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Abstract 

In this thesis we discuss the asset returns. Our work was initially motivated by 
Mantegna’s and Stanley’s results (1995) that put forward the stable distribu-
tion as a model of asset returns and demonstrated the scaling property that 
seemed to be present in the data. Nevertheless, that work raised several ques-
tions both theoretically interesting and practically challenging such as: what is 
the effect of measurement quantity on the inference concerning asset returns, 
which are the proper quantities to look at, does the scaling exists, and if so 
what are its limits, are there characteristic times on asset returns, how the pos-
sible time-dependent variance affects the inference?  

When exploring these issues, we became concerned about the possible vari-
ability and time-dependency of the shape of the asset return distribution in ad-
dition to the time-dependent variance. Thus, we speculated that the possible 
variability of the shape could have been one reason behind the contradictory 
results concerning the best fitting model of asset returns. Furthermore, the 
anomalies related to the mean returns and standard deviations led us to raise 
the question whether the shape of the asset return distribution shows similar 
kinds of anomalies. Finally, since we noticed that much debate has been had 
about the time-independent and time-dependent models but there has been 
relative few studies where these various models have been compared using the 
same datasets, especially high frequency data, this has been done is thesis and 
quite surprising results were obtained. 

In order to address these questions we studied Standard & Poor's 500 daily 
index data of the New York Stock Exchange from more than 32 years. In addi-
tion, we used a high frequency data recorded on about 20 seconds time-
interval over three years time period. For comparison reasons we also studied 
a small market, namely the Helsinki Stock Exchange all shares return index 
(HEX) over seven year period. Moreover, we used an artificial data to demon-
strate some effects of measurement quantities. 

Our results show that the proper variable to look at is the logarithmic return. 
Initially, for short time horizon or holding periods, the truncated Lévy distri-
bution was found to fit the data quite well. Since this is not a stable distribu-
tion, the scaling behaviour observed for short times should break down for 
longer times. Thus, we demonstrated that the characteristic time of the break-
down of scaling is of the order of few days. Furthermore, the analysis of con-
vergence of the kurtosis showed that it takes place within few months. 
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When we investigated the various time-independent models of asset returns 
being simple normal distribution, Student t-distribution, Lévy, truncated Lévy, 
general stable distribution, mixed diffusion jump, power exponential distribu-
tion, and compound normal distribution, the results indicated that all models, 
excluding the simple normal distribution, are, at least, quite reasonable de-
scriptions of the data. Surprisingly, however all other time-independent mod-
els except the normal distribution usually outperform the time-dependent 
GARCH(1,1) model for time horizons shorter than about four hours although 
the fine grained data evidently includes time dependencies. However, the 
GARCH-model is on average the best model for daily returns, and especially 
for periods of time when the return generating process cannot be assumed 
normal.  

In the case of the variability of the shape of asset return distribution, our re-
sults showed that the shape of the distribution does not vary from one week-
day to another. However, substantial deviations over time were observed while 
there are also temporal periods when it is reasonable to assume the return gen-
erating process as normal. The known time-dependencies were found inade-
quate in explaining these deviations. Furthermore, the results indicate that the 
return distribution approaches normal when the time interval used to calculate 
returns is increased. 

Finally, our findings led us to raise three questions for future research to 
address. First, we speculated that there seem to be periods of “business as 
usual” when the return generating process is well described by the normal dis-
tribution. However, for some reason – for example, external shock, bubble 
formation – every now and then also periods of ferment emerge. These periods 
are characterised by higher volatility and increased time-dependencies. Sec-
ond, the poor performance of GARCH(1,1) model on high frequencies lead us 
to question whether the assumption of GARCH that returns are normally 
distributed with time-dependent parameters is reasonable and whether it 
should be substituted with some other model where also the shape is allowed 
to vary over time. Such a model could, at least in theory, capture the business 
as usual periods and periods of ferment. Third, although we were surprised by 
the poor performance of GARCH(1,1) on high frequencies, we were reluctant 
to generalise this finding before a more detailed analysis. However, if this 
behaviour is typical for financial data, it could also be a source for further 
insight to the return generating process. 
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1. Introduction 

This Chapter will review the background for the research and summarize the 
purposes of the Papers included in this thesis. Abbreviations and conceptual 
definitions used are also shortly listed. 

1.1 Background of research 

The shape of the asset1 return distribution has been intensively studied since 
Louis Bachelier’s (1900) doctoral dissertation “The Theory of Speculation”. 
Bachelier sketched a model where the changes in the logarithms of bond 
prices were normally distributed by invoking the central limit theorem. He fur-
ther assumed that the price changes are independent and identically distributed 
(iid). Although Bachelier clearly anticipated the rediscovery of Brownian mo-
tion by Einstein, it was Osborne (1959) who formally specified the asset return 
generating process as Brownian motion. The classical theory of finance is 
mainly based on this assumed normality. Assumed because the early scholars 
did not formally test their assumptions – they merely assumed that if the mar-
ket were as assumed then the suggested model would follow. However, Man-
delbrot (1963) and Fama (1965a) first reported fundamental differences from 
the normality: empirical return distributions are fat-tailed and peaked when 
compared to normal distribution (i.e., they are leptokurtic). 

Thereafter it has been commonly accepted that daily empirical return distri-
butions are fat-tailed and peaked. However, the asset return series also seem to 
posses some additional empirical features that are counter to iid and normality 
hypotheses. For example, a few studies suggest that the return distributions 
might be skewed (Kon 1984; Fielitz – Rozell 1983). Asset returns are also not 
usually found to be autocorrelated like the squared returns, variances, and vol-
umes are (Schwert 1989). Furthermore, the standard deviation of Monday’s 
returns is found to be higher than that of other days (Fama 1965a). A statisti-
cally significant difference in the mean return of Mondays compared to that of 
other days has been reported (French 1980; Gibbons – Hess 1981) and non-
stationary mean-excess returns have been discovered during the first trading  

                                            
1 The concept of asset is a generic name for a financial instrument that can be bought or sold, like 
stocks, currencies, gold, bonds, etc. 
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week of January (Keim 1983). In addition, the turn of the month effect – i.e., 
the mean return for stocks is positive only for days immediately prior to and 
during the first half of a calendar month and indistinguishable from zero for 
days during the last half of the month – has been found out (Ariel 1987). 
When the returns of individual stocks are studied – bimodality, i.e., the distri-
bution has two peaks – is occasionally observed (Kanto et. al. 1998). These 
findings suggest that the return generating process is likely to be complex, 
non-linear and that returns might be dependent. 

Although the empirical characteristics of asset returns are well-know, the 
research has not resulted in a conclusive view about the best model for asset 
returns. The models of asset returns can be divided to time-independent and 
time-dependent categories. The well-known time-independent models, which 
can capture some of the non-normalities present in empirical financial data 
series, include stable distribution (Mandelbrot 1963; Fama 1965a), Student t-
distribution (Blattberg – Gonedes 1974; Hagerman 1978), Mixed diffusion-
jump (Merton 1976), and Compound normal distribution2 (Kon 1984). The 
question which one of these models is best fitting remains open but in general 
the research shows that, in case of daily returns, normal distribution comes out 
as the worst fitting model and that the Student t, the mixed diffusion jump, and 
the compound normal distributions outperform the stable distribution 
(Blattberg – Gonedes 1974; Hagerman 1978; Officer 1972: Hsu et. al. 1974). 
In contrast, the ranking order between the Student t-distribution, the mixed 
diffusion jump, and the compound normal distribution seems not to be 
uniquely clear (Kon 1984, Akgiray et. al. 1987, Tucker 1992, Tucker et. al 
1988). On the other hand, monthly returns are generally regarded normally 
distributed (Ariel 1987). 

The question whether the variance converges to a finite limiting value is re-
lated to the time-dependency. The stable distribution results in a model that 
assumes infinite variance. However, recent research has found out that the 
variance of the asset return distribution is finite but time-dependent in a com-
plex non-linear manner (Perry 1983; see also Tucker 1992). This time-
dependency could explain the volatility clustering3 observed in financial time 
series and the leptokurtic unconditional return distributions. The models that 
assume the time-dependency include, for example, (generalised) autoregres-
sive heteroscedastic ([G]ARCH) models (Engle 1982; Bollerslev 1986; 1987), 
stochastic volatility (SV) models (see Taylor 1985; Taylor 1994), and models 
based on chaos theory or on fractals leading to complex dynamics (Hsied 
1991, Mandelbrot 1999). In general, these models lead to martingale differ-

                                            
2 Also called mixture normal 
3 Large changes tend to be followed by large changes, of either sign, and small changes tend to be 
followed by small changes (Mandelbrot 1963). 
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ences, which implies that the realisations of a stochastic process are uncorre-
lated but not necessarily independent. These dependencies are then modelled 
in the conditional variance equation but the point forecasts of returns cannot 
be improved. This possible time-dependency does not necessarily imply mar-
ket inefficiency since it is enough for the efficiency to hold that the return-
generating process can be represented as a martingale (Fama 1970). 

Despite of the evidence against the stable distribution, Mantegna and 
Stanley (1995) observed scaling property and put forward again the stable dis-
tribution as a model of asset returns but they also pointed out an approxi-
mately exponential decay in the tails of the distribution. However, this result 
may partially be due to the use of differences instead of logarithmic returns 
and perhaps more specially it may be due to the use of high frequency transac-
tion level data in the analysis. Nevertheless, Mantegna and Stanley’s work 
raises at least the following important questions. What is the effect of meas-
urement quantity on the inference concerning asset returns? Which are the 
proper quantities to look at? If the scaling exists, what are its limits? How the 
possible time-dependent variance affects the inference? Are there characteris-
tic times on asset returns? In addition to that, the linear and non-linear depend-
encies, especially that of the second moment, have been widely elaborated in 
the literature but it seems that limited attention has been paid to the possible 
variability and time-dependence of the shape of the asset return distribution. 
The possible variability of shape could have been one reason behind the con-
tradictory results concerning the best fitting model of asset returns. It is also 
both theoretically interesting and practically challenging to know whether the 
shape of asset return distribution has similar kind of anomalies than mean re-
turns and standard deviations. Much debate has also been made around the 
time-independent and time-dependent models but there are relative few studies 
where these models are compared together with the same datasets. This thesis 
will explore these issues. 

1.2 Purpose of research 

The purpose of the first two papers – “Characteristic times in stock market 
indices” and “Break-Down of Scaling and Convergence to Gaussian” - was to 
find out where are the limits of scaling4 in the stock market data and to exam-
ine the effect of measurement quantity (logarithmic return versus simple dif-
ference) on the inference. In these two papers, we applied the biased view that 

                                            
4 Scaling means that the shape of return distribution remains the same regardless of time scale. Thus, 
for example, if one minute returns are Lévy distributed with a given characteristics exponent, then 
also daily and monthly returns should be Lévy distributed with the same characteristics exponent. 
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the (truncated) Lévy distribution is an adequate description of stock return dis-
tribution for short times and studied, based on this assumption, the crossover 
to the Gaussian behaviour. Along with that, we examined the effects of non-
linear dependencies by filtering them out with ARCH, GARCH and IGARCH 
methods. 

In the third paper – “Time Independent Models of Asset Returns Revis-
ited” – we re-examined the well-known time-independent models of asset re-
turns (simple normal distribution, Student t-distribution, Lévy, truncated Lévy, 
general stable distribution, mixed diffusion jump, and compound normal dis-
tribution) and studied further the effects of the use of the simple differences 
and logarithmic returns on the inference. In addition, we showed that the like-
lihood ratio test can be used to discriminate between mixed diffusion jump and 
compound normal model. 

The purpose of the paper “Variability of Hex Return Distribution” was to 
explore the possible variability in the shape of the unconditional distribution. 
This problem was studied with the help of the following questions: does the 
shape of distribution vary from on weekday to another, is the shape of distri-
bution constant over time, and does the shape of the distribution vary along the 
time horizon used to calculate the returns? In the next paper “On the shape of 
asset return distribution”, we continued on the same path. Here we extended 
the data to cover a major market (S&P 500 daily index) and took into account 
the known linear and non-linear time dependencies. Thus, a forth question 
“how the known linear and non-linear time dependencies affect the inference 
concerning the shape of the distribution” was also studied. With these ques-
tions, the nature of these two papers was descriptive and they seek not to give 
any detailed quantitative or modelling based explanation of the possible time 
variation of the shape of the asset return distribution. 

The final paper of this bundled thesis “Models of Asset Returns: Changes of 
Pattern from Tick by Tick to 30 Days Holding Period” summarized, clarified 
and extended the analyses and results of our multi-year project to explore asset 
returns. This paper focused to study the effects of (i) different time periods, 
(ii) different holding periods and (iii) non-linear dependencies on the conclu-
sions concerning the best fitting time-independent model of asset return distri-
bution (iv) and to compare the time-independent models to a simple time-
dependent model. A special interest was paid to the evolution of the properties 
of asset returns when very short holding periods (high frequency data) are be-
ing analysed and to the question whether the models of asset return distribu-
tion found good on daily data also provide good description of data on shorter 
time-intervals. 
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1.3 Abbreviations and conceptual definitions 

Anomaly is used in the financial literature to describe peculiarities present in 
financial data series. 

Asset is a generic name for a financial instrument that can be bought or 
sold, like stocks, currencies, gold, bonds, etc. 

Brownian motion. See Wiener process. 
Martingale is a stochastic process where the realisations are uncorrelated 

but not necessarily independent.  
Lévy distribution is used to refer a special case of general stable distribu-

tions where the location and skewness parameters are assumed zero. 
Stylized empirical facts. Econophysicists have introduced the concept styl-

ized empirical facts to refer to the systematic empirical facts that support nei-
ther the iid nor the normality hypotheses. 

Volatility clustering means that large changes tend to be followed by large 
changes, of either sign, and small changes tend to be followed by small 
changes. 

A Wiener process (also referred to as Brownian motion) is a particular type 
of Markov stochastic process. It has been used in physics to describe the mo-
tion of particle that is subject to a large number of small molecular shocks. 

Table 1: Abbreviations 

Abbreviation Description 
ARCH Autoregressive heteroscedastic 
CND Compound normal distribution 
FFT Fast Fourier Transform 
GARCH Generalised autoregressive heteroscedastic 
GED Generalised error distribution 
GSD General stable distribution 
iid Independent and identically distributed 
KDE Kernel density estimate  
MDJ Mixed diffusion-jump 
ML Maximum likelihood 
pdf Probability density function 
PED Power exponential distribution 
STU  Student t-distribution 
SV Stochastic volatility 
TLF Truncated Lévy distribution 





 

2. Characteristics of Asset Returns 

This Chapter discusses the terms of measurement (logarithmic return, simple 
price change, and percentage return) used when analysing asset returns. Their 
differences are highlighted and the conclusion that logarithmic return is theo-
retically the most justifiable measure to use is presented. In addition, the em-
pirical facts that support neither the iid nor the normality hypotheses (stylized 
empirical facts) and anomalies present in financial data series are reviewed. 

2.1 Terms of measurement 

The asset returns can be measured in terms of logarithmic return, simple price 
change, and percentage return. In order to define these precisely, let Pt be the 
asset price at time t. The simple price difference is then denoted by Dt and 
reads as follows: 

 1 −−= ttt PPD   (2.1) 

The variability of a simple price difference is an increasing function of the 
price level and this might bias the inference at least when the price level in-
creases significantly during the analysis period. Fortunately, the use of loga-
rithmic return (rt) neutralises most of this effect (Fama 1965a, 45). Logarith-
mic return reads as follows: 

 ( ) ( )1lnln −−= ttt PPr  (2.2) 

In addition, the change in logarithmic price is the yield, with continuous 
compounding, from holding a security for the period in questions. Proof is as 
follows (Fama 1965a, 45): 
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When applying logarithmic return, continuous time generalisations of dis-
crete time results are easier and returns over more than one day are simple 
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functions of single day returns (Taylor 1986, 13). The third way to define asset 
return is the percentage return (Rt) that is numerically very close to logarithmic 
return for small changes. 

 
1

1

−

−−=
t

tt
t P

PP
R  (2.4) 

In addition to these points, the return aggregation is of importance in most 
financial applications. Table 2 summarises the difference between percentage 
returns and logarithmic returns. wi denotes the weight of asset i, t denotes the 
time, and p portfolio. The data in Table 2 indicates that when the aggregation 
is done across time it is more convenient to work with logarithmic returns and, 
in case of aggregation across assets, percentage return results in a simpler ex-
pression. 

Table 2 : Return aggregation 

Aggregation Temporal Cross-section 

Percent return ( )∏ −+=
t

itit RR 11  ∑=
i

itipt RwR  

Logarithmic return ∑=
t

itit rr  







= ∑

i

r
ipt

itewr ln  

Source: RiskMetricstm – Technical Document 1996, 49 

However, since percentage return and logarithmic return are very close for 
small changes, it is common to approximate a portfolio return in case of loga-
rithmic return as: 

 ∑
=

≅
N

i
itipt rwr

1

  (2.5) 

This leads to a situation where the one-day model computed with rt extends 
easily to returns of greater than one day. In general, the use of logarithmic re-
turn is commonly accepted among the financial researchers. Despite of that 
fact, in some early econophysics studies differences were favoured (see 
Mantegna – Stanley 1995). This is likely to lead to different interpretations. 
Figure 8 illustrates the behaviour of the three measures when applied to 
S&P 500 daily index. Especially, the effect of price level on price variability, 
in case of the simple price differences, is clearly visible form it. Hereafter the 
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concept return is used to refer to logarithmic return for concise presentation if 
not otherwise indicated. 
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Figure 1: Terms of measurement 

2.2 Anomalies and stylized empirical facts 

The classical theory of finance has its roots on Bachelier’s work (1900) and 
relies on the assumption that asset returns are identically and independently 
distributed (IID). The normality assumption is usually then added that leads to 
the Brownian motion behaviour (see Osborne 1959). However, the empirical 
research has found several systematic empirical facts that support neither the 
iid nor the normality hypotheses. Econophysicists have introduced the concept 
stylized empirical facts (see, e.g., Cont 2001) to refer to these. In turn, “anom-
aly” is the concept usually used in the financial literature to describe peculiari-
ties present in financial data series. In this thesis, these concepts are used in-
terchangeably.  

According to Cont (2001, 224) asset returns typically demonstrate the fol-
lowing properties. (1) Return series are usually not autocorrelated. (2) Return 
distributions have heavy tails when compared to those of normal distribution. 
(3) Gain/loss asymmetry that, however, is not observed in exchange rates. (4) 
Aggregational Gaussianity – i.e., the shape of return distribution is not the 
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same at different time scales and, when time interval increases, the shape be-
comes more and more like normal distribution. (5) Intermittency – i.e., returns 
display, at any time scale, high degree of variability. (6) Return series show 
volatility clustering and (7) conditional heavy tails – i.e., after correcting the 
returns for volatility clustering, the return series still has heavy tails. (8) Slow 
decay of autocorrelation in absolute returns. (9) Leverage effect – i.e., most 
measures of volatility are negatively correlated with returns of that asset. (10) 
Volume/volatility correlation. (11) Asymmetry in time scales (coarse-grained 
measures [long time scale] of volatility predict fine-scale [short time scale] 
volatility better than the other way round). 

The research has also found various anomalies related to weekdays and cal-
endar months. These include the findings that the standard deviation of Mon-
day’s returns is higher than that of other days (Fama 1965a). A statistically 
significant difference in the mean return of Mondays compared to that of other 
days (French 1980; Gibbons – Hess, 1981). Non-stationary mean-excess re-
turns in the first trading week of January (Keim 1983). Along with that, Ariel 
reported the turn of the month effect, i.e., the mean return for stocks is positive 
only for days immediately prior to and during the first half of calendar months 
and indistinguishable from zero for days during the last half of the month 
(Ariel 1987). In contrast to large international markets, somewhat more con-
tradictory results concerning small markets have been reported. For example, 
the anomalies related to weekdays on Finnish market are not generally re-
garded strong (Booth et. al. 1992). In addition, when the returns of individual 
stocks are being analysed, bimodality - i.e., the distribution has two peaks - is 
occasionally observed (Kanto et. al. 1998). In contrast to individual stocks, 
bimodality has not been reported when stock portfolios or indices have been 
studied. 

The above-discussed findings concerning the characteristics of asset returns 
seem to suggest that the return generating process might be non-linear and that 
returns might be mutually dependent. This possible dependency does not nec-
essarily imply market inefficiency since it is enough for efficiency that the re-
turn-generating process can be represented as a martingale5 (Fama 1970). Al-
though the classical assumption that asset returns are identically independently 
distributed (iid) does not necessitate any statements about the shape of the re-
turn distribution it does necessitate the independence. The possible time-
dependency can be divided in linear and non-linear categories. The linear de-
pendency is usually measured by autocorrelation. Autocorrelation is defined as 
follows: 

                                            
5 Martingale means that the realisations of a stochastic process are uncorrelated but not necessarily 
independent. 
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 ( ) ( )( )),(,, ttrttrcorrC ∆+∆= ττ  (2.6) 

where corr denotes the sample correlation. A typical finding is that the asset 
returns for daily and weekly holding periods are modestly autocorrelated for 
one day or one week lag (typically less than 0.2) and slightly stronger for 
longer time periods (see Fama et. al. 1988) but, for longer than one lags, the 
autocorrelation tends to vanish completely. There is also convincing evidence 
that suggests that it is safe to assume autocorrelation zero for all practical pur-
poses for longer than 15 minutes time lags (Cont et. al. 1997, see Cont 2001). 
In contrast to the negligible return’s autocorrelation, squared returns, vari-
ances, and volumes are autocorrelated (Schwert 1989). This finding suggests 
that returns might have non-linear dependencies. Linear and non-linear de-
pendencies could result in increased probability mass in the tails of the ob-
served return distribution, which in turn is likely to lead to biased inference 
about the shape of the distribution and its variability over time. 

An undisputable exception from the classical asset returns’ normality as-
sumption is that the empirical return distributions indicate substantial excess 
kurtosis. A large positive value for kurtosis indicates that the tails of the distri-
bution are longer than those of a normal distribution are; a negative value for 
kurtosis indicates shorter tails (becoming like those of a box-shaped uniform 
distribution). It was Mandelbrot and Fama who first reported this fundamental 
deviation from the normality (Mandelbrot 1963, Fama 1965a). The kurtosis is 
defined as follows: 
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where E is the expectation operator, µ is the mean of random return variable 
xt, and σ is the standard deviation. For normal distribution, the value of k is 
three. It is typical practise to deduct three from the k (as in Eq. 2.7) so that the 
value of kurtosis coefficient k’ for the normal distribution is zero. However, it 
needs to be pointed out that the existence of above discussed dependencies in 
the data is likely to increase kurtosis. Furthermore, it is known that the kurto-
sis and skewness behave very differently as the time interval is increased when 
the different terms of measurement are used. According to Lau and Wingender 
(1989), ignoring this phenomenon might have been one reason for the contra-
dictory results concerning skewness and kurtosis. 

The following issue is the possible skewness, which is more questionable 
property than kurtosis. However, since the possible skewness is fundamental 
to portfolio investment decisions, to most mainstream financial models, and to 
many statistical testing procedures relating to asset returns, it needs to be dis-
cussed. The skewness is defined as follows: 
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where E is the expectation operator, µ is the mean of random return variable 
xt, and σ is the standard deviation. For normal distribution γ=0, and for non-
symmetric distributions γ  is non-zero. Skewness is positive when right hand 
tail is heavier and negative when left hand tail is heavier. 

There are relatively few studies considering the skewness in stock market 
data and the results are contradictory. Negative, positive, and non-existent 
skewness has been reported. For example, a few studies indicate that the return 
distributions are skewed (Kon 1984, Fielitz – Rozell 1983). Schwert found out 
that the skewness is varying from positive to negative from one sample period 
to another when he analysed U.S. stock prices from 1802 to 1987 (Schwert 
1987). Alles and Kling (1994) reached a conclusion when studying a wide 
class of assets (NYSE, AMEX and NASDAQ stock indices, US government 
long-term and medium-term bond indices, and mortgage, corporate and gov-
ernment agency bond indices) that smaller capitalised stock indices are more 
negatively skewed than larger stock indices and that the skewness of stock in-
dices follows a business-cycle-related variation over time so that skewness 
tend to be more negative during economic upturns and less negative, even 
positive, during downturns.   

Alles and Kling’s findings are in line with Schwert’s results but partly con-
tradictory to Badrinath and Chatterjee’s (1991). This contradictory might be 
due to the measurement errors caused by market frictions such as non-
synchronous trading and bid-ask bounce (Alles – Kling 1994). It has also been 
suggested that the slight skewness observed in empirical returns might be due 
to the dependencies in the data that are not properly taken into account when a 
significant skewness is observed (see Alles – Kling 1994; Lau – Wingender 
1989). Thus, the current research has not resulted in a conclusive view and 
there is an ongoing debate around this issue but, in general, it has not been re-
garded as a problem for practical purposes.  

There are at least four different alternative approaches to test the signifi-
cance of skewness. First alternative is to assume that returns are iid normally 
distributed and then apply the standard test for skewness (see Alles-Kling 
1994). Second alternative is to adjust the significance value to take into ac-
count the observed autocorrelation (see Alles-Kling 1994). Third way is to 
filter the auto-correlation out from the data and then apply the standard tests 
for skewness. Fourth alternative is to test wide range of distributions and con-
sider the kurtosis and skewness together (see Badrinath – Chatterjee 1988, 
1991). In contrast to linear-dependency, the possible effect of non-linear de-
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pendencies on the skewness estimates has not been extensively assessed by the 
research. 

An additional crucial assumption is whether the second moment is finite or 
infinite. This issue has been intensively discussed since Mandelbrot’s (1963) 
and Fama’s (1965a) seminal works that suggested the stable distribution, 
which does not necessarily have a finite second moment, as a model of secu-
rity returns. The later research has provided substantial evidence that does not 
support the stable hypothesis. (Blattberg – Gonedes 1974, Hagerman 1978, 
Officer 1972, Hsu et. al. 1974, Perry 1983, Tucker 1992). In contrast, 
Mantegna and Stanley recently reached the opposite result again, but this re-
sult may partially be due to the use of differences instead of logarithmic re-
turns and perhaps more specially it may be due to the use of high frequency 
transaction level data in the analysis (Mantegna – Stanley 1995, see Kullman 
et. al. 1999). In general, it is usually accepted that the variance is finite al-
though time-dependent in a complex manner when daily data is being ana-
lysed (Perry 1983, Tucker 1992, see also Fama – French 1988).  

One strong evidence that supports finite second moment is that the he shape 
of return distribution of the same asset calculated over various different inter-
vals (for example, daily, weekly, monthly, or annual holding periods) seems to 
become more and more like normal distribution when time interval increases. 
In general, the research generally indicates that monthly returns are well de-
scribed by stationary normal distribution (Hagerman 1978, Akgiray – Booth 
1987, Akgiray 1989). This finding is in line with the central limit theorem 
(CLT). In addition, it seems that logarithmic returns do not have long term 
properties but the squared returns and absolute returns do have. However, 
these findings may be due to the aggregation and non-stationary (Lobato – 
Savin 1998). 





 

3. Asset Return Generating Processes and 
Distributions 

This Chapter reviews the different aims and approaches to the modelling of 
asset returns. After that, various statistical analysis based models of asset re-
turns are discussed. These include kernel density estimate (KDE), normal dis-
tribution, general stable distribution (GSD), truncated Lévy flight distribution 
(TLF), Student t-distribution (STU), power exponential distribution (PED), 
mixed diffusion jump (MDJ), compound normal distribution (CND),  
RiskMetrictm model, (G)ARCH type models, and stochastic volatility (SV) 
models. The previous research concerning these models is reviewed and the 
statistical comparison of the models is discussed.  

It needs to be pointed out that the asset pricing models such as capital asset 
pricing model (Sharpe 1964, Lintner 1965) (CAPM) and arbitrage pricing 
model (Ross 1976) (APM) are beyond the scope of this thesis. The models 
considered here focus on the modelling the return generating process and/or 
the resulting distribution of returns not the theoretically correct asset price or 
market equilibration process. Nevertheless, the understanding of the return 
generating process and the resulting distribution of asset returns inevitably 
constitute the basis for the asset pricing models. 

3.1 Modelling approaches 

There are three distinct approaches to model the unconditional distribution of 
asset returns. The first approach is to model the assumed return generating 
stochastic process resulting in a distribution of returns. The second approach is 
to seek a distribution that empirically fits with the observed data and the third 
approach, which is probably the most challenging, is to model the behaviour 
of individual agents who act on the market. It needs to be pointed out that the 
aims of modelling are also different. Some studies seek to understand the re-
turn generating process while others are merely descriptive. Different kinds of 
modelling approaches are needed for such broad aims. 

The modelling of the stochastic return generating process seems to be 
appealing since it is based on the understanding of the return generating 
process. However, the processes often become so complex that the resulting 
distribution cannot be analytically derived (see Epps – Epps 1976; Oldfield et.  
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al. 1977; Tauchen – Pitts 1983) although some of the models in this category 
lead to rather simple formulations with reasonably good explanatory power. 
For example, the models based on Brownian motion lead to normally distrib-
uted returns (Osborne 1959) while the mixed diffusion process (Merton 1976) 
results in easily tractable probability density function. 

The second approach, i.e., to seek a distribution that empirically fits with 
the observed data, was first applied by Fama and Mandelbrot (Mandelbrot 
1963; Fama 1965a). Their works were facilitated by the fact that the empirical 
distributions did not seem to be normal. However, it should be pointed out that 
the stable distribution also has an intuitively appealing underlying process but 
this process was not the starting point. The studies in this category are often 
more descriptive than focused on the understanding of the return generating 
process and some of the later suggested mixture models lack completely an 
underlying stochastic process (see, for example, Bookstaber– McDonald 1987; 
Rachev – SenGupta 1993). In general, most of the models in this category are 
mixture distributions that include the models based on stochastic process as 
special cases. Therefore, these models are necessarily at least as well fitting as 
their stochastic process based special cases. However, the cost is an increased 
complexity and lack of theoretical justification. Some of the well-known gen-
eralised time-independent mixtures are discussed by Rachev and SenGupta 
(1993) as well as Bookstaber and McDonald (1987). 

In these two approaches, the modelling problem can be further divided in 
two questions. The first question is whether the parameters of the distribution 
(and/or generating process) are stationary and the second question asks what 
the functional shape of the distribution is. The past research concentrated ini-
tially on the shape of the distribution and only recently on the time-
dependency of the parameters, especially that of variance. 

The third modelling approach is probably the most challenging one since it 
seeks to model individual agents. Such an approach could, at least theoreti-
cally, produce ultimate understanding about the generating process. A few pre-
liminary studies indicate that artificial markets are able to produce data that 
behaves like the real market data. Hence, crashes, jumps, time dependent vari-
ance, and other complex time-dependencies can be produced. However, the 
return generating process tends to become too complex to be represented ana-
lytically and this approach is hardly suitable for modelling empirical distribu-
tions. This is not a problem because these markets seek in the first place un-
derstanding how the actions of individual agents and their interactions affect 
the market as a whole. (See, for example, LeBaron 2000; Arthur et. al. 1997; 
LeBaron et. al. 1998; Lux – Marchesi 1999; for generic discussion about agent 
based models see Bonabeau 2002) 
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3.2 Time independent models 

3.2.1 Kernel density estimate 

Asset returns are typically modelled with parametric models. However, these 
models always necessitate tight assumptions about the return generating proc-
ess. For visualisation purposes and, at least, for preliminary analysis non-
parametric approaches might be more suitable. Nevertheless, such a model is 
necessarily a descriptive in its nature since it lacks the stochastic process based 
explanation why returns should be distributed according to it. A particularly 
simple, although flexible, non-parametric model is the kernel density estimate 
(KDE). The kernel estimator with kernel K is defined as follows: 
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where rt is the asset return at time t, the parameter n is the number of data 
points, and  h is the smoothing parameter. This kernel estimator can be con-
sidered to be a sum of bumps placed at the observations where the kernel func-
tion K defines the shape of the bumps and the smoothing parameter h defines 
their width. If the kernel function K is a probability density function (pdf), it 
follows from the definition that f̂  is also a pdf (Silverman 1986). 

In general, the inference is not sensitive to the selection of kernel function, 
and under Gaussian kernel the minimum approximate mean integrated square 
error is achieved when the smoothing parameter is (Silverman 1986): 
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This choice works well when the underlying population is normally distrib-
uted but it tends to over-smooth if the population is multimodal. A more ro-
bust estimator can be achieved with an adaptive estimate of the spread of dis-
tribution instead of σ  in Eq. (3.2). The adaptive estimate is defined as: 

 A = min (standard deviation, interquartile range/1.34) (3.3) 

In the case of normal distribution, the two arguments are theoretically 
equal. Silverman (1986, 48) has argued that the results could be improved fur-
ther if the factor (4/3)^(1/5)=1.0592 in Eq. (3.2) is reduced slightly, for exam-
ple, to 0.9.  
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The estimation of kernel density is straightforward and evident from the 
definition. However, there is also a Fast Fourier Transform (FFT) based algo-
rithm that speeds up the computation remarkably (for the algorithm see 
Silverman 1986, 63-65). The next issue to consider is how to simulate data 
from the kernel density estimate f̂ . Let us assume that f̂  is constructed by 

the Kernel method with non-negative kernel function K and window width h. 
Under these assumptions univariate realisation from f̂ can be generated as fol-

lows (Silverman 1986, 141-143): 

1. Choose I uniformly with replacement from {1,…,n} 
2. Generate ε to have probability function K (3.4) 
3. Set Y=XI+hε 

If the realisations of Y are required to have first and second moment proper-
ties as those observed in the sample {X1,…,Xn}, then the step three in Eq.(3.4) 
should be replaced with  
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where X and 2
Xσ  are the sample mean and variance of {Xi} and 2

Kσ  is the vari-

ance of the Kernel K. (Silverman 1986, 143-144) 

3.2.2 Normal distribution 

The classical theory of finance is mainly based on the assumed normality hav-
ing its roots in Bachelier’s work at the beginning of this century (see Bachelier 
1900). Thus, it is common to assume that returns behave as random walkers, 
which implies that the returns are identically and independently distributed 
(iid) having a zero expectation value and constant variance. The normality as-
sumption is usually then added that leads to the Brownian motion (see Os-
borne 1959). In general, the assumed normality is probably the most essential 
assumption of classical theory of finance. For example, the capital asset pric-
ing model and the mean-variance portfolio theory rely strongly on the (multi-
variate) normality of returns.  

One elegant way to characterise this is to assume that returns are generated 
by a Brownian motion. Let S be the price whose absolute change is then dS 
and the relative change is then dS/S that is assumed to follow arithmetic 
Brownian motion as follows: 
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 dZdt
S

dS σµ +=  (3.6) 

where dZ is the standard Wiener process6 (see Osborne 1959 for discussion). 
The above equation can also be written as: 

 SdZSdtdS σµ +=  (3.7) 

where µS stands for instantaneous expected drift rate and σS for instantaneous 
standard deviation at time t. This can further be expressed in discrete form: 

 ZStSS ∆+∆=∆ σµ  (3.8) 

where ∆Z is t∆ε and ε~N(0,1). By applying Ito’s lemma (see Hull 1997, 255-
256 for derivation): 
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where ∆G is defined as ∆lnSt. Thus, the logarithmic return follows a normal 
distribution. 

The sampling from normal distribution is straightforward. There are nu-
merous simulation algorithms but the Box-Muller method is probably the most 
well-known (see Box – Muller 1958). The algorithm reads as follows: 

1. Generate U1, U2 ~ Uniform(0, 1) 

2. Compute 
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Here X1 are X2 independent pseudorandom standard normal observations. 

3.2.3 General stable distribution 

It was Mandelbrot (1963) and Fama (1965a) who first reported fundamental 
differences of asset returns from the normality: empirical asset return distribu-
tions turned out to be leptokurtic and have longer tails than normal distribu-
tion. These deviations have thereafter been observed by many others. Facili-
tated by the fact that empirical return distributions seemed to show more kur-
tosis than predicted by the normal distribution Mandelbrot (1963) introduced 

                                            
6 A Wiener process is a particular type of Markov stochastic process. It has been used in physics to 
describe the motion of particle that is subject to a large number of small molecular shocks. It is also 
sometimes referred to as Brownian motion. 
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the General stable distribution7 (GSD) as a model of asset returns. His findings 
were strongly supported by Fama’s (1965a) seminal work. The probability 
density function of general stable distribution cannot be written in closed form 
but the characteristics function reads as follows: 
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where ∆t is the time difference between two successive asset prices values, β 
is the skewness parameter, δ the location parameter, γ > 0 is the scaling pa-
rameter, and 0 < α ≤ 2 is the characteristics exponent. The probability density 
function can be derived by the inverse Fourier transformation: 
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General stable distribution has the following properties. (1) It is the Cauchy 
distribution if α=1 and β=0. (2) It is the normal distribution if α=2 and β=0. 
(3) It is Lévy distribution when β=δ=0. (4) All moments of order r<α are fi-
nite. (5) Except when α=2, in which case moments of all orders are finite. (6) 
If a sum of independent identically distributed random variables has a limiting 
distribution, it must be a stable distribution. Thus, the non-normal stable dis-
tributions generalise the central limit theorem to cases where the second mo-
ments of the summed random variables are infinite. (7) A sum of independent 
stable random variables will be stable with characteristic exponent α’ if each 
summed random variable is distributed with α’.  

In order to derive the probability density functions of the Lévy, Truncated 
Lévy Flight (see Section 3.2.4) and General Stable distributions from their 
characteristic function the following approximate numerical algorithm can be 
applied (Gillemot et. al. 2000): 

1. Make choice of points (qj) to determine values of the characteristic 
function F(q), i.e., Fj = F(qj). 

2. With the Inverse Fast Fourier Transformation (IFFT) compute values of 
the corresponding probability density function, f(xj). 

3. Use spline interpolation to estimate the values of the probability density 
function for arbitrary intermediate points. 

Although the use of the spline technique leads to minor numerical deviation 
from the exact results, it can be approached arbitrarily close by choosing qj's 
more densely. Along with this, it might be of interest to generate α-stable ran-
                                            
7 In this research the concept Lévy distribution is used to refer a special case of General Stable Distri-
butions where the location and skewness parameters are assumed zero. 
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dom variables. One algorithm to achieve this is as follows (Janicki – Weron 
1994, 109-126): 

3. Generate V ~ Uniform(-π/2, π/2) 
4. Generate W ~ Exp(1)  (3.13) 

5. Compute 
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The above algorithm contains the familiar Box-Müller method for the gen-
eration of normally distributed random variables as special case (α=2).  

Figure 2 illustrates the shape of the Lévy distribution (β=δ=0) with α=0.7, 
1.0 (Cauchy), 1.3, 1.7, 2.0 (normal). The smaller α, the sharper the “body” of 
the distribution, and fatter the tails, as shown in the right panel. 
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Figure 2: Shape of Lévy distribution 

It needs also to be pointed out that according to Blattberg and Gonedes 
(1974) the symmetric stable distribution (β=0) is obtained from a normal dis-
tribution whose variance is drawn from a strictly positive stable distribution. 
Thus, this model actually implies that the return generating process is a sto-
chastic process where the variance is a iid random variable (Hsieh 1991).  

3.2.4 Truncated Lévy flight 

For the GSD the variance (except for α=2) is infinite, which for analysis pur-
poses especially due to limited statistics in the tails of the distributions, is in-
convenient. Moreover, a few major stock markets, e.g. New York Stock Ex-
change, have introduced “circuit breakers”, to limit large amplitude variation 
in stock prices. Mantegna and Stanley (1995) suggested that when main part 
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of the distribution fits with Lévy distribution, but the tails seem to decay ex-
ponentially. In order to capture these properties of the return generating proc-
ess, some scheme of truncating the distribution seemed plausible and was first 
proposed by Mantegna and Stanley (1994). This can be realized simply by as-
suming a finite variance for the asset return distribution, and the model is then 
called Truncated Lévy Flight model. Following this idea Bouchaud and Pot-
ters (1997) developed a smooth Truncated Lévy Flight model, in which the 
distribution was assumed to be Lévy type (β=δ=0) in the middle, but towards 
the tails an exponential cut-off was made to become more dominant. Only the 
characteristic function of the distribution can be written in closed form: 
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where l≥0 is the cut-off parameter and the definitions of the other quantities 
are the same as for the Generalised stable distribution (see Section 3.2.3). The 
probability density function of this three parameter distribution is derived by 
using the inverse Fourier transformation ( ) ( ){ }( )xqFFxf gsdgsd

1−=  and the same 
approximate numerical method as in the case of General stable distribution 
can be applied (see Section 3.2.3). It should be noted that when the cut-off pa-
rameter l≠0, the distribution is no longer stable, and all the moments exist.  

3.2.5 Student t-distribution 

Blattberg and Gonedes (1974) introduced the Student t-distribution (STU) as a 
model of asset returns. Since then, this model has become a standard bench-
mark for new and more complex models (see, for example, Kon 1984). The 
Student t-distribution seems to be rather attractive model since it is able to 
capture the excess kurtosis observed in financial time-series, it has finite sec-
ond moment in contrast to stable distributions, it is easy and fast to estimate, 
and its mathematical properties are well known. 

As in case of the symmetric stable distribution (β=0), the Student t-
distribution can be obtained from a normal distribution whose variance is ran-
dom variable. In contrast to the symmetric stable distribution, the variance is 
now drawn from inverted gamma distribution (Hsieh 1991; Blattberg – 
Gonedes 1974). This specification is in line with the observation that the vari-
ances of financial time series might be non-stationary. Nevertheless, the Stu-
dent t-distribution is mainly a descriptive model that seems to fit financial data 
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well for which reason it has been widely applied in finance. For example, it 
has been used to achieve more feasible asset allocations in a downside-risk 
framework (Lucas - Klaassen 1998; see also Harlow 1991). 

The Student t density function with location parameter m, scale parameter 
H>0, and degrees of freedom parameter v>0 reads as follows: 
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where B( ⋅ , ⋅ ) is the Beta function. The Student t-distribution has the fol-
lowing properties: ( ) mxE = , for v>1 and ( ) ( )2/1 −= − vvHxVar , for v>2. In 
general, all moments of order r>v are finite. Furthermore, when v=1 the Stu-
dent density function is the Cauchy density function and when v→∞ the Stu-
dent t-distribution converges to the normal distribution. If a Student random 
variable x with v>2 is standardised by dividing ( ) ( )xVarxEx by  − , the result-
ing variable has (1) fatter tails than the density function of standardised normal 
random variable and (2) it has larger values in the neighbourhood of mean (3) 
and it is symmetric. A few such Student t densities with unit variances, zero 
means, and varying values of shape parameter (v) as well as a normal distribu-
tion (v→∞) are plotted in Figure 3. 
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Figure 3: Student t density functions for five values of v 
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The maximum likelihood estimation of the Student t parameters is relative 
simple with numerical methods. However, the random sampling algorithm is 
quite lengthy and complicated. For this algorithm, the reader is referred to 
Devroye 1986.  

3.2.6 Power exponential distribution 

In the Paper 4 of this bundled thesis, the power exponential distribution was 
introduced as a time-independent model of asset returns. However, with a dif-
ferent parameterisation, the power exponential distribution (PED) is called 
generalised error distribution (GED), which is a model considered by Taylor 
1994 and Hsu 1982. 

The choice of power exponential was argued for by the facts that (1) the se-
lected model family should include the traditional model – i.e., normal distri-
bution - as a special case, (2) the model should be able to capture the observed 
excess kurtosis and long tails in empirical security return distributions, (3) the 
model should at least allow the addition of skewness parameter at a later stage 
of the research if needed, and (4) the model should have a finite second mo-
ment. (Töyli et. al. 2002a) Nevertheless, to our knowledge there is no system-
atic process that would generate power exponentially distributed returns and, 
thus, strictly speaking, the return series cannot be power exponentially distrib-
uted. However, as a descriptive model, the power exponential distribution is a 
promising model. Power exponential density function reads as follows: 
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where the parameters are -∞ < y < ∞, β >-1, -∞ <θ < ∞, and σ > 0. Power ex-
ponential distribution is normal when β = 0, Laplace (=double exponential) 
when β = 1, and approaches uniform when β→ -1.  

In literature, it seems that a common practice is to limit β further to be at 
the maximum unity (see Welsh 1996, Box – Tiao 1973). However, it needs to 
be pointed out that this choice is not feasible in studies that model financial 
data since such limitation would mean that the maximum excess kurtosis is 
three. This is inadequate since larger kurtosis and even heavier tails than in 
double exponential distribution (β = 1) have been observed in financial data. 
Fortunately, there is no mathematical constrains to limit β to be unity, al-
though this would simplify the integration in Bayesian analyses. Relaxing this 
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assumption also leads to a situation, in which the maximum likelihood esti-
mates for location and scale parameters do not necessarily exist although the 
shape parameter is known (see Agró 1995). In Figure 4 a few density func-
tions with varying values of the shape parameter β are shown. 
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Figure 4: Power exponential density functions for five values of β. 

The estimation of PED’s parameters, especially the shape parameter β, is 
non-trivial since, as for the maximum likelihood estimation of parameters, it is 
noted that these estimates cannot be extracted analytically and they are not 
necessarily either efficient or unbiased when β is greater than zero (Agrò 
1995). There are two alternative solutions to overcome this inconvenience. 
First, ML estimates can be solved numerically and their feasibility, when β is 
larger than zero, can be investigated with the help of a simulation study. Sec-
ond, the Bayesian paradigm (Bayes 1763; Laplace 1774; 1812), which is 
based on the notion that after the data is collected it is known for sure, can be 
applied. Thus, the inference is based on the conditional distributions of the 
parameters given the data. 

In case of ML estimates, we (Töyli et. al. 2002b) tested their feasibility by 
constructing a simulation study where a sample of 1 000 power exponentially 
distributed random numbers were drawn 5 000 times for each value of β, in-
cremented by 0.1 from zero to two. The parameters of power exponential dis-
tribution were estimated from each sample by numerically minimising the 
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negative logarithmic likelihood function with the algorithm from MATLAB's 
optimisation toolbox. In Table 3 the results for the mean of each parameter 
estimate, their standard errors (columns labelled with s.e.), and the true value 
of β are shown. The data in the table suggest that the maximum likelihood es-
timates approximate very well the true parameters. Consequently, it seems that 
this method can be used to estimate the parameters. (Töyli et. al. 2002b) 
 
Table 3: Means of maximum likelihood estimates (Töyli et. al. 2002b) 

True β* β s.e. θ s.e. σ s.e.
0.0 -0.0019 1.01E-03 0.0003 4.51E-04 0.9992 3.15E-04
0.1 0.0972 1.06E-03 0.0006 4.40E-04 0.9993 3.31E-04
0.2 0.1982 1.18E-03 0.0002 4.49E-04 0.9993 3.50E-04
0.3 0.2952 1.21E-03 0.0006 4.31E-04 0.9994 3.64E-04
0.4 0.3996 1.27E-03 -0.0007 4.26E-04 0.9994 3.83E-04
0.5 0.4966 1.36E-03 -0.0005 4.04E-04 0.9990 4.00E-04
0.6 0.5973 1.39E-03 0.0001 3.94E-04 0.9993 4.21E-04
0.7 0.6971 1.48E-03 0.0000 3.74E-04 0.9987 4.38E-04
0.8 0.7980 1.54E-03 0.0007 3.58E-04 0.9993 4.58E-04
0.9 0.8992 1.63E-03 0.0004 3.37E-04 0.9994 4.77E-04
1.0 0.9968 1.71E-03 -0.0002 3.26E-04 0.9986 4.93E-04
1.1 1.1013 1.75E-03 0.0000 3.09E-04 0.9999 5.12E-04
1.2 1.2039 1.80E-03 -0.0001 2.89E-04 1.0003 5.40E-04
1.3 1.2995 1.89E-03 0.0000 2.69E-04 0.9988 5.49E-04
1.4 1.4029 1.94E-03 -0.0002 2.55E-04 1.0001 5.79E-04
1.5 1.5058 1.99E-03 0.0002 2.41E-04 1.0003 5.91E-04
1.6 1.6064 2.08E-03 0.0001 2.29E-04 1.0007 6.16E-04
1.7 1.7064 2.09E-03 -0.0002 2.14E-04 1.0006 6.37E-04
1.8 1.8073 2.23E-03 0.0001 2.03E-04 1.0009 6.61E-04
1.9 1.9056 2.28E-03 0.0003 1.87E-04 0.9999 6.76E-04
2.0 2.0075 2.31E-03 -0.0001 1.81E-04 1.0015 6.86E-04

*For each value of beta 5000 simulation with a sample of 1 000 were 
generated and the parameter were estimated from these simulations  

 
In the Bayesian approach, the inference is based on the conditional distribu-

tions of the parameters given the data. This conditional distribution is defined 
by 

 )()|()|( θθθ pyLyp ∝  (3.16) 

where θ’ = (θ1 , …,θk) is a vector of k parameters and y’=(y1,…,yn) is a vector 
of n observations. The likelihood function L(θ | y) plays a significant role 
since it is the function through which the data y modifies prior knowledge of θ 
included in its prior distribution p(θ ). This formulation leads as such to an 
adaptive model that is capable of learning from experience. 

In our work (Töyli et. al. 2002a, Töyli et. al. 2002b) the parameter estima-
tion procedure was based on the work by Box and Tiao (1973). The selection 
of the prior distributions for θ and σ followed Jeffreys’ rule and resulted in 
non-informative priors. We also assumed the location parameter θ  to be inde-
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pendent of σ and β a priori and log(σ) locally uniform and independent of β a 
priori. For the non-normality parameter β we used uniform prior distribution 
(see Töyli et. al. 2002a for discussion). The form of Pu(β | y ) for the numeri-
cal calculation of the marginal β was chosen as follows (Töyli et. al. 2002a):  
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in which -1<β<∞, -∞<θ <∞, and n=1,2,3…, and c is some arbitrary positive 
constant used to avoid overflows in computation. By following the same logic, 
the Pu(θ | y) to be used in computation can be written as follows (Töyli et. al. 
2002a): 
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An additional issue is how to sample power exponentially distributed ran-
dom numbers. Johnson and Tadikamalla have proposed several alternatives 
and compared their computational efficiency (Johnson 1979; Tadikamalla 
1980). The simplest, but accurate, way is based on Gamma-distribution. It is 
noted that this approach is not computationally most efficient. Thus, let us de-
fine α = 2/(1+ β ). Now, if X is power exponentially distributed with unit 
variance, zero mean, and shape parameter α, then |X|α has a gamma distribu-
tion with shape parameter α -1 and scale parameter 1. Based on that, the simu-
lation algorithm is straightforwardly (Johnson 1979; Tadikamalla 1980): 

1. Generate u ~ Gamma(α -1,1) 

2. Let 
1

||
−

= αux   (3.19) 

3. Attach a random sign to x 

In order to obtain a specific mean µ and variance σ 2, let x be8: 

4. 
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3.2.7 Mixed diffusion-jump 

Merton (1976) proposed mixed diffusion jump process (MDJ) as a model of 
asset returns. This model is based on the assumption that the returns are gener-

                                            
8 There is a typo in this equation in the paper “On the shape of asset return distribution”. 
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ated by a geometric Brownian motion and an independent compound Poisson 
process with normally distributed jump amplitudes. The resulting uncondi-
tional distributions can be skewed and leptokurtic. Consequently, this model is 
able to capture the main deviations from normality observed in empirical asset 
return distributions. Merton has also shown how this model can be used in op-
tion pricing. This results in an increased realism when compared to the basic 
Black and Scholes model (Merton 1976). 

The idea of this model is that the asset price dynamics constitute from nor-
mal and abnormal vibrations. (1) Normal vibrations in price are, for example, 
due to the temporary imbalance between supply and demand, changes in capi-
talisation rates, changes in economic outlook, or other new information that 
causes marginal changes in the asset value. This part of the variation is mod-
elled with the standard geometric Brownian motion with a constant variance 
per unit time. (2) Abnormal vibrations in price are then due to the arrival of 
new important information about the asset that has more than a marginal effect 
on price. Since it is reasonable to expect that there are quiet and active times in 
the stock market, this process is in its nature discrete. Merton in turn decided 
to model this component with a Poisson process. (Merton 1976) 

In generic form mixed diffusion jump process can be described by the fol-
lowing stochastic differential equation (conditional on S(t)=S): 

 ( ) dqdZdtk
S

dS ++−= σλα  (3.21) 

where α is the instantaneous expected return; σ2 is the instantaneous variance 
of the return, conditional on no arrivals of new information (i.e., Poisson event 
does not occur); dZ is a standard Wiener process; q(t) is an independent Pois-
son process; dZ and dq are assumed to be independent; λ is the mean of arri-
vals per unit time; ( )1−≡ YEk  where (Y-1) is the random variable percentage 

change in the asset price if the Poisson event occurs; and E is the expectation 
operator over the random variable Y. (Merton 1976, 128-129) The evolution of 
logarithmic price change can be described as follows: 
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where t is the absolute time, ∆t is time difference between two successive asset 
prices, S(t) is the asset price at time t, Bt(∆t) is the standard Brownian motion, 
Pt(∆t) is a Poisson counting process with parameter λ, Jt,n is a normal random 
variable with mean µj and standard deviation σj, and 212 σαµ −−=  where α 

the instantaneous conditional expected rate of return per unit time for the 
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Brownian motion part of the process, and σ2 is the instantaneous conditional 
variance of this rate. (Gillemot et. al. 2000) 

Assuming that λ, µ, σ, µj, and σ j are constants, the probability density func-
tion of mixed diffusion jump reads as follows (Gillemot et. al. 2000): 
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where Θ=( λ, µ, σ,.µj, σj); λ is the parameter of Poisson process, µj and σj are 
the mean and standard deviation of a normally distributed jump. Along with 
these, µ and σ are the respective mean and standard deviation resulting from 
the Brownian motion. The distribution is leptokurtic when λ>0 and skewed 
for µj≠0 and moments of all order exist. (Akgiray – Booth 1987, 271; Gillemot 
et. al. 2000). The mean and variance are: 
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Figure 5 shows a few mixed diffusion jump density functions that are 
scaled to have unit variance and zero mean. 
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Figure 5: A few mixed diffusion-jump density functions 
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The estimation of the parameters of this model is again straightforward 
since the maximum likelihood function is well behaving and relatively simple. 
The only difficulty is related into the infinite summation that needs to be trun-
cated in numerical estimation algorithms. For example, Gillemot et. al. (2000) 
apply n=20 as the truncation point. 

3.2.8 Compound normal distribution 

The latest suggestion of time-independent models, which can be seen as a 
mainstream model, is the compound normal model (CND) proposed by Kon 
(Kon 1984). The idea of compound normal distribution (also called mixture 
normal distribution) is that the returns are drawn from several distinct normal 
distributions. Evident by this is a special case of the most traditional normal 
distribution model. 

CND leads to an intuitively appealing interpretation since it can be argued 
that the asset prices are driven by information coming from several informa-
tion sources. For example, there might be a non-information distribution (i.e. 
the usual noise), a firm-specific distribution, an industry-specific distribution, 
and a market-wide distribution (see Kon 1984, 149). These information 
sources are then modelled with normal distributions that are weighted accord-
ing to the importance of the particular information source. The observed dis-
tribution is then this weighted distribution. 

Mathematically, the compound normal probability density function is sim-
ply a weighted sum of individual normal distribution and reads as follows: 
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where φ=(α1,…,αK, µ1,… µK,σ1,…,σK) is the parameter vector. In general, 
moments of all order exist and the mean and variance are given by (Argiray – 
Bouth 1987, 272): 
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The parameters of the compound normal model are usually estimated with 
maximum likelihood estimation. This method is convenient since the likeli-
hood function is simple but there is minor difficulty in this since the number of 
normal distributions to be included in the model is usually not known a priori. 
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Thus, also this issue needs to be estimated. Recall that 
( ) ( )1,|,| −≥ KxLKxL φφ  but at a certain value of K this difference becomes 

insignificant. This can be determined with the standard likelihood ratio test. It 
can be shown (Kon 1984) that the test statistic, given by 

( )( )( ) ( )( )KxLKxL ,|log1,|log2 φφ −−− , is approximately chi-square distributed 

with three degrees of freedom. 
The likelihood ratio test has generally been used to estimate the number of 

normal distributions included into the model (Kon 1984, Akgiray-Booth 1987, 
Tucker 1992). However, if the number of normal distributions is decided on 
the basis of likelihood ratio test and the comparison of competitive models is 
based on Schwarz criteria (like also has been a common practise), this might 
lead to a situation where compound normal model is unfairly discriminated. In 
these cases, the number of normal distributions included into the model can be 
decided with the help of Schwarz criteria (Schwarz 1978, Akgiray-Booth 
1987) that is as follows: 

1. Calculate ( ) 5.0log|log TdxLSC −= φ  (where )|( φxL  is the maximum 

likelihood function value, d the number of independent parameters, and 
T is the sample size) for each model. 

2. Select the model with largest SC. (3.27) 

In general, this model is able to capture the excess kurtosis and skewness of 
the data. It includes the traditional normal distribution as a special case, has 
finite moments, and has an intuitive interpretation that is well in line with 
other findings and theoretical reasoning. In addition, according to Tucker 
(1992) the mixed diffusion-jump model (see Section 3.2.7) can be arbitrary 
closely approximated by a finite mixture of normal densities (i.e., compound 
normal model). 

The simulation from compound normal distribution is quite trivial. This can 
be done by (1) determining the normal distribution – i.e., information source 
and (2) then drawing from this information source; for example, with the fa-
miliar Box-Muller algorithm. On step 1, the weights of distributions define the 
corresponding probabilities of information sources. 

3.3 Time dependent models 

3.3.1 General model 

The time-independent models of asset returns discussed in Section 3.2 are able 
to capture the heavy tails of empirical distributions when compared to those of 
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normal distribution. General stable distribution, mixed diffusion-jump, and 
compound normal models are also able to replicate the possible skewness. 
However, none of the time-independent models can model the volatility clus-
tering or other time-dependencies evident in financial data series. A more ge-
neric time-dependent model can be achieved by dropping out iid assumption 
and defining that the returns are generated by the following stochastic process: 

 tttr εσµ +=  (3.28) 

where rt is the return at time t, σt is the time-dependent standard deviation, µ is 
the expected value, and εt is some probability distribution. The differences in 
the model specifications include the distribution of εt and the equation for the 
time-dependent standard σt. It needs to be pointed out that this possible de-
pendency does not necessarily imply market inefficiency since it is enough for 
efficiency that the return-generating process can be represented as a martin-
gale (Fama 1970). The expected value (µ) is usually not modelled as time-
dependent (note also the lack of t subscript) since return series are usually not 
autocorrelated (Töyli et. al. 2002a; Töyli et. al. 2002b; Cont et. al. 1997; 
Schwert 1989; see Cont 2001; see Fama 1988). However, such addition would 
be simple to implement and, after that, the model could produce autocorrelated 
time series. 

It is also worth to contrast the model in Eq. (3.28) in more detail with the 
time-independent models since these have similarities. Blattberg and Gonedes 
(1974) pointed out that the symmetric stable distribution is obtained from a 
normal distribution whose variance is drawn from a strictly positive stable dis-
tribution, that the Student t-distribution is obtained from a normal distribution 
whose variance is drawn from an inverted gamma distribution, and that 
Clark’s (1973) model9 is a normal distribution whose variance is drawn from a 
log normal distribution. Thus, all these mixture models can be written in the 
form: ttt zr σ= , where zt is iid standard normal, and σt is another iid random 
variable. (Hsieh 1991).  

The models assuming time-dependency can be divided in two categories 
based on the fact whether the time-dependency of variance is modelled with a 
stochastic process or via some deterministic equation. The former category 
includes stochastic volatility (SV) models, and models based on chaos theory 
leading to complex dynamics. The latter category includes autoregressive het-
eroscedastic (ARCH) type models, and models based on different kinds of ex-
ponentially smoothing schemes.  

                                            
9 Clark tested a hypothesis that the distribution of price change is subordinate to a normal distribution. 
Thus, the price series evolves at different rates during identical intervals of time. The empirical test 
were done with a specification where independent increments of process X(t) were normally distrib-
uted, directed by a process T(t), whose independent increments were lognormally distributed. 



Time dependent models 47 

3.3.2 Variance as exponentially weighted moving average 

Probably the simplest widely used specification for time-dependent model is 
the RiskMetrictm model created by J.P. Morgan (RiskMetricstm – Technical 
Document 1996). J.P. Morgan’s well-known and widely applied value-at-
risk10 framework, which is a standard benchmark for new risk management 
models, is based on this model where the time-dependency is defined with the 
help of exponential smoothing (RiskMetricstm – Technical Document 1996, 
51) as follows: 
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where rt stands for logarithm return, )1,0(~ Nzt , and the parameter λ (0<λ<1) 

is the decay factor. RiskMetrictm assumes λ=0.94 for 1-day volatility and 
λ=0.97 for 1-month volatility (RiskMetricstm – Technical Document 1996, 
100). This approach is simple, fast to calculate, and it is close to IGARCH 
models. However, it has been criticised by the academic community and im-
provements have been suggested (see, for example, Ahlstedt 1998). 

3.3.3 Autoregressive conditionally heteroscedastic models 

It was Engle (1982) who suggested an autoregressive heteroscedastic (ARCH) 
type model with an application to inflation time series. Bollerslev (1986, 
1987) specified GARCH type model that is a generalised ARCH. These mod-
els have thereafter been further developed and different variations have been 
suggested, for example, the surveys by Bollerslev et. al. (1992), Bera and Hig-
gins (1993) and Bollerslev et. al. (1994) report several hundred papers.  

In the seminal paper by Engle (1982) a discrete time stochastic process (εt) 
is defined as an ARCH model of the form  
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where ht is a time-varying, positive, and measurable function of the informa-
tion set at time t-1. The conditional variance of εt equals to ht and may change 

                                            
10 During the past few years, the value-at-risk techniques have enjoyed substantial success among the 
academic as well as commercial communities. The value-at-risk is based on the idea that the downside 
risk is measured with a single figure given a probability level (usually 95%). Thus, the value-at-risk 
describes the maximum amount of possible loss with 95 % probability. For summary, see Simons 
1996. 
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over time. The iid assumption results in serially uncorrelated εt with zero 
mean. The following time-dependent parameterisation for ht was suggested by 
Engle (1982): 
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The stochastic process of mean in Eq. (3.31) is a martingale that in turn is 
enough for market efficiency to hold (Fama 1970). The time-dependent equa-
tion for the conditional variance is also able to capture the volatility clustering 
observed in financial time series. However, the estimation of ARCH with 
large values of q is rather difficult and often leads to violation of the non-
negativity constraints on αi’s.  

Bollerslev (1986) suggested the GARCH model as an alternative that also 
allows dependency in the past values of ht. The GARCH model of order (p, q) 
is given by: 
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It can be shown (see Bollerslev 1986) that GARCH model is an infinite-
order ARCH model with exponentially decaying weights for large lags. A high 
order ARCH can therefore be substituted by a low-order GARCH model. The 
GARCH model can be clarified further by noting that the conditional variance 
ht in Eq. (3.32) depends linearly on the past behaviour of the squared values in 
an autoregressive AR(q) process and on the conditional variance itself in a 
moving average MA(p) process.  

In order to capture the common empirical finding that shocks in variance 
tend to be persistent when using high frequency data, i.e., the sum of parame-
ters αi and βi is close to one. In order to be able to capture this empirical be-
haviour, Bollerslev and Engle specified the family of IGARCH models in 
which the parameters sum to unity as being integrated in variance. In the 
IGARCH models, shocks to the conditional variance are persistent in the sense 
that they remain important for forecasts of all horizons. However, there is the 
problem that unconditional variance for simple IGARCH(1,1) does not exists. 
(see for further discussion Bollerslev – Engle 1993) Other variations and im-
provements also exist (see Bollerslev et. al. 1992, Bera and Higgins (1993) 
and Bollerslev et. al. (1994) for collections of references)  

In general, (G)ARCH type models are able to capture the volatility cluster-
ing observed in financial-time series, they can explain the excess kurtosis, and 
do not violate the market efficiency. Figure 6 shows the time-dependent stan-
dard deviation extracted from HEX index (returns were multiplied by 100). 
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The blue line indicates the time dependent standard deviation calculated based 
on GARCH model and red line that derived from RiskMetrictm model. The 
two models seem to produce very similar behaviour. This is not a surprise 
since the functional forms of these two models are close to each other. 
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Figure 6: Time-dependent standard deviation 

3.3.4 Stochastic volatility 

One of the problems in (G)ARCH-type models is that the variance equation 
does not contain an innovation. The models of stochastic volatility assume the 
variance to be a random variable. The usual way to model the time-dependent 
variance is to assume that it follows an AR type process. One of the inherent 
difficulties of stochastic volatility models is that the likelihood function is sub-
stantially more difficult to handle than in ARCH type models. However, this 
inconvenience might be balanced by the intuitive appeal of the assumption 
that the volatility changes stochastically rather than deterministically. This is 
especially good to explain large crashes like that on black Monday in the year 
1987. (See Taylor 1985, Taylor 1994 for summaries about SV) 

In general, the SV type models are similar to the ARCH type model in the 
senses that they are also able to capture the volatility clustering observed in 
financial-time series, can explain the excess kurtosis, and do not necessarily 
violate the market efficiency. Taylor has also suggested that a judicious com-
bination of both ARCH and SV might provide more satisfactory results than 
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the use of a single model (Taylor 1994). An excellent discussion about the 
various stochastic volatility models and their relationship to ARCH type 
model is provided by Jacquier et. al. 1994 (Jacquier et. al. 1994).  

3.4 Comparison of main stream models 

3.4.1 Visual comparison 

Figure 7 shows simulated return series generated according to the mainstream 
models: (from left to right, from top to down) S&P 500 index representing real 
empirical data, data simulated from kernel density estimate, normal distribu-
tion, Lévy, Student t-distribution, compound normal distribution, mixed diffu-
sion jump, power exponential distribution, ARCH(1) process, and 
GARCH(1,1) process. All series have been simulated with parameter esti-
mated from S&P 500 index and, after simulation, they have been standardised 
to have unit variance and zero mean. In the estimation and simulation, our 
MATLAB toolbox (Gillemot et. al. 2000; Töyli et. al. 2003) has been used. 
Note that the y-axis is truncated. 

The empirical data is clearly different to all simulate processes. Especially, 
the normally distributed data lacks all the special characteristics that are in the 
empirical data. In time-independent models, the volatility clustering is missing 
and only GARCH process is able to capture this phenomenon but it is still too 
smooth – i.e., lacks large jumps and crashes. In contrast, the Lévy process 
seems to include too many large jumps and crashes. The compound normal 
distribution, Student t-distribution, and kernel density estimate seems to be 
rather close to real data but the assumed time-independency leads to the lack 
of clear volatility clustering. Mixed diffusion jump and power exponential ap-
pear too smooth since large changes are generally missing. Along with these 
points, the modest autocorrelation present in empirical data is naturally miss-
ing from all artificial series because it was assumed non-existent when deriv-
ing these models. 
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Figure 7: Comparison of mainstream models 

3.4.2 Literature review 

There has been an ongoing debate concerning the models of asset returns. 
Louis Bachelier’s (1900) model, where the changes in the logarithms of bond 
prices were normally distributed, formed the basis for classical theory of fi-
nance that is largely based on the assumed normality. Osborne (1959) formally 
specified the asset return generating process as Brownian motion. However, 
Mandelbrot (1963) and Fama (1965a) first reported the fundamental differ-
ences from the normality: empirical return distributions are fat-tailed and 
peaked when compared to normal distribution (i.e., they are leptokurtic). 
Mandelbrot (1963) and Fama (1965a) also suggested the stable distribution as 
a model of asset returns. Initially, the stable distribution seemed to fit the data 
well and be able to capture the leptokurtic feature of empirical distributions. 

Although the stable distribution has the theoretically appealing scaling and 
stability under addition properties and it is able to capture the excess kurtosis, 
the later research has generally rejected the stable distribution as a model of 
asset returns (Blattberg – Gonedes 1974; Hagerman 1978). Blattberg and 
Gonedes argued that the Student t-distribution is a better model for daily re-
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turns than the stable distributions. They further concluded that monthly returns 
are roughly normally distributed. Hagerman reached a similar conclusion by 
observing that the return distribution approaches normal when the time inter-
val is increased. More recently, Akgiray again reported the approximate nor-
mality of monthly returns (Akgiray 1989). Others have also reported evidence 
that is not consistent with the hypothesis means that the returns are stable un-
der addition and show scaling behaviour. (Officer 1972; Hsu et. al. 1974; Lau 
– Wingender 1990). This conclusion remains even if the non-symmetric ver-
sions (GSD) of stable distributions are used (Tucker 1992). 

In contrast, Mantegna and Stanley recently reached again the conclusion 
that stock returns follow stable distribution by using high frequency data and 
differences instead of logarithmic returns (Mantegna – Stanley 1995). In addi-
tion to that, Mantegna and Stanley (1995) did point out an approximately ex-
ponentially decay in the tails of the distribution. This decay would mean that 
the second moment exists; thus, the scaling must break down, and the distribu-
tion becomes finally Gaussian. 

Along with the above points, one of the initial arguments supporting the 
stable distributions was their suitability for the portfolio theory. Because of the 
stability under addition, it should be convenient to model the portfolios. Since 
it is difficult to combine stocks with different characteristic exponents in port-
folios, no realistic portfolio models assuming stable distribution have been 
suggested. The use of the same characteristic exponent for all shares in a sin-
gle portfolio would in turn violate the empirical findings suggesting that assets 
have different characteristic exponents. The only well known attempts to solve 
this portfolio construction owes to Fama (Fama 1965b) and Samuelson 
(Samuelson 1967) but their models assume that all stocks in portfolio are dis-
tributed with the same characteristic exponent. 

The estimation of the parameters of the stable distribution is also non-trivial 
since the density function exists in closed form only in rare special cases. At 
least two methods have been suggested to do this estimation. (1) The ap-
proximation of Fama and Roll and (2) Fast Fourier transformation technique 
of DuMouchel (see Hagerman 1978, Tucker 1992 for reviews). Researchers 
have applied both of these methods. For example, the approximation was used 
by Blattberg and Gonedes (1974), and Hagerman (1978) while the Fourier 
transformation was applied by Mantegna and Stanley (1995), Kullman et. al 
(1999), and Gillemot et. al. (2000). In addition, Tucker (1992) applied both 
techniques and selected the estimates that resulted in larger maximum likeli-
hood value. Although there exist strong support for Blattberg and Gonedes's 
result that the Student t-distribution is better model of asset returns than the 
stable distribution (see Tucker 1992; Tucker - Pond 1998), there is always one 
minor problem when evaluating stable distribution’s goodness of fit. When 
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researchers apply the approximation technique of Fama and Roll in parameter 
estimation they take the risk since this technique does not necessarily produce 
the maximum likelihood estimates. Thus, all comparisons based on maximum 
likelihood estimates could unfairly discriminate the stable distribution. How-
ever, according to research, this is not likely to bias the inference (Blattberg – 
Gonedes 1974). 

Akgiray and Bouth (1997) provide a survey of the compound models (the 
mixed diffusion-jump and the compound normal distribution) of asset returns  
with the conclusion that for weekly returns, both models have significantly 
higher descriptive validity than a stationary normal distribution, and, in most 
cases, mixed diffusion-jump model is empirically superior to finite normal 
mixtures. However, according to Akgiray and Bouth (1997), the distribution 
of monthly returns is approximately normal and both the mixed diffusion-
jump process and the compound normal distribution model converge rapidly 
to their limiting normal process. Akgiray and Bouth (1997) further conclude 
that, if one unit of time is measured as one month or longer, the normality as-
sumption is acceptable but, otherwise, the general form of the mixed diffu-
sion-jump process should be assumed. Kon in turn compared the compound 
normal distribution with the Student t-distribution with the conclusion that the 
compound normal distribution is better fitting (Kon 1984).  

Tucker compared compound normal distribution, mixed diffusion jump 
model, Student t-distribution, and stable distribution with the conclusion that 
both the compound normal distribution and the mixed diffusion jump model 
outperform the Student t-distribution and the stable distributions distribution 
(Tucker 1992). It was also concluded that the mixed diffusion-jump model and 
the compound normal distribution are equally well fitting and they cannot be 
set in preferential order based on the goodness of fit (Tucker 1992; Tucker – 
Pond 1998). This conclusion can be justified the fact that the mixed diffusion-
jump model can be arbitrary closely approximated by a finite mixture of nor-
mal densities (Tucker 1992, 80). 

Recently, the techniques assuming time-dependent variance have enjoyed 
substantial success among the academic community (see Bollerslev et. al. 
(1992); Bera - Higgins (1993); Bollerslev et. al. (1994); Taylor 1985, Taylor 
1994) because the variance of asset returns seems to be finite (recall that the 
general stable distribution leads to model that assumes infinite variance) but 
time-dependent in a complex non-linear manner (Perry 1983; see also Fama - 
French 1988). This time-dependency can explain the volatility clustering ob-
served in financial time series and the leptokurtic unconditional return distri-
butions. There is also some evidence that SV models may fit data better than 
ARCH-type models (Danielsson 1994). It should be noted that the ARCH type 
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models used to filter the data might not be able to remove all non-linear de-
pendencies while SV might perform better in this sense (Hsieh 1991). 

3.4.3 Goodness of fit 

Since on one hand the purpose of this research is to investigate the shape of 
asset return distribution, it would be convenient to assure that the models use 
serve also as a reasonable description of the data. It needs to be pointed out 
that the goodness of fit should not be interpreted so that returns are iid with a 
given probability density function (pdf). Rather that the tested model is rea-
sonably good description of the true return distribution and, therefore, its use 
is not likely to bias the inference about the shape of the asset return distribu-
tion. 

χ2-test and Kolmogorov-Smirnov test are widely used to draw conclusions 
about the goodness of fit. These two tests are discussed next. The χ2 goodness 
of the fit test statistics reads as follows: 

 
( )

∑
=

−
=

r

i i

ii

np

npa
S

1

2
2  (3.33) 

where n is the number of data points, r is the number of groups with bounda-
ries given a sequence (-∞, X1], (X1, X2], (X2, X3], … ,(Xr-1, ∞), and the match-

ing probabilities are: ( )∫ ∞−
= 1

1

X
dxxfp  , ( )∫

−

= i

i

X

Xi dxxfp
1

 for 2 ≤ i < r , and 

( )∫
∞

=
rXr dxxfp . S2 is asymptotically χ2 distributed with (r-d-1) degrees of free-

dom where d is the number of estimated parameters. 
An alternative for χ2-test is the Kolmogorov-Smirnov test that is a proce-

dure to measure the goodness of fit in which the theoretical distribution func-
tion must be known completely for all parameters. This method is applicable 
only for continuous distributions but requires smaller sample size than χ2-test. 
The algorithm is as follows (Harris – Stocker 1998): 

1. Propose the hypothetical distribution function H0: F(x;W ), and give the 
significance level α. 

2. Use the ordered sample: 
x1 ≤  x2 ≤ …≤  xn 

and its empirical distribution function 
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3. Calculate the test quantity, maximum absolute difference: 
( ) ( )xFxFD nxn −= sup  

4. Apply the decision rule: Reject H0 if Dn > Dα;n. 

The original form of the Kolmogorov-Smirnov test is valid only if all the 
parameters of the proposed distribution are known and the distribution is con-
tinuous. The simple approximation for the critical value Dα;n, like the algo-
rithm and C-code suggested by Press et. al. (1992), rely on this assumption. 
For distributions with estimated parameters, approximations are available at 
least for normal, Weibull, and exponential distributions (See Law – Kelton 
1991, 389-393, for references). In order to overcome this inconvenience, the 
critical values can be determined with simulation.  

Table 4 show the critical values derived via simulation for the power expo-
nential distribution (Töyli et. al. 2002b). When these critical values are com-
pared to those derived under the hypothesis that all the parameters are known, 
the differences are substantial. For example, in the known parameters case, the 
critical value for the sample size 251 and β=0 (normal distribution) is 0.085 
(see Press et. al. 1992). This is quite a substantial difference when compared to 
0.056 obtained in the simulation, which is also the same value obtained by Lil-
liefors (1967) for normal distribution with estimated parameters. However, it 
needs to be pointed out that the critical values are conservative when the shape 
parameter β is also estimated from the sample, which is the case in our study. 

Table 4: Critical values for D0.05;251 statistic 

β Critical β Critical β Critical β Critical
-0.3 0.0634 0.4 0.0481 1.1 0.0552 1.8 0.0616
-0.2 0.0632 0.5 0.0479 1.2 0.0562 1.9 0.0637
-0.1 0.0581 0.6 0.0490 1.3 0.0586 2.0 0.0653
0.0 0.0564 0.7 0.0520 1.4 0.0602 2.1 0.0662
0.1 0.0516 0.8 0.0516 1.5 0.0617 2.2 0.0690
0.2 0.0496 0.9 0.0534 1.6 0.0613 2.3 0.0657
0.3 0.0485 1.0 0.0544 1.7 0.0643 2.4 0.0680  

 
The algorithm to produce the distribution for D-statistics (Töyli at. al. 

2002b) was as follows (repeated for each value of β of interest): 

1. Simulate thousand 251 data point samples from power exponential dis-
tribution with shape parameter β (location and scale are irrelevant 
here). 

2. Fit power exponential to each 251 points sample using maximum like-
lihood. 
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3. Calculate D statistics from the samples with fitted parameter values. 
4. Use the achieved D’s distribution to determine the critical value. 

3.4.4 Model selection 

The likelihood ratio test is one of the most widely applied methods to test the 
goodness of two different models. The idea of this test is that the distributions 
f1 and f2 with dimensions of parameter spaces d1 and d2 (d1 < d2), determine 
the likelihood ratio:  

 ( )( ) ( )( )( )
1122

|ln|ln22
dfdf xLxLH Θ−Θ=  (3.35) 

where Lf1 and Lf2 are the likelihood functions; d1 and d2 are the respective pa-
rameter spaces, and x is the data. H2 follows asymptotically χ2 distribution 
with (d2 - d1) degrees of freedom. It needs to be noted here that this test neces-
sitates that the parameter spaces are nested. This implies that the parameter 
space of the pdf with smaller number of independent parameters is derivable 
from the parameter space of the pdf with higher dimensionality. Despite of 
this fact there are examples of studies in which the likelihood ratio test along 
with Monte Carlo simulations for validity checking have been used, although 
the assumption of the parameter space being nested has not been checked (see 
Blattberg – Gonedes 1974; Merton 1976). In contrast to that, the usage of the 
likelihood ratio test has also been unnecessarily refused (see Akgiray - Bouth 
1987). 

An alternative to likelihood ratio test is the Schwarz criterion (Schwarz 
1978). This test has been widely applied in financial studies (Tucker 1992; 
Akgiray - Bouth 1987; Jacquier et. al. 1994). Schwarz criterion is based on 
Bayesian approach, which says that it is most appropriate to select the model 
with the highest posterior probability. Since it is usually impossible to calcu-
late posterior probabilities directly, the following approximate procedure is 
usually applied: 

1. Calculate ( ) 5.0log|log TdxLSC −Θ=  (where )|( ΘxL  is the maximum 

likelihood function value, d the number of independent parameters, and 
T is the sample size) for each model. 

2. Select the model with largest SC. (3.36) 

The Schwarz criterion is especially applicable when the parameter spaces of 
the different model being compared are not nested. There is also some anecdo-
tal evidence that the Schwarz criterion and the likelihood ration lead to similar 
inference when both tests are legitimate to use (see Gillemot et. al. 2000). 



 

4. Analysis Methods 

This Chapter will describe the datasets and methods used in the Papers of this 
bundled thesis. A data from a major market (Standard & Poor's 500), a small 
and quite volatile market (Helsinki Stock Exchange), and artificial data was 
used. We chose to use index data instead of a single asset because the index 
data reflects the behaviour of the marker as whole. This choice can be further 
argued for by the fact that, for practical purposes, the analysis of index data 
might be more informative because the investments should be diversified and, 
thus, they constitute portfolios. The indices are also available from long time 
periods. Nevertheless, we are not in anyway calling the importance of the 
analysis of single assets into question. We merely chose to start from indices. 

The first sample consists of Standard & Poor's 500 (SP500a) daily index 
data of the New York Stock Exchange from more than 32 years (from 3 July 
1962 till 29 December 1995) and contains altogether 8 431 trading days. This 
index is one of the most widely studied, it is available for a long time period, 
and reflects the behaviour of a major market. Although financial time series of 
this kind usually grows exponentially, the data seems to have a rather clear 
change in the growth rate round the end of 1970s. In other words, it seems that 
during the first 5 000 trading days the mean value of index seems constant but 
after this the mean value seems to rise. This dataset was studied in the Papers 
1 and 2. 

Standard & Poor's 500 (SP500b) daily index was also studied in the Papers 
3, 5, and 6. However, in these Papers, a slightly longer time period (from 2 
July 1962 to 31 December 1997) was analysed. The sample contained 8 939 
data points. 

The third dataset (analysed in the Papers 1 and 3) was an artificial data (AF) 
generated by the following stochastic process: ( ) ( ) ( )[ ] bttxtx *1 ξ+−=  where 
ξ(t) was distributed according to an “inflated” Gaussian process: 
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with the standard deviation being time-dependent as ( ) ( ) btt *1−= σσ  where 

b>0. The sample contained 30 000 data points corresponding to 10 000 trad-
ing days, each day including three index points, and thus 1 000 data points 
would correspond to an artificial trading year. The parameters b, σ0 and x0 
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were set to their empirical values estimated from the S&P500 data: 
70,4.0,1078.11 00

5 ==×=− − xb σ . 

The fourth dataset was the Helsinki Stock Exchange (HEX) all shares daily 
index from 2 January 1991 to 30 December 1997 containing 1 751 data points. 
The HEX all shares index includes all stocks listed on the Helsinki Stock Ex-
change and the shares are weighted with their market capitalisation. The base 
date of the index is 28 December 1990 and the base number is 1 000. In inter-
national scale, Helsinki Stock Exchange is small and quite volatile. This data 
was analysed in the Papers 3, 4, 5, and 6. 

The fifth dataset, studied in the Paper 6, was a high frequency data from 
Standard & Poor’s 500 (SP500HF) index from 2 January 1997 to 31 Decem-
ber 1999 containing 1 081 528 data points. This data was recorded on about 20 
seconds time-interval. 

In the analyses, the full datasets (Papers 1-6), data split by weekdays (Pa-
pers 4 and 5), data split by years (Papers 4 and 5), 251 data points’ rolling 
windows (Papers 4-6), and data (SP500HF) divided into 42 separate equal 
length bins (Paper 6) were studied. This division was applied to tick, one min-
ute, and five minute data sets, which means that each bin included 25 700, 
7 000 and 1 400 data points, respectively. The division was done because we 
found that the fittings for the full datasets (i.e. to very large datasets) tend to 
average out details. The analysis of the bins instead seems to reveal structure 
and thus more details about the return generating process. The binned ap-
proach was not applied for longer holding periods because of limited amount 
of data. In case of the rolling window, the window was rolled over the data by 
forwarding it every time by one data point and its length (251 data points) was 
set to reflect the typical length of a HEX trading year. The statistics calculated 
from successive rolling windows – different just by one data point – are highly 
dependent. However, this should not be problematic since the windows are 
used in the descriptive sense for investigating the changes in patterns over 
time. They are not used as inputs for other statistical analysis where the de-
pendency and induced autocorrelation would be problematic. Since previous 
research has generally concluded that monthly returns are approximately nor-
mally distributed, the evolution of the shape of return distribution was studied 
in different holding periods from one day to one month (Papers 2, 4-6) and 
from 15 minutes to one day (Paper 6). 

As the variable, we used the logarithmic returns on all papers and, in addi-
tion to that, simple price differences in the Papers 1 and 3 in order to see the 
effect of measurement quantity on the inference. Since financial data typically 
shows modest autocorrelation, its effects was studied in the Papers 4 and 5 by 
filtering the autocorrelation out with the help of Cochrane-Orcutt correction 
defined as follows: 1−−= ttt rxxy  where r is the estimated first autocorrelation, 
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xt the original return at time t, and yt the corrected series. This correction 
should remove the first order autocorrelation. The estimates rHEX = 0.1835 and 
rSP500b = 0.114 were obtained from the full data set and the correction was ap-
plied to the full data. All analyses were made to the corrected as well as to the 
raw data. Since it turned out that the estimated first autocorrelation varied sub-
stantially in different rolling windows, the Cochrane-Orcutt correction was 
also applied in rolling manner. However, the inference remains the same 
whether the rolling correction or correction to full data set was used. 

In addition to the linear dependency, financial data has non-linear depend-
encies. These were studied in the papers 1, 5, and 6 by “pre-whitening” the 
data with the GARCH process as follows: 
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where the coefficients α0 > 0, αi > 0, βi > 0 for all i. We used mainly the 
GARCH(1,1) process, i.e. chose q=p=1, but we also tested the IGARCH (only 
in case of SP500a data) and ARCH processes. The conclusions remain the 
same regardless of the process used to pre-whiten the data. 

All models of asset returns were fitted to the data with maximum likelihood 
method. However, for power exponential distribution a numerical algorithm to 
Bayes fit it was developed and implemented as C++ code. This algorithm was 
used in the Papers 4 and 5. In the Paper 5, the Bayesian estimates were com-
pared to maximum likelihood estimates whose validity was tested with the 
help of a simulation study. 

The different models were compared using the Schwarz criteria (Papers 3, 
6) and the likelihood ratio test (Paper 3). However, the likelihood ration test 
led to confusing results when it was applied for comparisons that are theoreti-
cally not justified. The goodness of fits were tested with χ2-test (Papers 3 and 
6) and with Kolmogorov-Smirnov test in case of power exponential distribu-
tion (Paper 5). For Kolmogorov-Smirnov test, the critical values were deter-
mined with the help of a simulation study. 





 

5. Summary of Results  

This Chapter will shortly summarise the main results presented in the Papers. 
The discussion is grouped under the titles of papers. It needs to be pointed out 
that, although the papers were published in sequential order, they were pre-
pared partly parallel and, thus, are somewhat overlapping. 

5.1 Paper 1: Characteristic times in stock market indices 

In this paper, the aim was to show where the limits of scaling in the stock 
market data are. The SP500a and the AF datasets were analysed. The analysis 
was started by demonstrating with the help of a simple random walk model 
(AF data) that the proper quantities to look at are the logarithmic returns. 
Figure 8 shows Lévy distribution fitted to the AF dataset when logarithmic 
returns and simple price differences are used as measurement quantities. 
Figure 8 suggest that the use of differences instead of logarithmic returns is 
likely to produce Lévy like distribution although the underlying process is 
simple Gaussian. 
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Figure 8: Effects of terms of measurement in the AF data 

In the further analysis, fittings were made to the Lévy distribution either us-
ing the index data as such or pre-processing it with ARCH, GARCH or 
IGARCH methods, which should remove, or at least mitigate, the effects of 
time-dependent variance. It was found out that for short times the (truncated) 
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Lévy distribution fits the data relatively well. Since this truncation leads to a 
non-stable distribution, the scaling behaviour observed for short times should 
break down for longer times. Figure 9 illustrates the convergence of the return 
distribution from Lévy-type behaviour towards Gaussian behaviour of the 
GARCH treated return as a function of time step. 
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Figure 9: Crossover from Lévy to Gaussian behaviour in SP500a data 

It was also concluded that the crossover time for scaling is definitely shorter 
than that reported by Mantegna and Stanley (1995) who found the scaling to 
hold up to 1 000 min. This contradiction was speculated to be due to the fol-
lowing reasons. First, Mantegna and Stanley fitted the exponent to the central 
part of the distribution. Second, they used a much shorter time span of the 
S&P500 index, which leads to a rather limited number of data points for time 
step ∆t = 1 day and larger. Third, they studied the simple price difference that 
becomes more and more different from the logarithmic returns as ∆t increases. 
We further found out that the ARCH, GARCH or IGARCH treatment of the 
data does not transform the data normally distributed, although the value of 
the exponent α increases after performing the treatment, for time step ∆t = 1 
day. Nevertheless, the Gaussian value is reached asymptotically when the time 
step increases. 

In general, this inference was found to be quite robust. Thus, it did not de-
pend on whether the raw data or the ARCH, GARCH or IGARCH treated data 
was being analysed or whether the data was split into two parts (the early part 
with fluctuations around roughly constant mean [till about the late 70’s] and 
the later part with non-constant mean and larger fluctuations). 
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5.2 Paper 2: Break-Down of Scaling and Convergence to Gaussian 

In this paper, we continued with the topic introduced in the Paper 1 and con-
tinued analysing SP500a data. Motivated by the fact that the truncated charac-
ter of the return distribution implies that scaling must break down and that the 
distribution ultimately converges to a Gaussian, we concluded that at least two 
different characteristic times could be defined. One of them (τs) shows the 
break-down of scaling, the other one (τG) shows the time scale of the conver-
gence of the kurtosis. It was also found that τs is of the order of one day while 
τG is in the range of few months; thus, τs « τG. Figure 10 illustrates the conver-
gence of kurtosis to Gaussian value 3. Here the solid line implies the theoreti-
cal value calculated based on the fitted values. 
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Figure 10: The convergence of the kurtosis in SP500a data 

5.3 Paper 3: Time-independent models of asset returns revisited 

In this paper we revisited various well-known time-independent models of as-
set returns. These were simple normal distribution, Student t-distribution, 
Lévy, truncated Lévy flight, generalised stable distribution, mixed diffusion 
jump, and compound normal distribution. The datasets used were SP500b, 
HEX, and AF. 

First, we showed that the likelihood ratio test is “legitimate” to use when 
comparing mixed diffusion jump, compound normal distribution, and normal 
distribution. Although it is not known whether this test is justifiable to use to 
discriminate uniquely between any other models, we did so and found out that 
the use of the likelihood ratio test to discriminate between all the models leads 
to contradictory results of their ranking order. Therefore, the ranking order 
was decided by using the Schwarz criterion, which also gave the same results 
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as obtained by using the likelihood ratio test for those models for which likeli-
hood ratio test is known to be legitimate to use.  

In addition, we tested whether the inference is affected if the number of 
normal distributions included in the compound normal distribution is decided 
using the Schwarz criterion instead of the maximum likelihood ratio test. Al-
though our results showed that these two criteria occasionally result in differ-
ent number of normal distributions to be included in the model, the ranking 
order of compound normal distribution compared to the other models did not 
change. 

Our results also indicated that all models, excluding the simple normal dis-
tribution, are from visual perspective reasonable descriptions of the data. Fur-
thermore, the use of differences instead of logarithmic returns tends to make 
the data visually more Lévy type distributed as we also concluded earlier (Pa-
per 1). Figure 11 shows the time-independent models fitted to SP500b dataset. 
All other models than normal distribution seem visually very close to each 
other. 
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Figure 11: Time-independent models of asset returns fitted to SP500a data 

When comparing the distributions statistically, the Schwarz test was used as 
the decision criterion. The Student t-distribution seemed to give the best de-
scription of the empirical returns (SP500b, HEX, and AF). However, this 
model is merely descriptive since it lacks an intuitive explanation of an under-
lying process, unlike most of the other models that describe the empirical re-
turns well or reasonably well. Only the simple normal distribution seems not 
to be an adequate description of daily returns.  

To comment about the stable distributions (the Lévy, and generalised stable 
distribution), they seem to be quite indistinguishable in any of the plots and 
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underestimate the peak of the empirical return distribution while, at the same 
time, giving weight to the tails due to the infinite variance. In general, we con-
cluded that the extension of the Lévy model to generalised stable distribution 
model by adding the location and skewness parameters did not seem in any 
noticeable way to improve the descriptive power of the Lévy model. Both 
these models demonstrate the contradiction between the fat tails and infinite 
variance of the data, which the truncated Lévy fight distribution resolves while 
keeping the quality of the fit reasonable. Finally, the result that none of the 
physically motivated models can be considered as very good representation of 
the stock index data (not as good as the merely descriptive Student t-
distribution), underlines the possibility that time-dependent models may pro-
vide better representations of the return generating process. 

5.4 Paper 4: Variability of Hex Return Distribution 

This paper explored the possible variability in the shape of the of asset return 
distributions. This problem was elaborated with the help of the following 
questions: does the shape of distribution vary from on weekday to another, is 
the shape of distribution constant over time, and does the shape of the distribu-
tion vary along with the time horizon used to calculate the returns? The nature 
of this paper was descriptive and it seek not to give any substance or model-
ling based explanation of the possible time variation of the shape of return dis-
tribution. 

The analyses were started with the non-parametric kernel density estimator 
that suggested that the return distribution is unimodal, leptokurtic, and quite 
symmetric. However, the limited amount of data available made the tails of 
the kernel density estimate messy and, thus, no inference concerning these was 
possible. In addition, it seems, given the sample size, that the kernel density 
estimator underestimates the probability mass of the central regions. These 
difficulties lead to the conclusion that kernel density estimation might not 
yield a good description of the empirical distribution – at least the statistical 
sample size should be substantially larger. 

The left pane of Figure 12 shows the kernel density estimates that were cal-
culated from the full HEX dataset by using the raw data and Cochrane-Orcutt 
corrected data. Normal distribution is plotted as a benchmark. There are no 
observable differences between raw data, and Cochrane-Orcutt corrected data, 
which indicate only modest skewness. The right pane of Figure 12 shows Ker-
nel density estimates based on raw data grouped by weekdays. In general, 
these estimates are more messy than those on the left pane and unclear even in 
the central region of the distribution. Thus, it is not possible to do reliable in-
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ference based on these estimates. Nevertheless, one minor feature can be ob-
served: the asset returns on Wednesdays seem to be slightly different from 
other weekdays. However, this has never before been reported and it is likely 
because of the bias in the density estimates. 

 

Figure 12: Kernel density estimates extracted from HEX data 

The second model, we used, was the power exponential distribution whose 
parameters were estimated with the Bayesian approach. For the estimation, a 
numerical algorithm was developed and it was implemented with C++. The 
results show that the location parameter θ  is virtually zero although, in statis-
tical sense, small but significant deviations were observed. These deviations 
were concluded to be usually safe to ignore for all practical purposes since, 
given the transaction costs, it is hardly possible to place any profitable trading 
rules on them. It also seemed that in case of short-term inference, it would be 
justifiable to assume θ  to be zero although the long-run expectation was found 
to be slightly positive as was expected. No significant deviations between 
weekdays were observed but the expectation tends to somewhat increase to-
wards the end of the week being negative only on Mondays. 

The main issue was the shape of the distribution. Since the return series 
generally indicate anomalies related to weekdays, the question whether the 
shape of the return distribution differs between weekdays was explored first. 
The results indicated no convincing evidence about the differences in the 
shape of the distribution between weekdays. This result might not hold in 
other markets because the weekday effects are not generally strong on Finnish 
market. 

The variability of the shape of the distribution over time was especially in-
teresting. The analyses provided strong evidence that the shape is not constant 
and, periods, when the return generating process could be assumed normal, 
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were observed. These findings are illustrated in Figure 13 where the 90%, 
50%, and 10% percentiles of marginal β calculated from 251 data point’s roll-
ing window are shown (β = 0 denotes normal distribution and β = 1 denotes 
double exponential distribution)  

 

Figure 13: Percentiles of the marginal β (shape parameter) in HEX data 

The observed variability of the shape might explain part of the contradiction 
in the previous results concerning the shape of the distribution. Nevertheless, 
the shape of return distribution also seemed to approach steadily normal dis-
tribution when the time interval used to calculate returns was increased from 
one day towards thirty days’ returns. This observation was concluded to be 
consistent with the previous research. 

5.5 Paper 5: On the shape of asset return distribution 

In this paper we continued on the same path as on the Paper 4. However, we 
also considered data from a major market (SP500b), took into account the 
known time-dependencies, compared the inference with that derived from the 
Student t-distribution, and tested the goodness of fit. Thus, the purpose of this 
paper was still to explore the possible variability of the shape of the asset re-
turn distribution with a fourth research question: how the known linear and 
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non-linear time dependencies affect the inference concerning the shape of the 
distribution? 

In this paper, we used again the power exponential distribution as a model 
but compared the inference to that derived from the Student t-distribution. We 
also compared maximum likelihood estimates to the Bayesian estimates. The 
validity of maximum likelihood estimates was first tested with a simulation 
study. We also tested the goodness of power exponential fit with Kolmogorov-
Smirnov test for which the critical values were determined with simulation. 

The results indicate no convincing evidence to suggest that there are true 
differences in the shape of the return distribution between weekdays. In HEX 
data, Wednesdays appeared a bit different when raw data or Cochrane-Orcutt 
corrected data were analysed but, given the variance of shape parameter β, the 
observed difference could well be by chance. There is also no explanation why 
Wednesday returns should be more peaked than those of other weekdays. In 
SP500b data, Monday data seemed slightly more peaked than other weekdays. 
This finding can be partly understood or supported by the fact that most of the 
large stock market crashes took place on Mondays. However, Monday seems 
to be similar to other weekdays when the data is split into two parts approxi-
mately in the middle (the conclusion is not sensitive to the exact location of 
truncation point) and each part is analysed separately. 

As earlier we concluded that the location of the distribution is non-
stationary over time but the deviations are so small that, given the transaction 
costs, it is hardly possible to develop profitable trading rules based on them. 
We further suggested that in case of risk measurement, e.g., in value-at-risk 
framework, it might be justifiable to assume the location as zero. The expecta-
tion was negative for Mondays in both indices but significant only in the case 
of SP500b dataset. This is in line with the usual finding that the weekday ef-
fects are not strong on Finnish market. The negativity of Monday’s returns in 
SP500b is also supported by the fact that most of the largest crashes took place 
on Mondays. 

The main results obtained in this study were that the shape of the asset re-
turn distribution is not constant over time and that the known linear and non-
linear time-dependencies cannot explain this observed variability. Thus, there 
are significant variations in the shape over time while periods of normality are 
also observed. This finding suggests that the contradiction of previous results 
concerning the shape of the distribution might partly be related to the different 
time-periods used in the analyses. The results also suggest that the known lin-
ear and non-linear time-dependencies are not enough to completely explain the 
observed distributions since their removal does not transform the data to nor-
mally distributed. Therefore, it might be that the shape of the distribution is 
time-dependent or, at least, it is non-stationary. The effect of known depend-
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encies is illustrated on Figure 14 where the modes of the posterior distribution 
extracted from each 251 data point’s rolling window (SP500b) using raw data, 
Cochrane-Orcutt corrected data, and GARCH treated data are shown.  
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Figure 14: Effect of known time-dependencies on the shape in SP500b data 

The previous research has generally concluded that monthly returns are ap-
proximately normally distributed and that by increasing the time interval or 
the holding period the return distribution approaches normal distribution. This 
tendency was observed in the HEX index and the monthly returns seemed to 
be quite well described by normal distribution. In contrast, although in the 
SP500b data the returns start to converge towards normality, this convergence 
seems to stops after about six days. Generally speaking the convergence of 
S&P 500 index towards normality is very slow being of the order of several 
months if it even exists. The convergence seems to be somewhat more evident 
if the data set is split after 5 000 trading days and the parts are analysed sepa-
rately. Especially, the first part of the data indicates a tendency to converge 
towards normality. This might also suggest that there has been some funda-
mental change in the return generating process. This possible change was 
found also in our earlier work (Paper 1) where we observed an evident change 
in the trend and increased fluctuations during the latter part of the SP500a 
dataset. This change may be due to the development of information technol-
ogy and due to the resulting increased productivity. It also seems that the 
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GARCH corrected data and the raw data are becoming similar when the time 
interval is increased although GARCH coefficients do not entirely vanish. Af-
ter approximately ten days for S&P 500 and four days for HEX, the shapes of 
raw data and GARCH treated are virtually identical. These findings are dem-
onstrated in Figure 15. 
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Figure 15: Effect of time intervaling on the shape in SP500b data 

Finally, we crosschecked our results with the Student t-distribution and con-
cluded that the two models lead to identical inference. Furthermore, the good-
ness of power exponential fit was checked with Kolmogorov-Smirnov test in 
order to exclude the possible bias resulting from poorly fitting model. It was 
concluded that the power exponential distribution is fitting the data, except at 
the very end of the HEX index data, and, as a result, the inference and 
conclusions are not likely to be biased because of a poorly fitting model. Nev-
ertheless, these goodness-of-fit results should not be interpreted such that re-
turns are iid with power exponential distribution function. As a matter of fact, 
this could not be the case since to our knowledge there is no systematic proc-
ess that would generate power exponentially distributed returns and, thus, 
strictly speaking, the return series cannot be power exponentially distributed. 
However, as a descriptive model, the power exponential distribution is fitting 
with the data well. 
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5.6 Paper 6: Models of Asset Returns: Changes of Pattern from Tick by 
Tick to 30 Days Holding Period 

This final paper of this bundled thesis summarized, clarified and extended the 
analyses and results of our multi-year project in exploring asset returns. This 
paper focused to study the effects of (i) different time periods, (ii) different 
holding periods and (iii) non-linear dependencies on the conclusions concern-
ing the best fitting time-independent model of asset return distribution (iv) and 
to compare the time-independent models to a simple time-dependent model. A 
special interest was paid to the evolution of the properties of asset returns 
when very short holding periods (high frequency data) are being analysed and 
to the question whether the models of asset return distribution found good on 
daily data also provide good description of data for shorter time-intervals. 

Here we defined SC-measure based on Schwarz criterion for visualisation 
purposes as follows: 

 
N

SCSC
SC Normalx

measure log*5.0

)( −=  (5.1) 

where SCx is the Schwarz criterion value for model x (CND, MDJ, Lévy, 
GSD, TLF, PED, STU, GARCH), SCNomal is the value for the normal distribu-
tion, N the number of data points, and the denominator implies the effect of 
one parameter on the SC-measure value. Thus, for example, a value 10 means 
that such a model would be equally good as normal distribution although 10 
parameters were added to it (all other things being equal). In general, a larger 
value implies a better model. 

We started our analysis with SP500HF data where we did the fittings to a 
sequence of subsets obtained from the tick (20 seconds), one minute, and five 
minutes datasets by dividing them sequentially into 42 equal length bins. The 
analysis of the binned datasets revealed interesting and unexpected behaviour 
since, although the overall trend appears to be that any of the other models 
seem to perform better than the normal distribution, the GARCH(1,1) model is 
on average the poorest performing model after normal distribution on 1- and 
5-minute time intervals. In the case of tick data, the same holds for the time-
independent models but now the GARCH(1,1)-model seems to perform over-
all similarly with, being in some bins better and in some others worse, than 
time-independent models. We also concluded that volatility and time-
dependencies tend to grow along with the deviation from normality. 

Figure 16 shows fitting for 15 minutes (N = 20 289), 1 hour (N = 4 527), 2 
hour (N = 3 770), 4 hour (N = 1 513) and 1 day (N = 756) for the full 
SP500HF dataset. Figure 16 suggests that all time-independent models except 
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normal distribution are close to each other, these models outperform 
GARCH(1,1) model for short time intervals (less than about four hours), and 
the normal distribution is clearly the worst model. On average, the Student t-
distribution seems to be the best time-independent model and Lévy type mod-
els (Lévy, GSD, TLF) seem to perform relatively speaking better when the 
holding period decreases. We further concluded that the poor performance of 
GARCH(1,1) calls in the question the explanatory power of the time-
dependent variance. Thus, it is likely that at high frequencies the time depend-
encies are more complex and necessitate at least that the shape of the distribu-
tion is modelled to be time dependent in addition to the second moment. 
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Figure 16: Ranking order for different holding periods in SP500HF data 

Next we moved on to look at daily data using the 251 data points’ rolling 
windows. The results for HEX are depicted in Figure 17 (the analysis of 
SP500b data yields similar inference). Figure 17 indicates that there are time-
periods when the return generating process is best described by the Normal 
distribution (39.0 % of rolling windows, for SP500b data 19.9 % of rolling 
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windows11). All other time-independent models than normal distribution seem 
to be relative close to each other in both datasets. The time-dependent 
GARCH(1,1) model is, on average, the best model although we expected it to 
perform better (it is best in 40.0 % of rolling windows for HEX and 30.9 % of 
rolling windows for SP500b). It also seems that GARCH model is usually the 
best model when the process cannot be assumed normal. These findings might 
imply that there are periods of “business as usual” when the process is de-
scribed well by the Normal distribution. However, for some reason – e.g., ex-
ternal shock, bubble formation – every now and then periods of ferment 
emerge. These periods are characterised by higher volatility and increased 
time-dependencies. This finding needs to be tested further before more de-
tailed conclusions can be drawn. Nevertheless, such tendency, if really the 
case, could help us to understand better the formation of bubbles and the 
crashes following them. 
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Figure 17: Ranking order of models in rolling windows in HEX data 

                                            
11 In SP500b data the Lévy distribution turns out to be the second best model, but it generally outper-
forms the Normal distribution when the characteristics exponent is close to 2 (=normal distribution). 
For such time periods the Lévy and normal models are very close to each other (the gap is typically 
less than “one parameter” wide). Thus, if the Normal distribution is fitted to data assuming zero mean, 
the GARCH model is still the best fitting model in 28.2 % of windows but the Normal distribution 
achieves second most first positions (in 27.2 % of windows). 
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Since we used earlier (Papers 1, 4, and 5) GARCH techniques to filter out 
non-linear dependencies, the same was done here for comparison reasons. 
When compared to the raw data, the processed data is clearly transformed to-
wards normality but this normality cannot always be assumed. Typically, 
those parts where GARCH(1,1) model is the best fitting model are still after 
correction non-normal. This finding implies that the known time-dependencies 
do not completely explain the variability of the shape. In addition, it under-
lines the possibility of two kinds of periods; “business as usual” and “ferment” 
periods. During the ferment period the time-dependencies might become 
stronger as discussed above.  
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Figure 18: Ranking order for different holding periods in HEX data 

Figure 18 shows the order of models extracted from different holding peri-
ods from one day to 30 days in HEX data. SP500b data behaves similarly (plot 
is not reported here). In both datasets, the GARCH(1,1) model is the best 
model for short holding periods (for 1 day in HEX and up to 8 days in S&P 
500). However, when the holding period increases, superiority of GARCH 
model mitigates. This finding implies that the role of time dependencies is 
vanishing. In general, the time-dependencies vanish slower and the distribu-
tion converges slower towards normality in S&P 500 than in HEX, in which 
case the return distribution is well described by simple normal distribution for 
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eight days and longer holding periods. In case of S&P 500 data, the Student t-
distribution turns out to be the best model for holding periods longer than 8 
days. 

In summary, the results show that high frequency data is best modelled with 
time-independent models that are able to capture the excess kurtosis and it was 
a surprising finding that the GARCH(1,1) model becomes relatively poor 
when the holding period becomes shorter than about 4 hours. Nevertheless, the 
daily returns are best modelled by GARCH(1,1) while the time dependencies 
that GARCH model captures vanish after a few days. Thus, monthly returns 
are relatively well described by simple normal distribution. However, the 
analyses of large datasets tend to average out details in the data sets. When the 
data is split into the bins or rolling windows, the analyses seem to reveal struc-
ture and thus more details about the return generating process. In general, it 
seems that there are periods of “business as usual” when the process is de-
scribed well by the Normal distribution and for some reason – e.g., external 
shock, bubble formation – every now and then periods of ferment emerge. 
These periods are characterised by higher volatility and increased time-
dependencies. 





 

6. Discussion 

This research was initially motivated by Mantegna’s and Stanley’s results 
(1995) that suggested Lévy distribution as a model of asset returns and dem-
onstrated the scaling property that seemed to be present in the data. Our jour-
ney to unknown has been challenging and difficult but rewarding. It is worth 
of explicitly considering the contribution of our work before closing this the-
sis. The Papers 1 and 2 contributed the field by identifying the characteristics 
times present in financial data. It was shown that the scaling tends to break 
down after one day and the characteristic time of the convergence of kurtosis 
is in the range of few months. We also demonstrated that the use of simple 
price changes, a practise applied by the early econophysicists, could lead to 
considerably different inference than the use of logarithmic return. In general, 
the use of logarithmic return was argued to be preferable because of their con-
venient theoretical and practical properties. The Papers 1 and 2 also suggested 
that the removal of time-dependencies with GARCH techniques might not 
completely transform the unconditional distribution to normal rather the un-
conditional distribution still shows some Lévy type behaviour. 

The Paper 3 contributed the field by revisiting the well-known time-
independent models of asset returns. It was shown that unjustified use of the 
likelihood ratio test is likely to result in confusing conclusions. It was further 
shown that it is legitimate to compare compound normal model and mixed dif-
fusion jump model with likelihood ratio test. Along with that, anecdotal evi-
dence that the Schwarz criteria leads to similar inference, when comparing two 
models, as likelihood ratio test, if both tests are legitimate to use, was found. 
In general, the Student t-distribution was found to be the best fitting time-
independent model of asset returns. For the fitting of the well-known time-
independent models, a Matlab toolbox was also developed. 

The Papers 4 and 5 concentrated on the shape of the return distribution. The 
main finding was that after taking into account the know time-dependencies 
the shape of return distribution still remains non-stationary. This finding sug-
gests that also the shape might be time-dependent. In contrast to temporal 
variation, the shape was found to be similar for different weekdays. This find-
ing contrasts to the reported anomalies related to the mean and standard devia-
tion. Along with that, a convergence towards normal distribution was observer 
when time interval was increased and the effect of time-dependencies seemed 
to completely vanish after a few days. Furthermore, a numerical algorithm to 
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produce Bayesian parameter estimates for power exponential distribution was 
developed and implemented as C++ code. Paper 5 continued by showing that 
maximum likelihood estimates of power exponential distribution’s parameters 
are unbiased with the help of a simulation study. Critical values for Kolmo-
gorov-Smirnoff goodness of fit test for power exponential distribution were 
also produced with the help of a simulation study. 

The final paper of this bundled thesis summarized, clarified and extended 
the analyses and results of the earlier papers. Thus, the findings that, on daily 
data the shape of asset return distribution is non-stationary, there are time pe-
riods when the Normal distribution is the best model, and the removal of 
known time-dependencies transfers the data towards normality although the 
dependencies cannot explain the non-stationary behaviour were corroborated. 
Here we also found out that a time-dependent GARCH(1,1) model does not 
necessarily outperform the time-independent models although it is on average 
the best fitting model for daily returns and that GARCH(1,1) model is often 
the best model when the process cannot be assumed normal. Especially, when 
full daily datasets are analysed GARCH(1,1) is clearly the best model. How-
ever, the superiority of GARCH model mitigates rapidly when the holding pe-
riod increases towards a month, which implies time-dependencies are vanish-
ing. This finding also further corroborates earlier results. We also found out 
that the fittings for the full datasets tend to average out details in the datasets 
and hide the subtle structure. Thus, the binned analysis of high frequency data 
revealed important phenomena: as expected the normal distribution was 
clearly the poorest performing model, but surprisingly, the other time-
independent models seemed usually to outperform the GARCH(1,1)-model for 
holding periods less than four hours although the fine grained data evidently 
includes time dependencies. We also concluded that volatility and time-
dependencies tend to grow along with the deviation from normality. 

These finding led us to raise three questions. First, we speculated that there 
are likely periods of “business as usual” when the process is well described by 
normal distribution. However, for some reason – e.g., external shock, bubble 
formation – every now and then periods of ferment emerge. These periods are 
characterised by higher volatility and increased time-dependencies. Second, 
the poor performance of GARCH(1,1) model on high frequencies lead us to 
question whether the assumption of GARCH that returns are normally distrib-
uted with time-dependent parameters is reasonable and whether it should be 
substituted with some other model where also the shape is allowed to vary 
over time. Such a model could, at least in theory, capture the business as usual 
periods as well as periods of ferment. Third, although we were surprised by 
the poor performance of GARCH(1,1) on high frequencies, we were reluctant 
to generalise this finding before a more detailed analysis. However, if the be-
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haviour we observed is typical for financial data, this finding would also be a 
source for further insight to the return generating process. 

It also needs to be noted that our results in general call into question the va-
lidity of analysis methods relaying on normality assumption. This is especially 
crucial in risk management applications since it is likely that the normal distri-
bution based risk management frameworks underestimate the risk during peri-
ods of ferment although they might be more adequate during business as usual 
periods. This could partly explain the unexpected, catastrophic losses when a 
ferment period emerges. 

As a closing remark, it is worth to sketch the paths for future research. 
There are four areas both theoretically interesting and practically challenging 
for more detailed studies. The first area is to continue the statistical modelling 
of asset returns. This path includes deeper exploration of the questions raised. 
Thus, here the key issue might be to build a simple model that includes time-
dependent interpretable shape parameter in addition to time-dependent vari-
ance. Such a model could perhaps be used to study the possible variation be-
tween periods of ferment and business as usual. The high frequency data is 
also relatively little studied and it deserves more attention. Here at least the 
surprising GARCH-finding needs to be tested further. The second, and proba-
bly the most challenging area, is to explore the operation of financial market 
with the help of agent based modelling. This area has a substantial potential to 
increase our understanding about how the market actually works since it is 
very challenging if not impossible to construct a model based on a simple sto-
chastic process which could truly replicate all the empirical peculiarities. In 
contrast, the agent based models are very promising and the computer capacity 
currently available allows their effective use. The third area is to apply the re-
sults of this thesis on real world application, for example, to risk management 
models. Even the use of some of the time-independent models might consid-
erably improve the contemporary solutions that are currently often based on 
normal distribution. And finally our Matlab toolbox for fitting the discussed 
distributions and sampling from them would be beneficial for the researches in 
the field in general if it were implemented in slightly more user-friendly way. 
This is worth of doing. 
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