approximated with various computational techniques. Thus, the deci-
sion boundaries defined by other classification methods, say the feature space classifiers,
prototype-based methods, or neural methods discussed in the following sections, can be
seen as approximations of the optimal decision boundaries of a statistical classifier.

Statistical methods can be divided into two categories: parametric and nonparametric
methods. Parametric methods assume that the handwriting samples are statistical vari-
ables from distributions which can be characterized with sets of parameters and each class
has its own distribution parameters. The parameters are estimated from training data. For
example, Odaka et al. (1982), Arakawa (1983), and Loy and Landay (1982) have modeled
character classes with Gaussian distributions. Odaka et al. (1982) and Arakawa (1983) rep-
resented characters with a fixed number of spatially equidistant x- and y-coordinate points
or Fourier coefficient per each stroke, respectively. Loy and Landay (1982) represented the
characters by chain codes. In all these three studies, characters were preclassified by the
dimensionality of their representation.

Nonparametric methods do not assume any specific type or form for the class distri-
butions. Instead, the required distributions are estimated directly from the training data,
for example with histograms or kernel functions such as Radial Basis Functions (RBFs) or
Parzen windows. Also the k Nearest Neighbors (k-NN) rule (Fix and Hodges 1951; Cover
and Hart 1967) can be seen as a nonparametric statistical classification method, see the
discussion in section 3.5.1. Parametric distributions are computationally more easy to han-
dle than nonparametric ones as only the distribution parameters need to be stored and the
class probabilities for a handwriting sample can then be calculated by using well-defined
functions. However, they run the risk that the underlying assumptions for the types of dis-
tributions are improper. For example, a naive model might neglect important correlations
between the features and a more complex model might have too many parameters to be
estimated reliably from a limited amount of training data.

Hidden Markov Models (HMMs) are currently the most widely used parametric statis-
tical method applied to on-line handwriting recognition. HMMs were initially introduced
and studied in the late 1960’s and early 1970’s. HMMs have also been called Markov
sources and probabilistic functions of Markov chains. HMMs are the state-of-art method
in speech recognition and they have been gaining more and more popularity also in on-line
handwriting recognition since early 1990’s. HMMs are especially well suited for the recog-
nition of cursive handwriting (Rabiner 1989; Plamondon and Srihari 2000). HMMs have
been applied to on-line handwriting recognition by the following researchers: (Beigi et al.
1994; Bellegarda et al. 1994; Biem 2001; Brakensiek et al. 2001; Connell and Jain 2002;
Hu et al. 1996; Hu et al. 2000; Narayanaswamy 1996; Pitrelli et al. 2001; Rigoll et al.
1996; Senior and Nathan 1997; Starner et al. 1994; Subrahmonia et al. 1996; Veltman and
Prasad 1994).
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HMMs are used for describing both the statistical properties and temporal structures of
time series. HMMs are based on Markov processes whose states are not directly observable.
The observations, i.e. variables which form the time series, are considered as probabilistic
functions of these hidden states. A HMM can represent several things in a handwriting
recognition system. Early HMM-based on-line recognition systems had separate models
for each word. As the number of word models increases linearly with the size of the
lexicon, systems based on character models have become more popular (Nathan et al.
1993; Veltman and Prasad 1994). As the characters usually contain patterns that are
common to more than one character, stroke and other subcharacter models can also be
used and concatenated to form letter models (Hu et al. 1996). Training of the recognition
system is easier when the number of handwriting models is small. In the case of a large
vocabulary, it can be difficult to obtain an adequate training set as several samples for each
word model are needed for estimating the statistical parameters accurately and reliably.

A basic HMM is characterized by the following parameters: 1) the number of states in
the model, 2) the number of distinct observations per state, 3) the state transition proba-
bilities, 4) the probability distribution of the observation for each state, and 5) initial state
distribution (Rabiner 1989). HMMs which are used in handwriting recognition are typi-
cally so-called left-to-right models (Hu et al. 1996). These models have the property that
the state index increases or remains unchanged as the time elapses. A direct path, i.e. the
state index increases by one in every state transition, through such a model corresponds
to the average realization of the modeled process. Self loops, i.e. the state index remain
unchanged, correspond to lengthened versions of the process and state skips correspond
to shortened versions (Nathan et al. 1993). In speech recognition systems, the observa-
tion probabilities for each state are usually mixtures of continuous probability densities.
However, discrete probability densities seem to be better suited for on-line handwriting
(Bellegarda et al. 1995; Rigoll et al. 1996).

2.6.2 Feature space classifiers

When handwriting samples are represented by feature vectors they can be seen as points in
a multidimensional feature space. If good features can be found, the handwriting samples
will form separate clusters in the feature space so that the samples in the same cluster
belong to the same class. So, each class will occupy certain regions in the feature space
and the classification process can be based on the division of the feature space. The division
can be defined by decision boundaries in a linear or nonlinear fashion. In the former case,
the class-specific regions are defined by linear hyperplanes, and in the latter case, by more
complex nonlinear manifolds. In both the cases, the division is usually defined so that
the number of erroneously classified training samples is minimized. A nonlinear division of
feature space can also be achieved by first mapping the feature vectors nonlinearly to higher
dimensional space, then defining an optimal linear classifier in the new feature space, and
finally defining the corresponding nonlinear classifier in the original feature space. This is
the underlying idea of many recognition methods, for example in Support Vector Machines
(SVMs) (Haykin 1999, pp 318–351), and in neural methods such as RBF (Haykin 1999,
pp 256–317) and Multi-Layer Perceptron (MLP) (Haykin 1999, pp 156–254) networks.
(Theodoridis and Koutroumbas 1999)

The success of the statistical and feature space classifiers depends heavily on the feature
selection. In fact, if the features are good, any recognition method based on this feature-
space-division idea will work well. The decision boundaries, or the free parameters of the
the recognition system, are usually found with iterative optimization techniques which are
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computation-intensive and might get stuck in suboptimal points in the parameter space.
These recognition methods are not ideal for systems which should be able to quickly adapt
to a new writing style or to learn incrementally.

2.6.3 Prototype-based methods

In prototype-based methods, the classification of an unknown handwriting sample is per-
formed by matching it to a set of known samples, the prototypes, and selecting the class
according to the most similar prototypes. The following issues have to be carefully planned
in order to achieve good recognition performance: 1) a representation for handwriting sam-
ples which emphasizes the inter-class differences and intra-class similarities, 2) a similarity
or dissimilarity measure sensitive to meaningful variations and ignoring meaningless vari-
ations between handwriting samples of different classes, and 3) a representative prototype
set covering all the principal style variations such as character allographs. Naturally, the
devisings of these three basic components of any prototype-based classifier system are very
dependent on each other. On of the most commonly applied decision rule prototype based
system is the k Nearest Neighbors (k-NN) rule (Fix and Hodges 1951; Cover and Hart
1967): the classification of an unknown character is made according to the majority of its
k most similar prototypes in the prototype set. Prototype-based recognition methods are
well suited for adaptive systems. When some new training samples are obtained, the pro-
totypes can be adjusted to represent them better. There is no need to retrain or adapt the
whole recognition system but just the prototypes of the same classes as the new samples.
Incremental learning can be achieved just by including the new samples into the prototype
set as soon as their class labels have been determined. The prototypes, the similarity mea-
sure, and the decision rule of a prototype-based classifier together divide the pattern space
into a tessellation so that each region corresponds to a certain pattern class. The decision
boundaries thus defined by a prototype-based classifiers can be seen as approximations of
the optimal decision boundaries of a statistical classifier.

The simplest prototype-based approach is to represent the handwriting samples with
feature vectors, compare them by using Euclidean distance, and use the whole labeled
training database as a prototype set. This basic approach has several obvious drawbacks.
A fixed-sized feature vector might be a too simple model to represent all the temporal
and spatial aspects of the handwriting samples, especially if the samples are of varying
complexity. Euclidean distance treats all the features equally and implicitly assumes that
the features are not dependent on each other and they are normally distributed with
same variance around the values of the prototypes. Though the whole training database
is guaranteed to include as many as possible writing style variations, it can make the
recognition process computationally too heavy for practical applications. The recognition
time depends linearly on the size of the prototype set as an unknown sample is compared
to each of the prototypes. Even though several shortcuts and speedups can be used in
the matching process, the most sensible approach is to use only the minimum number of
prototypes. The prototype set can be created either algorithmically or by a human expert.
The prototype set creation topic will be discussed in more detail in section 3.4.

Typically, on-line handwriting samples are represented by time series consisting of vec-
tors of various trajectory features and the similarity measures used in the prototype-based
recognition systems are able to compare representations of different lengths. Very often,
the similarity measures are based on a dynamic programming algorithm which finds the
nonlinear point-to-point correspondence between the data points of two time series which
is optimal in sense of the sum of the point-wise matching costs. Dynamic Time Warping
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(DTW) (Sankoff and Kruskal 1983), also known as elastic matching, is one of the most com-
monly used time series matching algorithms for on-line handwriting. The DTW algorithm
was introduced to on-line handwriting recognition in the beginning of 1980’s and since
then, many variations to the basic algorithm have been developed. The DTW algorithm
has also been used in this thesis work, for the details, see section 3.3. For more examples
of recognition systems in which the DTW algorithm has been applied, see articles (Kar-
naugh et al. 1981; Lu and Brodersen 1984; Tappert 1984; Kurtzberg 1987; Tappert 1991;
Andrianasy and Milgram 1995; Scattolin 1995; Li and Yeung 1997; Prevost and Milgram
1997; Connell and Jain 2001; Kobayashi et al. 2001).

Of course, there are many other matching methods for on-line handwriting samples
than the popular DTW algorithm. For example, Pavlidis et al. (1997) and Webster and
Nakagawa (1998) have designed prototype-based recognition systems in which the matching
methods of cursive words or characters are physics-inspired. Handwritten shapes are con-
sidered to be made of virtual wires or springs and their matching takes place through the
stretching and bending of the components of the shape models. The transformation energy
required for making two shape models similar to each other is considered to be the dissim-
ilarity measure between the handwriting samples. In the recognition system developed by
Wilfong et al. (1996) handwritten characters are represented by fixed-size feature vectors
consisting of the x- and y-coordinates of spatially equidistant points on the sampled pen
traces. Character samples derivable from each other by translation, dilation and rotation
are considered to be equal. Each character sample spans a two-dimensional subspace and
the distance between two character samples is the angle between the corresponding sub-
spaces. Wakahara and Odaka (1997) have introduced a similarity measure based on affine
transformations of characters represented by a fixed number of x- and y-coordinate points.
The variations between an unknown character and a prototype character are explained
by Stroke-based Affine Transformation (SAT) components and residual components. The
SAT components are caused by affine transformations of the characters, such as transla-
tion, rotation, scaling, and shearing. The SAT components are considered to explain the
intraclass variations, whereas the residual components represent the interclass variations.
First, the unknown characters are prerecognized and the prototype set is pruned by using
a dissimilarity measure derived from both the SAT and residual components. The final
classification is performed with a dissimilarity based only on the residual components.

2.6.4 Neural methods

Artificial Neural Networks (ANNs or NNs) are widely used for handwriting recognition. A
good but quite dated review of various neural methods applied to handwriting recognition
is given by Morasso et al. (1992). Some of the more recent neural approach will be cited
and briefly described in this section and in the coming section 2.7.3. The whole recognition
process, from data normalization to higher-level feature extraction and to pattern classifi-
cation, can be based on neural methods. Alternatively, only some specific subtasks can be
performed with neural methods. Neural recognition systems which are responsible for the
whole recognition process are in some sense relying on the same basic idea as the systems
based on prototype matching. Instead of explicitly storing prototypes, neural networks
are associative memories in which the handwriting information contained in the training
samples is stored implicitly in the weights of a neural network. Again, the neural classifiers,
which divide their input space into regions corresponding to certain pattern classes, can
be seen as approximations of statistical classifiers. In fact, the outputs of a neural network
are unbiased estimates of the a posteriori probabilities of the patters classes if the neural
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network has one output neuron per each class, the desired response of an output neuron
is one when the input pattern belongs to the class the neuron is assigned to and zero
otherwise, and the neural network is trained so that MSE (Mean Square Error) between
the actual and desired responses is minimized (Theodoridis and Koutroumbas 1999, pp.
73–75). Neural and statistical methods share the risk of satiation where the system yields
an average but incomplete representation of all possible handwriting styles. This problem
can be alleviated by paying special attention that the common writing styles are not overly
represented in the training set or by having distinct models or subclasses for alternative
writing styles.

Yaeger et al. (1998) have developed a recognition system for handwritten characters
which is based on a MLP network. The input of the MLP is a combination of static
and dynamic features. The static features are the gray-scale image and aspect ratio of an
unknown character. The dynamic features are the number of strokes and some directional
features for a fixed number of pen trajectory points. The four layers of the network are fully
connected, except the input layer and the first hidden layer. The first hidden layer consists
of neurons which are specialized in extracting higher-level features from the different input
feature groups. For example in the case of image features, formation of translation invariant
feature detectors is enforced by weight sharing. The MLP is trained by using a modified
version of the back-propagation (BP) algorithm (Haykin 1999, 161–175). The authors
present a number of training schemes which improve the recognition system’s ability to
handle rare writing styles, under-represented classes, and malformed input characters.

Articles (Mozayyani et al. 1998; Vaucher et al. 2000) describe a neural recognition
system for isolated characters. The time-dependent inputs of the neural network are the
four basic direction components (up, down, left, right) of the pen point movements at each
sampled data point on the pen trace. The first hidden layer of the neural network consists
of so-called Spatio-Temporal (ST) neurons which act as accumulators. The output of a
ST neuron is zero until the cumulative sum of the inputs reaches a predefined threshold
value. After that, the accumulated value is sent out as an output of the neuron and the
accumulator is reset to zero. ST neurons have only limited temporal memories and the
arrived input impulses are attenuated exponentially over time. The ST neurons are thus
able to detect line segments of certain direction and length. A MLP network operates on
the outputs of ST neurons once all the data points of the character have been handled by
the ST neurons. The output layer of the MLP has two neurons for each character class so
that the recognition system could better handle multiple writing styles.

Schomaker (1993) describes two variations of a recognition system for on-line cursive
handwriting. Both the variations are based on the Self-Organizing Map (SOM) algorithm.
The first variation of the system models handwriting on stroke-level and the second varia-
tion on character-level. In the stroke-based system, cursive writing is first segmented into
strokes by local velocity minima of the moving pen point. Strokes are then represented
by 14 features and modeled with a stroke-SOM. In the character-based system, cursive
writing is tentatively segmented into characters by the local velocity minima. Characters
consist of 1–6 strokes. They are represented by sequences of 30 x- and y-coordinate points
and modeled with an allograph-SOM. The stroke-SOM and allograph-SOM provide mul-
tiple scored interpretations for a single input stroke or for a group of consecutive strokes,
respectively. The character-based system is computationally more demanding than the
stroke-based system due to both the higher dimensionality of the modeled data and the
multiple matchings per stroke. The best recognition performance can be achieved by find-
ing the character segmentation hypothesis with a stroke-based system and performing the
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final classification with a character-based recognizer.
Morasso et al. (1995) have developed a recognition system for cursive handwriting

which is based on a variation of the SOM algorithm entitled Self-Organizing Classifier
(SOC) (Morasso et al. 1992). The main difference between SOM and SOC is that the
latter is able to learn incrementally. Also in that system, handwriting is segmented into
strokes by velocity minima. Strokes are represented by eight-dimensional feature vectors.
Characters consisting of different numbers of strokes are modeled with separate SOCs. The
SOCs provides multiple interpretations with confidence values for the strokes. The final
classification is performed by using a special language model.

In many systems, a neural method is used for higher-level feature extraction and the
final classification of handwritten patterns is performed with some other method. For
example, Guyon et al. (1992), Matíc et al. (1993), and Platt and Matíc (1997) have
first trained a TDNN to recognize isolated characters and then replaced or augmented the
last neuron layer of the network with a k-NN classifier, Support Vector Machine (SVM)
classifier, or RBF Network classifier, respectively. By this way, they have combined the
advantages of neural and prototype-based methods: the neural part of the recognition
system is well suited for modeling higher-level spatial and temporal features of handwriting
and the decision making part of the system is able to learn incrementally.

2.6.5 Structural and syntactical methods

Structural recognition methods are well suited for recognition tasks in which the structures
of the patterns are of paramount importance. The measured feature values or knowledge
about their existence or absence do not always provide enough information for the classifi-
cation of a pattern and some additional information on the relations between the features,
or on the structure of the pattern, is needed. Structural methods are especially well suited
for Asian languages in which characters are more complex than Latin alpha-numerical
characters but consist of rather simple subpatterns (Jung and Kim 2000; Kim and Kim
2001; Lin et al. 1993; Yang 1998). The structural, class-specific rules are often formed by
human experts as they are rather difficult to learn automatically. This is especially true
for syntactical recognition system in which pattern structures are described by grammars
of formal languages and the recognition is based on parsing. Such methods are not well
suited for recognition systems which should be able to automatically learn completely new
writing styles. However, just the lowest level components of the structural and syntactical
handwriting models can be adapted to better represent new handwriting sampling.

Usually in the structural recognition methods developed for on-line handwriting, hand-
writing samples just have structural representations or are described by a set of struc-
tural features and their classification is performed with prototype-based or feature space
classifiers. Different kinds of symbol strings, or chain codes, are widely used structural
representations of on-line handwriting (Bontempi and Marcelli 1994; Duneau and Dorizzi
1994; Kerrick and Bovik 1988; Qian and Truemper 1998; Li and Yeung 1997; Nouboud
and Plamondon 1991; Wang and Gupta 1991; Yuen 1996). Chain coding means that the
captured pen trace is divided into temporally adjacent segments which are then coded. The
segmentation can be based on pen lifts, various local extreme points, or just evenly spaced
points on the pen trace. The codes can represent straight line segments of equal lengths
with discrete directions, lengths of line segments and continuous angles between them,
different types of curved strokes, loops, and corners etc. If the codes have only discrete
values, the handwriting patterns can be represented by symbol strings. Chain codes are
one-dimensional structural models which can represent the temporal structure of on-line
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handwriting very well. Their ability to capture the two-dimensional spatial structures of
handwriting is rather limited and it heavily depends on how complicated features the codes
correspond to. Classification of chain-coded handwriting patterns can be performed in sev-
eral ways, for example with statistical methods(Loy and Landay 1982), string comparison
(Nouboud and Plamondon 1991), or dynamic programming methods (Yuen 1996).

Kerrick and Bovik (1988) have designed a hierarchical on-line character recognition
system which is based on structural features of three levels and on prototype matching.
The low-level features are the existences and locations of the endpoints and T-crossings
of the strokes. The location features can have only four values which correspond to the
quadrants of the bounding boxes drawn around the characters. These low-level features are
easy to extract from the character samples. The intermediate-level features, the corners and
their locations, are found by a chain code-based algorithm. In this case, a corner is an area
of sustained high stroke curvature. The intermediate-level features are computationally
more demanding than the low-level features. In the first stage of the recognition process,
the prototype set is pruned by testing the absence or presence of particular low- and
intermediate-level features in given bounding box quadrants according to a binary decision
tree. In the next stage, an unknown character sample is matched stroke-wise against
the remaining prototypes by using high-level features. Each stroke is associated with a
shape which can be either straight or curved. A straight stroke can have four orientations.
Curved strokes are divided into four segments of equal lengths. The average chain code
value is computed for each segment and the shape of the stroke is coded by four digits. Two
strokes are considered equal if they both are straight and have the same orientation, or, if
the digits of their shape codes are the same or differ only by one unit. If several prototypes
of different classes match to the unknown character, also the aspect ratios of the characters
are compared and some additional class-dependent feature tests are performed.

The structural recognition method for on-line characters developed by Chan and Ye-
ung (1999) is based on a flexible prototype matching scheme. Characters are composed
of strokes which are represented by sequences of the following primitives: straight line
segments, counter-clockwise or clockwise curved segments, loops, and dots. The first three
primitives are associated with an eight-valued direction feature. Each character class is
represented by several prototypes. The prototype matching scheme allows structural de-
formations of four levels. A matching procedure starts from the strictest deformation level
and proceeds to the next and more relaxed level if no matching prototypes are found for
the unknown character sample. At the first level of matching, no deformations are allowed
and the structures of the prototype and the unknown character samples have to match
exactly. At the second level of matching, some primitive type deformations are allowed: a
straight line segment can be matched with both types of curved segments. At the third
matching level directional deformations are allowed: directional features of the primitives
can differ by one unit. The fourth matching level allows both primitive type and directional
deformations. This matching scheme does not always produce a single solution as some of
the alphanumeric character classes have exactly similar structures. In those cases, the final
classification is based on additional class-specific features, such as the relative positions or
height differences of the strokes.

Jung and Kim (2000) have combined neural networks and graph representations in
their recognition system for on-line Korean Hangul characters. The Hangul characters
are composed of from two to four graphemes. The graphemes correspond to vowels and
consonants and are considered to be either simple or complex. In total, there are 50
different graphemes. A Hangul character has a clear two-dimensional structure and there
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are six basic structures how the graphemes can be arranged into a character. There are
11 172 possible characters of which 3 000 are in daily use and 500 cover 99% of the Korean
texts. Jung’s and Kim’s recognition system first produces several tentative grapheme
segmentations each of which are then recognized by a TDNN. After that, the unknown
character is represented by a graph whose nodes correspond to scored and labeled grapheme
segments and arcs to the transition probabilities between the graphemes. A character
sample is recognized and its segmentations into graphemes are determined simultaneously
by finding the most probable path through its graph representation by using the Viterbi
algorithm (Theodoridis and Koutroumbas 1999, pp 309–312).

2.6.6 Generative models of handwriting

Some of the handwriting recognition methods reported in the literature are based on gen-
erative models of handwriting. For example, some recognition systems are based on the
idea that the handwriting process can be described by a model of hand movements and
different classes correspond to different model parameters and model structures. Plam-
ondon and Srihari (2000) divide the generative models of handwriting into two groups:
oscillatory and discrete models. In oscillatory models, handwriting is considered to be
produced by oscillating hand movements. In order to obtain differently shaped pen traces,
the amplitudes, phases, and frequencies of the oscillations are modulated. With these
models, discontinuous movements, such as isolated strokes, are explained by interruptions
of the oscillation process and abrupt changes of the oscillation parameters. Identified os-
cillation parameters can serve as features in on-line handwriting recognition. In discrete
models, hand movements are seen as superimpositions of simple basic strokes. Continuous
movements are explained by the time-overlapping of the discrete strokes. With discrete
handwriting models, an identified model structure provides the basis for the segmentation
of the handwriting data into meaningful subpatterns. Next, some examples of oscillatory
and discrete models developed for on-line handwriting are described briefly.

Singer and Tishby (1994) have considered handwriting as modulations of a simple cy-
cloidal pen point motion, described by two coupled oscillations with a constant linear drift
along the line of writing. With their model, a pen trace can be encoded by the slow modu-
lations of the amplitudes and phases of the oscillations. Pen traces are first segmented by
points of zero vertical velocity. Next, amplitude and phase modulations are estimated for
each segment. Finally, these estimates are quantized to a small number of levels. By this
procedure, continuous pen point movements can be represented by time series of discrete
motor parameters. A quite similar oscillatory modeling approach has been described by
Beigi (1997).

Lorette (1999) describes a discrete generative model for cursive handwriting. According
to his model, the fundamental units of cursive handwriting are basic downstrokes, beginning
and ending strokes, within-letter and between-letter ligatures, letters, and words. Basic
downstrokes are vertical strokes drawn in downward direction. They constitute the kernels
of the letter structures. Beginning and ending strokes are the first and last strokes of the
letter structures. Within-letter ligatures are cusps, small loops, and arcs which connect
the strokes belonging to the same letter structure. Word structures are formed by con-
catenating several letter structures so that strokes belonging to different letter structures
are connected by arcs called between-letter ligatures. Between-letter and within-letter lig-
atures can be invisible if they correspond to hand movements in which the pen is lifted up.
These fundamental units are segmented by pen lifts, by points of curvature inflection or
discontinuation, and by local curvature and vertical position extrema.
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Plamondon and Guerfali (1998) have developed a generative model for handwriting
which is based on kinematic theory of rapid human movements. According to this discrete
handwriting model, basic strokes are produced by controlling the pen point velocity by
synchronously activating an agonist and antagonist neuromuscular system. The neuro-
muscular systems are considered to have impulse responses which can be described with
lognormal functions. Basic strokes are characterized by velocity vectors defined by nine
parameters. Fluent cursive writing consists of superimposed basic strokes. On-line hand-
writing can be encoded by extracting the underlying basic strokes and estimating their
model parameters at each data point on the sampled pen trace. This generative model has
been applied in Scriptôt handwriting teaching system aimed for primary school children
(Djeziri et al. 2002).

2.7 Adaptive recognition systems for on-line handwriting

The need for adaptive recognition methods is obvious, no matter should the recognition
system be a writer-dependent or writer-independent one. The major problem of the writer-
independent systems is that there will always be some users whose writing styles were
under-represented or not at all contained in the training database. Therefore, even if a
writer-independent system performed well on average, its recognition accuracy would be
intolerably low for some of the potential users. This problem can be alleviated by adapting
the writer-independent recognition system to the writing styles of its end-users.

In the case of writer-dependent systems, the end-users have to write all the training
samples. Depending on the applied recognition methodology and the level of abstraction
of the handwriting models, that means something from one sample up to tens of samples
per each pattern class or handwriting model. In addition to a tedious data collection,
the users have to wait for the system to be trained from scratch. The users would need to
provide fewer training samples if the recognition system were first trained with handwriting
samples collected from other writers and then just slightly modified to better handle the
particular writing style of the current user. In fact, better recognition accuracies can be
achieved with writer-dependent recognition systems if they are initially trained with data
collected from several other subjects (Nathan et al. 1995; Yaeger et al. 1998). In addition,
with most of the recognition methods, the adaptation of the recognition system requires
considerably less computation and memory resources than the whole training process and
can therefore be performed on-line.

Style-specific recognition systems are kind of compromises between writer-independent
and writer-dependent systems. They can handle various personal writing styles better
than writer-independent systems but are less specialized than writer-dependent systems.
However, the selection process of the most suitable style-specific recognition system for the
current user requires some handwriting samples and it can be seen as one form of system
adaptation. Naturally, also the recognition performance of a style-specific system can be
improved by adapting it to a writer-dependent system.

Adaptive recognition systems can be divided into different categories depending on
whether the adaptation is performed in a supervised, unsupervised, or self-supervised man-
ner. In the supervised methods, the classes of all the training samples are assumed to be
known and the recognition system is adapted so that it can better recognize these labeled
handwriting samples. On the contrary, in the unsupervised methods, the classes of the
training samples are not known and the recognition system is tuned on the basis of some
other criteria than the recognition accuracy. For example, if handwriting is modeled on
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subcharacter level, the handwriting models can be tuned so that they better represent
the new handwriting samples regardless of their classes. In the self-supervised methods,
the true class labels are not available but the handwriting samples are labeled by the
recognition system itself on the basis of some indirect information. For example, the recog-
nition system might deduce the class labels from the user’s actions and responses to the
recognition results as will be described in section 3.6.5.

Another categorizing feature of the adaptive systems is the mode of the adaptation:
whether the system is adapted on-line or off-line. On-line adaptation is performed con-
tinuously as the user provides new handwriting samples and the recognition performance
improves gradually. On the contrary, off-line adaptation is carried out in batch runs after
the user has provided a certain number of training samples, possibly in a special training
mode of the system. Therefore, there will be some delays before the new training samples
have any effect, and the performance and the behavior of the recognition system change
more suddenly and in more drastic ways. That might be confusing for the users, especially,
if they consciously try to alter their writing styles to be better recognized by the system.
Another fact that speaks for on-line adaptation during the normal use of the device is that
the subjects tend to write differently in training sessions than when performing real tasks
(Goldberg and Goodisman 1991).

The adaptation process of a handwriting recognition system should be fast, robust,
incremental, and understandable for the user. An adaptive recognition system should
notice if there are any problems in the recognition of some of the classes and adapt itself
to new writing styles on the basis of as few as possible training samples. The adaptation
process should not be too sensitive to erroneous learning samples, both mislabeled and
malformed ones, as they cannot be completely avoided in real life. Incremental learning
means that the system is able to learn something completely new, for example can establish
new allograph models for handwritten characters, instead of just perfecting its ability
to handle the handwriting styles it already knows to some extent. The ability to learn
incrementally is of paramount importance if the recognition system has not been trained
with handwriting samples collected from its end-users. If the users understand how the
adaptation process works, they can take the most advantage of it and even intentionally
train the system. Otherwise, the users might be tempted to write in some unnatural or
exaggerated way which would help neither the recognition nor the adaptation process. In
the worst case, adaptation might turn out to be more harmful than useful.

Several adaptive handwriting recognition systems have been reported in the literature.
The following sections briefly review how adaptation has been realized and experimented
with in prototype-based systems, statistical systems, and in systems based on neural net-
works. Some of these recognition systems have already been discussed in the earlier sections
2.6.3, 2.6.1, and 2.6.4. The recognition accuracies reported for the different recognition
systems are not comparable with each other and they are given here only for judging the
beneficial effects of the adaptation.

2.7.1 Adaptation in prototype-based systems

A prototype-based recognition system can be adapted to new writing styles by modifying
the prototype set in the following ways: 1) new handwriting samples provided by the
current user can be added to the prototype set, 2) existing prototypes can be adjusted
to better represent the current user’s writing style, and 3) unused or poorly performing
prototypes can be inactivated. The first form of adaptation enables the recognition system
to learn incrementally. It is likely to improve the recognition rates quickly but also to
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increase the recognition time as the computational complexity of a prototype-based system
depends linearly on the number of prototypes. The second form of adaptation provides
more gradual improvements of the recognition accuracy and it might not be sufficient if the
end-users’ writing styles differ drastically from the writing styles the system was initially
trained to handle. The third form of adaptation is necessary if some of the training samples
are erroneous, either malformed or just incorrectly labeled. Otherwise, the adaptation can
turn out to be more harmful than useful. (Vuori et al. 2002, included publication 2)

Kurtzberg and Tappert (1981) have developed a prototype-based recognition system for
isolated characters. In their system, characters are represented by time series of the pen
point’s normalized heights from the baseline of the writing and tangential angles of the pen
trace. The unknown characters are compared to the prototypes by using a DTW-based
method called elastic matching. The classification of the unknown characters is based on
the 1-NN rule. The initial prototype set is formed in a special training mode in which the
system prompts the user to write specific characters. After that, the recognition system
is adapted to the new writing style by adding all the misrecognized character samples
and the correctly classified character samples for which the ratio of distances to the best-
matching correct and to the second best-matching incorrect prototype is within a given
tolerance into the prototype set. Tappert (1984) developed the recognition system further
by extending it to handle also cursive words and by adding two new features to the time
series representation of the characters: the normalized horizontal and vertical offsets of
the pen point from the mass center of the character. Tappert performed experiments
with isolated characters written by 6 subjects not familiar with the recognition system.
The recognition system was trained independently for each subject. The writer-dependent
error rates for the 26 upper and 26 lower case Latin letters and the 10 digits were between
0.3% and 4.3% if there were separate prototype sets for the three character groups, and
1.2% and 8.9% if there was only one prototype set. Tappert performed experiments also
with cursive words written carefully by 3 subjects familiar with the recognition system.
The recognition system was able to correctly segment all the word samples into characters
and the letter-level writer-dependent recognition error rates were between 2.1% and 3.6%.
These early results were really promising and they showed that the DTW-based distance
measure is suitable for the recognition of both isolated characters and cursive words.

Fujisaki et al. (1991) have developed a recognition system for run-on discrete handwrit-
ing. Their system first classifies strokes and then generates character hypotheses which are
verified with a DTW-based method. The system’s recognition performance was evaluated
for 82 character classes (upper and lower case Latin letters, digits, and special characters)
and 12 subjects. Each subject wrote approximately 1 300 and 1 500 character samples
which were used as a writer-dependent prototype set and a test set, respectively. The
subjects were advised to write similar characters of different classes differently and not to
use cursive style, i.e. connect adjacent characters. The average writer-dependent character
error rates were 9.3%, 3.7%, or 2.8% for the recognition problem of 82 classes, upper case
letters, or digits, respectively. Fujisaki et al. experimented also with on-line adaptation
with the same 12 subjects: the average recognition accuracy leveled off after the subjects
had written four character samples per character class.

Bontempi and Marcelli (1994) have designed a prototype-based character recognition
system in which on-line character samples are represented by symbol strings and a writer-
independent prototype set is first formed and then adapted into a writer-dependent one
with a genetic learning algorithm. In their system, character samples are segmented into
four components, each of which is encoded by eight three-valued symbols. The first two
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symbols represent the curvature of the component, the next three symbols represent the
writing direction, the following symbol represents the relative length of the component in
respect to the total length of the pen trace, and the last two symbols represent the spatial
relationships between the current and successive component. The coding scheme is so
designed that small variations in the character’s shape correspond to small variations in the
character’s symbol string representation. The recognition system stores the representations
and class labels of all the misrecognized character samples and adapts its prototype set if the
error rate and the number of stored character samples are high enough for some character
class. The correct class labels are provided by the user. The genetic learning algorithm
can add new writer-specific prototypes into the prototype set. However, it does not alter
or remove the original writer-independent prototypes. This way, the recognition system is
able to learn incrementally and will not lose its ability to recognize the handwriting styles
not used by its current user. In the experiments performed by Bontempi and Marcelli, an
initial writer-independent prototype set was learned from a database written by 50 subjects
and containing lower and upper case letters and digits. The number of the initial writer-
independent prototypes was 20 per each character class. In the adaptation experiments,
the threshold error rate and the number of misrecognized character samples required for
the activation of the adaptation process were 80% and 20, respectively. Without any
adaptation, an average error rate of 1.9% and rejection rate of 14.7% were achieved for
over 10 new subjects. With adaptation, these figures were significantly better, namely
0.8% and 6.5%. However, these results were obtained by using the same data sets for both
the adaptation and testing of the recognition system.

In the on-line cursive word recognition system developed by Duneau and Dorizzi (1994),
on-line handwriting is represented by concatenated letter prototypes. On-line handwriting
data is segmented into strokes which are represented by five-dimensional feature vectors.
A stroke can belong only to one letter. The structure of the stroke sequence, or a letter
hypothesis, is obtained by encoding the strokes by five-valued symbols. These structures
capture the rough shapes of the letters. The initial writer-independent prototype set was
formed with an incremental clustering algorithm applied separately to the sets of character
samples of certain class and structure. Each prototype has a confidence value which reflects
its representativity and discrimination ability. The prototype set and the confidence values
of the prototypes are adapted regularly after the user has provided a certain number of word
samples. The adaptation process has three phases: 1) the word samples are segmented into
letters which are used for updating the letter prototype set with the incremental clustering
algorithm, 2) the confidence values of the prototypes are updated, and 3) prototypes whose
confidence values are smaller than a given threshold value are removed. The first phase
of the adaptation can alter the existing prototypes, generate new prototypes, or even new
structures, or has no effect at all. In the third phase of adaptation, only those letter
prototypes which have existed for long enough can be removed. Duneau and Dorizzi
performed experiments in which the initial writer-independent prototype set was formed
by clustering the letters of 10 000 word samples provided by ten subjects and was then
used for the recognition of 1 000 word samples written by one new subject. Without any
adaptation, the word error rate was approximately 19%. The word error rate improved
significantly due to the adaptation. The letter prototype set was adapted after each set
of 100 word. The word error rate was 17% for the first and 6% for the second set of 100
words. After the sixth set of 100 words, the word error rate stayed below 2%. The lexicon
used in the experiment contained 10 000 English words.

On-line cursive handwriting is represented by sequences of character prototypes also in
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the recognition system developed by Qian and Truemper (1998). This recognition system
has three modules: a preprocessing module, an interpretation module, and a learning
module. The preprocessing module segments the captured pen trace into strokes according
to pen lifts, local maxima and minima of the y-coordinate, and cusp points. Strokes are
then classified into five shape categories and the connections between successive strokes
are divided into three categories. In addition, the average slope is calculated for all strokes
and the average curvature for strokes belonging to two particular shape categories. Thus,
pen traces are represented by chain codes. The interpretation module identifies several,
possibly overlapping, letter candidates from the chain code representation and scores them
by using a prototype matching algorithm. A word score is obtained by finding the optimal
sum the letter scores minus the lengths of the unidentified parts of the chain code. The
word with the highest score is the recognition result. The learning module adapts the
character prototypes according to the recognition results or word labels supplied by the
user. The learning module segments the word samples into letters in the same way as
the interpretation module and localizes the chain code segments which were erroneously
recognized. Each erroneously recognized segment can give rise to one of the following forms
of adaptation: 1) the segment can be added into the prototype set, 2) the least frequently
used prototype can be replaced by the segment, and 3) the parameters of an existing
prototype can be adjusted so that the matching score between the prototype and chain
code segment is increased. Qian and Truemper formed an initial prototype set by collecting
four samples per each of 26 lower case letter class from a single writer. After that, they
tested the recognition performance of the system with sets of 100 English words written
by four new subjects. The adaptation of the letter prototypes improved the system’s
recognition accuracy significantly as the average word error rate was 34.5% without and
18.7% with adaptation. The lexicon used in the experiments comprised 10 000 words.

2.7.2 Adaptation in statistical systems

Statistical handwriting recognition systems can be adapted into new writing styles by up-
dating the probability distributions on the basis of new handwriting samples. Incremental
learning is not as easy and fast as with prototype-based methods because new statistical
models cannot be learned reliably with only one or a few samples.

Loy and Landay (1982) have performed an early experiment with an adaptive statistical
character recognition system. In their recognition system, alphanumeric characters were
represented by chain codes and 69 allograph classes were modeled by Gaussian distributions
of diagonal covariance matrices. The dimensionalities of the chain code representations of
the allograph classes were between 1 and 6. The database used in a simulated on-line adap-
tation experiment was written by a single subject and contained several character samples
per each of the allograph classes. The initial variances of the Gaussian distributions were
estimated from character samples written by some other subjects. The means were appar-
ently initialized by the chain code representations of the first samples of each allograph class
written by the single test subject. Each time a character sample was correctly recognized,
the mean and the variance of the corresponding Gaussian distribution were updated. Ac-
cording to the experiments, the sum of the error rate and rejection rate was approximately
4.5% after the recognition system had seen 2 samples per each allograph class. After 4
samples per each allograph class, the sum stayed between 2.5% and 1%. These results were
really promising, especially as the system’s recognition performance improved so quickly.
However, there is no guarantee that the results would generalize to other test subjects.

Subrahmonia et al. (1996) have carried out experiments in which a HMM-based writer-
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independent recognition system for cursive on-line handwriting is adapted into writer-
dependent one. Their recognition system had one HMM per each character class. Word
HMMs were formed by concatenating character HMMs. The size of the lexicon was approx-
imately 22 000 words. The HMMs’ state-dependent probability distributions for observa-
tions were mixtures of Gaussian distributions with diagonal covariance matrices. The total
number of model parameters was reduced by parameter tying, i.e. the Gaussian distribu-
tions were shared across all the states of all the character HMMs. First, all the observation
vectors in the training database were clustered with the C-means algorithm (Duda and
Hart 1973) in order to find initial parameter values for the shared Gaussian distributions.
Next, the character HMMs were trained with the expectation-maximization (EM) algo-
rithm (Haykin 1999, pp 382). The writer-independent character models were trained with a
handwriting database written by approximately 100 subjects. Next, the writer-independent
models were adapted into writer-dependent models by training them with 4 000 additional
labeled word samples collected from each of the 5 new writers. The means, covariance
matrices and mixture coefficient of the character HMMs were updated. The recognition
performance of the system was measured with test sets of approximately 400 words. These
experiments showed dramatic improvements in the personal word error rates during the
first 500 words. In the end of the adaptation, the word error rates had decreased about 60%
on average. Nathan et al. (1996) have performed supplementary adaptation experiments
with the same recognition system and training scheme, and 7 new subjects. The result
were similar to those reported by Subrahmonia et al.

Also Senior and Nathan (1997) have run adaptation experiment with a very similar
statistical recognition system. The main difference to the experiments carried out by
Subrahmonia et al. and Nathan et al. was that the Maximum Likelihood Linear Regression
(MLLR) algorithm was used for the training of the HMMs instead of the EM algorithm.
With the MLLR algorithm, the writer-independent estimates for the means and variances of
the Gaussian distributions of the HMMs had to be adapted into writer-dependent estimates
separately from each other. The mixture coefficients were not updated. Senior and Nathan
performed adaptation experiments with 12 subjects each of whom had provided 200 word
samples for the adaptation and about 500 word samples for the recognition performance
evaluation. They experimented with both a supervised and a self-supervised adaptation
scheme. In the latter scheme, the word samples used in the adaptation were labeled
according to their recognition results. These experiments showed that the both adaptation
schemes were able to decrease the word error rate significantly. After 200 word samples,
the word error rate had decreased, on average, by approximately 12% and 8% with the
supervised and self-supervised scheme, respectively.

Connell and Jain (2002) have designed a recognition system for on-line handwriting
which is based on allograph HMMs, i.e. the system has several HMMs per each character
class. Also in this system, word-level HMMs are formed by chaining character-level HMMs.
The allograph HMMs are left-to-right models with a single Gaussian distribution per stage.
The covariance matrices of the Gaussian distributions are diagonal. This is made justifiable
by decorrelating the features with a Principal Component Analysis (PCA)-based (Haykin
1999, 396–404) method. The allograph HMMs were trained with the Baum-Welch algo-
rithm (Rabiner 1989) and discretely written character samples and cursive word samples
which have been manually segmented into characters. The writer-independent character
allographs were found with an iterative clustering algorithm. The adaptation process was
partly self-supervised: all the training samples had character class labels and the allograph
labels were determined by the most probable writer-independent allograph HMMs of the
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same class. Connell and Jain performed adaptation experiments with both isolated charac-
ters and cursively written words. Only those allograph HMMs for which there were enough
training samples were adapted. In the experiments with lower case letters, 84 allograph
HMMs were first trained with a database which contained approximately 80 500 character
samples written by over 100 subjects. These writer-independent allograph HMMs were
further adapted into the writing styles of 11 new subjects each of which had provided over
2 000 character samples. The data from each writer was randomly split into training and
test sets of approximately equal sizes. The experimental results showed that due to the
adaptation the personal recognition error rates decreased by 54% on average. In the ex-
periments with cursive words, the writer-independent allograph HMMs were adapted with
word samples written by 8 subjects. The size of the lexicon was 483 words and the number
of character classes was 93. Each subject provided approximately 600 words so that there
were at least 5 samples per each character class. Also in these experiments, significant
improvements in the error rate were gained due to the adaptation: the word error rate
decreased by 9%. In the both sets of experiments, much better recognition results were
obtained if multiple HMMs were used instead of a single HMM per each character class.
(See (Connell 2000) for more details.)

Brakensiek et al. (2001) have developed a HMM-based recognition system for on-line
cursive handwriting and compared different adaptation techniques. In their recognition
system, one writer-independent left-to-right HMM was trained for each character class by
using the Baum-Welch algorithm and approximately 25 000 word samples written by 145
subjects. The state-dependent probability distributions for the observations were modeled
with mixtures of Gaussian distributions. The writer-independent HMMs were adapted to
the writing styles of 21 new subjects each of which had provided two sets of approximately
100 word samples used for the adaptation and testing of the system. The adaptation was
performed with several algorithms, the maximum a posteriori (MAP) (Theodoridis and
Koutroumbas 1999, pp 31–33), MLLR, or EM. According to their experiments with super-
vised adaptation, the MAP and EM algorithms clearly outperform the MLLR algorithm
and 100 word samples are not enough to adapt all the parameters of the HMMs: the
word error rate actually rose when the means and variances of the Gaussian distributions
were updated simultaneously. The word error rate improved by 12%, 33%, and 39% when
only the means of the Gaussian distributions were adapted with the MLLR, MAP, and
EM algorithm, respectively. Brakensiek et al. performed also some experiments with self-
supervised adaptation by using the EM algorithm and word samples labeled according to
the recognition results of the writer-independent recognition system to update the means
of the Gaussian distributions. In this way, the word error rate was decreased by 30%.
The recognition results cited here were obtained by using a lexicon of approximately 2 200
German words.

2.7.3 Adaptation in neural systems

Recognition systems based on neural networks can be adapted to new writing styles in two
different ways. The free parameters of the network, i.e. the synaptic weights associated
with the connections between the neurons and the bias terms of the activation functions
of the neurons, can be adjusted so that the network performs better with the handwriting
samples of the current user. Alternatively, the structure of the network can be altered by
adding new neurons, removing existing neurons, or changing the connections between the
neurons. Only the latter form of adaptation enables incremental learning.

Guyon et al. (1992), Matíc et al. (1993), and Platt and Matíc (1997) have developed
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adaptive character recognition systems based on neural methods. They all have first trained
a TDNN to recognize isolated characters and then replaced or augmented the last neuron
layer of the resulting network with a k-NN, SVM, or RBF classifier. The recognition sys-
tem developed by Guyon et al. (1992) was initially trained with character samples written
by 350 subjects. The output layer of the TDNN was then replaced by a 3-NN classifier
so that the weight vectors of the output neurons were used as initial writer-independent
prototypes for the corresponding character classes. Correspondingly, character samples
were represented by the outputs of the neurons in the second last layer. Prototypes and
unknown character samples were compared with each other by using the dot product as
a similarity measure. The 3-NN classifier was adapted to new writing styles by adding
the misrecognized character samples to the prototype set. The correct class labels of the
learning sample were provided by user. The average character error rate of the writer-
independent system was 2.8% for upper case letters and digits written by some new test
subjects. The letters and digits were recognized separately. The writer-independent recog-
nition system was adapted into writing styles of 7 new test subjects each of which wrote
in total 450 upper case letters and special characters. The writer-dependent recognition
system was adapted to handle 7 new character classes not known by the initial writer-
independent system. At the end of the adaptation, the character error rate was in the best
cases below 0.1% and on average between 1% and 2%. According to Guyon et al., their
recognition system was able to learn new character classes and new writing styles on the
basis of only a few new samples.

Matíc et al. (1993) performed adaptation experiments with the same writer-
independent character recognition system and the same 7 subjects as Guyon et al. (1992).
Instead of a k-NN classifier, they replaced the last neuron layer of the TDNN with a SVM.
The SVM consisted of 36 hyperplanes each of which separated one of the 26 upper case
letter and 10 digit classes from the rest of the character classes. The hyperplanes of a
SVM are defined by weighted sums of training patters called supporting patterns. The
supporting patterns are the training samples closest to the class boundaries. The training
of a SVM involves the solution of a quadratic optimization problem with linear constraints.
The SVM of the writer-independent recognition system was adapted into new writing styles
by retraining its hyperplanes by using only the supporting patterns and the misclassified
new training samples. At the end of the adaptation, the character error rate was on aver-
age 2.5%. Thus, the k-NN classifier is not only computationally more simple to adapt to
new writing styles but it achieves on average higher recognition accuracy than the SVM
classifier. However, the recognition process itself is computationally more complex with
the k-NN classifier.

Also Platt and Matíc (1997) performed adaptation experiments with the writer-
independent TDNN-based character recognition system developed by Guyon et al. (1992).
They augmented the output neuron layer of the TDNN with a RBF network. The output
vectors of the TDNN were used as the input vectors of the RBF network. The components
of the output vector of the whole recognition system were calculated by adding differently
weighted sums of the outputs of the RBF neurons to the components of the output vector
of the TDNN. The recognition system was adapted to new writing styles by adding new
RBF neurons or modifying the weights associated with the outputs of the RBF neurons.
A new RBF neuron was added if the Euclidean distance between the output of the TDNN
and its nearest RBF center exceeded a certain threshold. Otherwise, the weights were
adjusted so that the output of the whole system was closer to the desired output. The
initial writer-independent recognition system was trained to handle in total 72 classes of
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upper and lower case letters, digits, and special characters. Platt and Matíc performed
experiment with supervised adaptation and 5 subjects each of which wrote from 39 to 93
word samples. The word error rate decreased by 45% due to the adaptation. At the end
of the adaptation, the size of the RBF network was between 3 and 25 neurons.

Schomaker et al. (1993) have developed a recognition system which models on-line
cursive handwriting with SOMs. First, a writer-independent recognition system is obtained
by training a SOM with strokes extracted from manually labeled word samples written by
17 subjects. Several alternative stroke interpretations are attached to each neuron of the
resulting stroke-SOM. The recognition of cursive words is based on the stroke-SOM and a
stroke transition network which defines the possible stroke sequences and their allograph
interpretations. For a more detailed description of their system, see also article (Schomaker
1993) and the previous section 2.6.4. The writer-independent recognition system is then
adapted to new writing styles by updating the stroke transition network. The reference
vectors of the neurons of the stroke-SOM are not updated. The adaptation process has
three stages: 1) initial allograph probability adaptation, 2) allograph labeling, and 3)
final allograph probability adaptation. In the first adaptation stage, the stroke-SOM and
stroke transition network are used for the recognition of a new set of word samples. The
recognition system provides a list of 20 candidate output words for each new word sample.
If the correct recognition result is among these candidates, the probabilities of the matching
allographs in the stroke transition network are gradually increased until the correct word is
at the top of the candidate list or a maximum number of iterations is reached. In the second
stage, the allographs of the unrecognized words are manually labeled by the user. However,
completely idiosyncratic shapes are left without labels. The third stage of adaptation is
the same as the first one but the starting point is the initially adapted stroke transition
network and all of the new word samples are used for its final adaptation. Schomaker
et al. performed adaptation experiments with 16 subjects, each of which provided from
49 to 180 word samples for both the training and testing of the recognition system. The
recognition system was adapted separately for each subject. Before any adaptation, the
word error rate was 65% on average. After adaptation, it was 37%. Approximately 45% of
the training samples used for the adaptation had to be manually labeled. The size of the
lexicon used in the experiments varied between 5 000 and 7 000 words.

Yaeger et al. (1998) have performed adaptation experiments with their MLP-based
recognition system for isolated characters (see also section 2.6.4). The recognition system
was first trained with character samples written by 45 subjects. The character samples were
of 95 classes of upper and lower case letters, digits, and special characters. The resulting
writer-independent recognition system was then separately adapted to the writing styles
of three new subjects. The character error rate of the writer-independent system was on
the average 21.3%. After adaptation, the average character rate had decreased down to
7.2%. If the recognition system was trained from scratch for each new subject, the average
character error rate was slightly higher, 7.4%.

2.7.4 Conclusions and remarks

The error rates given in the three earlier sections for various handwriting recognition sys-
tems are not comparable with each other for several reasons. First of all, the systems were
trained and tested with different data. In all the cases, there were significant variations in
the error rates obtained for different writers both before and after the adaptation of the
recognition system. That can be explained by the fact that the writing styles of some of
the subjects are easy to recognize and learn both by humans and machines whereas some
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of the writing styles are nearly illegible scribble. In the case of easy writing styles, char-
acters of different classes have distinct and consistent shapes which are commonly used by
many writers. The recognition systems posed different constraints on the writing styles.
The handwriting databases used in the experiments were collected with various writing
equipment and therefore the handwriting samples were of varying quality. In addition,
the number of classes varied between the recognition systems. In the case of cursive word
recognition, also the size of the lexicon, the used language models and other postprocessing
methods have a significant effect on the error rates. In despite of all these facts, the re-
sults obtained with the different recognition systems show clearly that personal error rates
can be significantly decreased by adapting a writer-independent recognition system to a
writer-dependent one. However, these previous experiments have been just simulations of
on-line adaptation with perfectly labeled training samples and therefore the effects which
erroneous learning samples or user adaptation would have on the adaptation process and
development of the recognition accuracy have not been considered at all. For a summary
of the recognition performances obtained with the most recent and promising systems, see
Tables 1 and 2 in section 2.10.

2.8 Language modeling

Handwritten text can be divided into basic units such as characters, syllables, words,
phrases, sentences, lines, and paragraphs. The syntactic and semantic meaning of a textual
unit is defined by its context, i.e. the surrounding units. The use of contextual knowledge
facilitates the recognition of the otherwise very confusing parts of the text. Contextual
knowledge can be represented by the following language models: a list of acceptable char-
acter combinations (character N-grams), probabilities of character N-grams, a list of ac-
ceptable words (lexicon), rules for acceptable words in certain global or local context, a
list of acceptable word combinations (word N-grams), probabilities of word N-grams, and
a grammar describing the syntax of the language (Rose and Evett 1995; Srihari 1985). For
examples of recognition system in which language models have a central role, see (Beigi
1992a; Beigi 1992b; Clergeau and Plamondon 1995; Fujisaki et al. 1991; Hu et al. 1996;
Yaeger et al. 1998).

Language modeling is of paramount importance in the recognition of cursive handwrit-
ing, especially in the character segmentation phase and in the postprocessing of recognition
results. The recognition of cursive words can be performed more quickly and accurately if
the tentative segmentations which lead to very unlikely character combinations or to words
which are not included in the lexicon are pruned away as early in the recognition process
as possible. Language models can also be used in the recognition of isolated characters and
they usually improve the error rates (Tappert et al. 1990). However, in some applications
the existing contextual information is very limited. The used language can be unknown
and the input text totally unconstrained so that it may not have any apparent meaning. A
situation like this is very likely to occur in a PDA application in which the users typically
write down names and nicknames, addresses, telephone numbers, codes and other short
personal notes in multiple languages. However, some simple language-independent models,
for example case rules, can be very useful in the postprocessing of the recognition results
also in such applications.
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2.9 Usability issues

The recognition accuracy is one of the key factors determining the acceptability of a hand-
writing recognition system and the whole application in which it is implemented. Other
important usability factors are the reliability, ease of the use, and understandability of
the recognition system. The required recognition rate for a handwriting recognizer is very
high – even higher than humans can perform. Experiments with good typists and a special
keyboard that introduced random errors with a predefined rate have shown that writers tol-
erate errors up to 1% while 0.5% is unnoticeable and 2% is intolerable (Guyon and Warwick
1996). These error rates are clearly lower than the average error rate of human readers,
which is approximately 4% according to the experiments reported by Neisser and Weene
(1960) and Parizeau and Plamondon (1994). However, the relationship between the user
acceptance of a pen-based interface and its recognition accuracy is highly task-dependent:
a recognition accuracy not adequate for writing tasks involving large vocabularies might be
totally acceptable for more limited tasks such as form-filling (Frankish et al. 1995). The
reliability means that the recognition system is not likely to make mistakes which might
go unnoticed by the user but rather rejects suspicious input samples than falsely recog-
nizes them. High reliability is important, for example, when a user is inputting passwords,
financial amounts, telephone numbers, or e-mail addresses.

The ease of use means that characters can be input in a natural writing style and speed,
it is easy to learn and remember how to use the recognition system and how to write in
the required way, and the recognition errors and writing mistakes can be corrected in a
natural and effortless ways which do not disturb the writing process too much. As human
handwriting speed is 12–33 words per minute (MacKenzie et al. 1994), the recognition
time should be less than about 300 ms per character. Otherwise, quick writers need
to wait for the recognition results. The ease of correction was found to be at least as
important usability issue as the recognition accuracy in the usability study of various text
entry methods for hand-held devices conducted by Guyon et al. (1995). Some of the
potential users might be intimidated if the recognition system requires that the characters
are written and segmented in some specific way. However, the user experiments performed
by MacKenzie and Zhang (1997) with a recognition system that required special Graffiti
characters and with 25 subjects showed that the subjects willing to learn are able to master
the Graffiti characters quickly and do not easily forget what they have learned. The average
walk-up recognition accuracy of Graffiti recognizer was 87%. After five minutes practice
and a week later without any additional practice, average accuracies as high as 97% were
reached.

The understandability of the recognition process is important because the users are
able to alter their handwriting styles to be better recognized only if they have some insight
into the possible causes of the recognition errors. It helps if the trace of the pen is shown
to the users – otherwise the users do not know whether the recognition errors were due to
hardware problems in capturing the pen trace, careless writing, or the limited capabilities
of the recognition system to handle certain character allographs. The recognition errors
which do not seem random are less annoying to the users (Webster and Nakagawa 1998).
If the users understand how the recognition system adapts itself to new writing styles, they
can take the control of the adaptation process and so explicitly train the system. Naturally,
if the recognition system makes no mistakes, there is no need it to be understandable for
its users. However, this is hardly ever the case.
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2.10 Summary: on-line handwriting recognition today

These days, on-line handwriting recognition is very commonly used as a textual input
method in palm-sized PDA devices. There exist several on-line handwriting recognition
softwares for that purpose, for example PenReader by Paragon Software (PenReader 2002),
CalliGrapher, the latest version of which is called Transcriber, by ParaGraph (CalliG-
rapher 2002), Jot by Communication Intelligence Corporation (Jot 2002), smARTwriter
by Advanced Recognition Technologies (smARTwriter 2002), MyScript by Vision Objects
(MyScript 2002), TealScript by TealPoint Software (TealScript 2002), Decuma Latin by
Decuma (Decuma Latin 2002), and Graffiti by Palm (Graffiti 2002). Of these mentioned
recognition systems, Graffiti requires the most constrained style of writing as it has only one
unistroke shape for each character class. The other systems have several alternative proto-
types of more natural writing styles for each character class. CalliGrapher, smARTwriter,
and the latest version of MyScript can recognize also mixed and cursive writing styles.
MyScript, TealScript, Decuma Latin, CalliGrapher, smARTwriter, and JOT have special
modes in which the recognizer can be customized. In CalliGrapher, users can inactivate
prototypes or state whether they are used often or rarely. In JOT, some of the character
classes have prototypes of exactly the same shape and the users can specify how these
shapes should be classified. MyScript, TealScript, and Decuma Latin softwares have spe-
cial dialogs in which the users can examine the recognition system’s prototype set and
delete or replace prototypes by their preferred writing styles. The users of smARTwriter
can train the system to better recognize their personal writing styles by writing a certain
text prompted by the system. Due to the commercial nature of these systems, there are not
scientific articles publicly available in which the recognition performances of these systems
would be evaluated and compared with each other by using the same data, or, in which
the applied recognition methodologies would be described in detail.

The current trend in the research of on-line handwriting recognition seems to be the
development of writer-independent large vocabulary systems for natural cursive or mixed
style handwriting. The emphasis of the research is on statistical and neural methods,
especially on HMMs and TDNNs. These recognition methods are used together with
linguistic modeling techniques as the mere pen trace information in cursive handwriting is
often too ambiguous for the successful recognition of all the characters. Lately, adaptive
recognition methods have been gaining more and more interest. Some recent recognition
results reported in the literature for isolated Latin characters and words of cursive or
mixed handwriting style are given in Tables 1 and 2. In case of isolated characters, the
reported recognition performances of some of the systems are very high and are comparable
to the error rates reported for humans. Recognition systems described in (Bengio et al.
1995; Guyon et al. 1992; Matíc et al. 1993; Prevost and Milgram 1997) seem especially
promising. The error rates reported for cursive or mixed-style words are in most cases too
high for any practical application. However, the systems reported in (Bengio et al. 1995;
Jaeger et al. 2001) seem to perform very well with multiple writers and large lexicons.
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Table 1: Recognition results reported in the literature for isolated Latin characters. Re-
sults are averaged over different subjects. Abbreviations WD and WI come from writer-
dependent and writer-independent, respectively. Notation WI→WD means that an initial
writer-independent recognition system was adapted into a writer-dependent one.

Article Methods Classes Comments Results

(Bengio et al.
1995)

CNN, HMM
0-9, a-Z, 33
symbols

WI
error rates 1.4% (0-9),
4.2% (a-z), 2.9% (A-Z),
4.3% (symbols)

(Biem 2001) HMM
0-9, a-Z, 30
symbols

WI error rate 8.3%, 17 subjects

(Bontempi and
Marcelli 1994)

chain codes 0-9, a-Z WI→WD
error rate 1.9%→0.8%, re-
jection rate 14.7%→6.5%,
10 subjects

(Chan and Ye-
ung 1999)

chain codes,
decision trees

0-9, a-Z WD?
error rates 1.4% (0-9),
1.5% (A-Z), 2.6% (a-z),
1.9% (62 classes)

(Connell and
Jain 2001)

HMM a-z WI→WD
error rate 23.8%→11%, 11
subjects

(Fujisaki et al.
1991)

DTW
0-9, a-Z, 20
symbols

WD
error rates 2.8% (0-9),
3.7% (A-Z), 9.3% (82
classes), 12 subjects

(Guyon et al.
1992)

TDNN, k-NN
0-9, A-Z, 7
symbols

WI→WD
error rate 2.8% (no sym-
bols) → 1-2%, 7 subjects

(Hu et al. 2000) HMM 0-9, a-Z WI
error rates 3.2% (0-9),
6.4% (A-Z), 14.1% (a-z)

(Li and Yeung
1997)

DTW, chain
codes

0-9, a-Z
WI, constr.
writing style

error rate 7.9%, rejection
rate 1.1%, 15 subjects

(Matíc et al.
1993)

TDNN, SVM
0-9, A-Z, 7
symbols

WI→WD
error rate 2.8% (no sym-
bols) → 2.5%, 7 subjects

(Mozayyani
et al. 1998)

ST-MLP a-z
WD, constr.
writing style

error rate∼1%, 15 subjects

(Nouboud and
Plamondon
1991)

chain codes
0-9, A-Z, 23
symbols

WD error rate∼4%, 15 subjects

(Prevost and
Milgram 1997)

DTW 0-9, A-Z
WD?, on-line
& off-line fea-
tures

error rates 1.4% (0-9),
2.9% (A-Z)

(Scattolin 1995) weighted DTW 0-9 WD
error rate 0.5%, rejection
rate 10.9%, 33 subjects

(Schenkel et al.
1995)

TDNN, HMM A-Z WI
error rate 1.8%/11.4%
with/without lexicon,
25 subjects

(Vuori et al.
2002)

DTW a-z,å,ä,ö, 0-9 WI→WD
error rate ∼15%→1.3%, 24
subjects

(Wilfong et al.
1996)

curve matching A-Z WD error rate 2%, 8 subjects

(Yaeger et al.
1998)

MLP
0-9, a-Z, 33
symbols

WI→WD
error rate 21.3%→ 7.2%, 3
subjects

(Yuen 1996) chain codes a-z WD error rate 10%, 1 subject
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Table 2: Recognition results reported in the literature for cursive or mixed handwriting
styles. Results are averaged over different subjects. Abbreviations WD and WI come from
writer-dependent and writer-independent, respectively.

Article Methods Lexicon Comments Results

(Bengio et al.
1995)

CNN, HMM 25 461 words WI error rate 3.2%

(Brakensiek
et al. 2001)

HMM 2 200 words WI→WD
error rate 13.7% → 8.4%
(supervised) or 9.6% (self-
supervised), 21 subjects

(Connell and
Jain 2001)

HMM 483 words WI→WD
error rate 29.2%→26.5%,
8 subjects

(Duneau and
Dorizzi 1994)

chain codes 10 000 words WI→WD
error rate 19% → <2%,
1 subject

(Hu et al. 2000) HMM

500, 1 000,
2 000, 5 000,
10 000, or
20 000 words

WI

error rate 8.2%, 9.5%,
12.8%, 16.8%, 20.2%,
23.7% (sorted by the
size of the lexicon), 100
subjects

(Jaeger et al.
2001)

MS-TDNN
5 000, 20 000,
or 50 000
words

WI
error rate 4.0% 6.6%, 8.8%
(sorted by the size of the
lexicon)

(Morasso et al.
1995)

SOC
409, 1 893, or
7 480 words

WD
error rate 26%, 32%, 41%
(sorted by the size of the
lexicon), 2 subjects

(Nathan et al.
1996)

HMM 22 000 words WI→WD
error rate 32.8%→12.3%,
7 subjects

(Pavlidis et al.
1997)

curve matching
100 words, 7
gestures

WD error rate 8.5%, 12 subjects

(Qian and
Truemper 1998)

chain code 10 000 words WI→WD
error rate 34.5%→18.7%,
4 subjects

(Schomaker
et al. 1993)

SOM
5 000-7 000
words

WI→WD
error rate 65%→37%,
16 subjects

(Senior and
Nathan 1997)

HMM 22 000 WI→WD
error rate 28.7% → 26.4%
(supervised) or 25.4% (self-
supervised), 12 subjects

(Wilfong et al.
1996)

curve matching 32 words WD error rate 6.5%, 19 subjects
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3 DESCRIPTION OF THE DEVELOPED ADAPTIVE ON-

LINE CHARACTER RECOGNITION SYSTEM

The main goal of this thesis work was to develop a practical on-line recognition system
for handwritten characters. The system ought to be able to handle multiple writing styles
in the beginning of its use and to quickly adapt to new writing styles and so improve its
recognition performance during normal use. Prototype-based recognition systems are well
suited for adaptation and, most importantly, they can learn incrementally new writing
styles on the basis of only a single character sample. If the prototype set is cleverly
formed, i.e. there are no redundant prototypes but every prototype represents a distinct
writing style, the computational complexity of a prototype-based recognition system is
of the same degree than the computational complexity of any recognition system that is
based on allograph models. These were the main reasons for choosing a prototype-based
approach in this thesis work. For usability reasons, the comparison of the input characters
and prototypes and the decision making process should be understandable to the users.
This is true for the DTW matching algorithm and the k-NN decision rule. In addition, the
recognition results reported for them in the previous literature have been most promising.
These are the reasons why they have been applied also in this thesis work. The various
components of the developed recognition system and the experiments performed with them
have already been reported in the eight publications included in this thesis, namely in
articles (Vuori and Oja 2000; Vuori et al. 2000a; Vuori et al. 2000b; Vuori et al. 2001a;
Vuori et al. 2001b; Vuori et al. 2002; Vuori and Laaksonen 2002; Vuori 2002). Thus,
this chapter gives just a general overview of the recognition system, describes the applied
methods briefly, and reports only the main results of the experiments.

The components of the adaptive character recognition system are shown and their
interactions are illustrated in Figure 7. The information flow through the system begins at
the data collection where subjects write isolated characters with a special input equipment
to be described later. The input characters are written either on a special tablet or on the
pressure sensitive display of a PDA device. Next, the input characters are preprocessed
and normalized. After that, they are either stored in the database for later use or they are
directed for the recognition to the DTW-matcher. The DTW-matcher compares the input
characters with all the labeled character prototypes and directs the matching results to the
classification and adaptation units. The k-NN classifier sends the recognition results to the
user interface. The adaptation unit modifies the prototype set of the k-NN classifier on the
basis of the user’s reactions to the recognition results, the input characters, and the usages
and performances of the prototypes. The prototypes can be selected by a human expert
or by a DTW-based clustering algorithm from a database containing character samples
from several subjects. The recognition system also includes a DTW- and prototype-based
method for representing personal writing styles by vectors and a SOM-based method for
their visualization and clustering analysis.

The following sections are organized as follows: section 3.1 describes the collection and
contents of the databases used in the experiments; section 3.2 introduces the preprocessing
and normalization methods developed during the thesis project; section 3.3 outlines the
various DTW-based dissimilarity measures defined for on-line characters and describes how
the dissimilarity measures of infinite range can be transformed into similarity measures
of finite range; section 3.4 introduces the clustering algorithms and indices developed for
automatic prototype selection; section 3.5 reintroduces the k-NN rule and its mathematical
foundation and describes some speed-up methods for the classification process; section 3.6
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SOM visualization

Preprocessing and normalization
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DTW-matcher

DTW-matcher
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Personal writing style vectors

k-NN classifier

Adaptation rules

User interface
Database

Figure 7: General overview of the developed recognition system. The arrows represent
interactions between the various components of the system.

describes the various adaptation strategies of the k-NN classifier; section 3.7 introduces
the formation and SOM-based analysis of personal writing style vectors.

3.1 Data collection and databases

The first experiments were performed with databases collected in the Laboratory of Com-
puter and Information Science at Helsinki University of Technology, Finland. These
databases are thus called local Databases 1–4. The latest experiments have been carried
out by using two large public databases.

The character samples of the local databases were collected with pressure sensitive Wa-
com ArtPad II tablet attached to a Silicon Graphics (SGI) Indy workstation (Database 1)
or SGI Octane workstation (Databases 2–4). The resolution of the tablet is 100 lines per
millimeter and the sampling rate is at maximum 205 data points per second. The loci of
the pen point movements consists of the x- and y-coordinates, the pen’s pressure against
the writing surface, and recording time. All data were saved in UNIPEN format (Guyon
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Figure 8: The user interface of the data collection program used in the collection of local
Databases 2–4.

et al. 1994). The essential details of the local databases are summarized in Table 3.
The first local database (Database 1) consists of characters which were written without

any visual feedback: the trace of the pen was shown neither on the tablet nor on the
screen. Therefore, the pressure level thresholding the pen movements into either pen-up
or pen-down movements was individually set for each writer. Some of the characters were
written in alphabetical order, but most of them according to a dictation of a short story.
The characters of Database 1 are upper and lower case Latin characters, upper and lower
case versions of the three diacritical characters used in the Finnish language, digits, and
some special characters. The special characters have not been used in the thesis project.
Database 1 consists of approximately 10 400 character samples written by 22 subjects.
The distribution of the character samples in respect to the characters classes is uneven and
roughly the same as in the Finnish language.

The rest of the local databases (Databases 2–4) were collected with a program which
showed the pen trace on the screen and recognized the characters on-line. The minimum
writing pressure for showing the trace of the pen on the screen and detecting pen down
movements was the same for all writers. All the samples were checked manually and those
which were reported as writer’s mistakes or clearly incorrect were abandoned. The user
interface of the data collection program is illustrated in Figure 8. Database 2 was collected
with a very poor recognizer. The database consists of approximately 13 200 character
samples with nearly even distribution. The first five writers wrote 2 040 characters (30
samples per a class) but the amount of work was found to be intolerable and so the
total number of character samples was reduced down to 1 020 for the rest of the writers.
Database 3 consists of Database 2 and character samples written by eight additional writers.
For them, a bit better adaptive recognizer was used. The total number of character samples
in the Database 3 is approximately 21 200. The adaptive recognizer was further improved
for the collection of Database 4 which consists of approximately 8 100 characters written
by eight new writers. The total number of subjects who participated in the collection of
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Table 3: Summary of the local databases.

Database Subjects Left-handed Females Items Classes

Database 1 22 1 1 ∼ 10 400
a–z, A–Z, å, ä, ö, Å, Ä,
Ö, 0–9, and special char-
acters

Database 2 8 2 5 ∼ 13 200
a–z, A–Z, å, ä, ö, Å, Ä,
Ö, 0–9

Database 3 16 2 5 ∼ 21 200
a–z, A–Z, å, ä, ö, Å, Ä,
Ö, 0–9

Database 4 8 0 5 ∼ 8 100
a–z, A–Z, å, ä, ö, Å, Ä,
Ö, 0–9

the local databases is 45.
The two public databases are called IRONOFF (Viard-Gaudin et al. 1999) and

UNIPEN train_r01_v07 (Guyon et al. 1994). Only the isolated digits and upper and
lower case letters were used in the experiments. The two databases were combined into
one, all the character samples were checked manually and obviously erroneous ones were re-
moved. The removed samples were segmented or labeled incorrectly, contained wild points
or small extra strokes, or were somehow malformed or written in a very unnatural way.
Some typical examples of bad handwriting samples which were cleaned from the public
databases are illustrated in Figure 9. In total, 3 174 erroneous samples were found. The
total number of samples in the cleaned database is 130 831. These samples have been writ-
ten by 728 subjects. The subjects were of various ages and from several countries and both
handedness groups were represented. The character samples of the public databases have
been collected with pressure-sensitive displays or tablets which are able to record the x-
and y-coordinates of a moving pen point. As the public databases had several contributors,
the character samples are of significantly varying quality.

3.2 Preprocessing and normalization methods

During the thesis project, the following preprocessing methods have been developed
and experimented with: DuplicatePoints, SpuriousPoints(f), Decimate(n), Interpolate(n),
EvenlySpacedPoints(d), NPointsPerStroke(n), and ExtremePoints(d). DuplicatePoints is a
nonlinear down-sampling method which removes data points whose coordinate values are
exactly the same as those of the preceding data point. SpuriousPoints is a nonlinear down-
sampling method which removes spurious data points caused by hardware problems of the
data collection equipment, for its detailed description, see (Vuori et al. 2000a, included
publication 4). Decimate is a linear down-sampling method which keeps only every nth
data point. Interpolate method works in the opposite way: it interpolates n new spatially
equidistant points between the successive original data points. EvenlySpacedPoints is a
resampling method which interpolates new spatially equidistant data points so that the
Euclidean distances between successive data points are d. NPointsPerStroke is a linear
resampling method which interpolates n equidistant data points per each stroke. There-
fore, the new data points are more sparsely distributed in long strokes than in short ones.
ExtremePoints is a nonlinear down-sampling method which keeps only those data points
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Figure 9: Some typical examples of bad handwriting samples which were cleaned from the
public databases.

in which the horizontal or vertical component of pen point velocity changes sign, becomes
zero, or ceases to be zero. It also requires that there is a minimum spatial distance between
successive retained data points.

Most of the experiments with the different preprocessing methods were performed only
with the local databases containing character samples of high quality in respect to sampling
frequency, resolution and spurious data points. In all the experiments, character samples
were first preprocessed with the DuplicatePoints method. This preprocessing had either
only a slightly beneficial or no effect at all on the performance of the recognition system.
The SpuriousPoints method was only applied in the palm-top implementation (Vuori et al.
2000a, included publication 4), because for some unknown reason the data acquisition in
that environment produces clearly erroneous data points. However, they are rare and easily
removable by using this nonlinear filtering.
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Preprocessing methods Decimate, Interpolate, and EvenlySpacedPoints were compared
to each other in the series of experiments reported in (Vuori et al. 2001a, included publi-
cation 1). In that work, various combinations of preprocessing and normalization methods
and dissimilarity measures were experimented with and the best average recognition rates
were obtained either by using the DuplicatePoints and Decimate methods together or the
former method alone. This is an interesting result, as it indicates that the implicit dy-
namic information which is contained in temporally equidistant data points is beneficial.
It also shows that the sampling frequency used in the collection of the local databases was
sufficiently high.

Preprocessing methods NPointsPerStroke and EvenlySpacedPoints were compared to
each other in an unpublished experiment performed while designing an assignment for the
Pattern Recognition course that the author lectured at the Helsinki University of Technol-
ogy. A writer-independent prototype set was formed from the digit samples of Database
1 and the digit samples of Databases 3 and 4 were used as a test set. According to this
small-scale experiment, the EvenlySpacedPoints method yielded slightly better recognition
results, probably because the NPointsPerStroke method emphasizes too much small strokes
and dots, positions and shapes of which may vary considerably. Therefore, the only advan-
tage of the NPointsPerStroke methods seems to be the fact that it produces fixed-length
time series representations for the character samples.

In the work reported in (Vuori et al. 2001b, included publication 5), the Decimate and
ExtremePoints preprocessing methods were compared with each other. In the performed
experiments, the error rates obtained by using the ExtremePoints method were less depen-
dent on the value of the down-sampling parameter and there was less variation between
different writers. The both preprocessing methods were efficient in reducing the average
recognition time. In the case of the Decimate method, the recognition accuracy clearly
deteriorated and its variation between the writers increased if the value of the decimation
parameter n was increased. When the ExtremePoints method was used as a preprocessing
method, the recognition accuracy was more or less the same with the different values of
the distance parameter d. If the parameter values were set so that the recognition time
was approximately the same with the two preprocessing methods, ExtremePoints(d) was
better than Decimate(n) in respect to the total error rate, the average error rate calcu-
lated for the personal error rates of different writers and their standard deviation. Figure
10 illustrates the effects of the ExtremePoints(d) and Decimate(n) methods. This shows
that the latter preprocessing method keeps the corners in their original locations better
than the former method when the number of preserved data points is approximately the
same in the preprocessed character samples.

During this thesis project, the following normalization algorithms have been developed:
MassCenter, BoundingBoxCenter, and MinMaxScaling. MassCenter moves the mass cen-
ter of the data points of the character sample into the origin of the coordinate system.
BoundingBoxCenter does the same to the mass center of the bounding box. MinMaxScal-
ing is a linear scaling which preserves the aspect ratios of the character samples and sets
the longer sides of the bounding boxes to a constant value. This size normalization treats
upper and lower case letters equally. Thus, problems will arise if the lower and upper case
versions of the letters differ only by their size. If preprocessing and normalization methods
are used together, the size normalization has to be performed first, then the preprocessing
operations, and finally the translation normalization.

According to the experiments with a DTW-based character recognition system reported
in (Vuori et al. 2001a, included publication 1), MassCenter produces better recognition
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(a) (b) (c)

Figure 10: (a) Character sample prior to preprocessing. The same character sample pre-
processed with (b) Decimate(8) or (c) ExtremePoints(20) method.

results than BoundingBoxCenter. Evidently, MassCenter is more robust against elongated
strokes and dot positioning and therefore finds the centers of the main bodies of the charac-
ter samples more robustly than BoundingBoxCenter. In all the experiments, significantly
better result were obtained with MinMaxScaling method than with no size normalization at
all. Even though the most of the recognition errors, 34–44%, were confusions between the
upper and lower case versions of the same letter when the letters and digits were recognized
together.

3.3 Measuring dissimilarity with Dynamic Time Warping

The DTW algorithm is a nonlinear matching method for time series. It was developed
originally for speech recognition in the beginning of 1970’s (Sankoff and Kruskal 1983)
and was introduced for the recognition of handwriting in the early 1980’s (Kurtzberg
and Tappert 1981). DTW-based matching methods have been used successfully also in
on-line signature verification (Martens and Claesen 1997; Sato and Kogure 1982; Wirtz
1998). The DTW algorithm can be used for the comparison of all kinds of time series. It
finds the optimal time warping, i.e. the point-to-point correspondence between two time
series, which minimizes the sum of point-wise matching costs. The DTW-based matching
methods are insensitive to the distortions caused by the varying writing speed, for example,
to the variations in the total number and distribution of data points in a character sample.
However, these methods are not sensitive only to the variations in the shapes of the strokes
but also to the variations in the drawing order and direction of the strokes.

The DTW-based matching methods are well suited for on-line handwriting recognition
due to their transparency to the users. Let us assume that on-line handwriting is repre-
sented by a time series of the coordinate points of the moving pen point and the DTW
matchings of the input characters and the prototypes are illustrated as in Figure 11. It is
very easy to see how the shapes of the input characters should be modified to better match
the correct prototypes.
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Figure 11: The point-to-point correspondence of two characters established with the DTW
algorithm.

3.3.1 DTW-based dissimilarity measures

Six dissimilarity measures based on the DTW algorithm and called Point-to-point, Normal-
ized point-to-point, Point-to-line, Normalized point-to-line, Kind-of-area and Simple-area
distances were developed during this thesis project. All the six dissimilarity measures are
defined on stroke basis. If the number of strokes in two characters are different, the dis-
similarity measure between the characters is defined to be infinite. Otherwise, it is the
sum of the dissimilarity measures between the corresponding strokes. The main difference
between the dissimilarity measures is in the costs of matching two data points. All the
matching costs and continuity and boundary constrains of the DTW algorithm are sym-
metric. Therefore, the dissimilarity measures are symmetric. The continuity constraints
require that the data points are matched in the same order as they have been produced. In
addition, all data points are matched at least once and several data points can be matched
against one. According to the boundary constraints, the first and last data points of the
strokes are matched against each other or to lines interpolated between the first, or last,
two data points.

Point-to-point distance uses the squared Euclidean distance between the data points
as the matching cost. There are five variants of it. In the basic version, data points are
represented only by their x- and y-coordinates. In the first two variants, also the magnitude
or x- and y-components of the pen point velocity are used as data point features. In the
first speed-up variant, constraints for the nonlinearity of the optimal time warping path
are stricter than in the basic version. The other speed-up variant compares the lengths of
the strokes first and sets the dissimilarity between the characters samples infinite if they
differ too much. The two speed-up variants of Point-to-point distance are described in
more detail in section 3.5.2.

In the case of Point-to-line distance, the data points are matched to lines interpolated
between the data points. The matching cost is the minimum squared Euclidean distance
between the line and the point. All the data points except the first and last ones of one of
the strokes are matched. Normalized point-to-point and Normalized point-to-line distances
are otherwise similar to Point-to-point and Point-to-line distances, respectively, but the
sums of the matching costs are divided stroke-wise by the number of matchings, i.e. the
length of the warping path. In some applications, these distances are further normalized
by dividing them by the number of strokes.
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Kind-of-area(n,m) distance also matches data points against data points. However, the
matching cost is a product of two terms. The first term is the nth power of the Euclidean
distance between the data points. The second term is the mth power of the sum of the
Euclidean distances from the matched data points to their neighboring data points in the
time series. Kind-of-area(2,0) and Point-to-point distances are equivalent. As illustrated
in Figure 11, each matching of data points, except the first one, defines a new triangle or
quadrangle. Simple-area distance uses the areas of these polygons as the matching costs.

The main difference between the dissimilarity measures is their sensitivity to the dy-
namic variations of handwriting, such as speed and acceleration, and the timing of the
sampling process. These factors affect Point-to-point distance most. Point-to-line dis-
tance is not so sensitive to the phase of sampling due to the interpolations. In case of
Normalized point-to-point and point-to-line distances, the effects of dynamic variations are
reduced by the normalization. The sensitivity of Kind-of-area(n,m) distance to the dy-
namic variations can be controlled with the parameter m. Provided that the sampling
frequency is high, the area between two strokes does not depend much on the dynamics of
the writing. Therefore, Simple-area distance depends the least on the dynamic properties
of the strokes.

3.3.2 Experimental results for the dissimilarity measures

The basic version of Point-to-point, Normalized point-to-point, Point-to-line, Normalized
point-to-line, Kind-of-area and Simple-area were compared to each other using different
preprocessing and normalization in the experiments reported in (Vuori et al. 2001a, in-
cluded publication 1). The basic version of Point-to-point performed best on average.
Normalized point-to-point performed nearly as well, its averaged error rate was only 1%
higher. Point-to-line and Normalized point-to-line both produced the averaged error rate
7% higher than the averaged error rate of the basic Point-to-point. With Kind-of-area and
Simple-area the averaged error rate was 15% and 87% higher, respectively.

The basic version and the first two variants of the Point-to-point dissimilarity measure
were compared to each other in an unpublished recognition experiment in which a writer-
independent prototype set was formed from the samples of Database 1 and the lower case
letters and digits of Databases 3 and 4 were used as a test set. The data points were
represented by the x- and y-coordinates of the pen point position and the magnitude or
the x- and y-components of the pen point velocity. The lowest averaged error rate was
obtained when the positional features were weighted by a factor of 1 and the velocity
components by a factor of 0.25 in the squared Euclidean distances between the matched
data points. This optimal averaged error rate was only 1% lower than the averaged error
rate obtained with the basic version of Point-to-point.

The basic version and the two speed-up variations of the Point-to-point dissimilarity
measure were compared to each other in the experiments reported in (Vuori et al. 2000a,
included publication 4). According to the experimental results, the first speed-up variation
was able to decrease the recognition time nearly by 30% while the error rate remained
practically the same and less than 1% of the character samples got rejected. The second
speed-up variation was able to decrease the recognition time by 11% while the error rate
rose by less than 1% and the rejection rate was less than 0.01%.
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3.3.3 Transforming dissimilarities into similarities

The DTW-based dissimilarity measures discussed in the previous section have ranges from
zero to infinity and their values depend on the number of strokes. In addition, the unnor-
malized versions of Point-to-point and Point-to-line distances depend on the number of
data points in the strokes. However, in the most cases, it is not interesting which are the
most dissimilar character samples but which are the most similar ones. Therefore, a better
resolution should be used for the small dissimilarity measures than for the large ones. The
dissimilarity measures calculated for all kinds of character pairs can be made comparable
with each other by simply normalizing them by the number point-wise matching costs and
by the number of strokes. For example, in the studies reported in (Vuori and Oja 2000,
included publication 7) and (Vuori 2002, included publication 8), personal writing styles
were characterized by vectors, the components of which indicated how much the subjects’
character samples resembled certain prototypical writing styles for isolated characters. In
these works, the similarities between the characters were obviously much more important
than the dissimilarities. In addition, it was important that all the components of the writ-
ing style vectors had the same range. Otherwise, the components with larger ranges would
have had a dominating effect on the results.

For the aforementioned reasons, two transformations which turn Normalized point-to-
point distances of infinite range into similarity measures of finite range have been devel-
oped. The similarity measures obtained with the two transformations have the following
properties. In both transformations, the Normalized point-to-point distance between the
character samples is normalized by the number of strokes and thus the similarity measures
are independent of the number of strokes and data points. Both the transformations result
similarity measures with ranges from zero to one. The parameters of the first transfor-
mation were selected so that for the most of the character samples the similarity measure
for the best-matching correct prototype was close to one whereas the similarity values
evaluated for the rest of the prototypes were close to zero. The parameter of the second
transformation was set so that that the distribution of the similarity measures between
character samples and their best-matching correct prototypes was approximately even.
The former transformation produces more or less binary-valued similarity measures which
just tell whether two characters are considered similar or not. The similarity measures ob-
tained with the latter transformation have better resolution and really describe how similar
the two characters are.

3.4 Creation of a prototype set

In the case of prototype-based recognition systems, the better the different writing styles
are covered and represented by the prototypes, the higher accuracies are achieved. However,
the prototype set should not contain too many redundant prototypes as the recognition time
depends linearly on its size. The prototype set can be formed automatically by applying
a clustering algorithm to a large training database containing character samples written
be several subjects. In such an approach, the clustering algorithm divides the training
database into groups of similar character samples, or clusters, and selects a prototype for
each cluster which represents all the character samples in that cluster. Clustering of the
training samples is beneficial with other recognition methods too. For example, better
recognition results can be expected if each writing style is modeled with its own HMM
instead of using one model per class and for several, sometimes significantly different,
writing styles (Connell 2000).
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Figure 12: A visualization of a hierarchical clustering found by the TreeClust algorithm.
Each row corresponds to one clustering solution and the lines show which clusters are
merged to get the next solution. The shown character samples are cluster prototypes.

Often, one of the major obstacles in finding a good clustering or a prototype set is the
uneven representation of different writing styles in the database: there can be hundreds
of examples of some common styles but only a few samples of the rare styles. Another
difficult problem is the determination of the number of clusters. The number of clusters
can be selected automatically on the basis of some clustering index which measures the
similarities and dissimilarities of the character samples within and between the clusters.
Alternatively, the number of clusters can be decided by a human expert. Figure 12 shows
how the progress of an agglomerative clustering can be visualized with a tree-like structure.
From such a visualization, it is easy to see whether the number of clusters is too high or
low. In the former case, the prototypes of different clusters are too similar to each other.
In the latter case, there are no prototypes for the writing styles which could be observed
in the earlier stages of the clustering algorithm.

During the thesis project, four hierarchical clustering algorithms for prototype selection
and two clustering indices which can be used with the clustering algorithms for automatic
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determination of the number of prototypes have been developed. They all use the DTW
algorithm to compare character samples. The clustering algorithms and indices, as well as
the experimental results obtained with them are discussed briefly in the next three sections.

The topic of automatic prototype selection has been considered previously in (Anony-
mous 1989; Bontempi and Marcelli 1994; Connell and Jain 1998; Duneau and Dorizzi 1994;
Li and Yeung 1997; Morasso et al. 1993; Nathan et al. 1993; Prevost and Milgram 2000;
Schomaker 1993; Vuurpijl and Schomaker 1997a).

3.4.1 Clustering algorithms for prototype selection

The developed clustering algorithms are called TailCutting, TreeClust, CMeans, and Min-
Swap. TailCutting is a semiautomatic clustering algorithm, i.e. the number of clusters, or
prototypes, must be predefined by the user. This algorithm starts from a situation in which
all the samples belong to the same cluster. The number of clusters is increased iteratively
until the predefined count is reached or the samples run out. The iterative algorithm starts
by finding the centers of the clusters, i.e. the items which yield the minimum sum of dis-
similarity measures between themselves and all other items belonging to the same cluster.
Next, all the items are ordered into an increasing series according to their distance to the
center item of their cluster. A new cluster is formed of the items furthest from their cluster
centers. The number of items in the new cluster is determined by minimizing a splitting
criterion function. Before the next cluster splitting, the cluster centers are iteratively re-
calculated and each item is assigned to the cluster center nearest to it. This is repeated
until a stationary partition is reached. A detailed description of the algorithm can be found
from (Laaksonen et al. 1999) and (Vuori et al. 2001a, included publication 1).

Clustering algorithms TreeClust, CMeans (Duda and Hart 1973), and MinSwap are ag-
glomerative and hierarchical. There are two version of CMeans algorithm called CMeans 1
and CMeans 2. With all these algorithms, clusters are represented by prototypes which are
the samples having the minimum sum of distances to the other samples in the same cluster.
TreeClust, MinSwap, and CMeans 2 start form a situation in which all the samples are
prototypes, i.e. form their own clusters, while in the beginning of the CMeans 1 algorithm,
only a random subset of the samples is selected to be the initial prototype set.

As the clustering algorithms proceed, the number of clusters is reduced by merging of
clusters. In TreeClust-, CMeans 1 -, and CMeans 2 algorithms those two clusters whose
prototypes are most similar to each other are merged into one. MinSwap algorithm tries
several alternative mergings, first the clusters with the most similar prototype pair, then
the clusters with the next similar pair, etc. A new prototype is selected among the samples
which belong to the new cluster. After that, MinSwap, CMeans 1, and CMeans 2 reassign
the samples into the clusters according to the closest prototypes and then reselect the
prototypes. This is continued until a stable division is found. MinSwap performs the same
procedure but also calculates how many of the samples are swapped out from the new
cluster into the other clusters, or vice versa, and selects that merging which gives rise to
the minimum number of these swappings.

3.4.2 Clustering indices for determining the number of prototypes

The clustering indices are called DB (Davies and Bouldin 1979) and CH (Calinski and
Harabasz 1974). The DB and CH clustering indices have been modified from their original
version so that the squared Euclidean distances between two samples or a sample and
cluster prototype are replaced by DTW-based distances. In addition, the sample which
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has the minimum sum of distances to all the other samples is used as a mean. The DB
index was selected to be used in the experiments of this thesis work because it is one of
the most commonly used clustering indices.

The DTW-based DB index can be calculated as follows. First, evaluate DBij

DBij =
Si + Sj

Mij

(1)

where Mij is the distance between the prototypes of the ith and jth cluster and Si is the
average of the distances between the prototype Pi of the ith cluster and the ni samples
{Cj

i }
ni

j=1
belonging to that cluster, or

Si =
1

ni

ni∑

j=1

d(Pi, C
j
i ) (2)

where d(·, ·) is the DTW-based distance. The DB index is then given by the following
equation:

DB(k) =
1

k

k∑

i=1

max
1≤j≤k,j 6=i

DBij (3)

where k is the number of clusters. A sensible number of clusters can be determined by
minimizing the DB index.

The CH index was selected as it outperformed several other clustering measures, in-
cluding the DB index, in a thorough comparison performed by Milligan and Cooper (1985).
The numerator part of the CH index measures how much the cluster prototypes differ from
the mean sample and the denominator part tells how much the samples differ from their
cluster prototypes. Therefore, a reasonable number of clusters can be found by maximizing
the CH index. The DTW-based CH index can be evaluated as follows:

CH(k) =

∑k

i=1
nid(Pi,M)/(k − 1)

∑k

i=1

∑ni

j=1
d(Pi, C

j
i )/(n− k)

, (4)

where d(·, ·) is the DTW-based distance, k is the number of clusters, n is the total number
of samples, ni is the number of samples in the ith cluster, Pi is the prototype of the ith
cluster and M is the mean sample and Cj

i is the jth sample in the ith cluster.

3.4.3 Experimental results for the clustering algorithms and indices

Clustering algorithms TailCutting and TreeClust were compared with each other in two sets
of experiments. In these experiments, the prototypes were selected among the character
samples of local Database 1 by using either the TailCutting or TreeClust algorithm. The
prototype sets were then evaluated and compared with each other by using them for the
recognition of the character samples included in local Databases 3 and 4. In the first set of
experiments, the two clustering algorithms were used for selecting seven prototypes per each
lower and upper case letter and digit class. The error rates obtained by using prototypes
selected by the TailCutting or TreeClust algorithm were 23.1% or 24.8%, respectively. In
the next set of experiments, the number of prototypes per character class varied between
1 and 7. The TailCutting algorithm performed better also in this case as the error rates
obtained by using prototypes selected by the TailCutting or TreeClust algorithm were
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24.8% or 25%, respectively. However, these small differences between the error rates are
quite insignificant in practice.

Clustering algorithms TreeClust, MinSwap, CMeans 1, and CMeans 2 were compared
with each other in the experiments reported in (Vuori and Laaksonen 2002, included pub-
lication 6). The main objective of those experiments was to find clearly distinct prototypes
for each character class which would represent well all the writing styles present in the large
public databases. Therefore, no attention was paid to how well the prototype set could
capture differences between the classes, i.e. would perform in a classification task. Missing
rare styles was considered to be a much worse problem than over-represented common
styles. Instead of recognition rates, different clustering results were judged and compared
with each other on the basis of the knowledge on the writing styles established during the
manual examination and cleaning of the character database.

In these experiments the DB and CH clustering indices rarely agreed and a manual
examination of the clustering results revealed that neither one of them did make much
sense in practice. Therefore, the number of prototypes could not be decided automatically.
The prototypes found with the different clustering algorithms for common writing styles
were very similar with each other. However, the different clustering algorithms did miss
different rare writing styles. CMeans 1 could not find the rare styles at all unless they
were selected as initial prototypes, which was not very probable as the common styles
were heavily over-represented in the training database. CMeans 2 performed little better
as initially all the samples were prototypes. However, due to the reassignments of the
samples into the clusters, the small clusters of high internal variance were often absorbed
into the big clusters. There were no clear difference between CMeans 2 and MinSwap –
perhaps there should be some kind of normalization by the size of the new cluster for the
number of swappings. MinSwap algorithm evidently favors merging small clusters. Of all
the four algorithms TreeClust could best preserve the small clusters of rare styles in the
merging process. However, assignment of the samples into the clusters is always final and
the prototypes of common styles were not always the best representatives of all the samples
of that style. Instead of selecting one general prototype, TreeClust algorithm tended to
select a couple of more extreme samples of the same style. This problem can be alleviated
by fine-tuning the final prototypes for example with the Learning Vector Quantization
(LVQ) algorithm as in (Vuori and Oja 2000, included publication 7).

3.5 Classification

The adaptive character recognition system developed during this thesis project is based
on the k-NN rule. This simple decision rule is based on distances between the unknown
sample and the prototypes but it can also be interpreted as a statistical classification rule
based on the estimates of the a posteriori probabilities of the classes. Section 3.5.1 gives
the mathematical justification of that interpretation. Section 3.5.2 introduces the speed-up
methods developed for the k-NN classification process.

3.5.1 The k Nearest Neighbors rule

The k Nearest Neighbors rule was first introduced by Fix and Hodges (1951) and further
analyzed by Cover and Hart (1967). The k-NN rule is a data-driven approach and a
completely parameter-free method as it does not rely on any assumptions on the underlying
distributions of the classes. The classification is based only on the known classifications
of the training samples which form the prototype set: an unknown sample is classified
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according to majority of the classes of its k nearest prototypes. The volumes of the regions
spanned by the k nearest neighbors depend on how densely the prototypes are distributed
around the unknown character sample. This is the main difference compared to other
nonparametric statistical classification methods, for example the Parzen window method
(Duda and Hart 1973), which estimate the class probabilities on the basis of the training
samples observed in regions of fixed volume. The mathematical background of the k-NN
rule is described next (Schalkoff 1992).

The k-NN rule is based on the following assumption: as the number of the training
samples n increases to infinity, the number of training samples kn which fall into a given
region Vn also increases to infinity, or

lim
n→∞

kn →∞, (5)

so that the ratio kn/n approaches the probability that a sample falls in that region. On the
basis of that assumption, the probability distribution p(x) of the samples can be estimated
as follows:

P (a sample falls in the neighborhood of x with volume Vn)

Vn

=
kn/n

Vn

≈ p(x). (6)

According to the Bayes rule,

P (ωi|x) =
P (ωi)P (x|ωi)

P (x)
=

P (x, ωi)

P (x)
=

P (x, ωi)∑C

j=1
P (x, ωj)

(7)

where C is the number of classes. The required probabilities P (x, ωi) can be estimated by
using (6) in the following way:

P (x, ωi) ≈
ki/nv

V
(8)

where nv is the total number of the training samples fallen in region V and ki is the
number of samples belonging to the class ωi. By substituting (8) into (7), the following
approximation of P (ωi|x) will be obtained:

P (ωi|x) ≈
(ki/n)/V

∑C

j=1
(kj/n)/V

=
ki

k
. (9)

As has been shown above, the k-NN rule corresponds to a classification carried out by
choosing the most probable class according to the estimates of the a posteriori probabilities
of the classes. Cover and Hart (1967) have shown that any other k-NN rule, k 6= 1, does
not have an error probability lower than the 1-NN rule if every interclass distance is greater
than any intraclass distance. If the classes are overlapping in the feature space and the
training set is large, a k-NN rule with k 6= 1 performs better than the 1-NN rule as it
gives more accurate estimates of the a posteriori probabilities of the classes. Cover and
Hart (1967) have also proven that the error probability of the k-NN rule has both upper
and lower limits. If R∗ is the optimal error probability obtained with the Bayes rule and
the true probability distributions of the classes and the size of the training set approaches
infinity, the bounds of the error probability R of the k-NN rule are given by the following
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inequality:

R∗ ≤ R ≤ R∗(2−
M

M − 1
R∗) (10)

where M is the number of classes.
The drawbacks of the k-NN rule are its memory requirements and computational com-

plexity which depend linearly on the size of the prototype set. Therefore, the prototype
sets used in this work have been formed by using clustering algorithms, although, better
recognition accuracies would have been obtained with the whole training database. The
applied clustering algorithms select several prototypes for each character class but each
prototype represent a different writing style. Thus there can be only one correct prototype
among the nearest prototypes of a character sample. For this reason, the classifications
have always been performed according to the 1-NN rule. It should be noted that if the
prototype set contains only one prototype per each different writing style, the computa-
tional complexity and the memory requirements of the recognition system are of the same
degree as they would be with any recognition system based on allograph models.

3.5.2 Speed-up methods for the k-NN classifier

There are other ways to reduce the computational complexity of the k-NN classification
procedure besides limiting the size of the prototype set. During the thesis project, two
approaches have been taken in order to speed-up the recognition process. In the first
approach, the computational complexity of the individual matchings is reduced by posing
stricter constraints for the DTW matching. In the second approach, the number of required
complete DTW matchings is reduced. This is achieved by ordering the prototypes so that
the DTW distances to the well-matching prototypes will be evaluated in the early stages
of the search and a DTW matching is interrupted as soon as it becomes clear that the
current prototype is not among the k best-matching ones.

During the thesis project, two additional constraints for the Point-to-point DTW match-
ing have been introduced. The first constraint requires that the matched strokes have to be
of somewhat similar length. This constraint was formulated as follows: the strokes cannot
be matched if

(N2 ≥ αN1 + β) or (N1 ≥ αN2 + β), (11)

where N1 and N2 are the lengths of the strokes. Pruning parameter α ≥ 1 determines how
much N1 and N2 are allowed to differ relatively whereas pruning parameter β ≥ 0 sets an
upper limit for the absolute difference between N1 and N2. The other constraint regulates
how much the DTW matching is allowed to differ from linear matching. The strictness of
this constraint can be regulated with a single parameter 1 ≥ c ≥ 0. This constraint was
formulated as follows: the ith data point of stroke 1 and the jth data point of stroke 2 can
be matched if

N2

N1

i− cN2 ≤ j ≤
N2

N1

i+ cN2. (12)

where N1 and N2 are again the lengths of strokes. If c = 0, linear matching is the only
feasible solution. Figure 13 illustrates how this constraint reduces the number of feasible
point-to-point matching between the strokes. According to the experimental result reported
in (Vuori et al. 2000a, included publication 4), the additional constraints decreased the
average recognition time of a single character significantly, see also section 3.3.2.

The prototypes can be ordered prior to full-scale DTW matching on the basis of the
rough shape of their first stroke or on the basis of a fast preclassification. In the former ap-
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Figure 13: A DTW matching the nonlinearity of which has been constrained by equation
(12) and parameter c = 1/3. All the feasible point-to-point matchings of the strokes are
inside the shaded area. An example of a feasible solution is plotted with a bold line.

proach, the prototypes and unknown character samples are divided into sixteen categories
determined by the quadrants of the coordinate plane in which the starting and ending
points of their first stroke are located (Vuori et al. 2002, included publication 2). Each
category is represented by four binary-valued bits so that if the starting or the ending point
of the first stroke is moved to the neighboring quadrant, only one bit changes its value.
The distance between two categories is the count of bit differences in their representations.
The prototypes which have the smallest category distance to the unknown sample are
matched first. According to an unpublished, small-scale experiment, roughly 70% of the
best-matching prototypes belonged to the same category as the unknown character. In the
latter approach, the preclassification is performed with heavily down-sampled characters
and thus the DTW matchings can be performed very fast. The final classification is then
performed with the N best-matching prototypes found in the preclassification. According
to the experimental results reported in (Vuori et al. 2001b, included publication 5), the
two-phased classification scheme speeds-up the recognition process significantly, by about
76%, without increasing the recognition error rate at all.

3.6 Adaptation strategies

A prototype-based recognition system can be adapted to new writing styles basically in
three ways: by adding new prototypes, inactivating confusing prototypes, and reshaping
existing ones. Several adaptation strategies which combine these three basic operations in
different ways have been experimented in this thesis work. These experiments have been
reported in included publications 1–4 (Vuori et al. 2000a; Vuori et al. 2000b; Vuori et al.
2001a; Vuori et al. 2002). Included publication 1 (Vuori et al. 2001a) introduces four
adaptation strategies which are called Add, Lvq, Hybrid, and Inactivate. Included publica-
tion 2 (Vuori et al. 2002) describes three new variations of Inactivate-strategy which are
called Inactivating Prototypes 2 -4. Included publication 3 (Vuori et al. 2000b) introduces
five controlled adaptation strategies called PLAdd, PLAddAndLvq, PLAddOrLvq, OFAdd,
and OFAddAndLvq.



67

3.6.1 Add prototypes

Adaptation strategy Add(k) examines the classes of the k prototypes nearest to the input
character. The input character is added to the prototype set if any one of the k nearest
prototypes belongs to a wrong class. Problems arise if the existing prototypes represent
writing styles which the current writer uses but not for the class the prototypes belong
to, or, if the writer uses very similar writing styles for different classes. For example, the
writing styles used for upper case letter ’O’ and digit ’0’, or lower case letter ’l’ and digit
’1’, can be exactly the same, or, ’0’ can be distinguished from ’O’ by a diagonal stroke and
’1’ from ’l’ by a small hook. In such problematic cases, the adaptation strategy adds new
prototypes in vain: the neighborhood of the k nearest prototypes can consists of prototypes
of very similar writing styles but of different classes no matter how many new prototypes
have been added.

3.6.2 Reshape prototypes

When a character input by the current user is basically similar to a prototype of the correct
class, for example, it has the same number and order of strokes, but is of slightly different
shape, the existing prototype can be reshaped instead of adding the input character to the
prototype set. This can be performed with an adaptation strategy called Lvq(α) based
on a modified version of the Learning Vector Quantization (LVQ) algorithm (Kohonen
1997; Laaksonen et al. 1998). The Lvq(α) strategy works as follows. First, a point-to-
point correspondence between the strokes of the input character and the best-matching
prototype is established with the DTW algorithm. Next, the prototype is reshaped by
moving its data points. If the prototype belongs to the same class as the input character,
the data points of the prototype are moved toward the corresponding points of the input
character. Otherwise, the data points are moved in the opposite direction. The positive
learning coefficient α controls the magnitude of these modifications.

Adaptation strategy Hybrid(k, α) combines Add and Lvq strategies. The k nearest
prototypes of the input character are examined. If any one of them belongs to the same
class as the input character, the nearest prototype is modified with the Lvq(α) strategy.
Otherwise, the input character is added to the prototype set. With this adaptation strategy,
the recognition system will be able to learn completely new writing styles but the increase
in the size of the prototype set should be moderate compared to the pure Add(k) strategy.

3.6.3 Inactivate prototypes

Adaptation strategy Inactivate(N,G) inactivates those prototypes which are more harmful
than useful. Some character classes tend to be confused, for example ‘g’ and ‘9’, as some
writers write them in exactly the same way. Prototypes which are similar to characters
input by the current user but which belong to wrong classes, i.e. are not used in correct
classifications, should be inactivated or forgotten. After each recognition, Inactivate(N ,G)-
strategy checks if the prototype nearest to the input character should be inactivated: if its
goodness value g is below a given limit G and it has been the nearest prototype for at least
N times, it is removed from the set of active prototypes. The goodness value is defined as
follows:

g =
Ncorr −Nerr

Ncorr +Nerr

, (13)
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Table 4: Summary of the properties of the prototype inactivation methods. A bullet in the
second or third column indicates whether the method keeps an account of the number of
times a prototype has been the best matching one or among the k best matching ones. A
bullet in the fourth or fifth column marks if the usage limit is the same for all prototypes
or whether there are separate limits for the original prototypes and for those which have
been included into the prototype set due to adaptation. The last column tells whether the
goodness limit G is adjustable or fixed to zero.

Inactivation method 1-NN k-NN 1 usage limit 2 usage limits G
Inactivate • • adjustable
Inactivating Pr. 1 • • fixed
Inactivating Pr. 2 • • fixed
Inactivating Pr. 3 • • fixed
Inactivating Pr. 4 • • fixed

where Ncorr and Nerr are the numbers of times when the prototype has been the nearest
one and its class has been correct or incorrect, respectively. Parameters G and N control
the strictness and reaction rate of the inactivation rule, respectively.

Also the Inactivating Prototypes 1–4 strategies help the recognition system to recover
from confusing or erroneous prototypes. Each of these methods keeps an account for
each prototype of the times it has been used, i.e. been the nearest prototype (Inactivating
Prototypes 1 and 3 ), or among the k nearest ones (Inactivating Prototypes 2 and 4 ), and
of the times its class in these cases has been incorrect or correct. After the user has input
a character which then has been classified and the correctness of the classification deduced
from the user’s ensuing activities, potential inactivation of the prototypes involved in the
classification decision can take place. A prototype is inactivated if the following three
conditions are fulfilled simultaneously: 1) it has been used sufficiently many times, i.e. it
has reached its usage limit N , 2) its class has been incorrect more often than correct, and
3) it is not the last prototype of its class. Inactivating Prototypes 1 - and 2 -methods apply
the same usage limit for all prototypes whereas Inactivating Prototypes 3 - and 4 -methods
have separate limits for the original prototypes and for those which have been included
into the prototype set later on due to adaptation. Note, Inactivating Prototypes 1 with
usage limit N and Inactivate(0,N) are equal. The properties of the prototype inactivation
methods are summarized in Table 4. All the prototype inactivation strategies can be used
together with the other adaptation strategies. Erroneous learning samples cause errors in
the prototype accounts. Therefore, some prototypes will be inactivated sooner, or later,
than they would if all the samples were correctly labeled. In the worst case, prototypes are
inactivated even though they are performing well with correct data.

3.6.4 Controlled adaptation

The adaptation strategies can be controlled in two ways: an upper limit can be set for the
number of prototypes per class, or the adaptation of a particular class can be switched on or
off depending on the classifier’s performance. Adaptation strategy PLAdd (PL stands for
prototype limit) works as Add if the number of prototypes is less than the upper limit NU.
Otherwise, the adaptation is turned off. The PLAddAndLvq and PLAddOrLvq strategies
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are similar to the Hybrid and Add strategies, respectively, but if the upper limit for pro-
totypes has been reached, they perform only prototype reshaping. Adaptation strategies
OFAdd and OFAddAndLvq (OF stands for on/off) are based on another controlling princi-
ple. At the beginning of the adaptation, they are similar to the Add and Hybrid strategies.
However, adaptation is switched off for an individual character class if the input samples
belonging to that class have been classified successfully Noff times in a row. On the other
hand, adaptation is switched back on after Non consecutive unsuccessful recognitions.

3.6.5 Self-supervised labeling of the learning samples

All the adaptation strategies described above require that the input characters are labeled,
i.e. their classes are known. Yet, the class labels of the input characters are generally not
available unless the recognition system is being adapted in some special training mode.
However, the labeling of the input samples can be performed in a self-supervised fashion
according to the user’s behavior and reactions to the recognition results. In the simulation
reported in included publications 2 and 3 (Vuori et al. 2002; Vuori et al. 2000b) it was
assumed that the device in which a character recognition system has been implemented
has an input subprogram with the following properties:

1. Input characters are written into the desired positions on the display. Or alternatively,
the user first selects the input position by pointing it with a pen and then writes the
characters into a special writing area. In either case, it is always clear whether the
pen is used as a pointing device or for textual input.

2. Handwritten characters are recognized and replaced by the machine-printed recogni-
tion results right after they have been input.

3. Recognition errors and writing mistakes are corrected by inputting a new character
on top of the machine-printed character.

4. The input text can be edited by drawing special symbols or gestures. For example,
the user might like to remove, move, copy, or paste some parts of the text.

5. All input characters and the their input times and positions are stored.

6. The recognition result of the latest input character is assumed to be the correct class
for all the characters input into the same cursor position.

7. Adaptation is carried out character by character after the recognition results for a
text entity, for example a line, has been accepted by the user.

Such an arrangement is illustrated in Figure 14. The machine-printed characters are
recognition results, and the handwritten characters beneath them are the corresponding
inputs. The topmost handwritten character is the latest input attempt. For example,
the first character, ‘H’, was recognized correctly after the third attempt. All the three
characters input into the same position are labeled according to the recognition result of
the latest character and will be used as learning samples when the user has finished the text
sequence. As recognition errors and spelling mistakes are corrected by the user in the same
way, some of the input characters can be assigned to wrong classes. This could be avoided
by using different methods for the two operations but it would be quite inconvenient for
the user.
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Figure 14: An example of data input. The topmost handwritten characters are the latest
inputs into the input locations. The machine printed characters are the corresponding
recognition results.

Error sources. Erroneous learning situations of three types can take place in this kind
of data input. First, the user may not notice all the recognition errors or does not care
to correct them. This situation is called the error type A. Such a situation occurs in the
example shown in Figure 14: the second character from right was intended to be letter
‘l’ but it was misrecognized and accepted as number ‘1’. According to user experiments
carried out with the questionnaire program described in (Vuori et al. 2000a, included
publication 4), the recognition errors in which the case of a letter is confused tend to be
ignored by the users. Second, if the user makes writing mistakes and corrects them, some
of the learning samples will be incorrectly labeled. This is the error type B. In the example,
the user has first misspelled the word ‘world’ as ‘warld’ and then replaced the correctly-
recognized letter ‘a’ with ‘o’. The adaptation system does not now know whether the first
character, recognized as ‘a’ was meant to be ‘o’ and misrecognized, or not. Third, carelessly
written and thus atypical or malformed characters, such as the first input attempt of letter
‘d’ in the example, give rise to bad learning samples. Also hardware problems can cause
erroneous samples. Erroneous samples are introduced for example when there are problems
in detecting whether a pen is touching the writing surface or not. In such cases, there can
be erroneously segmented characters and characters whose strokes are accidentally broken,
connected or completely missing. In addition, the writing equipment can introduce so-
called wild points which are spurious data points clearly away from the true trace of the
pen. Malformed character samples can be introduced also when there are some problems
in interpreting whether the user is using the pen as a pointing device or for writing. The
malformed samples are considered to be of the error type C.

Hand-held implementation. For evaluation purposes, the character recognition sys-
tem was implemented in a hand-held device and used as a text input method in a ques-
tionnaire program (Aksela 2000; Vuori et al. 2000a, included publication 4). The user
interface of the program is illustrated in Figure 15. The program asks the user questions
which cannot be answered with a single word. The user inputs one character at a time in
either of the two writing areas and the recognition results are shown in the text area above.
Successive characters input in the same writing area are separated by a time threshold.
The system is able to recognize lower and upper case letters and digits. In addition, a



71

Figure 15: User interface of the questionnaire program. Questions to be answered are
shown in the uppermost part of the window. Recognition results are shown in the middle
part. Location of the text cursor is indicated with a blinking vertical line and selected text
partitions are highlighted with black. Input characters are written into the two rectangular
areas in the lower part of the window.

single horizontal line drawn from left to right or vice versa is recognized as a space or
backspace, respectively. These two symbols can also be inserted with special buttons. If
the system is not able to classify the input character (no prototype can be matched due to
prototype pruning or continuity constraints), the user is asked to choose the correct class
from a table of all the available characters.

The text cursor can be relocated by pointing the text with the pen. Text partitions can
be selected by drawing a horizontal line over the text. These simple functions enable the
editing of the text. For example, the user can correct the recognition results by selecting a
character and rewriting it. So that the system would not make the same mistake twice in a
row, the rewritten characters will not be recognized into the same class as its predecessor.
Alternatively, user can make the correction by picking out the correct class from the table
prompted by the Set-button. Special symbols, such as ’?’, ’% ’, ’(’, ’,’ etc., can be inserted
in a similar manner with the Sym-button. More than one character can be deleted at the
same time by first selecting the characters and then replacing them with a single character,
space, or backspace. When the answer is ready, it is submitted with the OK -button.

The recognition system is adapted between questions. Learning samples are labeled
according to the recognition results of the latest characters written in the same positions
or the class set by the user. All the letters and digits of the submitted answers are used
as learning samples. Deleted characters and characters labeled according to them are
abandoned from the learning set. However, if a single character is deleted and replaced
with a new character immediately, both characters are kept in the learning set. With this
policy, the user can change his mind on what he is writing without confusing the adaptation
process.
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Table 5: The selected parameter values and error rates for the adaptation strategies Add,
Lvq, Hybrid, and Inactivate, and for the design and verification set.

Add Lvq Hybrid Inact. Etot
des. Etot

verif. Efinal
verif.

14.33 14.13 14.06
4 2.93 3.12 1.81

0.3 6.81 9.89 8.63
4 3,0 2.95 3.04 1.56

3,0.3 3.06 4.18 2.50
3,0.3 16,0 3.33 4.26 2.75

3.6.6 Experimental results for the adaptation strategies

Perfectly labeled learning samples and Add, Lvq, Hybrid, and Inactivate. The
first experiments with adaptation strategies Add, Lvq, Hybrid, and Inactivate have been
reported in (Vuori et al. 2001a, included publication 1). These experiments were carried
out by using lower case letters and digits. An initial writer-independent prototype set was
formed from the character samples of Database 1. First, character samples written by 16
subjects of Database 3 were recognized one by one and in the same order as they had been
collected. The prototype-based recognition system was adapted after each character sam-
ple. Parameter values which yielded the lowest total error rates with the design database
were selected for the adaptation strategies and the recognition results were then verified
with character samples written by 8 additional subjects of Database 4. The results of
these experiments are summarized in Table 5. The figures in the first four columns are the
parameter values used for the adaptation strategies. The other figures are various error
percentages. Etot

des. and Etot
verif. are the total error rates for all the characters of the design

and verification set. Efinal
verif. is the error rate for the last 200 characters of each writer.

From Table 5 it can be seen that all the adaptation strategies could improve the recog-
nition accuracy significantly. Adaptation strategy Add yielded the lowest total error but it
increased the size of the prototype considerably. The Hybrid strategy improved the recog-
nition rates nearly as much as the Add strategy and added only a few new prototypes.
Adaptation strategy Lvq was not sufficient when used alone as it cannot learn writing
styles which are fundamentally different from those represented by the initial prototypes.
The Inactivate strategy was rarely used and it did neither really improve the recognition
rates nor limit the size of the prototype set. This was not an unexpected result as erroneous
samples had been removed from the databases.

Erroneous learning samples and Add, Hybrid, and Inactivating Prototypes 1–4.

The experiments performed with adaptation strategies Inactivating Prototypes 1–4 are re-
ported in article (Vuori et al. 2002, included publication 2). In these experiments, the
Inactivating Prototypes 1–4 strategies were used together with Add and Hybrid strategies
in on-line adaptation simulations in which some of the learning samples were erroneously
labeled. The lower case letters and digits of Databases 3 and 4 were used as a test set.
The initial writer-independent prototype set was formed from the characters samples of
Database 1. Two types of erroneous labeling situations were concerned. In simulations
where the erroneously labeled were of type A, some of the character samples were erro-
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neously labeled according to their recognition results. In simulations where the erroneously
labeled were of type B, some of the character samples were labeled to arbitrary incorrect
classes.

In the first set of simulations, the risk of erroneous learning samples was minimized by
performing adaptation after the successful recognitions, and with a given error probability,
also after some unsuccessful recognition. Thus, the erroneous learning samples were of type
A. No prototype inactivation strategy was applied in these experiments. According to the
results of the experiments, the prototype-based recognition system is able to improve its
performance significantly on the basis of the successfully recognized characters. Without
any adaptation the recognition error rate was on average approximately 15%. If the Add or
Hybrid strategy was applied and all the recognition errors were noticed, the final error rate
was 6.5% or 6.6%, respectively. The number of erroneous learning samples had a nearly
linear effect on the final recognition error rate. However, even if all the recognition errors
were unnoticed, the final error rates achieved with the adaptive systems did not exceed the
final error rate obtained with a nonadaptive system.

In the second set of simulations, all the character samples were used as learning samples.
Otherwise, the experiments were similar to the experiments of the first set and the erroneous
samples were of type A. These experiments showed that the misrecognized input characters
are very valuable. When all learning samples were correctly labeled, both the Add and
Hybrid strategy were able to reduce the recognition error rate considerably more than in the
first set of experiments as the final error rates for Add - and Hybrid -strategy were 1.3% and
1.6%, respectively. If the probability for labeling misrecognized learning samples incorrectly
was 0.5, the final error rate was approximately 3.2% with the Add strategy and 2.6% with
the Hybrid strategy. These result are still significantly better than those attained in the
first set of experiments. If all misrecognized learning samples were erroneously labeled, the
results of the first and second set of experiments were similar to each other.

In the third set of simulations, erroneous learning samples were of type B. The relation
between the recognition error rate and the probability of erroneous learning samples was
almost linear. If ten percent of the learning samples were labeled incorrectly, the final error
rate was 14.6% or 18.4% for the Add and Hybrid strategy, respectively. The results obtained
with the Add strategy were so much better probably because it did not ruin prototypes
by reshaping them wrongly as the Hybrid strategy did. With both the strategies the
recognition error rate always decreased in the beginning of the adaptation but started to
increase soon if the probability of erroneous learning samples was too high, more than
approximately 3-4 percent, and was at the end even worse than without adaptation. These
experiments showed that erroneous learning samples with arbitrary labels are much more
harmful than erroneous learning samples labeled according to their recognition results.

In the fourth set of simulations, prototype inactivation methods Inactivating Proto-
types 1 -4 were applied together with the Add or Hybrid strategy. A prototype inactivation
method was applied right after each recognition and application of either the Add or Hybrid
strategy. These experiments showed that the prototype inactivation methods can help the
prototype-based recognition system to recover from the erroneous learning samples. There
was no significant change in the system’s recognition performance whether a separate lower
usage limit was used for the prototypes added due to adaptation (Inactivating Prototypes
3 and 4 ) or whether the same limit was used for all prototypes (Inactivating Prototypes 1
and 2 ). This result showed that it is equally important to inactivate confusing initial pro-
totypes and to recover from the erroneous learning samples. The best results were obtained
if the prototype inactivation strategies were applied aggressively: prototypes should be in-
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Figure 16: Evolution of the recognition error rates as a function of the number of learning
samples and the probability of erroneous learning samples of type B. The surface corre-
sponds to error rates obtained by using the Hybrid and Inactivating prototypes 1 strategies.
The background curve corresponds to the error rate of a nonadaptive system.

activated right after they have contributed to only one or two unsuccessful recognitions.
It was interesting to see that the recognition rates obtained with the Hybrid strategy were
only slightly worse than those obtained with the Add strategy even though all its modifica-
tions on the prototype set could not be completely reversed by the prototype inactivation
methods. If ten percent of the learning samples were incorrectly labeled, the final error
rate obtained with the Add strategy and Inactivating Prototypes 1 or 2 was 8.3% or 7.5%,
respectively. With the Hybrid and Inactivating Prototypes 1 strategy these figures were
9.5% and 7.8%. The evolution of the recognition error rates as a function of the number of
learning samples and the probability of erroneous learning samples of type B is illustrated
in Figure 16 for the Hybrid and Inactivating Prototypes 1 strategy.

Erroneous learning samples and PLAdd, PLAddAndLvq, PLAddOrLvq,

OFAdd, and OFAddAndLvq. The experiments with the controlled adaptation strate-
gies PLAdd, PLAddAndLvq, PLAddOrLvq, OFAdd, and OFAddAndLvq have been reported
in (Vuori et al. 2000b, included publication 3). In these experiments, the initial writer-
independent prototype set was formed from the character samples of Database 1 and the
lower case letters of Databases 3 and 4 were used as a test set.
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The experiments with adaptation strategies which set an upper limit for the number
of prototypes per class (PLAdd , PLAddAndLvq , and PLAddOrLvq) showed that there is
no need to add many new prototypes per class. Best results were obtained if only two
new prototypes were allowed per class and adaptation was continued as pure LVQ-learning
after the upper limit for prototype count was reached. PLAdd -strategy was outperformed
by PLAddOrLvq-strategy in respect to initial, final, and total error rates, and growth
percentage of the prototype set. PLAddAndLvq-strategy increased the size of the prototype
set clearly less than PLAddOrLvq-strategy. Error rates obtained with the latter strategy
were in general better than those obtained with the former strategy. PLAddOrLvq-strategy
was able to decrease the system’s sensitivity to the erroneous learning samples of both type
A and B and the system’s ability to learn in the error-free situation was preserved.

The idea of controlling the adaptation by switching it on and off did not turn out to be
as good an idea as limiting the number of new prototypes. OFAdd -strategy did reduce the
harmful effects of erroneous learning samples and control the growth of the prototype set.
However, the error rate for the simulation with perfectly labeled learning samples increased.
Best results were obtained when Non = 2 and Noff = 3. OFAddAndLvq-strategy did not
outperform its uncontrolled version, AddAndLvq-strategy, in respect to the recognition
rates with any parameter values.

The results of experiments in which the most promising controlled adaptation strategies
and their uncontrolled versions (Add, AddAndLvq , PLAddAndLvq , PLAddOrLvq , OFAdd)
were applied together with the inactivation strategy Inactivate(1,0) (or Inactivate proto-
types 1 ) were congruent with the results of the previous experiments. Inactivate-strategy
was successful in controlling the growth of the prototype set. It increased the initial error
rate by approximately one percentage unit. Its effects on the final error rate were in-
significant when some of the learning samples were erroneously labeled according to their
recognition results, but it was truly beneficial in eliminating prototypes introduced due to
arbitrarily-labeled learning samples.

Genuine on-line user experiments. The Add(4) strategy was applied in the collection
of Database 4. This can be considered as a genuine on-line test of that adaptation strategy.
To evaluate the effects of the adaptation, the characters were recognized afterwards off-line
with a nonadaptive system. In these experiments, the initial writer-independent prototype
set was formed from the character samples of Database 1 and the test set consisted of the
upper and lower case letter and digits written by the 8 subjects of Database 4. Following
observations were made on the basis of these experiments: 1) The initial accuracy of the
recognizer is determined by the writer-independent prototype set and it is high for those
writers whose writing style was covered by the initial prototype set. 2) The benefits of
the adaptation, and thus the final accuracy, depend on the consistency and nature of the
writing style. 3) The initial rate of improvement was high if the initial accuracy was low.
4) The increase in the size of the prototype set was more prominent if the final error
rate was high. 5) The writers did not change their writing styles so that the characters
would have resembled more the initial writer-independent prototypes and thus been better
recognized. On the contrary, the final error rate was on average slightly higher than the
total error rate. It seems that instead of trying to improve the recognition results by
writing more carefully and consistently, some of the users tended to demand more and
more from the system as it learned and their writing styles became less careful, even
sloppy. This would probably not have occurred with a nonadaptive recognition system and
if the users had had some other motivations than to finish the tiresome experiment as soon
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Figure 17: Evolution of the error rate during data collection in which the characters were
recognized on-line. In the true, adaptive data collection, which corresponds to the lower
solid curve, input characters were added to the prototype set if one of the four nearest pro-
totypes belonged to wrong class. The higher, dashed curve corresponds to the nonadaptive
simulation of the data collection.

as possible. Figure 17 illustrates how the error rate evolved during the data collection and
its off-line simulation with a nonadaptive recognition system. It is clearly visible how the
recognition error rate decreases very rapidly from its initial level of approximately 20% to
the level of approximately 3% during the time when first 400 characters are input to the
system. Meanwhile, the error rate of the nonadaptive recognition system fluctuates or even
increases.

Also the Hybrid strategy has been applied in real on-line user experiments. All but
one of the nine users who participated in the experiments with the adaptive questionnaire
program, which is described in (Vuori et al. 2000a, included publication 4) and in previ-
ous section 3.6.5, noticed that the recognition system was able to improve its recognition
performance. The recognition rates of the system could not be calculated directly as the
true classes of the input characters were not known. However, clear improvements in the
recognizer’s performance could be observed in the following performance indices: submit-
ted characters vs. all input characters, characters submitted with one attempt vs. all input
characters, or characters submitted with one attempt vs. all submitted characters. The
evolution of the ratio of characters submitted with a single attempt to all submitted char-
acters during the run of the questionnaire program is illustrated in Figure 18. At least
four of the subjects told that they had made some conscious efforts in order to improve
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Figure 18: Evolution of the ratio of characters submitted with a single attempt to all
submitted characters during the run of the questionnaire program. These results, averaged
for 9 subjects, show that the self-supervised adaptation scheme was able to improve the
recognition accuracy of the system significantly.

the recognition rates. Only one of them had clearly misunderstood how the recognition
system worked and wrote just bigger letters instead of differently shaped letters in order
to get them recognized correctly.

3.7 Writing style clustering

Included publications 7 and 8 (Vuori and Oja 2000; Vuori 2002) describe a method which
has been developed for examining clustering properties of personal handwriting styles. In
this method, personal handwriting styles are represented by vectors, the components of
which reflect the writers’ tendencies to use certain prototypical writing styles for isolated
characters. The very high dimensional writing style vectors are analyzed by projecting
them nonlinearly onto a two-dimensional plane by using the SOM algorithm (Kohonen
1997). The main difference between the two works is the size of the analyzed database.
The former work is a pilot study with the 45 subjects of the local Databases 1–4 in which
the viability of the representation method for handwriting styles is examined. As the
results were promising and the much larger public databases UNIPEN and IRONOFF
with character samples from over 700 subjects became available to us, the same ideas were
reused in the latter work in order to test scalability of the approach.
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3.7.1 Personal writing style vectors

Writers’ tendencies to use the prototypical styles for isolated characters were measured by
the average similarity values between their character samples and prototypes. For each
writer, the average similarity value for each prototype was calculated by: 1) evaluating the
similarity measures between the prototype and all the writer’s character samples of the
same class and having the same number of strokes, 2) summing up the similarity values,
and 3) finally dividing the sum by the number of its terms. The average similarity values
were concatenated into a writing style vector. The dimensionality of a writing style vector
is the same as the size of the prototype set.

If a subject had no samples at all for some class, all the average similarity values
corresponding to that class were considered to be missing from the writing style vector
and did not have any effect in the training of the SOM. If a writer had only one character
sample for some class, his or her tendencies to use the prototypical styles of that class were
estimated by a single similarity value instead of the average. In such cases, the writer’s
tendencies to use the prototypical styles consisting of a different number of strokes than
the collected sample were zero. In addition, a single sample led to an assumption that
the writer uses only the writing style corresponding to the best-matching prototype as the
similarity values between the sample and the other prototypes are in most cases very close
to zero. For the same reason, the sum of the average similarity values of prototypes of the
same class and having the same number of strokes is rarely over one.

3.7.2 Visualization of the writing style vectors with the Self-Organizing Map

SOM (Kohonen 1997) is a neural network in which the neurons are connected to each
other so that they form a regular lattice. Each neuron acts both as an input and output
neuron and is associated with a reference vector. The reference vectors are compared with
the network’s input. The outputs of the neurons depend on how similar the input and
reference vectors are. The neuron, the reference vector of which is most similar to the
input vector, is called the best-matching map unit (BMU). During the training of the
network, the reference vectors of the BMUs and their neighboring neurons are updated so
that they better represent the input vectors, in this work the writing style vectors. Due to
such training, different neurons will specialize in representing different areas of the input
space. In addition, neurons near to each other in the neuron lattice tend to correspond to
areas close to each other in the input space. Therefore, a SOM can be seen as a nonlinear
mapping from the input space to the lower-dimensional lattice space. The SOM’s ability
to represent the training data faithfully depends on the true dimensionality of the data set
and on the size and dimensionality of the neuron lattice.

The U-matrix (Ultsch and Siemon 1989) of a SOM is helpful in detecting clusters on
the map. Its coloring is based on the distances between neighboring map units. Areas
in which the neighboring map units are similar to each other are colored with dark gray,
whereas light shades indicate that the differences between the neighboring units are more
significant. Therefore, clusters of personal writing styles can be seen on the U-matrix as
dark areas surrounded by lighter areas. The SOM can also be visualized with images colored
according to the values of the components of the reference vectors. These images are called
component planes. Component planes show how the tendencies to use the corresponding
prototypical character styles vary over the map.
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3.7.3 Experimental results

In the first study, 22% of the 327 prototypical styles found from the local databases were
used only by one of 45 writers. In the second study, the analysis of the 728 writing style
vectors showed that approximately 32% of the 2 591 prototypical styles were used by a
single subject. These results show that the personal writing styles are likely to consist of
character shapes which cannot be learned from a character database collected from other
writers, even if the database is rather large as in the second study. Therefore, in order to
achieve satisfactory recognition result for all kinds of writers, a recognition system based
on character prototypes has to be able to learn new writing styles.

The correlations between writing styles of single characters found by looking at the
component planes of the SOM were intuitively pleasing and were congruent with the prior
human knowledge which was not used in the construction of the map, see Figure 19.
In the first study with the smaller database, a clear distinction between subjects who
use cursive style and those whose style is a mixture of print and block styles could be
made. In the second study, the analysis of the U-matrix of the SOM showed that several
clusters of writers can be found. However, the interpretation of these clusters was not
straightforward: the component planes were indicating high tendencies of the writers to
use the corresponding prototypes in the locations of several clusters and the areas where
alternative styles were likely to be used were often overlapping. The differences between
the alternative styles had to be drastic enough, for example different number or drawing
order of the strokes, in order to see clear negative correlation between the corresponding
component planes.

On the basis of these two studies, following conclusions were drawn. The results of the
two studies justify the use of the knowledge on the writing styles of other writers in the
adaptation of a recognition system into a new writing style only to some extent. On the
basis of the analysis of ranges of the component planes established in the second study,
the number of character prototypes which might explain the writing style clusters is rather
small. Therefore, on the basis of only a few arbitrary character samples the knowledge in
which cluster a new writer belongs cannot be established and the prototype set cannot be
pruned effectively without compromising the recognition accuracy.
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Figure 19: Some interesting component planes of the SOM representing the personal writ-
ing styles of 728 subjects. The dark areas of the component planes indicate that writers
mapped in that location on the SOM have a high tendency to use the prototypical writing
style shown above the components plane.
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4 CONCLUSIONS

The main goals of the thesis work have been met well. The developed on-line recognition
system works with various kinds of writers as its initial prototype set represents several
different writing styles. This thesis work proposes several clustering algorithms which
can be used for automatic prototype selection or as a useful visualization tool for a human
expert. This thesis also introduces several on-line adaptation strategies and reports various
experiments performed with them. Special attention has been paid on the applicability
and robustness of the adaptation methods. Typically, by using a few hundreds of input
characters written by a new user, the error rate for lower case letters and digits can be
decreased from approximately 15% down to less than 2% which is an acceptable level.

Most importantly, the recognition system has been implemented in a hand-held device
and the functionality of the introduced self-supervised adaptation scheme has thus been
proven not only in off-line simulations but also in genuine on-line user experiments. The
clustering analyses performed with the SOM algorithm showed that groups of similar per-
sonal writing styles can be found. However, it seems that the best initial performance and
fastest improvements cannot be achieved by first selecting a style-specific recognition sys-
tem and then adapting it to the end-user’s writing style but by adapting directly a general
writer-independent recognition system into a writer-dependent one.

In the literature survey part of this thesis, the various recognition systems developed for
the on-line handwritten character recognition problem have been divided into the following
categories: feature space classifiers, prototype-based classifiers, statistical classifiers, neu-
ral networks-based classifiers, structural methods-based classifiers, and generative models-
based classifiers. The pros and cons of the methods belonging to these categories have been
discussed. The most popular, recent, and unique methods suitable for on-line recognition
and adaptation have been described more closely. Special attention has been paid on how
easily the recognition systems can be adapted into new writing styles. This thesis briefly
describes the on-line adaptation experiments with Latin characters and their main results
which have been reported in the literature previously. The prototype-based classifiers seem
to be best suited for textual input as they can learn incrementally and adapt themselves to
new writing styles on the basis of only a few new samples per character class. In addition,
such systems are easily understandable to the users, which makes the recognition errors
less annoying and more easily avoidable.

The comparison between the various recognition systems reported in the literature is
difficult: they have been tested with different data, character sets, and subjects; they pose
different constraints on the writing style; and some of the results are writer-dependent
while the others are writer-independent. All these factors make the comparison between
the recognition results presented in this thesis work and in other research works rather
unreasonable. However, if all these differences are ignored, the results of the nonadaptive
experiments carried out in this thesis work seem to be somewhat worse than those reported
in the literature for basically similar applications of the DTW algorithm. On the other
hand, due to adaptation, recognition accuracies high enough to be acceptable for real-world
applications have been attained for most of the subjects. The local handwriting databases
used in the experiments reported in this thesis have been used also in some other hand-
writing recognition experiments performed in our laboratory. The DTW-based classifier
developed during this thesis project clearly outperforms the chain code classifier described
in (Aksela 2000), the Euclidean 1-NN classifier and the adaptive Local Subspace Classier
described in (Laaksonen et al. 1999), and the SVM and HMM-SVM classifiers described
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in (Girdziušas 2001). The recognition error rates reported for these other approaches are
two or three times higher than the error rates reported for the DTW-based recognition
system. The most distinct feature of the recognition system presented in this thesis work
compared to other recognition systems reported in the literature is its ability to learn in
a self-supervised manner. The recognition accuracies could be further improved by using
contextual information and language modeling. For example, most of the recognition er-
rors could be avoided if it were known in advance whether the input characters are lower
or upper case letters or digits.

The DTW algorithm is very well suited for on-line handwriting recognition as it pro-
duces high recognition rates and it can easily be visualized to the users. However, there
are certain differences in ways how humans and the DTW-based dissimilarity measures
compare handwritten characters. To humans, some small-sized differences, say hooks or
ornaments at the ends or beginnings of strokes, or minuscule differences in the relative
positions of the strokes and corner points, can be very important whereas in the sense of
the DTW-based dissimilarity measures they are insignificant. In addition, the DTW-based
dissimilarity measures are sensitive to dynamic variations such as writing speed which are
more or less meaningless to humans. The differences between the human and DTW-based
machine perception can be seen also in the ways how they select prototypes representing
the different writing styles of isolated characters. Humans tend to select as prototypes
character samples which are more or less ideal, i.e. the strokes are neatly oriented and
positioned, there are no unnecessary hooks, the curves are symmetric and smooth etc.
The developed automatic clustering algorithms and indices are designed so that they se-
lect prototypes which are different from each other and are kind of average samples of
groups of similar characters in the sense of the DTW dissimilarity measure. For these
reasons, the clustering algorithms and indices were not able to find the same prototypes
as a human expert. However, the clustering algorithms did reduce the amount of manual
labour significantly as a good prototype set could be formed from their combined results.
A human expert can easily select the prototypes for the different writing styles contained
in a large character database by examining the tree-like visualizations of the results of the
agglomerative and hierarchical clustering algorithms.

The SOM-based analysis of personal writing styles showed that clusters of similar writ-
ing styles can be found when handwriting is modeled on character-level. However, as the
number of character prototypes which explain the writing style clusters is rather small,
the cluster in which a new writer belongs cannot be determined on the basis of only a
few character samples of arbitrary classes. Most likely, faster improvements in the recog-
nition accuracies can be achieved by using one general writer-independent prototype set
and adapting it to new writing styles right away instead of first selecting the style-specific
prototype set which best represents the writing style of the current user among several
alternative prototype sets. Perhaps, automatic writing style recognition would be more
beneficial in an approach in which handwriting is modeled on subcharacter level. The
number of necessary subcharacter models would be lower than the number of allograph
models, and personal writing styles could be classified on the basis of fewer character sam-
ples which would not need to be of some specific classes. In such a case, the differences
between the writing style classes might be something like: vertical strokes are drawn up-
right or tend to be slanted to left or right, horizontal strokes are drawn from left to right
or in the opposite direction, etc.

The experiments performed with the on-line adaptation strategies and the SOM-based
analysis of personal writing styles showed that the gradual LVQ-based prototype reshaping
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is not sufficient alone when a writer-independent prototype set is adapted into a writer-
dependent one. New prototypes are needed as the personal writing styles of the end-users
of the recognition system are very likely to contain character shapes not included in the
initial writer-independent prototype set, even if it has been formed of character samples
written by several hundreds of subjects. However, only one or two new prototypes per
each character class should be enough. If the adaptation process is not supervised, there
is always a risk of erroneous learning samples and thus erroneous prototypes. The risk of
erroneous learning situation can be minimized by using only those input characters which
seem to be correctly recognized as learning samples. This approach has been shown to
improve the recognition rates significantly. However, much better recognition performances
can be achieved if the input characters whose recognition results have been corrected by
the user are used as learning samples too, even if they are the character samples most
likely to be mislabeled or somehow malformed. In such a case, methods for detecting and
inactivating erroneous or poorly performing prototypes are necessary. This thesis work
proposes several such methods and they make the recognition system more robust against
erroneous learning samples.

In some of the current commercial character recognition systems, the prototype sets can
be customized in special learning modes which give no rise to erroneous learning samples.
This thesis work presents a self-supervised scheme for labeling the input characters so that
the adaptation can be performed during the normal writing task. There is no reason why
the developed self-supervised adaptive character recognition system should not be equipped
also with a special learning tool or mode which enables the inspection of the prototype
set and its user-supervised adaptation. On the contrary, that would help the users to
gain insight into the recognition process and, of course, give them more control over the
adaptation process.
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