
Helsinki University of Technology Laboratory of Computational Engineering Publications
Teknillisen korkeakoulun Laskennallisen tekniikan laboratorion julkaisuja
Espoo 2002 REPORT B32

SELF-ORGANIZING MAPS IN
SEQUENCE PROCESSING

Markus Varsta

AB TEKNILLINEN KORKEAKOULU
TEKNISKA HÖGSKOLAN
HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITÄT HELSINKI
UNIVERSITE DE TECHNOLOGIE D’HELSINKI

Helsinki University of Technology Laboratory of Computational Engineering Publications
Teknillisen korkeakoulun Laskennallisen tekniikan laboratorion julkaisuja
Espoo 2002 REPORT B32

SELF-ORGANIZING MAPS IN
SEQUENCE PROCESSING

Markus Varsta

Dissertation for the degree of Doctor of Science in Technology to be presented with due permission of
the Department of Electrical and Communications Engineering, Helsinki University of Technology, for
public examination and debate in Auditorium S2 at Helsinki University of Technology (Espoo, Finland)
on the 12th of December, 2002, at 12 noon.

Helsinki University of Technology
Department of Electrical and Communications Engineering
Laboratory of Computational Engineering

Teknillinen korkeakoulu
Sähkö- ja tietoliikennetekniikan osasto
Laskennallisen tekniikan laboratorio

Distribution:
Helsinki University of Technology
Laboratory of Computational Engineering
P. O. Box 9400
FIN-02015 HUT
FINLAND
Tel. +358-9-451 4826
Fax. +358-9-451 4830
http://www.lce.hut.fi

Online in PDF format: http://lib.hut.fi/Diss/2001/isbn9512262525/

E-mail: Markus.Varsta@hut.fi

c©Markus Varsta

ISBN 951-22-6251-7 (printed) ISBN 951-22-6252-5 (PDF)
ISSN 1455-0474
PicaSet Oy
Espoo 2002

http://www.lce.hut.fi
http://lib.hut.fi/Diss/2001/isbn9512262525/
mailto:Markus.Varsta@hut.fi

Abstract

Models are abstractions of observed real world phenomena or processes. A good
model captures the essential properties of the modeled phenomena. In the sta-
tistical learning paradigm the processes that generate observations are assumed
unknown and too complex for analytical modeling, thus the models are trained
from more general templates with measured observations. A substantial part of
the processes we seek to model have temporal dependencies between observa-
tions thus defining templates that can account for these dependencies improves
their ability to capture the properties of such processes.

In this work we discuss using the self organizing map with sequentially de-
pendent data. Self-Organizing map (SOM) is perhaps the most popular non su-
pervised neural network model that has found varied applications in the field of
data mining for example. The original SOM paradigm, however, considers in-
dependent data, where context of a sample does not influence its interpretation.
However, throwing away the temporal context of an observation when we know
we are dealing with sequential data seems wasteful. Consequently methods for
incorporating time into the SOM paradigm have been rather extensively studied.
Such models if powerful enough would be very usable when tracking dynamic
processes.

In this work a Self-Organizing map for temporal sequence processing dubbed
Recurrent Self-Organizing Map (RSOM) was proposed and analyzed. The model
has been used in time series prediction combined with local linear models. Deeper
analysis provides insight into how much and what kind of contextual information
the model is able to capture. The other topic covered by the publications in a sense
considers an inverse problem. In this topic SOM was used to create sequential
dependence and order into initially unordered data by modeling a surface and
creating a path over the surface for a surface manipulating robot.

i

Preface

This thesis for the degree of Doctor of Technology has been prepared in the Lab-
oratory of Computational Engineering at the Helsinki University of Technology
during the years 1997-2002. I want to express my sincere gratitude to Prof. Jouko
Lampinen and Dr.Tech Jukka Heikkonen for excellent supervison and advice,
and to Academy Prof. Kimmo Kaski whom with the above mentioned have ex-
pressed next to limitless patience with me. My gartitude also extends to Prof. Pasi
Koikkalainen and Phd. José Del Ruiz Millán for their contributions in the work.
The reviewers of my work, Docent Sami Kaski and Prof. Heikki Kälviäinen, de-
serve commendation for their efforts to prune out the potential stumbling blocks
in the manuscript.

Sincere thanks are also due to my closest colleagues: Dr.Tech. Aki Vehtari,
M.Sc. Timo Kostiainen, M.Sc. Timo Koskela, M.Sc. Arto Selonen, Dr.Tech. Ari
Lukkarinen and M.Sc. Tommi Nykopp for making the laboratory a place where
I always felt welcome. Their doors were always open for questions regardless
of how trivial they might have seemed and the coffee breaks tended to last way
beyond their best before dates. The last but not least I wish to thank Marja for
doing her best to push me through the doldrums and M.Soc. Eeva Lampinen for
epitomizing the good atmosphere in the laboratory.

My studies were partly funded by Graduate School in Electronics, Telecom-
munications and Automation (GETA) and Academy of Finland under the Finnish
Centre of Excellence Programme during 2000-2005 (project title:Research Cen-
tre for Computational Science and Engineering, project number 44897).

Markus Varsta

iii

List of Publications

Pub. 1 Varsta, M., and Koikkalainen, P. (1996) Surface Modeling and Robot Path
Generation Using Self-Organization InProceedings of ICPR ’96, pages 30–
34. IEEE.

Pub. 2 Koikkalainen, P., and Varsta, M. (1996) Robot Path generation for surface
processing applications via neural networks InProceedings of the SPIE,
Vol. 2904, pages 66–73. SPIE.

Pub. 3 Varsta, M., Heikkonen, J., and Millán, J. del R. (1997) Epileptic Activity
Detection in EEG with Neural Networks InProceedings of the 1997 In-
ternational Conference on Engineering Applications of Neural Networks,
pages 179–186. The Royal Institute of Technology, Stockholm.

Pub. 4 Varsta, M., Millán, J. del R., and Heikkonen, J., (1997) A Recurrent Self
Organizing Map for Temporal Sequence Processing InICANN’97: Interna-
tional Conference on Artificial Neural Networks, LNCS vol. 1327, pages
421–426. Springer.

Pub. 5 Koskela, T., Varsta, M., Heikkonen, J., and Kaski, K. (1998) Temporal Se-
quence Processing using Recurrent SOM InKES ’98: Proceedings of the
Second International Conference on Knowledge Based Engineering Sys-
tems, vol. 1, pages 290–296. IEEE.

Pub. 6 Varsta, M., Heikkonen, J., Lampinen, J., and Millán, J. del R. (2001) Tem-
poral Kohonen Map and the Recurrent Self-Organizing Map: Analytical
and Experimental ComparisonNeural Processing Letters, Vol. 13, pages
237–251, Kluwer Academic Publishers.

v

Symbols and Abbreviations

ANN artificial neural network
AR-SOM Self-Organizing Map of competing Auto-Regressive models
bmu best matching unit
DP Dynamic Programming algorithm
DTW Dynamic Time Warping algorithm
EEG electroencephalography
EM Expectation Maximization method
FMC Folded Markov Chain
LLE Locally Linear Embedding
GTM Generative Topographic Mapping
HMM Hidden Markov Model
LBG Linde, Buzo, and Gray K-means vector quantizer
MLP Multi Layer Perceptron network
pdf probability density function
RBF Radial Basis Function network
RSOM Recurrent Self-Organizing Map
SOM Self-Organizing Map
TKM Temporal Kohonen Map
φi (t) response of a unit
σ (·) sigmoid type transformation function
νi (t) total activation of a unit
E(·) error or energy function
M SOM in formulas
x input vector
X a data set drawn frompx(x)
�X cardinality of setX
m codebook or weight vector on map
I unit index space of map
γ a learning rate factor
b(x) function that returns the index of thebmufor x
h(i , j) the value of the neighborhood interaction function betweeni and j

vii

Symbols and Abbreviations

H(x, i) shorthand forh(b(x), i)
Vi Voronoi cell of uniti ∈ M
d(·, ·) a distance measure
dM (·, ·) a distance measure on latent map space of a SOM
dX(·, ·) a distance measure in (input space)X
y encoded value
px(x) probability density of a random variablex
px,y(x|y) probability density ofx conditioned ony
px,y(x, y) joint probability density ofx andy
D expected distortion
W matrix of linear weights in LLE
δ(·) Dirac delta
Fi force acting on uniti
PX(X) likelihood of the setX
β a noise variance parameter in the SOMpdf
Z a density normalizing factor
µ mean of component density in the SOMpdf
σ 2 variance
N (µ, σ 2) normal distribution with expected valueµ and varianceσ2

X input space
MX input manifold i.e region wherepx(x) > 0
� covariance matrix
ψI nv number of inversions on one dimensional map
nM(i , j) ordering of units in map space
nX(i , j) ordering of units in input space
Q1 quantity measuring organization mismatch in input space
Q2 quantity measuring organization mismatch in latent map space
P topographic product
µP logarithmic average ofP over map
DM Delaunay graph of mapM
MDM adjacency matrix to describeDM

(·) topographic function of SOM
S set of sequences
U(·) activity function in TKM
λ a time delay parameter in TKM
y leaked difference vector in RSOM
α a time delay parameter in RSOM and AR_SOM
P warping path
π start state probability distribution

viii

Contents

Abstract i

Preface iii

List of Publications v

Symbols and Abbreviations vii

Contents ix

1 Introduction 1

2 The Self-Organizing Map 5
2.1 Fundamentals of the SOM 5

2.1.1 Data Analysis With the SOM 9
2.2 Derivation of the SOM from an Error Function 10
2.3 Communication Channel Interpretation of the SOM. 13
2.4 Probabilistic Approach to SOM. 16

2.4.1 Folded Markov Chain. 17
2.4.2 Single Stage Folded Markov Chain as a Vector Quantizer . 17
2.4.3 Two Stage Folded Markov Chain as a SOM. 21

2.5 Chapter Summary .. 22

3 Properties of the SOM 25
3.1 Lack of Energy Function 25
3.2 Generative Probability Density for the SOM. 28

3.2.1 Approximate Likelihood Function. 28
3.2.2 Full Density. 29
3.2.3 Model Selection with the Density Model 32

3.3 Topology Preservation on the SOM 33
3.3.1 Topographic Product 34
3.3.2 Topographic Function. 35

ix

Contents

3.4 Chapter Summary .. 37

4 The Self-Organizing Map in Sequence Processing 43
4.1 Trace of Best Matching Units 43
4.2 Single Layer Models. 44

4.2.1 Temporal Kohonen Map. 44
4.2.2 Recurrent Self-Organizing Map. 45
4.2.3 Analytical Comparison of TKM and RSOM. 46

4.3 Hierarchical Models. 53
4.3.1 The Model of Kangas 53
4.3.2 The Model of Carpinteiro 56

4.4 Operator Maps . .. 57
4.4.1 Self-Organizing Map of Auto Regressive Units. 57
4.4.2 Self-Organizing Map with Dynamic Time Warping 59
4.4.3 State Space Map and Hidden Markov Models. 60

4.5 Conclusions. 62

5 Summary of Publications 63
5.1 Publication 1: Surface Modeling and Robot Path Generation Us-

ing Self-Organization. 63
5.2 Publication 2: Robot Path Generation for Surface Processing Ap-

plications via Neural Networks. 63
5.3 Publication 3: Epileptic Activity Detection in EEG with Neural

Networks . 64
5.4 Publication 4: A Recurrent Self-Organizing Map for Temporal

Sequence Processing. 64
5.5 Publication 5: Temporal Sequence Processing using Recurrent SOM 65
5.6 Publication 6: Temporal Kohonen Map and Recurrent Self-Organizing

Map: Analytical and Experimental Comparison. 65

References 67

x

Chapter 1

Introduction

Models are abstractions of observed real world phenomena and processes. A good
model captures the essential properties of the modeled phenomena. In the statis-
tical learning paradigm the processes that generate observations are assumed un-
known and too complex for analytical modeling, thus the models are trained from
more general templates with measured observations. Artificial neural networks
(ANNs) are a class of statistical models that owe their name to their biologically
inspired origins. They are constructed of simple computational units, neurons,
with weighted connections that store the essential modeling information.

Neural network models are roughly divided in two groups. The supervised
models are trained for a specific transformation, where each input pattern is asso-
ciated with an output pattern. The goal is not to memorize the samples but to find
the underlying process that generated the samples, that is to find a model. Proba-
bly the most popular supervised neural network model is the multilayer perceptron
network (MLP), where the interconnected computational units, perceptrons, are
stacked in layers to form a feedforward network (Rumelhart et al., 1986; Haykin,
1998). Other supervised models include for example radial basis function net-
works (RBF) (Orr, 1996).

In contrast to supervised the unsupervised network models do not attempt to
find a specific transformation from observed inputs to unknown outputs. Rather
they look for similarities in the observations and try to bring orderliness to un-
ordered data. Perhaps the premier unsupervised neural network model is the
Self-Organizing Map (SOM) (Kohonen, 1982, 1984, 1997). The popularity of
the SOM is probably a result of its computationally simple form and user friendli-
ness: The results are easily visualized and interpreted though not always correctly.
The primary uses for the SOM are found in various data analysis and mining tasks
were the SOM is frequently used as a tool for visual inspection and data grouping.
In these tasks SOMs ability to group similar data in clusters comes in handy. A
good example of utilizing SOM in data mining are the WEBSOM and PicSOM

1

Introduction

applications for content based organization of document (Kaski et al., 1998) or
picture collections (Laaksonen et al., 2000). More recent relatives to SOM are
for example generative topographic mapping (GTM) (Bishop et al., 1996) and
locally linear embedding (LLE) (Roweis and Saul, 2000). These models will be
discussed later in relation with the SOM.

In this thesis we will look into applying SOM to sequentially dependent data
where the context of a sample carries meaningful information on its interpretation.
Temporal independence is a frequently made assumption in statistical analysis but
for real processes it often is very inaccurate thus losing significant knowledge car-
ried by the observations. Bringing sequential or temporal dependence into neural
network models has yielded several flavors of MLP where the models have recur-
rent feedback connections for context preservation (Jordan, 1986; Ellman, 1990;
Werbos, 1990; Mozer, 1993). For unsupervised paradigm extending the SOM to
sequentially dependent data is a natural direction. Several extensions to the SOM
for sequence processing have been proposed where the SOM is either augmented
with a time delay mechanism or the operators in the units of the map are changed
to account for time (Chappell and Taylor, 1993; Kangas, 1994; Carpinteiro, 1999;
Somervuo, 2000b). Extending SOM for sequentially dependent data is signifi-
cant. If successful, such extension would broaden the scope of the model making
it better suited to a variety of tasks such as speech recognition and other problems
where the model needs to capture a dynamically evolving process.

In the second chapter the SOM algorithm is derived from several basis. First
we discuss the original heuristic approach, where the derived model mimics the
self organizing properties of biological nervous systems. That is units correspond-
ing with nerons that respond to similar input or stimuli are attracted toward each
other and form groups. After considering the heuristic origins we define an ap-
proximation for an error function the algorithm seeks to minimize. From this
approximation the batch rule, which in general outperforms the original stochas-
tic rule, can be derived for static input data. Extending the discrete function to a
continuous case leads to the derivation of a SOM like algorithm that essentially
has all the desirable properties of the SOM (Luttrell, 1989) avoiding much or
the theoretical problems associated with it. The continuum limit extension of the
SOM also allows the derivation of the algorithm from probabilistic basis (Luttrell,
1994).

After defining the SOM we review some essential analytical work on the
SOM. Primarily we will concentrate on the organizational measures from both
relevant directions. On one hand we will look into the error function of the SOM
and what its minimization actually amounts to. We will also discuss a method
that allows for systematic model selection with the SOM, that is choosing the best
final neighborhood width and map topology for the data. The model selection
method involves the derivation of an approximate probability density model for
the SOM when the map is treated as a data generating mechanism. On the other

2

3

hand we will look into the quality of embedding the map into the input manifold,
that is how well the map preserves the distance relations between points in the
manifold. The error function based measures only indirectly address the issue of
map organization as the minimization of the error function only endorses local
order.

Finally we will look into extensions of the SOM, where the Euclidean dis-
tance operators in the units are replaced with some other operators to determine
unit activations. In particular we will look into models proposed for sequence
processing. These models take into account not only the current sample but also
the samples near it thus accounting for the sequential dependencies of the sam-
ple when computing unit activations. The authors main contribution, Recurrent
Self-Organizing Map RSOM (Pub. 4 also in Varsta et al. (1997)) is discussed in
this chapter. In RSOM the units of a normal SOM are augmented with a in-
tegrating memory to preserve a trace of the past inputs for capturing temporal
or sequential dependence. In addition to toy problem experiments we used the
RSOM with moderate success in time series prediction with local linear mod-
els (Pub. 5), see also Koskela et al. (1998a,b)). In oder to establish what the
RSOM actually amounted to we compared it analytically against the Temporal
Kohonen Map (Chappell and Taylor, 1993). The analysis revealed that the model
was limited to finding linear dependencies in the data and as such is not power-
ful enough for its intended purposes (Pub. 6, also covered inVarsta et al. (1998,
2000)).

After the literary review a short description for each of the bundled paper is
given. In these descriptions the authors contribution and motivation behind the
work is outlined. These papers cover two topics. The first topic is the use of
SOM for generating program paths for a surface manipulating robots (Pub. 1,2).
In this work the SOM is used to order the unorganized data, object surface points
and then use the ordered map to generate a path, a sequence of points, for the
robot to follow. The results were promising as feasible paths were generated but
the results were never applied in a real setting. Publication three is a stand alone
paper, where the SOM was used for robust feature quantization in the analysis of
epileptiform electroencephalography (EEG) signal. The second topic covers the
development and analysis of the RSOM model. The RSOM is a modification of
the computational unit of the SOM that gives the model a limited capability to
distinguish segments in temporal sequences.

3

Chapter 2

The Self-Organizing Map

The Self-Organizing Map (SOM) (Kohonen, 1982, 1984, 1997) has probably been
the most popular unsupervised neural model since its introduction. The popularity
of the SOM is largely a result of its algorithmic elegance and superficially easily
interpretable results. Both properties are more or less an immediate consequence
of the way the SOM was originally conceived. The model was originally defined
through it desired behavior rather than result, which, as it turns out, makes the
SOM somewhat difficult to analyze and deeply understand.

2.1 Fundamentals of the SOM

The Self-Organizing Map (Kohonen, 1982, 1984, 1997) mimicks the clustering
behavior observed in biological neural networks by grouping units that respond to
similar stimuli together. Nerve cells, neurons, in the cortex of the brain seem to
be clustered by their function. For example brain cells responsible for vision form
the visual cortex and those responsible for hearing form the auditory cortex.

Two variants of the SOM were developed more or less in parallel (Kohonen,
1982, 1984) (see Fig. 2.1). The model that was later dropped considered a string
of units with lateral feedback connections that were both excitatory and inhibitory.
Signal transfer in the networkM was computed with

νi (t) = σ


φi (t)+

∑
j ∈M

γ (j)νi+ j (t − 1)


 (2.1)

whereφi (t) is units initial response to the input alone andνi (t) is the transformed
activation of uniti ∈ M at time t . The lateral interactions are captured by the
summation and the strength of each connection is captured by the corresponding
γ (j). The output is then transformed with a non linear sigmoid type function
σ (·). The initial response of a unit could, for example, be computed as an inner

5

The Self-Organizing Map

ν i (t)

m xT

x(t)

γ
i−1

σ

Figure 2.1: The original SOM consisting of laterally interacting units. Unit activation
is computed with a sigmoid transformation of units immediate response and the current
activations of its ”neighbors”.

product between its codebook vector and the input signal

φi (t) = mi (t)
T x(t),

wheremi (t) and x(t) are current codebook value and input respectively. The
original construct for the SOM did not meet its goals. Learning was very slow as
each input had to be presented multiple times at a time to train the map. Another
problem was that the trained map could exhibit several regions of activity instead
of just one. This is an immediate consequence of the Mexican hat (Fig. 2.2)
function for lateral interactions which primarily influenced units nearby, thus far
away regions of activity had little interaction.

At the end, however, the SOM that came to be was originally dubbed as a
shortcut or engineering solution for the model described above. Not only does
the shortcut scheme learn quicker but it also does away with multiple regions of
activity by mandating a uniquebmufor each possible input pattern. The SOMM
is a triple(M, I,h(·, ·)) consisting of the codebookM, which usually but not nec-
essarily is a matrix of codebook vectors, the index spaceI and the neighborhood
interaction functionh(·, ·) that captures the inter unit relatioships corresponding
with γ (j) in the alternate model.

The learning rule of the SOM consists of two distinct phases: The search for
thebmuthrough competition, and the update of the codebook patterns of thebmu
and its neighbors. In the basic SOM the activations of the units are inversely
proportional to their Euclidean distances from the input pattern, hence thebmu
can therefore be defined with

b(x) = arg min
i∈M

‖x − mi ‖, (2.2)

6

2.1 Fundamentals of the SOM 7

+

− −

Figure 2.2: A Mexican hat function for lateral feedback strengths, computed as a differ-
ence of two zero meaned Gaussians of different variances.

whereb(x) ∈ M is the index of thebmu, mi is the codebook vector of uniti ∈ M
andx is the input pattern vector.

The update part of the rule moves thebmu and its neighbors towardx to
slightly enforce maps response to the pattern. The update rule can be written
as follows

mi = γ · h(b(x), i)(x − mi), (2.3)

whereγ is a learning rate parameter andh(b(x), i) captures the neighborhood
interaction between thebmu b(x) and the uniti being updated. We can also write
Eq. 2.3 as

mi = γ · H(x, i)(x − mi) , (2.4)

whereH(x, i) is a shorthand notation forh(b(x), i). We will use these slightly
differing notations for the neighborhood in parallel throughout this document.

Equations 2.2 and 2.4 define a Hebbian learning rule, where the strength of
the training step is determined not only by the learning rate parameter 0< γ ≤ 1
but also by the relationship of the updated unitj with thebmu b(x) on the map.
The inter unit relationships are captured by the neighborhoodh(i , j)which define
how strongly units are attracted to each other.

In essence the learning rule of the SOM defines the model as a collection of
competitive units that are related through the neighborhood function. In practice

7

The Self-Organizing Map

the units are placed on a regular low dimensional grid and the neighborhood is
defined as a monotonically decreasing function on the distance of the units on the
map lattice, thus creating a latent space, which has the dimension of the map grid
and flexibility determined by the neighborhood function. The latent space inter-
pretation of the SOM is depicted in Fig. 2.3, where the two dimensional hexag-
onally arranged map grid, latent map space, is projected or embedded into three
dimensional data sampled from a two dimensional manifold. The SOM can pro-
duce flawless, in the sense that the map follows the manifold, embedding when
the dimension of the map grid matches the dimension of the input data manifold.
We relied upon this property in the application of the SOM for surface manipulat-
ing robots “RoboSOM” (Pub. 1, Pub. 2), where the SOM was used to create an
ordered model of two dimensional surface bent in third dimension in analogy to
Fig. 2.3. Typical choices for the neighborhood function are a Gaussian

h(i , j) = exp

[
dM(i , j)2

2σ 2

]
, (2.5)

or the so called bubble function

h(i , j) =
{

1 dM (i , j) ≤ c
0 dM (i , j) > c

, (2.6)

wheredM (i , j) is a distance measure in the map space,σ2 is the variance of the
Gaussian and in analogyc is a distance threshold parameter. The radius of the
neighborhood is usually but not necessarily decreased during training. Likewise
the learning rate parameterγ is normally decreased in accordance to predeter-
mined cooling schedule with the aim of allowing the map sufficient time and free-
dom to organize before fine tuning the codebook. The basic SOM algorithm for
Euclidean error and static datasetX is summarized in Alg. 1.

Algorithm 1: Basic SOM for Euclidean error.

1. Initialize units with random points from the input distribution represented
by the data setX.

2. Pick a samplex from X in random and choose the correspondingbmu b(x)
with Eq. 2.2.

3. Update thebmuand its neighbors towardx with Eq.2.3.

4. Iterate steps 2 and 3 following a predetermined cooling schedule for both
learning rate and neighborhood radius.

8

2.1 Fundamentals of the SOM 9

SOM

Figure 2.3: Latent space interpretation of the SOM. The low dimensional map grid, the
latent map space, is projected into higher dimensional input space with the SOM.

2.1.1 Data Analysis With the SOM

High dimensional data is often difficult to comprehend and practically impossible
to visualize as such. Large collections of data are often unordered and therefore
difficult to browse for relevant pieces of information. They may also hide impor-
tant clues as to how the data is generated. The goals of exploratory data analysis
and data mining is to bring order into unordered data and to find previously un-
known meaningful dependencies in the data. Perhaps the key application area for
the SOM is found in this area, where the SOM on its own right does not do the
trick but helps a human expert to sort it out.

The basic procedure typically involves training a two dimensional SOM with
available data and using the result to plot various graphs, that are visually analyzed
and interpreted by a human expert (see for example Cottrell et al. (1999)). The
SOM takes care of the brute work by projecting the high dimensional data onto
two dimensional map space. Depending on the quality of the projection and data,
similar data with respect to the used error measure forms pronounced clusters on
the map space. These clusters provide clues of the dependencies in the data and
help a human expert to isolate data he/she finds particularly interesting. Typical
depictions from the map are the so called component planes, where components
from the codebook vectors are drawn in the shape of the map lattice. Comparing
the component planes of two or more codebook variables may provide some in-
sight into the dependencies between the variables. However, it is up to the human
expert to isolate false hits from the real thing. Furthermore finding higher than
first order dependencies with this method is difficult. Another frequently used

9

The Self-Organizing Map

graph considers the distances between immediate neighbors on the map in the in-
put space. This graph gives clues to the quality of clustering on the map. Units
belonging to the same cluster are close in the input space indicated by small values
on the graph, conversely on a well organized map the cluster boundaries should
be pronounced. These two visualizations are just an example how the SOM can
be used to visualize high dimensional data.

An example of succesfull applications of the SOM is the WEBSOM (Kaski
et al., 1998) for content based organization of document collections and document
retrieval. The WEBSOM architecture consists of two hierarchically connected
SOMs. The word category map clusters words found in the documents using not
only the word itself but also its immediate neighbors. The use of context brings
order into the mapping as synonyms often appear in similar context. The docu-
ments are projected on this word category map as collections of word triplets and
a histogram of hits on the map units is formed. This histogram conveys infor-
mation on the realtive frequencies of different words categories in the document
and serves as the input for the second or the document map to cluster documents.
The underlying intuition is that the word category frequencies are typical to docu-
ments covering the same topic. A good, though slightly outdated, overview of the
versitality of the applications utilizing SOM can be found in Kohonen (1997).

2.2 Derivation of the SOM from an Error Function

In the previous section we discussed the derivation of the SOM primarily from the
organization point of view. In this section the algorithm is derived again from an
error function that is approximately1 consistent with the update rule summarized
in Alg. 1.

SOM is a set of competitive units connected into a lattice with a topologi-
cal neighborhood function. It can be related with Linde, Buzo, and Gray vector
quantizer (Linde et al., 1980) but in the SOM the units are arranged into a low
dimensional grid and locally attracted toward each other with a strength deter-
mined by the neighborhood function. Later we will refer to the grid or the lattice
of connected units as the map space. When properly trained the SOM forms a
mapping of the input manifold, where the units close in the map space are close in
the input space. However, units close in the input space are not necessarily close
in the map space since the dimensionality of the input manifold is often higher
than the dimensionality of the map which consequently folds. The map space is
usually one or two dimensional to facilitate visualization, for example.

The SOM, like vector quantizers in general, partitions the input space into
convex regions of activity that are characterized with the following property: Ev-

1The error function is consistent with the original update rule with exception of the points that
lie exactly at the boundarires of Voronoi cells.

10

2.2 Derivation of the SOM from an Error Function 11

Figure 2.4: Voronoi partitioning by a two dimensional SOM. Codebook vectors are
drawn with small circles and the boundaries of the Voronoi cells with lines.

ery point in the space is closer to the centroid of its region than to the centroid
of any other region (see Fig. 2.4). The centroids of the regions are defined by the
codebook of the map. Partitioning of this kind is called Voronoi tessellation of the
input space. The partitioning of an optimally trained map minimizes some error
function but due to properties of the SOM this error function cannot be an energy
function (Erwin et al., 1992a), in other words the training rule of the SOM cannot
be derived as a gradient of any continuous function.

In its converged state the basic SOM locally minimizes the neighborhood
weighted sum of squared distances

E(X,M) =
∑
x∈X

∑
j ∈M

H(x, j)‖x − mj ‖2 (2.7)

which is only defined for a discrete set of input patternsX such that nox ∈ X
coincides with any Voronoi cell boundary. Differentiating Eq.2.7 with respect to
codebook vectors yields

∂E(X,M)

∂mj
= 2

∑
x∈X

H(x, j)(x − mj) , (2.8)

when the discontinuities ofE(X,M) are ignored due to assumed absence of sam-
ples on the Voronoi boundaries. It is relatively easy to derive a learning rule for

11

The Self-Organizing Map

the SOM from Eq. 2.8. The basic Hebbian SOM rule Eqs. 2.2 and 2.3 approxi-
mates stochastic gradient descent to minimize Eq.2.7. This observation provides
guidelines to treatment of the learning rateγ (t), which has to satisfy theRobbins
and Monro (1951) conditions{ ∫ ∞

0 γ (t)dt = ∞
limt→∞ γ (t) = 0

(2.9)

The conditions in Eq 2.9 define how the learning rate should behave to guarantee
convergence at a local minimum at the limit. The first condition guarantees that
the map has enough freedom to converge from any initial configuration and the
second one guarantees that once the map has reached a locally near optimal state
it will no longer unlearn it.

The other learning rule dubbed thebatch rule is a fixed point optimization
algorithm where the competition and update stages are separated and performed
for the entire training data in turns. In the competition step each samplex ∈
X is assigned the correspondingbmuwith Eq 2.2. In the optimization step the
codebook vectors are updated to global optimum with

mj =
∑

x∈X H(x, j)x∑
x∈X H(x, j)

(2.10)

assuming that the movement of the boundaries of the Voronoi cells is little enough
not to reassign any samplex ∈ X to a different unit. This rule is obtained by
setting

∂E(X,M)

∂mj
= 0

and solving formj . In practice with an unorganized map the unit locations are
typically shaken up a lot, thus a considerable number of samples change their
respectivebmu:s and the two step procedure has to be iterated several times for
the newly configured SOM codebook.

Both of these learning rules have their merits. With a static training set and
a stationary problem the batch rule is almost invariably better. The progress in
learning is easier to monitor from the number of reassigned samples and the rule
in general is computationally cheaper. With the batch rule the map can easily
be trained to convergence with several neighborhood widths to facilitate model
selection for example. Since the training sequence does not influence the outcome
of the batch rule its result is always the same for a given data set and initial state.
In this sense the batch rule is deterministic.

The stochastic rule with a static input set can be used to approximate the batch
rule by starting with large neighborhood and a large learning rate. The samples
are presented to the map in a random sequence to avoid creating unwanted depen-
dencies into the data. At the end the neighborhood is typically reduced to contain

12

2.3 Communication Channel Interpretation of the SOM 13

only thebmu for fine tuning. This implicitly assumes that the sample is in fact
the population and the map does not need any predictive power to generalize to
unknown future samples.

While there are no clear benefits in using stochastic rule with static input set
it may be modified to follow evolving processes. If the learning rate is not con-
strained to follow the Robbins-Monro conditions in Eq.2.9 but is along with the
neighborhood radius dynamically adjusted with the incoming data the SOM can
respond to changes in the properties of the source of data. If the statistical proper-
ties of the process change the parameters are updated accordingly to give the map
the ability to adapt to the changed situation. This, however, is not a simple task
since distinguishing out liars and other possible anomalies from true changes in
the underlying process is not trivial, and thus it is not straightforward to sensibly
update the learning rate and neighborhood radius. In practice even with non sta-
tionary processes the batch rule can often be used to better effect when the map
is retrained with data that is representative of the current properties of the under-
lying process. This would be especially effective with periodically rather than
continuously changing processes.

The above derivation and discussion considers the update part of the learning
rule and the competition part still remains to be discussed. As mentioned earlier
the batch rule is a fixed point optimization algorithm consisting of separate com-
petition and the update steps. The competition step of the rule assigns a sharp
bmuwith Eq. 2.2. In the update step, however, all units in the neighborhood of the
bmuare updated toward the sample which partially contradicts the competition
step. This observation will be discussed in the next section where an alternative
SOM algorithm that does not exhibit this property is derived from communication
channel interpretation of the SOM.

2.3 Communication Channel Interpretation of the SOM

In the previous section we derived the SOM as constrained vector quantizer re-
lated with the standard LBG K-means quantizer. In this section we describe an
alternate way of treating the map as a noisy communication channel (Luttrell,
1989), which distorts data transmitted through it. Such a channel is formally de-
picted in Fig. 2.5. The expected distortionD for a random variablex with density
px(x) transmitted through the channel is

D =
∫

px(x)d (x, g (f (x)))dx (2.11)

where f (·) is the encoder andg(·) is the decoder. It is noted that optimal encoder
decoder pair minimizesD. When Euclidean distance is used ford(·, ·) optimiza-
tion of Eq. 2.11 leads to normal vector quantification with sharpbmuselection i.e
nearest neighbor encoding.

13

The Self-Organizing Map

f(x)

g(y)

y
d(

x,
x’

)

x’

x

Figure 2.5: Communication channel interpretation of a vector quantizer consisting of a
an encodery = f (x) and decoderx ′ = g(y). The loss of data in the channel is captured
by the distortion measured(x, x ′), which for the normalL 2 quantizer is the Euclidean
distance between the original data and its reconstruction after transmission through the
channel.

Extending the channel formalism to the SOM requires a second encoding
stage Fig. 2.6 to account for the neighborhood. With the second stage encoder
expression forD becomes

D =
∫

px(x)d (x, g (κ(f (x))))dx. (2.12)

The neighborhood of the SOM can be considered an uncertainty in the encoding
process or noise acting in the latent map space. Consequently the second encoding
stageκ(·) accounting for the neighborhood can be replaced by an additive noise
component on the first stage encoder result to get

D =
∫

d(x, g(f (x)+ h))ph(h) dh px(x) dx (2.13)

whereh is the additive noise component. After choosing Euclidean distance for
the distortion measured the functional derivatives of Eq.2.13 with respect to the
encoderf (x) and the decoderg(f (x)+ h) are as follows

δD

δy(x)
= px(x)

∫
∂(x − g(y))2

∂y
ph(h) dh (2.14)

δD

δg(y)
= 2

∫
px(x) ph(y − y(x))(x − g(y)) dx, (2.15)

wherey = y(x) + h. The functional derivative in Eq. 2.14 captures the depen-
dence of the distortion on the encoder while the derivative in Eq.2.15 captures the
dependence on the decoder. The optimal encoder now assignsx with the encoded

14

2.3 Communication Channel Interpretation of the SOM 15

value

y = arg min
y

∫
(x − g(y(x)+ h))2 ph(h) dh (2.16)

by integrating away the uncertainty from the encoding noise. The optimal decod-
ing or reconstruction is obtained by setting Eq. 2.15 zero and solving forg(y)

g(y) =
∫

px(x)ph(y − y(x)) x dx∫
px(x)ph(y − y(x)) dx

. (2.17)

In other words the optimal reconstruction integrates over the input space and
weights each possible input with its corresponding encoding probability

ph(y − y(x)).

Equations 2.16 and 2.17 define a learning algorithm for a continuum limit two
stage encoder. The analog result for a discrete two stage encoder leads to a SOM
like structure which differs from the original SOM in its competition part. For the
SOM, where the noise process in the latent space is modeled by the neighborhood
function, the competition part becomes

b(x) = arg min
i∈M

∑
j ∈M

h(i , j)(x − mj)
2. (2.18)

In other words the distortion is minimized over the neighborhood of thebmu in-
stead of thebmualone. The update rule is identical to the original SOM rule. The
competition rule in Eq. 2.18, dubbed minimum distortion rule, is consistent with
the normal SOM update rule, thus resulting in gradient descent rule for the SOM.
A map trained with the minimum distortion rule no longer Voronoi partions its
input space because the distrotion or error is minimized with respect to a set of
neighborhoods instead of discrete set of points. The significance of this result will
be further elaborated in section 3.9, where we will discuss an approximation of
the generative probability density model underlying the SOM. The original SOM
rule will not generate smooth densities unlike a SOM trained with the minimum
distortion rule. It is, however, worth noting that in practise both rules yield rather
similar results for at least two reasons. Once the map is well organized the com-
petition rules are more likely to choose the samebmu and on the other hand,
the normal reduction of the neighborhood radius reduces the contribution of the
neighborhood in the error.

This work also motivates an alternative way of training the map. Normal
practice is to start with wide neighborhood to quickly order the map (Erwin et al.,
1992b), and then reduce the neighborhood progressively to achieve the wanted
compromise between smoothness and fit into the data. This approach corresponds
with starting with a broad density for the latent space noiseph(h) and the variance
of ph(h) is reduced as the learning progresses. Similar effect can be achieved

15

The Self-Organizing Map

f(x)
d(

x,
x’

)

x’

x

g(z)

y

y’

f(x)

d(
x,

x’
)

no
is

e

x’

x
y

z

g(y’)

(y)κ

Figure 2.6: A communication channel with a two stage encoder. A SOM like construct
results when the second stage encoder is considered a noise process acting on the result
of the first stage encoder. This noise process corresponds to the neighborhood function in
the case of SOM, where the winner take all mapping is perturbed in the update with the
neighborhood function.

through a renormalized approach, where the neighborhood is kept constant and the
latent space is dilated as the learning progresses. The renormalized scheme leads
to much faster convergence through reduced computational load in comparision
with the original scheme. In the discrete case the dilation of the latent space
corresponds with interpolating new units into the map preferably after the current
map has converged.

2.4 Probabilistic Approach to SOM

The communication channel formulation of the SOM can be set in more general
probabilistic framework, where the encoding and decoding functions are replaced
with conditional densities (Luttrell, 1994). Expected value of the channel distor-
tion Eq. 2.11 is thus reformulated as follows

D =
∫

px′,y(x′|y)py,x(y|x)px(x)d(x, x′) dx′ dy dx (2.19)

where the conditional densitypy,x(y|x) encodes inputx with y and px′,y(x′|y)
reconstructsx asx′ from its encoded counterpart. The integration overy andx′
compute the average reconstruction errord(x, x′(y(x))) weighted with the encod-
ing density py,x(y|x) for x. The remaining integration overx for the expected
overall channel distortion weights all possible inputs with corresponding density.
Likewise the expectation for the channel distortion for the model with the added
noise in the encoding stage corresponding with SOM in Eq.2.13 is reformulated
as

D =
∫

px′,y(x′|y + h)py,x(y|x)px(x)ph(h)d(x, x′)dy dx dh , (2.20)

16

2.4 Probabilistic Approach to SOM 17

whereh is again the noise process acting on the encoding space corresponding
with the neighborhood. The interpretation of Eq.2.20 is similar to that of Eq. 2.19
with the added integration over the encoding noise with densityph(h).

Probabilistic re-formulation carries several advantages (Luttrell, 1994).

• “Soft” probabilistic formulation allows easier theoretical manipulations of
the expressions than “hard” deterministic functions.

• The probabilistic approach lends itself well to a simulated annealing ap-
proach in numerical simulations.

• Contact with standard results can be made when Euclidean distance is cho-
sen as distortion measured(x, x′).

• If a single pair of transformations was considered but one was uncertain
about which particular pair, then a probabilistic approach assigning proba-
bility through density to each possible pair would be necessary.

Probabilistic derivation of the continuum limit SOM is based on construct called
folded Markov chain, which we will discuss below.

2.4.1 Folded Markov Chain

Like the communications channel approach the probabilistic approach is con-
sidered at the continuum limit through a construct called Folded Markov Chain
(FMC) depicted in Fig. 2.7, which performs an N-stage transformation of an in-
put vectorx0 to an output vectorxN and then inverts the transformation (Luttrell,
1994). The Bayes rule of probabilities is used to link the probabilistic transforma-
tions as follows

pi,i+1(xi |xi+1)pi+1(xi+1) = pi+1,i (xi+1|xi)pi (xi). (2.21)

In other words the transformations of the “up” pass are inverted on the “down”
pass. Relating the transformations with the Bayes rule and fixing Dirac delta

δ(xN − x′
N)

as the last transformation at the end of chain guarantees that the marginal densities
pi (xi) and pi (x′

i) are identical.

2.4.2 Single Stage Folded Markov Chain as a Vector Quantizer

Vector quantizer can be derived as a special case of single stage FMC in Fig.
2.8 (Luttrell, 1994). The derivation starts at the definition of the average Euclidean

17

The Self-Organizing Map

x

x’

x
p(x |x)

p(x’ |x’)

p(x |x)
x

x’x’ x’

x

δ(
x

 −
 x

’
)

p(x’ |x’)

0

1

1

1 0

0 1

N N−1

N−1

N−10 N

N

N

 N

N−1 N

...

...

Figure 2.7: A folded Markov chain with both passes. The top half represents the for-
ward pass to encode and the bottom half represents the backward pass to decode. The
probabilistic transformations on the “up” direction are related with those of the “down”
direction with the Bayes rule (see Eq. 2.21). Dirac delta at the end guarantees that the
decoding starts where the encoding ended i.ex ′

N = xN .

error D between the inputx0 and its reconstructionx′
0, in a one stage FMC

D =
∫

p0(x0)p1,0(x1|x0)δ(x1 − x′
1)p0,1(x′

0|x′
1)‖x0 − x′

0‖2 dx0 dx1 dx′
1 dx′

0.

(2.22)
The delta operator is easy to integrate out and with the Bayes rule

p0,1(x0|x1)p1(x1) = p0,1(x1|x0)p0(x0),

we get for the distortion measure

D =
∫

p1(x1)p0,1(x0|x1)p0,1(x′
0|x1)‖x0 − x′

0‖2 dx0 dx′
0 dx1. (2.23)

After expanding the squared norm as

‖x0‖2 − 2x0x′
0 + ‖x′

0‖2

and performing the integrations where possible this can be further simplified to

D = 2
∫

p1(x1)

[∫
p0,1(x0|x1)‖x0‖2 dx0 − ‖

∫
p0,1(x0|x1)x0 dx0‖2

]
dx1,

(2.24)
which may be rewritten as

D = 2
∫

p1(x1)p0,1(x0|x1)‖x0 −
∫

p0,1(u0|x1)u0 du0‖2 dx0 dx1. (2.25)

The derivation of Eq. 2.24 from Eq. 2.23 is well known. It says that the average

18

2.4 Probabilistic Approach to SOM 19

x

x’

x
p(x |x)

p(x’ |x’) δ(
x

 −
 x

’
)

d(
x

,x
’)

0

 0
x’

0

1

1

1 0

0 1

1

1

0

Figure 2.8: A single stage FMC as a vector quantizer whend(x0, x′
0) is minimized with

respect tox1(x0). Linking the probabilistic transformations with the chain form of the
Bayes rule ensures thatp0,1(x′

0|x′
1) cannot be varied independently ofp1,0(x1|x0).

Euclidean error between two independent identically distributed samples is twice
the variance of the density the samples are drawn from. The introduction of the
integration variableu0 into Eq. 2.25 will be discussed shortly. The desired result
can finally be obtained with application of the Bayes rule

D = 2
∫

p0(x0)p1,0(x1|x0) ‖x0 −
∫

p0,1(u0|x1) u0 du0‖2 dx1 dx0. (2.26)

Equation 2.26 has the right form to relate FMCs with VQs. It has a source dis-
tribution of input vectorsp0(x0), a soft encoderp1,0(x1|x0) and a reference vector∫

p0,1(u0|x1) u0 du0 (2.27)

attached to each encodingx1. The interpretation of the integration variableu0 is
that of a soft codebook value, which is used to compute the reconstructionx′0 of
x0 by integrating it out from Eq. 2.27.

The differences between the FMC formulation and the standard VQ are

1. The encoder is not a winner take all encoder. Rather each input vector is
transformed into each output vector according to its densityp1,0(x1|x0).

2. The reconstruction
∫

p0,1(u0|x1)u0 du0 of x is associated with the encoder
through Bayes rule. In standard VQ the reference vectors and the encoder
are usually related through nearest neighbor relation.

When the soft decoder ∫
p0,1(u0|x1)u0 du0

is replaced with a functionx′
0(x1), to reconstruct the original input from its encod-

ing we get

D = 2
∫

p0(x0)p1,0(x1|x0)‖x0 − x′
0(x1)‖2 dx0 dx1. (2.28)

19

The Self-Organizing Map

Functionally fifferentiating Eq.2.28 with respect to decoder functionx′
0(x1) yields

δD

δx′
0(x1)

= 4
∫

p0(x0)p1,0(x1|x0)[x0 − x′
0(x1)] dx0. (2.29)

The stationary point whereδD
δx′

0(x1)
= 0 is obtained when

x′
0(x1) =

∫
p0(x0)p1,0(x1|x0) x0 dx0∫

p0(x0)p1,0(x1|x0) dx0
. (2.30)

Application of the Bayes rule reduces the stationarity condition to

x′
0(x1) =

∫
p0(x0)p1,0(x1|x0) x0 dx0

p1(x1)

= p1(x1)
∫

p0,1(x0|x1) x0 dx0

p1(x1)

=
∫

p0,1(x0|x1)x0 dx0 . (2.31)

Thus the modified expression forD reduces to the original providing that the
reconstructing functionx′

0(x1) minimizesD. This simplification is significant as
it allows replacing the Bayesian coupling between the encoderp1,0(x1|x0) and the
reconstructions ∫

p(u0|x1)u0 du0

with Eq. 2.28 providing thatx′
0(x1) satisfies the stationarity condition in Eq.2.31.

At this point the minimization ofD with respect top1,0(x1|x0) remains which
is done below in simplified form. If the soft encoderp1,0(x1|x0) is replaced with
the standard VQ encoder, namely nearest neighbor prescription

p1,0(x1|x0) → δ[x1 − x1(x0)]
the expression for distortionD in Eq. 2.26 can now be written

D = 2
∫

p(x0)‖x0 − x′
0[x1(x0)]‖2 dx0. (2.32)

which turns out to be the expression for the continuum version of the standard
VQ. The gradient ofD with respect tox′

0(x1) is

δD

δx′
0(x1)

= 4
∫

p0(x0)δ[x1 − x1(x0)][x0 − x′
0(x1)] dx0. (2.33)

Which leads to to the following batch training rule for minimizingD

x1(x0) = arg min
x1

‖x0 − x′
0(x1)‖2

x′
0(x1) =

∫
p(x0)δ[x1 − x1(x0)]x0 dx0∫
p(x0)δ[x1 − x1(x0)] dx0

. (2.34)

20

2.4 Probabilistic Approach to SOM 21

thus completing the derivation of the nearest neighbor VQ from a single stage
FMC.

2.4.3 Two Stage Folded Markov Chain as a SOM

The derivation of the continuum limit LBG algorithm from the single stage FMC
can be extended to a two stage FMC in Fig.2.9 corresponding with the SOM (Lut-
trell, 1994). The derivation is quite similar with the previous one for the normal
vector quantizer so it will only be presented in an abbreviated form. For the sake
of simplicity the second encoding stage, which corresponds with the neighbor-
hood or encoding noise and is not optimized, is fused into the first stage with the
chain form of the Bayes rule to obtain

p2,0(x2|x0) =
∫

p2,1(x2|x1)p1,0(x1|x0) dx1

p0,2(x0|x2)p(x2) = p2,0(x2|x0)p0(x0)

Using these abbreviations the expression for distortionD becomes

D =
∫

p0(x0)p2,0(x2|x0)δ(x2 − x′
2)p0,2(x′

0|x′
2)‖x0 − x′

0‖2 dx0 dx2 dx′
2 dx′

0.

(2.35)
which after the steps taken with the vector quantizer simplifies to

D = 2
∫

p0(x0)p2,0(x2|x0) ‖x0 −
∫

p0,1(u0|x1)u0 du0‖2 dx2 dx0. (2.36)

The subsequent steps already taken through Eq.2.26 with the single stage model
lead in the case of the two stage model to

x′
0(x2) =

∫
po(x0)p2,0(x2|x0)x0 dx0∫
p0(x0)p2,0(x2|x0) dx0

=
∫

p0,2(x0|x2)x0 dx0. (2.37)

Replacing the soft encoderp1,0(x1|x0) with a winner take all scheme and keeping
in mind thatp2,0(x2|x0) = ∫

p2,1(x2|x1)p1,0(x1|x0) dx1 leads to

D = 2
∫

p0(x0)p2,1(x2|x1(x0))‖x0 − x′
0(x2)‖2 dx0 dx2 (2.38)

The functional derivative corresponding with Eq.2.33 is then

δD

δx′
0(x2)

= 4
∫

p0(x0)p2,1(x2|x1(x0))[x0 − x′
0(x2)] dx0. (2.39)

21

The Self-Organizing Map

x

x’

x
p(x |x)

p(x’ |x’)d(
x

,x
’)

0

 0

x’ x’

x

δ(
x

 −
 x

’
)

p(x’ |x’)

p(x |x)
0

1

1

1 0

0 1

0 2

2

2

2

1 2

2 1

Figure 2.9: A two stage FMC as the SOM whend(x0, x′
0) is minimized with respect to

x2(x0). The pair of second stage transformations corresponding with the SOM neighbor-
hood or noise perturbing encoding is not optimized unlike the first pair of transformations
to minimized(x0, x′

0).

which leads to the batch training rule already derived in section 2.3. The encod-
ing rule for the two stage FMC becomes

x1(x0) = arg min
x1

∫
p2,1(x2|x1)‖x0 − x′

0(x2)‖2 dx2; (2.40)

and the decoding or reconstruction rule is

x′
0(x2) =

∫
p0(x0)p2,1[x2|x1(x0)]x0 dx0∫

p2,1(x0)p(x2|x1(x0)] dx0
. (2.41)

This rule can be interpreted as a vector quantizer whose encoding is corrupted
with p2,1(x2|x1) in the encoding stage. The model turns out to be a continuum
limit SOM with the minimum distortion rule (Luttrell, 1989) derived in section
2.3.

2.5 Chapter Summary

In the previous section the Self Organizing Map was looked into and derived from
several points of view. At first we reviewed the origins of the map and then de-
rived essentially the same result from seemingly quite different perspectives. We
treated the SOM as a vector quantizer regularized by the neighborhood that brings
order into the mapping, reduces the chances of getting stuck at local minima and
provides means to avoid overfitting into the data. After vector quantizer inter-
pretation we looked into noise corrupted communication channel interpretation
of the map, which led to a variant of SOM that solves the inconsistency in the

22

2.5 Chapter Summary 23

competition and update parts of the training rule. In practise, however, the mod-
els produce quite similar results. Finally we derived the SOM as a special case
of much broader family of probabilistic transformations provided by a construct
called folded Markov chain.

There is little doubt that the key aspect of the SOM algorithm is its elegant
simplicity. Namely how little is required to create a model that exhibits self orga-
nization and lends itself well to several alternate operators in units, thus providing
a framework for a self organizing collection of competing models. While only
very limited proofs of organization for the SOM have been managed (see e.g.
Flanagan (2001)) in practise the map seems to organize as well as its low dimen-
sional grid and locally operating neighborhood allows it to.

There are several alternatives to the SOM of which we will briefly discuss
two. Genrative Topographic Mapping (GTM) (Bishop et al., 1997) was designed
to be a principled alternative to the SOM. In GTM the latent space interpretation
of the SOM is made explicit, by projecting a latent manifold defined with a set a
radial basis functions into the data space. The properties of these basis functions
determine the stiffness of the latent manifold and thus work like the neighborhood
of the SOM. To keep the otherwise very complicated computations tractable the
latent manifold is sampled on a regular grid corresponding with map units. The
resulting model turns out to be a constrained kernel density estimator that can be
trained with an appropriate expectation maximization (EM) algorithm.

Another alternative to the SOM is the recently published locally linear em-
bedding (LLE) (Roweis and Saul, 2000). In the LLE each data point is repre-
sented as accurately as possible as a linear combination of itsn closest neighbors
such that the sum of weighting coefficients for every data point is costrained to
equal one. This produces a sparse matrixW of linear weigthing coefficients. The
neighborhood preserving mapping is then constructed by keepingW constant and
finding the two dimensional set of points that would as accurately as possible have
the same weighting coefficient matrixW as the original data. The LLE method
projects points with similar weighting coefficients close in the low dimensional
projection space. This observation links the method with linear auto regressive
models that also capture non linear processes with simple linear models.

23

Chapter 3

Properties of the SOM

Despite its computational simplicity, or perhaps for the very reason, the SOM is
a tough nut to crack when rigorously analyzed. These difficulties stem from the
origins of the SOM as it was heuristically defined through its learning rule rather
than learning target. The SOM model exhibits two traits, on one hand it quantizes
the data with the respect to its error function and on the other hand it models the
structure of the manifold.

3.1 Lack of Energy Function

The analysis of the SOM would be facilitated a great deal if we could derive an
energy function for the update rule. A continuous function gradient of which
would lead to the update rule in Eq. 2.3 would be such an energy function. This
function could be used to analyze the behavior of the SOM instead of considering
lengthy simulated runs.

A natural candidate for an energy function for the SOM is the continuous
generalizationE′(px(x),M) of the discrete error Eq. 2.7 for a continuous random
variablex with probability densitypx(x) (Luttrell, 1989). This function can be
written as

E′(px(x),M) =
∑
i∈M

∫
H(x, i)‖x − mi ‖2 px(x) dx, (3.1)

wheremj ∈ M are the codebook vectors of mapM and x are the possible in-
puts each weighted in the error with the corresponding densitypx(x). However
it is a quite straightforward task to show that the expected error in Eq.3.1 is not
an energy function. The result is easy to understand and is a consequence of the
discontinuous Voronoi partitioning of the input space coupled with the neighbor-
hoods that extend over the boundaries of the Voronoi cells.

25

Properties of the SOM

The instantaneous error function in Eq.2.7 is the sum of the sample errors. If
we consider a samplex that lies at a boundary of a cell we realize that differential
movement of the boundaries will change thebmuof x and thus change the neigh-
borhood in which the error is computed. In general this will cause a discontinuity
in the error and consequently the error function is not differentiable for such a
sample, thus disqualifying Eq. 3.1 as an energy function.

There is an elegant argument (Erwin et al., 1992a) to show that the training
rule of the SOM cannot be the gradient of any energy function. First we define
the force field corresponding with the update rule and show that the change in the
potential energy in the corresponding energy field when traversing from one point
to another is generally dependent on the path. Such field is not energy conserving.

For a continuous random variablex with densitypx(x) the expected forceFi

acting on weightmi is

Fi =
∫

H(x, i)(x − mi)p(x)dx

=
∑
j ∈M

h(j , i)
∫

x∈Vj

(x − mi) p(x) dx, (3.2)

where the integral is split into a sum of integrals over Voronoi cellsVj defined by
the the map. Note that the neighborhood can be moved out from the integration
as the value of the neighborhood is only dependent on pair of unitsi and j .

When we consider a string ofN units in [0,1] for scalar inputx in the same
interval we can define

0 < V1 < 1
2 · (u1)

1
2(ul−1 + ul) < Vl < 1

2(ul + ul+1)
1
2(uN−1 + uN) < VN < 1

(3.3)

for the Voronoi cells, when the weightsmi , are permuted into ascending order as

u1 < u2

ul−1 < ul < ul+1 ∀ l ∈ {2...N − 1}
uN−1 < uN,

and denoted withul . The original order can be restored with a permutation func-
tion i = P(l), which is unique to each configuration of the map. Consequently
we can writeul = mP(l) = mi .

In the case of uniformpx(x) the solution to the integral in Eq. 3.2 for eachi

26

3.1 Lack of Energy Function 27

is

Fi =
N−2∑
l=2

ĥ(l , i)

[
1

8
(u2

l+1 − u2
l−1)+ 1

4
ul (ul+1 − ul−1)+ 1

2
ui (ul−1 − ul+1)

]
+

ĥ(1, i) ·
[

1

8
(u1 + u2)

2 − ui
1

2
(u1 + u2)

]
+

ĥ(N, i) ·
[

1

2
− ui − 1

8
(uN + uN1)

2 + ui
1

2
(uN + uN−1)

]
,

(3.4)

whereĥ(l , i) is the permuted neighborhood function. The terms of Eq.3.4 corre-
spond with units internal to the map and both ends respectively. We can treat these
forces as anN dimensional force or a vector field	F and look into the properties
of this field.

A force field is considered conservative if the change in potential energy when
traversing from one point to another is not dependent on the path like one can
expect in a physical situation of Earths gravity field for example. This property
has several alternate definitions one of which is of particular interest to us.Rotor
or acurl operator (Zachmanoglou and Thoe, 1986) of a three dimensional vector
field is defined as the cross product between the field and the∇ = ∂

∂u operator.
Therotor of any three dimensional subfield	F3D of 	F is therefore

rot(F3D) = ∇ × 	F3D

=
∣∣∣∣∣∣

x y z
∂
∂ul

∂
∂um

∂
∂un

Fl Fm Fn

∣∣∣∣∣∣ (3.5)

=
(
∂Fn

∂um
− ∂Fm

∂un

)
x +

(
∂Fl

∂un
− ∂Fn

∂ul

)
y +

(
∂Fm

∂ul
− ∂Fl

∂um

)
z ,

wherel ,m andn is any triple from 1...N andx, y andz are the normal 3D basis
vectors. The terms of the rotor vector capture the interaction between the weights
during training. In essence each term of the vector tells how much the change in
the other two weights influence the force acting on the third. Only if the rotor
operator vanishes everywhere for all three dimensional subfields the field can be
derived as the gradient of some continuous potential function

∂ Ĕ(u)

∂u
= − 	F

Unfortunately in general this is not the case with the SOM as the weights interact
through the neighborhood and these interactions are not pairwise canceled in our
example, as could be shown by substituting Eq.3.4 into Eq. 3.5.

27

Properties of the SOM

In fact the forces do not even follow a more general condition (Erwin et al.,
1992a)

	F3D(u) · rot(F3D(u)) = 0, (3.6)

which means that the turbulence in the field is not orthogonal to the forces and
thus the weight interactions cannot be accounted for by any arbitrary function
η(u) to get

∂ Ĕ(u)

∂u
= −η(u) 	F .

The lack of energy function, however, is not of major practical consequence
though the analysis of the map would be facilitated somewhat if such a function
existed. Once the map has been well organized it follows relatively closely the
function defined in Eq. 3.1. After proving the lack of energy function for the
SOM the effort shifted from the search of such function to the definition of models
with a well defined energy functions that exhibit SOM like behavior (Wiskott and
Sejnowski, 1997; Goodhill and Sejnowski, 1997; Graepel et al., 1997).

3.2 Generative Probability Density for the SOM

Typically the problem of model selection is not considered in conjunction with
the SOM and as a matter of fact practically applicable methods for model se-
lection have not been available until recently. The problem of model selection
involves model complexity: How much of the data generating process can be in-
ferred from the available data. In other words how well the available observations
generalize to future observations. The users of the SOM frequently omit the prob-
lem thus implicitly assume they work with the population instead of a sample.
We can approach the model selection problem by treating the SOM as a data gen-
erating mechanism and deriving an approximation of the corresponding density
model (Lampinen and Kostiainen, 2001). This density model for the first time
provides means for quantitative model selection with SOM.

3.2.1 Approximate Likelihood Function

The development of the density model for the standard SOM begins with the in-
stantaneous error function

E(X,M) =
∑
x∈X

∑
i∈M

H(x, i)(x − mi)
2, (3.7)

wherex ∈ X is a sample vector,mi is the codebook vector of uniti on the mapM
and H(x, i) is the neighborhood function. In its converged state the map locally
minimizes the error function in Eq. 3.7 only defined for a discrete data setX and
fixed neighborhood parameters.

28

3.2 Generative Probability Density for the SOM 29

The maximum likelihood method (ML) chooses the model that maximizes
the likelihood of the model having generated the data. If the data samples are
considered independent the likelihood of the data is the product of its sample
likelihoods

PX(X|M) =
∏
x∈X

Px(x|M),

wherePX(X|M) is the likelihood of the dataX and Px(x|M) is the likelihood of
a samplex ∈ X conditioned on the mapM. The target is to find a likelihood
function which is consistent with the error function Eq. 3.7. The negative log
likelihood

L = − log(PX(X|M))
when related with Eq. 3.7 approximately yields

PX(X|M, β) = Z′ · exp [−βE(X,M)]

= Z′ ·
∏
x∈X

exp

[
−β

∑
i∈M

H(x, i)(x − mi)
2

]
(3.8)

where Z′ andβ are normalizing factors. Observe that 3.8 is only an approxi-
mation of the real likelihood function, if such exists, as the normalizing factorZ′
depends on the codebook vectors ofM but its logarithm is ignored in the training
rule. The quality of the approximation made here is an open question and requires
more work to assess. However our intuition is that the dependence ofZ′ on the
codebook is not particularly sharp, hence we believe the approximation is well
justified.

3.2.2 Full Density

Since the likelihood of the data is the product of the sample probabilities, the
probability density function is given by

px(x|M, β) = Z · exp

[
−β

∑
i∈M

H(x, i)(x − mi)
2

]
. (3.9)

From this form it becomes apparent that the density is a product of Gaussian
components. The function has discontinuities at the boundaries of the Voronoi
cells due to hard best matching unit assignment and neighborhood function of the
SOM algorithm. We can write the function in a different form by completing the
sum over the codebook vectors. With a little algebra and setting

µi

∑
j

h(i , j) =
∑

j

h(i , j)mj

29

Properties of the SOM

whereh(i , j) = H(x, j) ∀ x ∈ Vi is the neighborhood strength between unitsi
and j , we obtain

px(x|x ∈ Vi ,M, β) = Z · exp


∑

j ∈M

−βh(i , j)(x − mj)
2




=Z · exp


−β

∑
j ∈M

h(i , j)
(
x2 − 2xmj + (µi + (mj − µi))

2
)

=Z · exp


−β(x − µi)

2
∑
j ∈M

h(i , j)− β
∑
j ∈M

h(i , j)(mj − µi)
2




(3.10)

After making the the following substitutions:

• µi =
∑

j ∈M h(i, j) m j∑
j ∈M h(i, j) is the expected value of the component density bounded

by the Voronoi cellVi .

• s2
i =

(
β

∑
j ∈M h(i , j)

)−1
is the variance of the Gaussian inVi with ex-

pected valueµi . Note that the data influencess2
i only through the noise

variance parameterβ.

• Finally Wi = ∑
j ∈M h(i , j)(mj −µi)

2 weights the importance ofVi against
the other Gaussians. The intuitive rationale is that if the neighborhood is
tight, Wi is small and the estimated densitypx(x) in Vi is high, as can be
expected with the SOM (Cottrell, 1997, 1998).

we get

px(x|x ∈ Vi ,M) = Z · exp(−βWi) · exp

[
1

s2
i

(x − µi)
2

]
. (3.11)

Since the integral of the density function has to converge to 1, the normalizing
constantZ and the noise variance parameterβ are coupled with∫

px(x|M, β) dx = Z ·
∑
i∈M

[
exp(−βWi)

∫
Vi

exp

(
1

s2
i

(x − µi)
2

)
dx

]
= 1,

(3.12)
where the integral over the density is decomposed into a sum of integrals over
each Voronoi cell on the map. The component integrals of Eq. 3.12 are not ana-
lytically integrable, but they can be estimated with a Monte Carlo method using
the following relatively simple rejection sampling technique in Alg. 2.

30

3.2 Generative Probability Density for the SOM 31

Algorithm 2: Monte Carlo algorithm for estimating component volumes.

1. For each component integral pickL samples from normal distribution
N (µi , s

2
i).

2. Compute the acceptance ratioqi asqi = Li /L i.e. the proportion of the
samples inL in the Voronoi cellVi .

3. The integral can now be estimated withqi · (
2πs2

i

)(−dX/2), where dX is the
dimension of the input data. In other words the estimate is the acceptance
ratio times the total volume of the un-normalized Gaussian forVi .

The variance of the acceptance ratioqi depends heavily on the neighborhood.
If the neighborhood is large it is possible thatµi is relatively far from the code-
book vectormi and thus the Voronoi cell may be significantly offset from its
component densityN (µi , s

2
i). On the other hand with a small neighborhood the

chances ofµi having large offset frommi are much smaller and thus the Voronoi
cell sits much better over the component density. Once the component integrals
have been estimated for a givenβ the correspondingZ is readily available and we
have the complete density.

To search for the optimalβ we can use cross validation (see for exampleBishop
(1995)). For this we split the available data into two as independent as possible
subsets. One of the subsets is used to train the map. For the other subset we
compute the approximate likelihood with Eq. 3.8, which requires estimation of
the normalizing constantZ for the candidateβ. The aim is to find a likelihood
maximizing value forβ. We can pick the candidate values forβ with normal line
search methods such as golden bisection (see for exampleBazaraa et al. (1993)).

We can find an interpretation for the maximum likelihood solutionβM L of the
noise variance parameterβ in terms of the neighborhood weighted distortion

E(x,M) =
∑

i

H(x, j)(x − mi)
2

by setting

∂PX(X|M, βM L)

∂βM L
= 0.

With algebraic manipulations we get

∑
xi ∈X E(xi ,M)

�X
=

∂Z
∂βM L

Z
. (3.13)

31

Properties of the SOM

where�X is the cardinality ofX. Using Z = (∫
px(x|M, β)dx

)−1
we obtain

Z =
∫

exp(βE(x,M)) dx and

∂Z

∂β
=

∫
E(x,M)exp(βE(x,M)) dx (3.14)

where the input distribution has been estimated with

p̂(x|M, β) ∝ exp(−βE(x,M)).

Substituting Eq. 3.14 into Eq.3.13 yields∑
i∈X E(x,M)

�X
=

∫
E(x,M)exp

(
βM L E(x,M)

)
dx∫

exp
(
βM L E(x,M)

)
dx

(3.15)

Heuristically Eq. 3.15 states that atβ = βM L the expected error over the estimated
input distribution equals the sample average ofE(x,M) over the input data.

Figures 3.1–3.2 depict thepdfof a normal SOM while figures 3.3–3.4 depict
thepdfof a SOM trained with minimum distortion rule. The figures emphasize the
discontinuity of thepdf of the normal SOM while minimum distortion rule yields
continuous density. Notice, however, that in the minimum distortion case for some
neighborhoods the coresponding receptive fields do not contain the expected value
of the component density. This is an immediate consequence of the component
density weighting coefficients.

3.2.3 Model Selection with the Density Model

The complexity of the model for the data produced by the SOM is determined by
the number of units, the map topology and the neighborhood function. When the
input data is a sample of a much larger population the objective is to choose the
model that best predicts the future observations from the population. The approx-
imate likelihood function provides a way to compare the goodness of different
maps.

If the map topology is considered fixed we can use the likelihood function
in the following manner. The available data is split in two partstraining and
validation as independently as possible and the map is trained with the former
part to a local optimum with several neighborhood widths in decreasing order. The
algorithm described above is used to estimate the likelihood function for each of
the maps for the estimated likelihood of thevalidationdata. The map maximizing
the likelihood is considered best. This method can directly be generalized to cross
validation where the available data is split inN independent subsets that alternate
in the roles of thetraining andvalidation data (see for example Bishop (1995)).

32

3.3 Topology Preservation on the SOM 33

Similar approach can be used to determine the best topology as well. For a large
map determining the optimal neighborhood width with the likelihood model is
computationally costly. In such cases the neighborhood can be optimized with
smaller map and scaled with the desired dimensions of the larger map. Figures
3.5 and 3.6 demonstrate the model selection procedure.

The likelihood model provides tools for model selection when minimizing the
expected error. In other words for selecting the map that approximately minimizes
the expected neighborhood weighted quantization error over future samples from
the same process. However, it only indirectly addresses the embedding property,
that is how well the map follows the input manifold, of the map by favoring maps
where units with strong neighborhood appear close in the output space but it tells
very little of larger scale folding of the map space into the input space. The em-
bedding property of the map cannot be analyzed through the error function in the
input space but has to be addressed through measures that directly asses the qual-
ity of the maps organization and its model of the input manifold. These measures
are given a brief look in section 3.3

3.3 Topology Preservation on the SOM

The key difference between the SOM and pure vector quantization schemes is the
latent map space defined by the neighborhood. The neighborhood serves two pur-
poses. It brings order into the mapping by pulling nearby units in the latent space
toward each other enforcing a smoothness constraint on the map thus regulariz-
ing it. In this section I will look into the ordering properties of the map and in
particular ordering measures.

The ordering properties of the map must be considered in both directions to
get a full picture of how the map has organized into the input manifold. Only when
the true dimension of the manifold very closely matches the dimension of the map,
preservation of order in both directions; from map space to input space and from
input space to map space is possible. In general, however, discrepancy between
the dimensions will unavoidably cause folds in one or the other of the mappings.
Typically the dimension of the input manifold far exceeds the dimension of the
map causing folding of the map to evenly cover the input manifold. For an idea
of the folding consider a sheet of paper, an essentially two dimensional surface,
folded to evenly fill a cube.

In the very restricted case of one dimensional map in one dimensional input
space we can define a Liapunov-function (Cottrell et al., 1994; Kohonen, 1984)
as the number of inversions in the direction of the map as

ψI nv(M) =
�M −1∑

i=2

sgn(mi − mi−1) �= sgn(mi+1 − mi), (3.16)

33

Properties of the SOM

where�M is the number of units on the map. However for more complex maps
and input manifolds different measures have to be defined.

3.3.1 Topographic Product

The topographic product (Bauer et al., 1992; Polani, 2001) measures the degree
of folding of the map. For the product two permutations of units are computed for
each unit. First permutation functionnM(i , j) orders the units in ascending order
with respect to distance in the map space. Formally we can write

dM (i ,nM(i , j)) ≤ dM (i ,nM(i , j + 1)) ∀i ∈ M, (3.17)

wheredM(i , j) is a distance measure between unitsi and j in the map space.
Permutation functionnM(i , j) returns the index of thej :th closest unit toi with
respect todM (i , j). The other permutation functionnX(i , j) orders the units in
ascending order with respect to distance in the input spaceX. For this permutation
we can write

dX(mi ,mnX (i, j)) ≤ dX(mi ,mnX (i, j)) ∀i ∈ M, (3.18)

wheredX(mi ,mj) is a distance measure in the input space between the codebook
vectors of unitsi and j . Like nM(i , j) above,nX(i , j) returns the index of the
j :th closest unit but now the criterion is different.

The permutations in Eqs. 3.17, 3.18 computed for every unit on the map, are
used in the definition of two quantitiesQ1 and Q2 to measure the folding of the
map. These quantities are written as follows

Q1(i , j) = dX(mi ,mnM (i, j))

dX(mi ,mnX (i, j))
(3.19)

Q2(i , j) = dM(i ,nM (i , j))

dM (i ,nX(i , j))
. (3.20)

The first quantity captures the ratio of distances in the input space betweeni and
its j :th closest neighbor on the mapnM(i , j) and in the input spacenX(i , j).
Likewise the second quantity captures the ratio of distances in the map space for
the same pair of units.

With Q1 andQ2 the topographic product is defined as

P(i , j) =
[

j∏
k=1

Q1(i , k) · Q2(i , k)

] 1
2k

∀ j ∈ {1...�M − 1}, (3.21)

where�M is the cardinality ofM i.e the number of units on the map. Thus for
each uniti we compute a chain of�M − 1 products, one for eachj , ending up

34

3.3 Topology Preservation on the SOM 35

with total of�M(�M − 1) values forP(·, ·). The final measure to summarize the
resultµP was defined as the logarithmic average of the productsP(·, ·) over the
map

µP = 1

�M · (�M − 1)

�M∑
i=1

�M−1∑
j =1

log(P(i , j)). (3.22)

A value ofµP near zero indicates good adaptation as it means thatQ:s tend close
to one indicating that then:th closest unit in the input space is then:th closest
in the map and conversely that then:th closest on the map is then:th closest in
the input space. Negative values ofµP indicate folding of the map into the input
space while positive values indicate that the dimension of the map grid is too big
for the input manifold.

The ordering relationnM(i , j) is generally not unique but different implemen-
tations generally lead to similar results (Polani, 2001). The main problem with the
topographic product is the fact that it does not account for folds in the input man-
ifold (Villmann et al., 1997). The product only looks into the shape of the map
but as it turns out the input manifold may be of lower dimension than the input
space and thus it also may have folds. A correctly ordered map will exhibit the
same folding but the topographic product has no means to separate correct folding
following true folds in the manifold from incorrect folding caused by dimension
mismatch between the map and the input manifold. Topographic function (Vill-
mann et al., 1997) was defined to counter this problem.

3.3.2 Topographic Function

For the topographic function we need to define Delaunay and the Hebb graph for
the SOM (Martinetz and Schulten, 1994; Polani, 2001). The Delaunay graphDM

for the SOMM is a graph where unitsi and j are adjacent if their respective
Voronoi cells, closed by their boundaries, share a dX − 1 dimensional section,
where dX denotes the dimension of the input space. In other words if unitsi
and j have adjacent Voronoi cells the corresponding Delaunay graph has an edge
connecting them. Slightly relaxed definition for the pseudo Delaunay graph only
mandate thatVi ∩ Vj �= ∅ also linking units that share a lower than dX − 1 di-
mensional section such as corner in the two dimensional case. The Hebb graph is
a generalization of the Delaunay graph where each edge of the Delaunay graph is
associated with the probabilityPi, j (i , j) of a an input sample falling in the 2nd
order Voronoi cell ofi and j defined as

Vi, j = {x ∈ X|∀k ∈ M\{i , j } dX(x,mi) ≤ dX(x,mk)∧dX(x,mj) ≤ dX(x,mk)},
wheredX(x,mi) is a distance metric in the input space. In other words the second
order Voronoi cellVi, j is the region of the input space wherei and j are the two
closest units.

35

Properties of the SOM

A seemingly simple algorithm for determining the Delaunay and Hebb graph
as an�M × �M adjacency matrixMDM involves drawing samplesx from the
corresponding densitypx(x). Observe that the input manifoldMX as used in our
context is also defined by the density function as data can only come from the
region of dX dimensional input space wherepx(x) > 0. For each sample we de-
termine the two closest unitsi and j , on the map and increment the corresponding
matrix entriesMDM (i , j) andMDM (j , i) in MDM by one.

A conceivable difficulty is that usually we do not have the densitypx(x) and in
fact quite frequently the density is what we are after. What we do have, however,
is a sampleX = {x1, x2, ..., x�X} drawn from px(x), which we can use as an
estimate forpx(x). Thus the algorithm reduces to picking samples from the data
set X and incrementing the corresponding entries inMDM . If the samples are
picked randomly without removal, we will get an estimate for the Hebb graph. If
each sample is considered once we will get an estimate of the Delaunay graph. A
problem with this approach is the rapidly growing complexity of the graph. The
number of possible edges inDM grows as square of�M , thus the demand for data
grows rapidly with growing map to reliably approximateD (or MDM).

The topographic function requires the masked Delaunay graph, which consid-
ers masked Voronoi cells̄Vi = Vi ∩MX that are clipped with the input manifold.
Since in general we do not know the manifold we have to guess which connections
suggested by the picking algorithm are between units whos masked Voronoi cells
do not share boundary. We can do this with an ageing process (Villmann et al.,
1997; Martinetz, 1993), where connections that are rarely hit are pruned out.

For the topographic function we define a metric in the Delaunay graph as
dDM (i , j) being the smallest number of hops on the graphDM to traverse fromi to
j . This metric is relatively easy to calculate from the unweightedMDM elements
of which are either one, if an edge exists betweeni and j onDM or zero otherwise.
We also need two distance metricsd1

M (i , j) andd∞
M (i , j) in the map space defined

as

d1
M (i , j) =

dM∑
l=1

|ci (l)− cj (l)| (3.23)

d∞
M (i , j) = max

l
|ci (l)− cj (l)|, (3.24)

whereci is the vector of latent map space co-ordinates of uniti and dM is the
dimension of the latent map space. With these definitions for metrics we define

fi (k) =
{
�{ j |dDM (i , j) = 1,d∞

M (i , j) > k} for k > 0
�{ j |d1

M(i , j) = 1,dDM (i , j) > −k} for k < 0
(3.25)

where� denotes cardinality of the sets. Functionfi (k) for k > 0 returns the
number of units immediately connected withi i.e. dDM (i , j) = 1 on Delaunay

36

3.4 Chapter Summary 37

graph that have distanced∞
M (i , j) > k on the map. As a consequencefi (k) for

k > 0 measures mismatch in the mapping from the input space to the map space.
Conversely fork < 0 fi (k) counts the number of units in the immediate neighbor-
hood ofi i.e d1

M (i , j) = 1 that are further thank hops away on the graphDM i.e.
dDM (i , j) > k, thus measuring the mismatch in the mapping from the map space
to the input space. Withfi (k) the topographic function is then defined

(k) =
{ 1

�M

∑
i∈M fi (k) for k �= 0

(1)+
(−1) for k = 0
(3.26)

The topographic function contains more information than a plain number obtained
from the topographic product Eq. 3.22. It gives a direction of the mismatch. If

(k) is positive for positivek the dimension of the map is insufficient for the
manifold and thus the map has folded. The largest value ofk gives the maximum
extent of theses folds. Likewise positive
(k) for negativek indicates that the map
has too high dimension for the input manifold. In practice this however is hardly
ever the case. The topographic function is a powerful tool for determining the
quality of mapping by the SOM but the inherent difficulty in estimating density,
caused by the curse of dimensionality (Bishop, 1995), for the masked Delaunay
graph may limit its usefulness.

3.4 Chapter Summary

In this chapter we reviewed some key work in the analysis of the SOM. The first
two topics are related as they both consider the error or distortion measure of
the SOM. The lack of energy function is a consequence of the inconsistent com-
petition and update parts of training rule as it causes non differentiable steps on
error at the boundaries of the Voronoi cells. The anomalies in the density model
are caused by the same steps in the error function, which should come as no
surprise considering the relationship of the error function with the approximate
negative log likelihood of the map. The resulting density model is a collection
of Gaussian components bounded by the Voronoi cells. The expected values of
the components are the neighborhood weighted means of the codebook vectors,
thus depending on the final neighborhood radius they may be considerably off-
set from the centroids of their respective Voronoi cells. This in turn causes non
differentiable steps in the density. When the map is trained with the minimum
distortion rule, it gains both an energy function and continuous density. On the
balance, however, the edge phenomena caused by the units near the edge areas
of the map having non symmetrical neighborhoods becomes more pronounced as
the neighborhoods are used both in competition and update. As a consequence
the map shows stronger tendency to compress than the normal SOM as we can
observe when comparing the excerpts in Figs. 3.2 and 3.4, thus the partitioning

37

Properties of the SOM

of the input manifold by the minimum distortion map is less even than the parti-
tioning by the normal SOM. In this sense the compromise made in the learning
rule of the original SOM was in my opinion beneficial.

In data analysis tasks the SOM is frequently used as a tool for reducing data
dimensionality. The point of exercise in dimensionality reduction is to find a lower
dimensional manifold, the data is sampled from, than the input space. A folded
sheet of paper is an example of a two dimensional manifold that produces a three
dimensional set of points when sampled. The neighborhood of the SOM brings
about local but not global order as the radius of the neighborhood is limited to
units close in the latent space. Global order, that is how well the map has orga-
nized into the input manifold, must therefore be measured separately to determine
how good a job the SOM has done in dimensionality reduction. The operators re-
viewed in the third topic of chapter three address the global order on the map. The
topographic product is limited to linear manifolds as it is unable to separate folds
on the map following folds in the manifold from dimension mismatch. The topo-
graphic function accounts for non linear, folded, manifolds but reliable estimation
of the topographic function may be difficult. The measures reviewed here are not
the only proposed. For example the intrinsic distance measure (Polani (2001),
originally proposed by Kaski and Lagus (1996)) considers the curvature of the
map by measuring the Euclidean distance of the two closest codebook vectors
directly in the input space and along the map surface.

38

3.4 Chapter Summary 39

Figure 3.1: The generative density of a normal SOM. Observe the discontinuities at the
Voronoi cell boundaries.

Figure 3.2: An excerpt of the above generative density with contours and boundaries of
Voronoi cells added.

39

Properties of the SOM

Figure 3.3: The generative density of a minimum distortion SOM. The points corre-
sponding with map units are the neighborhood weighted means of the codebook vectors.
This depiction however is not entirely correct as the error is not minimized with respect
to any single point.

Figure 3.4: An excerpt of the above generative density with contours and boundaries
of the receptive fields added. Notice how in some cases the means of the component
densities are not included in the respective receptive field.

40

3.4 Chapter Summary 41

Sigma = 1.00 −log(P(x)) = 6876.527 Sigma = 0.46 −log(P(x)) = 6838.728

Sigma = 0.22 −log(P(x)) = 7056.267 Sigma = 0.10 −log(P(x)) = 7011.965

Figure 3.5: Model selection example with the normal SOM. The axis titles are the final
neighborhood radius and the approximated negative log likelihoods for the test set.

41

Properties of the SOM

Sigma = 1.00 −log(P(x)) = 6931.436 Sigma = 0.46 −log(P(x)) = 6917.508

Sigma = 0.22 −log(P(x)) = 7040.182 Sigma = 0.10 −log(P(x)) = 7010.897

Figure 3.6: Model selection example with the minimum distortion rule SOM. The axis
titles are the final neighborhood radius and the approximated negative log likelihoods for
the test set.

42

Chapter 4

The Self-Organizing Map in
Sequence Processing

The SOM was originally developed for independent identically distributed data.
Thus the mapping is not influenced by the order of the input pattern presenta-
tion. However often in a real world situation data is collected as observations
from sequential processes, where the assumption of independence with respect to
time or previous observations is not always reasonable. Therefore a SOM like
unsupervised network model for sequential data is an appealing prospect for data
mining and comparable applications where the data, samples, are not associated
with class labels or any other desired target value. In this section I will review and
discuss various methods for bringing time or other possible forms of sequential
dependence into the SOM.

4.1 Trace of Best Matching Units

The first widely used applications of the SOM in sequence processing used the
trajectory ofbmus in the latent map space. The foremost application of these
trajectories was the Phonetic Typewriter (Kohonen et al., 1988; Kohonen, 1988;
Leinonen et al., 1992) for visualization of speech signals and their variations. The
activity trajectories have also found applications in process control and monitoring
(Tryba and Goser, 1991).

Thebmutrajectories in the Phonetic Typewriter and similar applications do no
sequence processing on their own right. Rather the SOM is used for reduction of
dimensionality and thus acts as a pre-processing stage for subsequent processing.
A potential weakness in thebmutrace method comes from the unavoidable folding
of the map in high dimensional input manifold. If the true dimension of the data
manifold matches the dimension of the map the map will organize nicely without
unwanted folding but in higher dimensional manifolds folds are created on the

43

The Self-Organizing Map in Sequence Processing

map to cover the entire manifold. As a consequence the trace signal will not
preserve the properties of the original signal in the sense that changes in the trace
are not a true reflection of the changes in the actual signal.

4.2 Single Layer Models

The use ofbmu trace involves no changes to the SOM algorithm. The map is
simply used to reduce the dimensionality of the data by projecting it onto latent
map space of substantially lower dimension. If the mapping preserved the distance
relations between subsequent samples the original signal could be substituted with
the resulting trace for further processing. In general this however is not the case.
In this section we will look into models that modify the basic SOM for sequence
processing. These models have leaky integrators added to the units to give them a
mechanism for remembering past activations or input patterns.

4.2.1 Temporal Kohonen Map

The goal of the Temporal Kohonen map (TKM) is to distinguish different se-
quences. To gain such time resolution leaky integrators, that gradually lose their
activity, are added into the outputs of the otherwise normal competitive units of
the SOM. In the TKM these integrators and consequently the decay of activation
is modeled with the difference equation

Ui (n) = λ · Ui (n)− 1

2
‖x(n)− mi (n)‖2 , (4.1)

where 0≤ λ < 1 is a time constant,Ui (n) is the activation of uniti at stepn while
mi (n) is the codebook vector of uniti , andx(n) is the input pattern at stepn. The
formula in Eq. 4.1 preserves a trace of the past activations as their weighted sum.
In fact it incorporates a linear low pass filter in the outputs of the otherwise normal
competitive units.

The activity maximizing unit

b(n) = arg max
i∈M

Ui (n) (4.2)

is the bmuat stepn in analogy with the normal SOM. The update rule for the
TKM was not specifically addressed when the model was proposed (Chappell and
Taylor, 1993). In the reported experiments, however, the codebook vectors were
updated toward the last sample of the input sequence using the normal stochastic
SOM update rule in Eq. 2.3

mi (n + 1) = mi (n)+ γ (n)h (b(n), i) (x(n)− mi (n)) , (4.3)

44

4.2 Single Layer Models 45

whereγ (n) is the learning rate andh(b(n), i) is the neighborhood strength for
unit i . The update rule in Eq. 4.3 corresponds to stochastic gradient descent for
λ = 0, thus ignoring the leaky integrators at the outputs. The feasibility of the the
TKM approach was demonstrated with a small synthetic and a small real world
toy problem.

4.2.2 Recurrent Self-Organizing Map

In the recurrent self organizing map (RSOM) (Pub. 4,5 and 6) the leaked quantity
is the difference vector instead of its squared norm. These integrators are modeled
with

yi (n) = (1 − α)yi (n − 1)+ α(x(n)− mi (n)) , (4.4)

whereyi (n) is the leaked difference vector for uniti at stepn. The leaking coeffi-
cientα is analogous to the value of 1−λ in the TKM but in the RSOM formulation
the sum of the factors is one to ensure stability whenα is positive but less than
one (Proakis and Manolakis, 1992). The RSOM formulation like the TKM for-
mulation associates a linear low pass filter with each unit to preserve a trace of the
past but in the RSOM the operator is moved from the unit outputs into their inputs.
This seemingly small change is quite significant because it allows the definition
of a simple SOM-like learning rule.

After moving the leaky integrators into the difference vector computation we
can treat the map much like the normal SOM. Following the derivation of the
learning rule for the normal SOM, first we define thebmuas

b(n) = arg min
i∈M

‖yi (n)‖ , (4.5)

After choosing thebmu we define the corresponding error function we seek to
minimize for inputx in terms of the leaked difference vectory as

E(n) = 1

2

∑
i∈M

h (b(n), i) yi (n)
2 , (4.6)

where the neighborhoodh(b(n), i) over which the error is computed was chosen
with Eq. 4.5. Differentiating Eq. 4.6 with respect toyi (n) yields

∂E(n)

∂yi (n)
= h (b(n), i) yi ,

thus the stochastic update rule following the normal SOM to minimize the error
E(n) is

mi (n + 1) = mi (n)+ γ (n)h (b(n), i) yi (n) (4.7)

whereγ (n) is the learning rate. In this derivation we ignored the discontinuities
of the error functionE(n) at the boundaries of the Voronoi cells.

45

The Self-Organizing Map in Sequence Processing

Model bmuselection criterion Codebook update target
TKM arg max

i∈M
Ui (n)|λ=λ̂ maxUi (n)|λ=0

RSOM arg min
i∈M

‖yi (n)‖ |α=α̂ min ‖yi (n)‖ |α=α̂

Table 4.1: The properties of the TKM and the RSOM. In the tableλ̂ andα̂ denote the
intended values for the time delay parameters whileλ andα denote the values that actually
get used.

The key properties of the learning rules of the TKM and the RSOM models
are summarized in Table 4.1. Note that the significant difference is that while the
α in the RSOM is the same for bothbmuselection and codebook update this is
not true with theλ in the TKM.

4.2.3 Analytical Comparison of TKM and RSOM

In this section we will discuss the learning properties of the TKM and the RSOM
models. First we derive the activity maximizing codebook vector for a set of
sequences and a single unit for both the TKM and the RSOM. In 4.2.3 we look
into the update rule of the TKM to see what the map actually learns and compare
experimental results with RSOM results. This work was motivated by problems
observed in the behavior of the TKM if the input space was even slightly more
complicated than those the model was experimented with in (Chappell and Taylor,
1993).

Activity Maximizing Codebook

Brief mathematical analysis is sufficient to show how maximizing activity in the
TKM should lead to similar codebook as minimizing the norm of the leaked dif-
ference vector in the RSOM when the maps share the same topology and data. For
the analysis we consider a setS = {X1, X2, ..., X�S} of sequences. The samples
in a sequenceXj ∈ S are denotedxj (1), xj (2), ..., xj (nj), wherenj is the length
of the sequenceXj .

Activity Maximizing Codebook for TKM

The goal of the TKM is to distinguish different sequences by choosing the unit
best adapted for each sequence. The criterion for adaptation chosen in (Chappell
and Taylor, 1993) is maximum activity on the map as defined in Eq.4.2. Maximiz-
ing activities of thebmus thus seem like a natural goal for the training procedure.

46

4.2 Single Layer Models 47

While this of course is not necessary since any learning target that produces the
best possible result is equally good, assumption that the goal is to learn the activity
maxiziming codebook is plausible.

For the setS of sequences and the codebook vectorm of a TKM unit, the units
activity U(S,m, λ) overS is the sum

U(S,m, λ) = −1

2

∑
j ∈S

nj∑
k=1

λ(nj −k)‖xj (k)− m‖2 , (4.8)

whereU(n) has been redefined in terms of the static input setS, the codebook
vector of the single unitm and the time delay parameterλ.

Since the activityU(S,m, λ) is a parabola, it is everywhere continuous and
differentiable with respect tom. Consequently its maximum lies either at its ex-
treme or at the single zero of∂U(S,m,λ)

∂m . Setting

∂U(S,m, λ)
∂m

= 0

we obtain

m =
∑

j ∈S
∑nj

k=1 λ
(nj −k)xj (k)∑

j ∈S
∑nj

k=1 λ
(nj −k)

, (4.9)

for the activity maximizing codebook for the single unit over the setS. Providing
that all sequences inS have the same lengtĥn, the inner sum of the denominator
in Eq. 4.9 is constant allowing us to simplify the equation to

m = 1

�S

∑
j ∈S

mj

where�S is the cardinality ofS and mj is the activity maximizing codebook
vector for the sequenceXj ∈ S defined with

mj =
∑n̂

k=1 λ
(n̂−k)xj (k)∑n̂

k=1 λ
(n̂−k)

. (4.10)

This codebook vector is the mean of the per sequence axtivity maximizing code-
books. It also is a good approximation when all sequences are sufficiently long
for the chosenλ.

Optimal Codebook for RSOM

Now we repeat essentially the same steps for an RSOM unit to derive the corre-
sponding optimal RSOM codebook vector for the setS. The leaked difference

47

The Self-Organizing Map in Sequence Processing

y(X,m, α) of the unit, whereX = x(1), ..., x(n) is the input sequence,m is the
codebook vector andα is the time constant, is

y(X,m, α) = α

n∑
k=1

(1 − α)(n−k)(x(k)− m).

Since the goal is to minimize the norm of the leaked difference vector, for the set
S we can rewrite the error function in terms of the the setS, the codebook vector
m and the time delay parameterα as

E(S,m, α) =
∑
j ∈S

‖y(Xj ,m, α)‖2 , (4.11)

which is minimized at the optimal codebook vector.E(S,m, α) defines a parabola
just like U(S,m, λ) did for the TKM and thus the optimal codebook vector is
either at an extreme or at the single zero of the derivative of the error function
with respect to the codebook vectorm. After setting

∂E(S,m, α)
∂m

= 0

we obtain

m =
∑

j ∈S
[∑nj

k=1(1 − α)(nj −k)
∑nj

k=1(1 − α)(nj −k)xj (k)
]

∑
j ∈S

[∑nj

k=1(1 − α)(nj −k)
]2 . (4.12)

The optimal RSOM codebook vectors in Eq. 4.12 is quite close to the codebook
vector defined in Eq. 4.9 for the TKM. The small difference comes from the loca-
tion of the leaky integrators.

Much like with the TKM we can simplify Eq. 4.12 if we assume that all se-
quences have the same lengthn̂. We get

m = 1

�S

∑
j ∈S

mj ,

wheremj is the optimal codebook vector for sequenceXj ∈ S defined with

mj =
∑n̂

k=1(1 − α)(n̂−k)xj (k)∑n̂
k=1(1 − α)(n̂−k)

.

This codebook vector is identical with the corresponding TKM codebook when
λ = 1 − α. From the analysis we observe that the optimal codebook vectors for
both models are linear combinations of the samples in the sequences.

48

4.2 Single Layer Models 49

Learning Algorithms

Since the update rule of the RSOM approximates gradient descent to minimize
the sum of the squared norms of the leaked difference vectors regularized by the
neighborhood, the map explicitly seeks to learn the codebook vector defined in the
previous section. With the TKM this is not the situation: We show that generally
the steady state codebook of the TKM does not maximize the activity and use
simulations to show how this affects the behavior of the TKM. To simplify the
analysis we only consider the zero neighborhood case.

By definition, in a steady state further training causes no changes in the code-
book. In practice this means that the derivative of the objective function is zero
with respect to the codebook given a static set of input patterns. Though in the
stochastic training scheme reaching a steady state is not possible in finite time,
criteria for a steady state can be defined and their impact considered when we
study the equivalent batch approach. For the batch approach we split the TKM
algorithm in two. In the first stage the data is Voronoi partitioned among the units
with the network activity function. In the second stage the new codebook given
the partitioning are computed. While proving convergence for any SOM model is
very difficult (Erwin et al., 1992a; Cottrell, 1997, 1998), if the TKM converges
its codebook has to satisfy the criteria we define here.

We have a setS = {X1, ..., X�S} of discrete sequences and a mapM. Last
sample of each sequenceXj ∈ S is xj (nj) wherenj is the length of the sequence.
In a steady state the TKM weights have to be in the centroids of the last samples
of the sequences in the Voronoi cells of the units. This observation is a direct
consequence of the codebook update toward the last samples of the sequences
corresponding with maximizing the activity when the time delay coefficientλ

was set to zero. When we setλ = 0 the TKM activity for uniti in Eq.4.8 reduces
to

U(Si ,mi ,0) = −1

2

∑
j ∈Si

(xj (nj)− mi)
2

and the corresponding steady state codebook at∂U(Si ,mi ,0)
∂mj

= 0 is

mi = 1

�Si

∑
j ∈Si

xj (nj) ,∀i ∈ M , (4.13)

wherei ∈ M is the unit,mi is the units codebook vector,Si ⊂ S is the set of
sequences in the Voronoi cell ofi and�Si is the cardinality ofSi . This code-
book is necessary for a steady state as the update step would not vanish for any
other codebook given the Voronoi partitioning that producedSi :s. The activity
maximizing TKM codebook with respect to the activity rule was defined in the

49

The Self-Organizing Map in Sequence Processing

t

TKM update
direction

maximum
activity

bmu(t)

Gradient direction
to maximize activityt−5

t−4

Figure 4.1: A piece of a TKM during
training. The units, and their Voronoi cells,
are marked with asterisks(∗) and the in-
put sequence with little circles(◦). The
plus (+) is drawn at the activity maximiz-
ing codebook vector. The arrows show
the the activity maximizing and the actual
TKM update directions.

Figure 4.2: Approximation of the mean
bias between the activity maximizing up-
date directions and the TKM update di-
rections for a regular 7× 7 grid of input
patterns in a 2D input manifold. We con-
sidered all sequences of length seven and
computed the approximation forλ = 0.15
for the time delay.

previous section. The codebook

mi =
∑

j ∈Si

∑nj

k=1 λ
(nj −k)xj (k)∑

j ∈Si

∑nj

k=1 λ
(nj −k)

,∀i ∈ M (4.14)

maximizes activity with our simplifying assumptions.

Experiments

The problem with the TKM is the discrepancy between the activity maximizing
codebook and the necessary steady state codebook. Fig.4.1, which has a part of
a TKM during training, shows this graphically. The arrow “Gradient direction
to maximize activity” shows the steepest descent direction to maximize activity
while the arrow “TKM update direction” shows the actual update direction toward
the last sample of the sequence.

We ran several simulations to demonstrate the impact of the discrepancy be-
tween thebmu selection and the weight update in the TKM. The first simula-
tion involves a one dimensional map in a discrete one dimensional input space
of seven input patterns. We initialized a 25 unit map with activity maximizing
codebook (see axis 1 in Fig. 4.3) for inputs 1...7. The leaking coefficientλ was
set at 0.1429, which leads to nearly regular activity maximizing distribution of the
codebook into the input space[1,7]. The map initilized with activity maximizing
codebook was further trained by randomly picking one of the inputs, thus creating

50

4.2 Single Layer Models 51

0 10 20 30
1

2

3

4

5

6

7
Iterations: 0

w
ei

gh
t

unit
0 10 20 30

0

2

4

6

8
Iterations: 625

w
ei

gh
t

unit
0 10 20 30

0

2

4

6

8
Iterations: 1250

w
ei

gh
t

unit

0 10 20 30
0

2

4

6

8
Iterations: 1875

w
ei

gh
t

unit
0 10 20 30

0

2

4

6

8
Iterations: 2500

w
ei

gh
t

unit
0 10 20 30

0

2

4

6

8
Quantized

w
ei

gh
t

unit

Figure 4.3: A map initialized with activity
maximizing codebook and trained with the
TKM approach. Notice how most of the
units are drawn into the edges.

0 10 20 30
1

2

3

4

5

6

7
Iterations: 0

w
ei

gh
t

unit
0 10 20 30

1

2

3

4

5

6

7
Iterations: 625

w
ei

gh
t

unit
0 10 20 30

1

2

3

4

5

6

7
Iterations: 1250

w
ei

gh
t

unit

0 10 20 30
1

2

3

4

5

6

7
Iterations: 1875

w
ei

gh
t

unit
0 10 20 30

1

2

3

4

5

6

7
Iterations: 2500

w
ei

gh
t

unit
0 10 20 30

1

2

3

4

5

6

7
Quantized

w
ei

gh
t

unit

Figure 4.4: A map initialized with optimal
codebook and trained with the RSOM ap-
proach.

a long random sequence, and updating the codebook using the stochastic training
scheme. The samples of the random sequence was corrupted with additive Gaus-
sian noise∼ N (0,0.125).

Fig. 4.3 shows the progress of a sample run for the TKM. The TKM quickly
“forgets” the initial codebook because it does not satisfy the steady state criteria
we derived earlier. Notice how the units are drawn toward the extremes of the in-
put manifold leaving only couple of units to cover bulk of the space. Identical one
dimensional experiment with the RSOM in Fig.4.4 yields a practically unchanged
result.

We can intuitively explain the reason for the units being drawn toward the
edges in the TKM with Figs. 4.1 and 4.2. For sequences that end near the edges of
the input manifold the activity maximizing TKM codebook and consequently the
bmus are systematically closer to the center of the manifold than the last samples
of the sequences which the units are updated toward. We can see this bias in
Fig. 4.1 in the difference between the activity maximizing update direction and
the actual update direction. This bias causes units to be attracted toward the edge
and especially corner samples. Once a unit is close enough it will no longer be
thebmufor any non trivial sequence of moving value.

Fig. 4.2 shows an approximation of mean bias between the activity maximiz-
ing update directions and the TKM update directions for a regular 7× 7 grid of
input patterns in a two dimensional input space. We considered all sequences of
length seven and computed the approximation usingλ = 0.15 for the time delay
parameter. The bias is zero only at the center of the manifold and becomes larger
the closer the input is to the edge. The lengths and the directions of the arrows
show the relative magnitude and direction of the bias for the sequences ending at

51

The Self-Organizing Map in Sequence Processing

that particular input. Formally

uj ≈
∑
k∈Sj

xj − mXk

whereuj is the arrow drawn at input locationxj , Sj is the set of sequences the last
sample of which isxj , Xk is a sequence inSj andmXk is the activity maximizing
TKM codebook vector forXk. The arrows form what resembles a gradient field of
smooth bump. The behavior of the TKM in two dimensional simulations strongly
supports the intuitive result in the figure.

In two dimensional simulations we trained hundred TKM and RSOM maps
to estimate the weight distributions in the input manifold with Gaussian kernels.
The maps were trained with Luttrell’s incremental approach (Luttrell, 1989). The
maps were trained with random sequences by picking one of the possible input
patterns and corrupting it slightly with additive Gaussian noise∼ N (0,0.125).
We experimented with two 2D input grids where the sparse grid had patterns
only in its four corners. This simulation essentially repeats the original TKM
experiment (Chappell and Taylor, 1993). The other grid was denser and had 49
input patterns arranged in a regular 7× 7 grid.

For the sparse grid we trained maps with sixteen units arranged in four by four
grid usingλ = 0.3 for the time delay in the TKM andα = 0.7 for the RSOM leak-
ing parameter following the original experiment in Chappell and Taylor (1993).
The resulting estimates for weight distributions in the input space are in Fig.4.5
where lighter shade means higher probability of a codebook vector. The dis-
tributions are meaningful because the activity maximizing codebook vectors as
derived in the previous section are linear combinations of the patterns in the input
sequences. As a consequence the way the maps partition the input manifold di-
rectly reflect the way they partition the sequence space as well. When quantized
with the zero neighborhood the, TKM concentrates all of its units at the four input
patterns as expected from the update rule. When the neighborhood is not turned
off the map forms a four by four grid of units where each unit is sensitive to one
of the sixteen possible combinations of two input patterns. With the RSOM the
result is not visibly dependent on the treatment of the neighborhood. The map
creates a four by four grid of units which in the case when the neighborhood was
retained was slightly denser.

The situation changed when we used the more densely sampled input grid
and 100 unit maps units arranged in 10× 10 grid. For this simulation we set the
time delay factor atλ = 0.15 andα = 0.85 accordingly. The resulting estimates
for the codebook distributions are in Fig. 4.6. Again without the neighborhood
the TKM concentrated all its units near the corner inputs reflecting the intuitive
result in Fig. 4.2. With the neighborhood, more units were left to cover the core
of the manifold as the neighborhood stiffens the map up but the improvement is
not as significant as it was with the sparse grid. Increasing the the radius of the

52

4.3 Hierarchical Models 53

neighborhood made the phenomenon more pronounced. The properties of the
model are such that the conflicting activity and update rules force units toward
the corners of the manifold but stiffening the map up with strong neighborhood
partially counters this effect.

Now recall the activity maximizing codebook we derived for TKM and RSOM
in Eqs. 4.9 and 4.12 respectively. TKM concentrated most of its units in the edges
and the corners of the manifold leaving only a few units to cover the bulk when
all input patterns were not in the corners of the manifold. In the sparse manifold
the conflicting activity and update rules were countered with the neighborhood
but the same neighborhood radius did not help with the densely sampled mani-
fold. Increasing the neighborhood radius would help in a simple manifold but this
approach could not be used in more complicated manifolds since the large neigh-
borhood radius would not allow the map to follow the manifold. In our opinion
using the neighborhood to correct the inherent problem in the model design is not
the correct approach. In these simulations the TKM model wasted a considerable
part of it expressive power. The RSOM on the contrary systematically learned
codebook that nearly optimally spanned the input manifold. The problem with
the TKM could be resolved if the TKM was trained with a rule that did not re-
quire gradient information. The chances are, however, that such a rule would be
computationally very demanding because it would require repeated evaluations of
the target function.

4.3 Hierarchical Models

The models presented in the previous section employed a single SOM coupled
with an integrating memory. Both of these models are limited to discovering
linear dependencies in the data and as it turned out the RSOM model is effectively
a basic SOM coupled with a linear low pass operator. In this section we will look
into models that employ two maps and an integrating memory between them.

In these models the outputs of the first map are stored in an integrating mem-
ory to provide the input for the second map. The first SOM produces a nonlinear
transformation of the input data. The transformation is stored in in the integrat-
ing memory to subsequently serve as the input for the second map. When broken
down they essentially have an RSOM in the bottom with a basic SOM on the top.

4.3.1 The Model of Kangas

A two layer model with an integrating memory connecting the maps was proposed
by Kangas (1994). The integrating memory between the maps is realized with
leaky integrators like in the TKM model. The transformation valuesyi stored in
the memory are inverted normalized Euclidean distances between data and code-

53

The Self-Organizing Map in Sequence Processing

3 4 5 6 7 8

3

4

5

6

7

8

TKM quantized

3 4 5 6 7 8

3

4

5

6

7

8

TKM neighborhood

3 4 5 6 7 8

3

4

5

6

7

8

RSOM quantized

3 4 5 6 7 8

3

4

5

6

7

8

RSOM neighborhood

Figure 4.5: Kernel density estimates for codebook distributions of 4×4 TKM and RSOM
maps in two dimensional input space with four input patterns in the corners of a square.
The figure depicts the distribution of the codebook, estimated from hundred independent
runs, into the square delimited by the four input patterns. Activity maximizing distribution
is a four by four grid, where each of the sixteen locations encodes one of the sixteen
possible combinations of two out of four input patterns. Lighter shade signifies higher
probability.

54

4.3 Hierarchical Models 55

2 4 6 8 10

2

4

6

8

10
TKM quantized

2 4 6 8 10

2

4

6

8

10
TKM neighborhood

2 4 6 8 10

2

4

6

8

10
RSOM quantized

2 4 6 8 10

2

4

6

8

10
RSOM neighborhood

Figure 4.6: Kernel density estimates for codebook distributions of 10× 10 TKM and
RSOM maps in two dimensional manifold, sampled at 49 points on a regular 7× 7 grid.
The activity maximizing distribution of codebook vectors is a regular 10× 10 grid.

55

The Self-Organizing Map in Sequence Processing

Integrating
memory

SOM SOM

Figure 4.7: A hierarchical model employing two maps and an integrating memory (Kan-
gas, 1994). The first map performs a non linear transformation on the data. The transfor-
mations are stored in integrating memory and serve as the input for the second map.

book vectors such that thebmugets 1.0 and the other units smaller values accord-
ingly, thus foryi we can write

yi =
[‖x − mi ‖
‖x − mb(x)‖

]−1

.

The obtained activity values are sharpened by squaring them a few times. This
dampens the small values and leaves only a few large values for more pronounced
activity map for the second layer. The transformation amounts to a slightly soft-
ened winner take all encoding to account for a situations where the sample is
equally close to two units far apart on the map. Such a situation may arise from
folding of the map space. Normal winner take all transformation would lead to
situations where the activity moves rapidly across the map space when in fact the
original data stays almost constant. This is the same phenomena that can plaque
the use ofbmutrajectories.

4.3.2 The Model of Carpinteiro

The other hierarchical model employing two SOM associates an integrating mem-
ory with both maps (Carpinteiro, 1998, 1999). This model model bears a lot of
resemblance with the model of Kangas and turns out to be close to two RSOMs
connected sequentially with a non linear transformation before the low pass op-
erator of the second map. The model has been proposed in at least two slightly
differing flavors.

In one flavor the transformation before the second map is computed in the
input space much like the transformation in the model of Kangas but instead of
using the distances akin to negative log likelihoods the model considers the actual
likelihood values (Carpinteiro, 1999) written as

yi = exp

[−(x − mi)
2

2σ 2

]
, (4.15)

whereyi is the transformed value for uniti andσ2 is the variance of the Gaussian
placed over each unit. Effectively the first map is treated as an un-normalized

56

4.4 Operator Maps 57

reduced kernel density estimator (Holmström and Hämäläinen, 1993; Hämäläi-
nen, 1995), where the codebook vectors specify the locations of the component
densities. The idea is basically sound but in practice unlikely to work. The first
problem stems from the curse of dimensionality. If the real dimension of the input
manifoldX and thusx is relatively large the chances thatx is close to anymj

are rather small, and thus unnormalized component likelihoods will either tend to
zero or be very close to one depending on the selection of the variance parameter
σ 2. The squaring of the transformation values in the model of Kangas reduces
the effects of similar problem. The other potential problem lies in the lack of nor-
malization of the transformation. It would be beneficial if the values added up to
unity as then the underlying map could be interpreted as a Gaussian mixture with
equally weighted kernels generating the datax.

In the other flavor the transformation function is computed primarily in the la-
tent map space rather than the input space (Carpinteiro, 1998). The transformation
is defined as

yi =
{

1 − γ dM(b(x), i) for H(x, i) �= 0
0 otherwise

(4.16)

wheredM (i , j) is a distance measure in the latent map space,yi is the transformed
output fori andγ is a constant determining the rate of decay ofyi with increasing
map distance to thebmu. As it turns out the second transformation is an alternate
definition for the neighborhood function to replace the original neighborhood and
as such it forfeits all information from the input data other than the map coordi-
nates of the correspondingbmu.

4.4 Operator Maps

The original SOM employed Euclidean distance in the unit competition but in
the greater scheme the SOM can be regarded as a framework where competing
models of varying kind are connected in a SOM like structure. This notion gave
rise to the idea of the operator map (Lampinen and Oja, 1989; Kohonen, 1993;
Joutsensalo and Miettinen, 1995).

4.4.1 Self-Organizing Map of Auto Regressive Units.

Future values of an autoregressive (AR) process depend on its previous values
and i.i.d additive innovations. In other words the future states of such process are
defined by its previous states plus a random noise component. This property is
captured by an AR-model, which in the linear case is simply a weighted sum of
the previous values of the process plus noise. The linear AR model for a discrete

57

The Self-Organizing Map in Sequence Processing

process or a scalar signalx(n) is then

x(n + 1) =
N∑

k=1

m(k)x(n − k)+ ε(n) , (4.17)

whereN is the degree of the model andε(n) is the noise term. TheN vector of co-
efficientsm can be solved, for example, with least squares method corresponding
with Gaussian innovations.

In the Self-Organizing Map of competing auto regressive models (AR-SOM)
(Lampinen and Oja, 1989) the codebook vectors of the units are the coefficients of
the corresponding AR-models and the noise model was assumed Gaussian. With
Gaussian innovations the optimal coefficient vector for the AR-model is estimated
from the observations writing down the estimation errors as

ε(n) = x(n + 1)−
N∑

k=1

m(k)x(n − k) (4.18)

and solving the corresponding linear system in the least mean square sense. This
system of equations is called the Yule Walker equations.

In the AR-SOM adaptive least mean squaresalmsmethod, which is a form
of the Widrow-Hoff rule (Widrow and Stearns, 1985; Shynk, 1995), was adapted.
After every input sample a codebook vector is updated with

m(n) = m(n − 1)+ γ ε(n)x(n) (4.19)

wherex(n) is the vector ofN previous samplesx(n − N − 1)...x(n − 1) andε(n)
is the error estimated with Eq. 4.18,γ is a learning rate factor. With the update
rule defined in Eq. 4.19 we can define a stochastic learning algorithm Alg. 3. for
the AR-SOM. The learning rule sketched above is basically sound but falls victim
to the noise innovations. For the optimal codebook vector of AR-parameters the
time average of the estimation error is minimum but at any given instant there is a
large probability of a wrong unit giving the minimum error. Thus to measure the
matching goodness of an uniti an exponential average over the recent estimations
errors is computed with a leaky integrator as

ε̂i (n) = αε̂i (n − 1)+ (1 − α)εi (n),

whereα is a time delay parameter. With this modification the competition rule is
changed to

b(n) = arg min
i∈M

ε̂i (n) .

58

4.4 Operator Maps 59

Algorithm 3: Stochtastic learning algorithm for the AR-SOM.

1. For each input sample search the correspondingbmuwith

b(n) = arg min
i∈M

x(n + 1)−
N∑

k=1

mi (k)x(n − k)

2. Use Eq. 4.19 modified to accommodate for the neighborhood to update the
AR-coefficients of thebmu.

mi (n) = mi (n − 1)+ γ h(b(n), i)εi (n)x(n)

4.4.2 Self-Organizing Map with Dynamic Time Warping

Dynamic programming is a standard algorithm for computing distances of words
from a discrete alphabet by computing the minimum cost for translating one word
to the other. In dynamic programming a cost is associated with each possible
operation which are removing a symbol, inserting a symbol or replacing a symbol
with another from a limited alphabet. Dynamic time warping DTW is a dynamic
programming algorithm, where a sequence of observations is usually compared
with a reference or template sequence. Associating such reference sequences with
the units of a SOM and using DTW for competition gives rise to a model dubbed
DTW-SOM (Somervuo and Kohonen, 1999). In experiments the model was used
to cluster Finnish utterances of numerals zero through nine.

In the DTW sequences of feature vectors are compared along warping func-
tion which essentially tells how the the compared sequences are aligned in com-
parison. The warping pathP can be described as a sparseN × M matrix, where
N andM are the lengths of the compared sequences. Each element of the matrix
pi, j tells how much the distanced(x(i),m(j)), wherex(i) is the i :th sample of
the compared sequence andm(j) is the j :th element in the reference sequence
influences the overall distance between the sequences along the path. SinceP de-
scribes the alignment of the two sequences it is reasonable to restrictP to having
exactly min(N,M) non zero elements with the

∑
P pi, j being a constant. A nat-

ural choice for all nonzero elements ofP is one but other alternatives may arise
when matching certain parts of the sequences is more important than the other for
example. The minimal warping path satisfies the following condition

Dmin ≡
∑
Pmin

pi, j d(x(i),m(j)) = min
P

∑
P

pn,md(x(i),m(j)) (4.20)

where the distance measured(·, ·) is application dependent.

59

The Self-Organizing Map in Sequence Processing

Since it is assumed a priori that the samples in the sequences are ordered in
time we can set further requirements on the warping pathP. A natural condi-
tion is that the path must be continuous and cannot go backward in time, it can
however stall. Since time marches on slope constraints can also be imposed on
the path forcing the time to advance on both sequences at some minimal rate. A
potentially coherent way to account for all prior knowledge would be through a
suitable prior distribution for theP. In the case of speech recognition for example
a conditional Gaussian ridge, where the ridge ran along the sub diagonal of current
location, would would be an intuitive choice i.e a prior that favored advancing on
both sequences at constant rate. The flexibility of the DTW matching as it allows
comparing sequences of different length makes it appropriate for speech process-
ing because people do not speak at the same constant rate. The method provides
invariance against moderate speed variations within the limits allowed for warping
pathP. In speech processing for which is was intended the DTW-SOM is more
suitable for a rather limited vocabulary as each word requires its own prototype
sequence. The state map discussed in the following section addresses this problem
by using the map as a Hidden Markov Model, which generates state sequences for
further processing.

4.4.3 State Space Map and Hidden Markov Models

Markov chain is a realization of random variable future values of which can be
predicted from its previous values. Most common Markov process, Markov one,
only requires the current value to predict the next one at best possible accuracy.
From now on only such Markov one processes are considered. Quite frequently
it is stated that in a Markov one process the next sample depends only on its
immediate predecessor but strictly speaking this is not the truth. Rather the correct
formulation for the dependencies in a Markov process is

p(x(n)|x(n − 1), x(n − 2), ..., x(1)) = p(x(n)|x(n − 1)),

wherex(n) denotes the state of process andn denotes discrete time, thus condi-
tioning on the immediate predecessor is sufficient to capture all relevant informa-
tion from the past but earlier samples still have an indirect influence through the
immediate predecessor. A Markov model that realizes a Markov process can be
described by anM vectorπ of start state probabilities and anM × M transition
matrix A that describes the state transition probabilities in other wordsA is the
probability distribution function for the process state.

In a hidden Markov model (HMM) the state of the process is not directly
observable but the process emits a character or a valuey at every state transition,
thus the HMM model is described as a triplet(π,A,B), whereπ andA have their
previous meanings andB captures the emission probabilities. For a discrete set of
N possible outputsB is anN × M probability distribution matrix. For continuous

60

4.4 Operator Maps 61

random outputB is probability densitypy,x(y|x(n)) for the output charactery
conditioned on the current state of the processx(n).

The state space map (Somervuo, 2000a) replaces the Euclidean distance op-
erators in the units with competing states or several state sub models of a larger
HMM. Each statei is modeled with a kernel density estimator ofKi Gaussian
kernels, which can be initialized by training a large normal SOM and splitting it
into clusters of several units. The model, designed primarily for speech process-
ing, finds the most likely state sequence through the state space map using Viterbi
algorithm for maximum likelihood estimate on the hidden state sequence on the
HMM for the given observation sequence (Viterbi, 1967). The segmented obser-
vation sequence is then used to train the emission probability distributions of the
correspondingbmu:s and their neighbors on the space state map.

The emission probability density for statei of Ki component densities is mod-
eled as a Gaussian mixture as follows

py,i (y|i) =
Ki∑

k=1

ci,k pi,k(y|i)

=
Ki∑

k=1

ci,k Zi,k exp
[−0.5 · (y − mi,k)

T�−1
i,k (y − mi,k)

]
, (4.21)

wheremi,k:s are the expected outputs of the component densities with correspond-
ing covariance matrix�i,k, andZi,k:s are the normalizing factors, for the compo-
nent densities. The sum of component weighting coefficientsci,k:s is one to pro-
duce a probability density. The parameters of the emission densities in the units
can be trained with the expectation maximization (EM) algorithm (Moon, 1996).
The state transition matrixA was kept uniform until very late in the training pro-
cess of the model to prevent a small subset of available states from becoming
dominating early in the training.

The state map cannot strictly be regarded as a SOM of competing HMMs
since there is no unique winner for an observation sequence. Rather the model is
hybrid where latent space of the SOM is used primarily to distribute and share data
among the states for computing the emission distributions and the units on the map
are the states of the HMM. In a subsequent extension to the model (Somervuo,
2000a) the initial map space of the model was replaced with a time dependent one
(Somervuo, 1999). This extension speeds up the training process by explicitly
connecting the states that are more likely to occur sequentially in the training data
instead of connecting states with similar emission probabilities.

The use of Gaussian mixtures in the units prompted the comparison of the
model with the generative topographic mapping (GTM) (Bishop et al., 1996,
1997) which is a SOM like model developed using probabilistic principles treat-
ing the model as a data generating mechanism. The state map also bears resem-
blance to thebmu trace idea of using SOM in the processing of sequential data.

61

The Self-Organizing Map in Sequence Processing

The outcome of the model is a state sequence in the latent map space which is
essentially abmu trace. An actual map of competing HMMs would be closely
related to the dynamic time warping map. A drawback of such model would be
size as at least one HMM and unit would be required for each word in the vocab-
ulary. The state space map as defined does not provide immediate classification
but it reduces the dimension of the original feature data significantly to simplify
subsequent classification.

4.5 Conclusions

In this thesis we discussed applying SOMs in sequence processing. The focus was
in the applications and alterations of the SOM that detect sequential dependencies
in the data. However, the RoboSOM proposal (Pub. 1,2) inverts the situation by
using the SOM to establish temporal dependence.

The SOM models for sequence processing reviewed in chapter four can roughly
be split in three groups. In the first group are thebmutrace method and the SOM
of competing HMMs. Both of these models generate a state sequence, or a se-
quence of state probability distributions, which can be used as input to further
processing. In the second group, formed by the AR-SOM, TKM, RSOM and
DTW-SOM, the operators in the units are altered for sequential input. In these
models the SOM structure is primarily used to share data among competing units.
In other words the sequence space is quantized by the SOM and the quantization
process is regularized by the neighborhood. The performance of these models is
limited by the operators in the units. The SOM structure does not enrich the rep-
resentations, rather the opposite, but this may be used to avoid overfitting into the
data. The third group includes the two hierarchical models which are hybrids of
the first two groups. The first map creates a state sequence which is integrated and
serves as the input to the second map.

The application of the SOM for surface manipulating robots RoboSOM makes
explicit use of the maps embedding property. The proposed method exploits the
prior knowledge that the data is sampled from a two dimensional surface and thus
the SOM can be expected to organize nicely on this surface as in Fig.2.3. As a
consequence the map neighborhood is used to create sequential order into the data.
This order is then used to create a path for the robot. In a sense the RoboSOM is an
inverse sequence processing method, where the neighborhood of the map creates
the time or sequential dependence into the data thus extending the neighborhood
in time. The applications of SOMs in NP-complete problems such as traveling
sales person and Hamiltonian circuit (see for exampleAras et al. (1999)) in a way
utilize the neighborhood in the same manner we did in the RoboSOM proposal.

62

Chapter 5

Summary of Publications

5.1 Publication 1: Surface Modeling and Robot Path Gen-
eration Using Self-Organization

In publication one we considered the problem of creating a program path for a
surface manipulating arm robot. The idea was to use the SOM to quantize a two
dimensional manifold, surface of an object, folded through third dimension. The
natural ordering of units that emerges on the map is taken advantage of when de-
composing the map into a sequence of points comprising the path for the robot.
The idea was simple enough: Use the SOM as a flexible surface fitted over the
object to be manipulated. However several problems surfaced that required mod-
ifications to the basic SOM algorithm. These problems included varying curva-
ture of the work piece surface requiring varying neighborhood width to enable
closer matching to the actual surface. Another problem was the conflicting sur-
face shape. A rectangular map lattice was being fitted over a non rectangular
surface which created folds on the map especially near areas with high curvature.

The authors contribution in this work in addition to coming up with the idea
was modifying the Tree Structured SOM (TS-SOM) for the surface modeling task
as well as generating the test data and running all simulations. The text was co-
authored with Prof. Pasi Koikkalainen.

5.2 Publication 2: Robot Path Generation for Surface
Processing Applications via Neural Networks

The ideas we presented in publication one were refined in publication two to re-
solve the problems from fitting a rectangular map over non rectangular surface of
the work piece. To achieve this the two dimensional surface was split into nar-
row essentially one dimensional strips and a one dimensional map was trained for

63

Summary of Publications

each of these strips. This created a hierarchical structure: The underlying two
dimensional map was used to create a coarse path for the arm of the robot and the
one dimensional maps, one for each row of the two dimensional map, were used
to create more detailed tool orientation paths to get as even as possible coverage
for the surface. This solution combated the surface shape problem as it allowed
different number of path points for each strip and thus broke the rectangular shape
restriction of the original idea.

The authors contribution in this work was to further modify the Tree Struc-
tured SOM (TS-SOM) as hierarchical model where the two dimensional map was
split into one dimensional maps for the bottom layer. The author also generated
the simulation data and ran all tests. The manuscript was co-authored with Prof.
Pasi Koikkalainen.

5.3 Publication 3: Epileptic Activity Detection in EEG
with Neural Networks

In publication three the SOM was used in more traditional context for feature
quantization and normalization. Several feature sets were evaluated for detection
of epileptic spikes in electroencephalography (EEG) recordings previously scored
by neurologists. The normalization of the feature values simplifies the subsequent
classifier but the real gain from the SOM was the improved tolerance for out liars.
Like vector quantizers in general the map concentrates its units where the data is
concentrated providing for more detailed encoding for higher density areas and
the ordering of the units means that encodings of close values are also close.

For this work the author wrote the code for feature extraction and quantifying
with the SOM. The classification with feed forward networks was done in co-
operation with Jukka Heikkonen. The manuscript was co-authored with Dr.Tech.
Jukka Heikkonen and Ph.D. José del R. Millán.

5.4 Publication 4: A Recurrent Self-Organizing Map for
Temporal Sequence Processing

The Recurrent Self-Organizing Map (RSOM) proposed in publication four (also
covered in Varsta et al. (1997)) is a modification of the Temporal Kohonen Map
(TKM) (Chappell and Taylor, 1993). The RSOM approach remedied some un-
desired properties of its predecessor but at this stage the reasons were not quite
clear. We knew that moving the leaky integrators from the response to the input
side was the key but some analysis work was required to understand exactly why.

The author is solely responsible for the original idea for the RSOM inspired
by the TKM and wrote the code. The initial experiments were performed in co-

64

5.5 Publication 5: Temporal Sequence Processing using Recurrent SOM 65

operation by the author and Ph.D. José del R. Millán. The former were joined by
Dr.Tech Jukka Heikkonen to finalize the manuscript.

5.5 Publication 5: Temporal Sequence Processing using
Recurrent SOM

The RSOM model (Pub. 4) was used here for temporal sequence processing. In
time series prediction the RSOM was used to partition the signal space and each
part was associated with a local linear model (see also Koskela et al. (1998a,b)).
This publication also has the first attempts to explain the why behavior or RSOM
differs significantly from that of TKM.

The author wrote the code for the RSOM and ran the experiments involving
the model. The authors contribution in the manuscript was writing the parts per-
taining to the RSOM and the TKM.

5.6 Publication 6: Temporal Kohonen Map and Recur-
rent Self-Organizing Map: Analytical and Experi-
mental Comparison.

In Publication six we presented the results of analysis to explain why the RSOM
and the TKM while seemingly similar behave quite differently, the same problem
was also considered in Varsta et al. (1998, 2000). The analysis revealed that
the training rule of the TKM was ill formed causing the model to misbehave in
any but the simplest of cases. It turned out that the RSOM is the correct way to
construct a model with the properties originally desired from the TKM but it also
showed how limited the ability of both of these models is in sequence processing
for which they were intended.

The author wrote the paper, designed and performed the simulations for the
analysis pushed in the right direction primarily by Prof. Jouko Lampinen and
Dr.Tech. Jukka Heikkonen.

65

References

Aras, N., Oommen, B. J., and Altinel, I. K. (1999). Kohonen network incorporating ex-
plicit statistics and its application to the travelling salesman problem.Neural Networks,
12(9):1273–1284.

Bauer, H.-U., Pawelzik, K., and Geisel, T. (1992). A topographic product for the opti-
mization of self-organizing feature maps. In Moody, J. E., Hanson, S. J., and Lippmann,
R. P., editors,Advances in Neural Information Processing Systems 4, pp. 1141–1147.
Morgan Kaufmann, San Mateo, CA.

Bazaraa, M. S., Sherali, H. D., and Shetty, C. (1993).Nonlinear Programming Theory
and Algorithms. Wiley, 2 edition.

Bishop, C. M. (1995).Neural Networks for Pattern Recognition. Oxford University
Press.

Bishop, C. M., Hinton, G., and Strachan, I. G. (1997). Gtm through tme. InProceedings
IEE Fifth International Conference on Artificial Neural Networks, Cambridge, U.K.

Bishop, C. M., Svensén, M., and Williams, C. K. I. (1996). GTM: A principled alter-
native to the self-organizing map. Technical Report NCRG/96/015, Neural Computing
Research Group, Aston University.

Carpinteiro, O. A. S. (1998). A hierarchical self-organizing map model for sequence
recognition. InProceedings of ICANN’98, pp. 816–820.

Carpinteiro, O. A. S. (1999). A hierarchical self-organizing map model for sequence
recognition.Neural Processing Letters, 9(3):209–220.

Chappell, G. J. and Taylor, J. G. (1993). The temporal Kohonen map.Neural Networks,
6:441–445.

Cottrell, M. (1997). Theoretical aspects of the som algorithm. InProceedings of
WSOM’97, Workshop on Self-Organizing Maps, pp. 246–267. Helsinki University of
Technology, Neural Networks Research Centre, Espoo, Finland. ISBN 951-22-3589-7.

Cottrell, M. (1998). Theoretical aspects of the som algorithm.Neurocomputing, 21:119–
138.

67

68 References

Cottrell, M., Fort, J. C., and Pagès, G. (1994). Two or three things that we know about
the Kohonen algorithm. In Verleysen, M., editor,Proc. ESANN’94, European Symp.
on Artificial Neural Networks, pp. 235–244, Brussels, Belgium. D facto conference ser-
vices.

Cottrell, M., Gaubert, P., Letremy, P., and Rousset, P. (1999). Analyzing and represent-
ing multidimensional quantitative and qualitative data : Demographic study of the rhône
valley. the domestic consumption of the canadian families. In Oja, E. and Kaski, S.,
editors,Kohonen Maps, pp. 1–14. Elsevier, Amsterdam.

Ellman, J. (1990). Finding structure in time.Cognitive Science, 14:179–211.

Erwin, E., Obermeyer, K., and Schulten, K. (1992a). Self-organizing maps: ordering,
convergence properties and energy functions.Biological Cybenetics, (67):47–55.

Erwin, E., Obermeyer, K., and Schulten, K. (1992b). Self-organizing maps: stationary
states, metastability and convergence rate.Biological Cybrenetics, 67:35–45.

Flanagan, J. A. (2001). Self-organization in the one-dimensional SOM with a decreasing
neighborhood.NEURAL NETWORKS, 14(10):1405–1417.

Goodhill, G. J. and Sejnowski, T. J. (1997). A unifying objective function for topo-
graphic mappings.Neural Computation, 9:1291–1303.

Graepel, T., Burger, M., and Obermayer, K. (1997). Deterministic annealing for to-
pographic vector quantization and self-organizing maps. InProceedings of WSOM’97,
Workshop on Self-Organizing Maps, Espoo, Finland, June 4–6, pp. 345–350. Helsinki
University of Technology, Neural Networks Research Centre, Espoo, Finland.

Hämäläinen, A. (1995).Self-Organizing Map and Reduced Kernel Density Estimation.
PhD thesis, Jyväskylä University, Jyväskylä, Finland.

Haykin, S. (1998).Neural Networks - A Comprehensive Foundation (2nd. ed.). Prentice-
Hall, Upper Saddle River, NJ.

Holmström, L. and Hämäläinen, A. (1993). The self-organizing reduced kernel density
estimator. InProc. ICNN’93, International Conference on Neural Networks, volume I,
pp. 417–421, Piscataway, NJ. IEEE Service Center.

Jordan, M. (1986). Attractor dynamics and parallelism in a conncetionist sequential
machine. InProceedings of the 8th Annual Conference of The Cognitive Science Society,
Amherst, pp. 531–546.

Joutsensalo, J. and Miettinen, A. (1995). Self-organizing operator map for nonlinear
dimension reduction. InProc. ICNN’95, IEEE International Conference on Neural Net-
works, volume I, pp. 111–114, Piscataway, NJ. IEEE Service Center.

Kangas, J. (1994).On the Analysis of Pattern Sequences by Self-Organizing Maps. PhD
thesis, Helsinki University of Technology, Espoo, Finland.

68

References 69

Kaski, S., Honkela, T., Lagus, K., and Kohonen, T. (1998). WEBSOM—self-organizing
maps of document collections.Neurocomputing, 21(1):101–117.

Kaski, S. and Lagus, K. (1996). Comparing self-organizing maps. In von der Mals-
burg, C., von Seelen, W., Vorbruggen, J. C., and Sendhoff, B., editors,Artificial Neu-
ral Networks—ICANN 96. 1996 International Conference Proceedings, pp. 809–14.
Springer-Verlag, Berlin, Germany.

Kohonen, T. (1982). Self-organizing formation of topologically correct feature maps.
Biological Cybernetics, 43(1):59–69.

Kohonen, T. (1984).Self-Organization and Associative Memory, volume 8 ofSpringer
Series in Information Sciences. Springer, Berlin, Heidelberg. 3rd ed. 1989.

Kohonen, T. (1988). The ’neural’ phonetic typewriter.Computer, 21(3):11–22.

Kohonen, T. (1993). Things you haven’t heard about the Self-Organizing Map. In
Proceedings of the ICNN’93, International Conference on Neural Networks, pp. 1147–
1156, Piscataway, NJ. IEEE, IEEE Service Center.

Kohonen, T. (1997).Self-Organizing Maps, volume 30 ofLecture Notes in Information
Sciences. Springer, second edition.

Kohonen, T., Torkkola, K., Shozakai, M., Kangas, J., and Ventä, O. (1988). Phonetic
typewriter for Finnish and Japanese. InProc. ICASSP-88, International Conference on
Acoustics, Speech, and Signal Processing, pp. 607–610, Piscataway, NJ. IEEE, IEEE
Service Center.

Koskela, T., Varsta, M., Heikkonen, J., and Kaski, K. (1998a). Prediction using rsom
with local linear models.Int. Journal of Knowledge-Based Intelligent Engineering Sys-
tems, 2(1):60–68.

Koskela, T., Varsta, M., Heikkonen, J., and Kaski, K. (1998b). Recurrent som with local
linear models in time series prediction. InESANN’98 European Symposium on Artificial
Neural Networks.

Laaksonen, J., Koskela, M., Laakso, S., and Oja, E. (2000). PicSOM—content-
based image retrieval with self-organizing maps.Pattern Recognition Letters, 21(13–
14):1199–1207.

Lampinen, J. and Kostiainen, T. (2001).Self Organizing Neural Networks: Recent Ad-
vances and applications, chapter Generative Probability Density Model in the SOM, pp.
75–94. Physica-Verlag.

Lampinen, J. and Oja, E. (1989). Self-organizing maps for spatial and temporal AR
models. In Pietikäinen, M. and Röning, J., editors,Proc. 6 SCIA, Scand. Conf. on Image
Analysis, pp. 120–127, Helsinki, Finland. Suomen Hahmontunnistustutkimuksen seura
r.y.

Leinonen, L., Kangas, J., Torkkola, K., and Juvas, A. (1992). Dysphonia detected by
pattern recognition of spectral composition.J. Speech and Hearing Res., 35:287–295.

69

70 References

Linde, A., Buzo, Y., and Gray, R. (1980). An algorithm for vector quantizer design.
IEEE Transactions on Communications, 28(1):84–95.

Luttrell, S. P. (1989). Self-organisation: A derivation from first principles of a class of
learning algorithms. InProc. Ijcnn’89. Int Joint Conf. On Neural Networks, volume Ii,
pp. 495–498, Piscataway, Nj. Ieee Technical Activities Board, Neural Network Commit-
tee, Usa; Int Neural Network Soc, Ieee Service Center.

Luttrell, S. P. (1994). A Bayesian analysis of self-organising maps.Neural Computation,
6(5):767–794.

Martinetz, T. (1993). Competitive Hebbian learning rule forms perfectly topology pre-
serving maps. In Gielen, S. and Kappen, B., editors,Proc. ICANN’93, International
Conference on Artificial Neural Networks, pp. 427–434, London, UK. Springer.

Martinetz, T. and Schulten, K. (1994). Topology representing networks.Neural Net-
works, 7(2).

Moon, T. K. (1996). The expectation-maximization algorithm.IEEE Signal Processing
Magazine, 13(6):47–60.

Mozer, M. (1993). Neural networks architectures for temporal sequence processing. In
Weigend, A. S. and Gershenfeld, N. A., editors,Time Series Prediction, pp. 243–264.
Addison-Wesley Publishing Company.

Orr, M. J. L. (1996). Introduction to radial basisi function networks. Technical report,
Centre for Cognitive Science, University of Edinburgh.

Polani, D. (2001).Self Organizing Neural Networks: Recent Advances and Applications,
chapter 2 Measures for the Organization of Self Organizing Maps, pp. 13–41. Studies
in Fuzziness and Soft Computing. Physica-Verlag.

Proakis, J. G. and Manolakis, D. G. (1992).Digital Signal Processing: Principles,
Algorithms, and Applications. Macmillan Publishing Compan.

Robbins, H. and Monro, S. (1951). A stochastic approximation method.Annals of
Mathematical Statistics, 22:400–407.

Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimensionality reduction by locally
linear embedding.Science, 290:2323–2336.

Rumelhart, D., Hinton, G., and Williams, R. (1986). Learning internal representations
by error propagation. InParallel Distributd Processing, volume 1, chapter 8, pp. 318–
362. MIT Press.

Shynk, J. J. (1995). Adaptive filtering. In Arbib, M. A., editor,The Handbook of Brain
Theory and Neural Networks, pp. 74–78. The Mit Press.

Somervuo, P. (1999). Time topology for the self-organizing map. InIJCNN’99. In-
ternational Joint Conference on Neural Networks. Proceedings., volume 3, pp. 1900–5,
Piscataway, NJ. IEEE Service Center.

70

References 71

Somervuo, P. (2000a). Competing hidden markov models on the self-organizing map.
In Proceedings of the International Joint Conference on Neural Networks, volume 3, pp.
169–174, Piscataway, NJ. Helsinki Univ of Technology, IEEE.

Somervuo, P. (2000b).Self-Organizing Map for Signal and Symbol Sequences. PhD
thesis, Helsinki University Of Technology.

Somervuo, P. and Kohonen, T. (1999). Self-organizing maps and learning vector quan-
tization for feature sequences.Neural Processing Letters, 10(2):151–159.

Tryba, V. and Goser, K. (1991). Self-Organizing Feature Maps for process control in
chemistry. In Kohonen, T., Mäkisara, K., Simula, O., and Kangas, J., editors,Artificial
Neural Networks, pp. 847–852, Amsterdam, Netherlands. North-Holland.

Varsta, M., Heikkonen, J., and del Ruiz Millán, J. (1997). Context learning with the self
organizing map. InProceedings of WSOM’97, Workshop on Self-Organizing Maps, pp.
197–202. Helsinki University of Technology, Neural Networks Research Centre, Espoo,
Finland. ISBN 951-22-3589-7.

Varsta, M., Heikkonen, J., and Lampinen, J. (2000). Analytical comparison of the Tem-
poral Kohonen Map and the Recurrent Self Organizing Map. In Verleysen, M., editor,
Proceedings of the ESANN’2000, European Symposium on Artifical Neural Networks,
pp. 273–280, Bruges, Belgium. D-Facto.

Varsta, M., Heikkonen, J., Millán, J. D. R., and Lampinen, J. (1998). On the convergence
properties of the recurrent self-organizing map. InProceedings of the ICANN’98.

Villmann, T., Der, R., Herrmann, M., and Martinetz, T. (1997). Topology preservation
in self-organizing feature maps: exact definition and measurement.IEEE Transactions
on Neural Networks, 8(2):256–66.

Viterbi, A. J. (1967). Error bounds for convolutional codes and asymptotically optimum
decoding algorithm.IEEE Transactions on Information Theory.

Werbos, P. J. (1990). Backpropagation through time.Proceedings of the IEEE,
78(10):1550–1560.

Widrow, B. and Stearns, S. D. (1985).Adaptive Signal Processing. Signal Processing.
PreniceHall.

Wiskott, L. and Sejnowski, T. (1997). Objective functions for neural map formation.
In Artificial Neural Networks, ICANN 97, volume 1327 ofLecture Notes in Computer
Science, pp. 243–248.

Zachmanoglou, E. and Thoe, D. W. (1986).Introduction to Partial Differential Equa-
tions with Applications, chapter Chapter II: Integral Curves and Surfaces of Vector
Fields. Dover.

71

Publication 1: Surface Modeling and Robot Path Genera-
tion Using Self-Organization

Varsta, M., and Koikkalainen, P. (1996)
In Proceedings of ICPR ’96, pages 30–34. IEEE.

Publication 2: Robot Path generation for surface process-
ing applications via neural networks

Koikkalainen, P., and Varsta, M. (1996)
In Proceedings of the SPIE, Vol. 2904, pages 66–73. SPIE.

Publication 3: Epileptic Activity Detection in EEG with
Neural Networks

Varsta, M., Heikkonen, J., and Millán, J. del R. (1997)
In Proceedings of the 1997 International Conference on Engi-
neering Applications of Neural Networks, pages 179–186.
The Royal Institute of Technology, Stockholm.

Publication 4: A Recurrent Self Organizing Map for Tem-
poral Sequence Processing

Varsta, M., Millán, J. del R., and Heikkonen, J., (1997)
In ICANN’97: International Conference on Artificial Neural
Networks, LNCS vol. 1327, pages 421–426. Springer.

Publication 5: Temporal Sequence Processing using Re-
current SOM

Koskela, T., Varsta, M., Heikkonen, J., and Kaski, K. (1998)
In KES ’98: Proceedings of the Second International Confer-
ence on Knowledge Based Engineering Systems, vol. 1, pages
290–296. IEEE.

Publication 6:Temporal Kohonen Map and the Recurrent
Self-Organizing Map: Analytical and Experimental Com-
parison

Varsta, M., Heikkonen, J., Lampinen, J., and Millán, J. del
R. (2001)
Neural Processing Letters, Vol. 13, pages 237–251, Kluwer
Academic Publishers.

ISBN 951-22-5764-5 (printed)
ISBN 951-22-5765-3 (PDF)
ISSN 1455-0474

	Title Page
	Abstract
	Preface
	List of Publications
	Symbols and Abbreviations
	Contents
	1 Introduction
	2 The Self-Organizing Map
	2.1 Fundamentals of the SOM
	2.1.1 Data Analysis With the SOM

	2.2 Derivation of the SOM from an Error Function
	2.3 Communication Channel Interpretation of the SOM
	2.4 Probabilistic Approach to SOM
	2.4.1 Folded Markov Chain
	2.4.2 Single Stage Folded Markov Chain as a Vector Quantizer
	2.4.3 Two Stage Folded Markov Chain as a SOM

	2.5 Chapter Summary

	3 Properties of the SOM
	3.1 Lack of Energy Function
	3.2 Generative Probability Density for the SOM
	3.2.1 Approximate Likelihood Function
	3.2.2 Full Density
	3.2.3 Model Selection with the Density Model

	3.3 Topology Preservation on the SOM
	3.3.1 Topographic Product
	3.3.2 Topographic Function

	3.4 Chapter Summary

	4 The Self-Organizing Map in Sequence Processing
	4.1 Trace of Best Matching Units
	4.2 Single Layer Models
	4.2.1 Temporal Kohonen Map
	4.2.2 Recurrent Self-Organizing Map
	4.2.3 Analytical Comparison of TKM and RSOM

	4.3 Hierarchical Models
	4.3.1 The Model of Kangas
	4.3.2 The Model of Carpinteiro

	4.4 Operator Maps
	4.4.1 Self-Organizing Map of Auto Regressive Units.
	4.4.2 Self-Organizing Map with Dynamic Time Warping
	4.4.3 State Space Map and Hidden Markov Models

	4.5 Conclusions

	5 Summary of Publications
	5.1 Publication 1: Surface Modeling and Robot Path Generation Using Self-Organization
	5.2 Publication 2: Robot Path Generation for Surface Processing Applications via Neural Networks
	5.3 Publication 3: Epileptic Activity Detection in EEG with Neural Networks
	5.4 Publication 4: A Recurrent Self-Organizing Map for Temporal Sequence Processing
	5.5 Publication 5: Temporal Sequence Processing using Recurrent SOM
	5.6 Publication 6: Temporal Kohonen Map and Recurrent Self-Organizing Map: Analytical and Experimental Comparison.

	References

