
VTT PUBLICATIONS 479

A Software Architecture for
Configuration and Usage of Process

Simulation Models
Software Component Technology and

XML-based Approach

Tommi Karhela
VTT Industrial Systems

Dissertation for the degree of Doctor of Technology to be presented with
due permission for public examination and debate at Helsinki University of
Technology (Espoo, Finland) in Auditorium T2 (Konemiehentie 2, Espoo)

on the 11th of December, 2002 at 12 noon.

ISBN 951–38–6011–6 (soft back ed.)
ISSN 1235–0621 (soft back ed.)

ISBN 951–38–6012–4 (URL:http://www.inf.vtt.fi/pdf/)
ISSN 1455–0849 (URL:http://www.inf.vtt.fi/pdf/)

Copyright © VTT Technical Research Centre of Finland 2002

JULKAISIJA – UTGIVARE – PUBLISHER

VTT, Vuorimiehentie 5, PL 2000, 02044 VTT
puh. vaihde (09) 4561, faksi (09) 456 4374

VTT, Bergsmansvägen 5, PB 2000, 02044 VTT
tel. växel (09) 4561, fax (09) 456 4374

VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O.Box 2000, FIN–02044 VTT, Finland
phone internat. + 358 9 4561, fax + 358 9 456 4374

VTT Tuotteet ja tuotanto, Tekniikantie 12, PL 1301, 02044 VTT
puh. vaihde (09) 4561, faksi (09) 456 6752

VTT Industriella System, Teknikvägen 12, PB 1301, 02044 VTT
tel. växel (09) 4561, fax (09) 456 6752

VTT Industrial Systems, Tekniikantie 12, P.O.Box 1301, FIN–02044 VTT, Finland
phone internat. + 358 9 4561, fax + 358 9 456 6752

Figure 4.1 reprinted with permission from IEEE Std 1471-2000 "IEEE Recommended practice for
architectural description of software-intensive systems" Copyright 2000, by IEEE. The IEEE disclaims any
responsibility or liability resulting from the placement and use in the described manner.

Technical editing Maini Manninen

Otamedia Oy, Espoo 2002

3

Karhela, Tommi. A Software Architecture for Configuration and Usage of Process Simulation
Models. Software Component Technology and XML-based Approach. Espoo 2002. Technical
Research Centre of Finland, VTT Publications 479. 129 p. + app. 19 p.

Keywords process simulation, software architecture, XML, software component technology,
model configuration

Abstract
Increased use of process simulation in different phases of the process and
automation life cycle makes the information management related to model
configuration and usage more important. Information management increases the
requirements for more efficient model customisation and reuse, improved
configurational co-use between different simulators, more generic extensibility
of the simulation tools and more flexible run-time connectivity between the
simulators and other applications.

In this thesis, the emphasis is on large-scale dynamic process simulation of
continuous processes in the power, pulp and paper industries. The main research
problem is how to apply current information technologies, such as software
component technology and XML, to facilitate the use of process simulation and
to enhance the benefits gained from using it. As a development task this means
developing a new software architecture that takes into account the requirements
of improved information management in process simulation. As a research
objective it means analysing whether it is possible to meet the new requirements
in one software architecture using open specifications developed in information
and automation technologies.

Process simulation is analysed from the points of view of standardisation,
current process simulation systems and simulation research. A new architectural
solution is designed and implemented. The degree of meeting the new
requirements is experimentally verified by testing the alleged features using
examples and industrial cases.

The main result of this thesis is the design, description and implementation of a
new integration architecture for the configuration and usage of process
simulation models. The original features of the proposed architecture are its
openness, general distribution concept and distributed extensibility features.

4

Preface
My first contact to process simulation was when I was a summer student at the
European Laboratory for Particle Physics (CERN) 1995. Later on at the
beginning of 1996 I started to do my master’s thesis at VTT. At that time I was
still more interested in developing simulation algorithms than focusing on the
used simulation platform solutions. After graduating I had an opportunity to
work in a simulation platform development project P21 (Simulation platform of
21st century) and later on this work was continued in the Gallery (Process model
and parameter gallery for process integration) and Advice (Advanced Integrated
Component based Simulation Environment) projects. The research and
development done in these three projects form the background for the software
architectural approach presented in this thesis.

I want to thank my supervisor, Professor Kari Koskinen, and my instructor, Dr.
Jari Hämäläinen, for their support and tutoring during the writing process of the
thesis. I am also thankful to my group leader, Mr Kaj Juslin, and to the entire
system dynamics group at VTT Industrial Systems for the homely and
innovative atmosphere they have provided. I want to express my gratitude to Mr
Kalle Kondelin, Mr Matti Paljakka, Mr Pasi Laakso, Mr Teemu Mätäsniemi, Mr
Jyrki Peltoniemi and Ms. Marja Nappa, especially, for all the discussions that
have been essential when developing the ideas of the thesis. I am also grateful to
Professors Seppo Kuikka and Kai Koskimies from the Tampere University of
Technology for providing expert criticism and suggestions for the thesis. For the
financial support, I express my gratitude to VTT, National Technology Agency
and the Fortum foundation.

I also want to thank all my friends, especially Mr Sami Majaniemi for all the
support, humor and relaxation they have brought to my life. Finally, my warmest
thanks to my wife, to my parents and to my sister’s family for all the love and
support they have given me over the years.

Espoo, October 12th 2002,

Tommi Karhela

5

Contents

Abstract ... 3

Preface .. 4

Abbreviations.. 8

Glossary .. 12

1. Introduction... 15
1.1 Motivation and background... 15
1.2 The objectives and hypotheses of the study .. 17
1.3 Research approaches and methods .. 19
1.4 Results and Contributions.. 20
1.5 Structure of the thesis .. 21

2. Related Topics in Simulation, Process and Automation Technologies 23
2.1 Introduction ... 23
2.2 Related standardisation and specifications .. 24

2.2.1 CAPE-Open... 24
2.2.2 High Level Architecture (HLA).. 27
2.2.3 Standard for the Exchange of Product Model Data (STEP).... 29
2.2.4 Product Data Markup Language (PDML)............................... 33
2.2.5 OLE for Process Control (OPC).. 34

2.3 Current Process simulation systems .. 37
2.3.1 Introduction ... 37
2.3.2 Apros/Apms .. 40
2.3.3 CADSIM Plus ... 42
2.3.4 Hysys... 44
2.3.5 Summary ... 46

2.4 Related research and development .. 47

3. Research and Development Problem.. 50
3.1 Introduction ... 50
3.2 Need for better model reuse and easier customisation 51
3.3 Need for better configurational co-use .. 53
3.4 Need for more generic extensibility .. 55

6

3.5 Need for more flexible run time connectivity 56

4. Proposed Architectural Solution... 58
4.1 Introduction ... 58
4.2 Use case analyses .. 60

4.2.1 Kernel developer ... 60
4.2.2 Provider ... 62
4.2.3 Model configurator.. 63
4.2.4 Model user... 64

4.3 Viewpoints... 66
4.4 Logical view .. 68

4.4.1 Rationale ... 71
4.5 Data view... 72

4.5.1 Basic elements... 74
4.5.2 Component type description mechanism 75
4.5.3 Client and server extension description mechanism 76
4.5.4 Connection mechanism ... 77
4.5.5 Mapping mechanism ... 77
4.5.6 Documentation and history mechanisms................................. 79
4.5.7 Graphical descriptions... 79
4.5.8 Monitor, trend and state definitions .. 80
4.5.9 Data model of data connection.. 81
4.5.10 References to other specifications... 82

4.6 Security view... 84
4.7 Component view.. 85
4.8 Process view .. 89

5. Verification ... 93
5.1 Introduction ... 93
5.2 Verification of the configurational features... 94

5.2.1 Model customisation using manufacturer data and
dimensioning tools .. 94

5.2.2 Model reuse using centralised repository and parametricized
construction ... 98

5.2.3 Co-use of a steady state simulator and a dynamic simulator 102
5.2.4 Empirical models in the architecture..................................... 106

5.3 Verification of the run time connectivity features............................. 108

7

5.3.1 DCS testing ... 108
5.3.2 Training simulator support .. 111
5.3.3 Speed and scalability of the data change............................... 115

6. Discussion... 119

References... 123

Appendices

Appendix A: An example of EXPRESS language and late and early binding

Appendix B: An example of the usage of the data model

Appendix C: Type library examples of Prosim and Apros

 8

Abbreviations
ACL Apros Communication Library

AE Alarms and Events

AIChE American Institute of Chemical Engineers

AP Application Protocol

API Application Programming Interface

CAD Computer Aided Design

CAPE Computer Aided Process Engineering

COM Component Object Model

CORBA Common Object Request Broker Architecture

DA Data Access

DCOM Distributed Component Object Model

DCS Distributed Control System

DDE Dynamic Data Exchange

DLL Dynamic Link Library

DMSO Defense Modeling and Simulation Office

DoD Department of Defence

DOM Document Object Model

 9

DTD Document Type Definition

DX Data Exchange

EL Ecosim Language

FOM Federation Object Model

GML Gallery Markup Language

GQL Gallery Query Language

GTP Gallery Transfer Protocol

GUID Globally Unique Identifier (see UUID)

HDA Historical Data Access

HLA High Level Architecture

HPGL Hewlett-Packard Graphic Language

HTTP Hyper Text Transfer Protocol

HTTPS Hyper Text Transfer Protocol Secure

IDL Interface Definition Language

IEEE Institute of Electrical and Electronics Engineers

IIS Internet Information Server

ISO International Standard Organisation

I/O Input/Output

MCTL Model Client Transport Layer

 10

ModL Modeling Language of Extend platform

MOM Message Oriented Middleware

MSM Model Server Manager

MSTL Model Server Transport Layer

NPSHa Net Positive Suction Head Available

OLE Object Linking and Embedding

OMG Object Management Group

OMT Object Model Template

OPC OLE (Object Linking and Embedding) for Process Control

PC Personal Computer

PDML Product Data Markup Language

PDPD Phenomenon Driven Process Design

P&ID Process and Instrumentation Diagram

pdXi Process Data Exchange Institute

RPC Remote Procedure Call

RTI Run Time Infrastructure

SCADA Supervisory Control And Data Acquisition

SGML Standard Generalized Markup Language

SOM Simulation Object Model

 11

SOAP Simple Object Access Protocol

SSL Secure Socket Layer

STEP Standard for the Exchange of Product Model Data

SVG Scalable Vector Graphics

TCP/IP Transmission Control Protocol / Internet Protocol

TEMA Tubular Exchanger Manufacturers Association

TLS Transport Layer Security

UI User Interface

UML Unified Modeling Language

UUID Universaly Unique Identifier

VMS Virtual Memory operating System (currently called OpenVMS)

XML Extensible Markup Language

 12

Glossary
Architecture – See Software architecture

Component – See Process component

Data-centric approach
A point of view to process modelling and simulation where the emphasis is on
the configurational data of a simulation model i.e. on topology and parameter
values. The term is used (not rigorously defined) in CAPE-Open specification
(CAPE-Open 2000).

First principle model
Model that is based on fundamental physical and chemical laws.

Model-centric approach
A point of view to process modelling and simulation where the emphasis is on
the model development and model interoperability. The term is used (not
rigorously defined) in CAPE-Open specification (CAPE-Open 2000).

Model configuration
A definition of (or a work process of describing) the interconnections, parameter
values and a set of specified initial states of process components that are needed
to initialise a process simulation.

Model customisation
A process of setting the proper values for the parameters of a process component
inside a model configuration.

Model development
A work process of programming separate unit operation models or other
numerical solution algorithms that can be used together with some process
simulator(s).

Model resolution
The level of details in a process model.

 13

Model usage
Work process of using an already configured process model. During model
usage the user starts and stops the simulation, observes the values and changes
the set point values, but he does not make any changes to the model
configuration.

Process
Sequence of chemical, physical or biological operations for the conversion,
transport or storage of material or energy (ISO 1997b).

Process component
A physical object that is or may be a part of a process.

Process model
A mathematical model of one or more interconnected process components. An
experiment can be applied to a process model in order to answer questions about
the process.

Process modelling
Constructing a process model. Includes both model configuration and model
development i.e. defining process structure and behaviour.

Process simulation
An experiment made with a process model.

Process simulation model – see Process simulation

Process simulation tool – see Process simulator

Process simulator
A program that can be used for process modelling and simulation.

Simulation scheme
The type of the major algorithm inside a process simulator. Can be for example
sequential modular, equation-based, sequential and non-sequential modular or
modular hierarchical (CAPE-Open 2000).

 14

Software architecture
The fundamental organization of a system embodied in its (software)
components, their relationships to each other, and to the environment, and the
principles guiding its design and evolution (IEEE 2000).

Software component
A Reusable, executable, self-contained piece of software, which is accessible
only through well-defined interfaces (Kuikka 1999).

Topology
Interconnections between process components.

Unit operation
Specified process functions that perform one or more defined transformations on
process stream(s).

 15

1. Introduction

1.1 Motivation and background

Dynamic process simulation has traditionally been a tool for a researcher or a
specialist to study and troubleshoot process and automation behaviour. Recent
development, however, has made the process simulation tools also more suitable
for everyday engineering. Tool development has mainly been possible due to the
rapid progress in hardware and software technology. Therefore, process
simulation and information technology used within the process simulation have
become an important research subject in the fields of process and automation
technologies.

Process simulation is a wide concept and can be interpreted in many ways. The
scope of the process simulation may vary from the simulation of micro-scale
phenomena to the simulation of entire industrial plants. Industrial processes can
also be divided into continuous and discrete processes or combinations of these.
Furthermore, the chosen process simulation approach can be roughly divided
into dynamic simulation and into steady state simulation. The industrial
application domain may also differ. Given these criteria for process simulation it
can be said that in this thesis the emphasis is on large-scale dynamic simulation
of continuous processes of the power, pulp and paper industry.

Process integration means systematic and general methods for designing
integrated production systems, ranging from individual processes to whole sites,
with special emphasis on the efficient use of energy and reduction of the
environmental effects (IEA 1993). This is the original definition of process
integration research. The definition as it is stated includes already process
simulation methods as part of process integration research. In some cases the
definition is also expanded to cover information management methods. In
process simulation research, information management methods can be
interpreted to cover the development of model reuse, customisation and
configurational co-use mechanisms. In this work, the process of finding and
setting the proper values for the parameters of the unit operation model is called
model customisation or simply customisation. Parameters do not have to be only
separate values describing physical and chemical properties but they can also be,

 16

e.g., points of a characteristic curve or coefficients of a function describing that
curve. In current simulation tools the reuse and customisation mechanisms are
not always as efficient as they should be. In practice, process and automation
designers often have to model and customise the same sub-processes and
equipment for the process simulator over and over again.

Life cycle consideration has become an important topic for the research in the
fields of process and automation technology (Lu et al. 1997; Ajo et al. 2001).
Process simulation can already be used in the pre-design stage. It can be further
developed during the actual design stage. Simulation-assisted automation testing
is possible for an automation application using a dynamic simulation model and
the same model can be used for operator training. Furthermore, the model can
then be used in the mill after the start-up for offline operator support. Offline
operator support could include, e.g., testing an unusual operational action with
the simulation model before applying it to the real process. The problem with
life cycle reasoning in process simulation is that the same tool should support all
these different stages. This would require models of different resolution in
different stages and easy enough transition from one stage to another.

Concurrent engineering aims to rationalise the process design project by
organising the traditionally sequential stages in parallel (Banares-Alcantara
2000). It has been stated for example that process and automation could be and
should be designed simultaneously (Bogle 2000). According to Koolen, dynamic
simulation is the key to this integration (Koolen 1998). However, the
interoperability of the dynamic process simulation tools and distributed control
systems (DCS) has to be further developed to fully realise the benefits from the
integration. In order to verify the actual control schemes and logic running in
DCS against a dynamic simulator, flexible and fast enough run-time connectivity
is needed. Furthermore, if the control application definitions are to be shared
between the simulator and DCS, for example in a training simulator project,
there should be a way to transform the definition from one system to another.

While software technologies are developing further, software architectures are
becoming more open and more extensible. This is also a trend in simulation.
CAPE- Open and HLA (High Level Architecture) specifications are examples of
such a development (CAPE-Open 2000; HLA 2000). These specifications are,
however, very model-centric. They focus on independent development of model

 17

blocks that can be attached to the execution of the simulation engine or run-time
infrastructure. On the other hand, there are also more data-centric
standardisation efforts (ISO 1998; Shocklee et al. 1998). The data-centric
specifications are often large and concentrate mainly on conceptual design and
product data management rather than on architectural issues.

The progress in software technologies offers possibilities for new kind of
integration of simulation tools. For process simulation, integration means reuse
of model configurations and parameter values, co-use of different simulation
tools, easy extensibility of simulator functionality and closer interoperability
between distributed control systems and dynamic process simulators. In order to
achieve this kind of integration, a domain specific architectural specification is
needed. The specification should take into account both data-centric and model-
centric requirements. The main research problem of the thesis is therefore how to
apply current information technologies to facilitate the use of process simulation
and to enhance the benefits gained from using it. As a development task this
means developing a new software architecture for configuration and usage of
process simulation models. The research problem of the thesis is analysed in
more detail in Chapter 3.

1.2 The objectives and hypotheses of the study

The main goals of this study are to define a software architecture that satisfies
the reuse, customisation, co-use, extensibility and run-time connectivity needs of
the process simulation domain and to test the validity of the hypotheses defined
below. The testing is done by constructing a prototype software system and
using examples and industrial cases to verify the expected features of the
architecture.

From the data-centric point of view, reuse and easy model customisation can be
most easily achieved if all the users of the simulation environment can share the
model configurations. A centralised repository in the Internet would satisfy
these needs. The configurations themselves are structural containing process
equipment descriptions and their parameter values. This naturally leads to the
use of a structurally oriented description language, such as XML (Extensible
Markup Language) (W3C 2000b). Furthermore, the co-use of different

 18

simulation tools and the fact that the centralised repository is located in the
Internet lead to the deployment of some message oriented middleware (MOM)
for example a protocol such as SOAP (Simple Object Access Protocol) (W3C
2000a).

From the model-centric point of view, extensibility can be most easily achieved
by applying software component technology. This way, the extended
functionality is well encapsulated and can be described using a component
description mechanism. Flexible and fast enough run-time connectivity are
requirements that can be satisfied by using software component technology and
by utilizing a domain specific standard, e.g., OPC (OLE for Process Control).

There are two hypotheses in this study. Firstly, the same software architecture
can be used for sharing models between process simulation users, for facilitating
the model customisation and for co-using different process simulation tools.
Secondly, a flexible and fast enough run-time connection between a dynamic
process simulator and a virtual DCS can be achieved using software component
technology and a standardised interface, e.g. OPC. The chosen techniques will
be shown to be sufficient for simulation-assisted automation testing and for
operator training. Virtual DCS here refers to a process station that runs in an
ordinary PC.

In the second hypothesis it should be noted that several scalable and fast enough
connections between dynamic simulators and control systems have been realised
over the years. However, these connections have been tailored between a certain
simulator and control system. The verification will show that configurational
flexibility in the data connection and vendor independence can be achieved
using a standardised approach and still the speed and scalability will remain
adequate for small to medium size automation deliveries.

The reuse and model customisation mechanisms have to be developed further in
order to make dynamic process simulation tools more suitable for everyday
engineering. Until now the models have mainly been reused by copying
previously developed models from old projects. This kind of a template-based
approach will be further extended in this work by storing the models and sub-
models into a centralised repository in the Internet. Furthermore, the same
repository can be used for making the customisation of single process

 19

components easier. Process equipment manufacturers can store equipment data
in the same repository and this data can be used in the simulation environment
for setting the parameter values for an individual process component (5.2.1). In
addition to the template-based reuse, a parametricised creation mechanism for
structural components will be developed. Instead of copying the content of a
structural process component the content can be created using a user-defined
parametricised construction mechanism (5.2.2).

The co-use of different simulation tools is needed when changing from one
project stage to another. As mentioned in Section 1.1, models of different
resolution are needed in different stages. Usually one simulator does not support
all the needed resolutions or different simulation tools are simply better suited
for a specific stage. This implies that a transition from one model to another
would be useful. Such a transformation procedure will be created and its
usefulness analysed in the suggested architecture (5.2.3).

Better run-time connectivity between a dynamic process simulator and a DCS is
needed in order to achieve flexible simulation-assisted automation testing and
operator training. The performance of the connection is sufficient when the
entire control application can be tested in one go and the simulation can be run
at least in real time. Sufficient also means that the frequency of the
communication is adequate for testing all of the desired automation
functionality. Such a flexible and fast enough connection will be presented in the
suggested architecture. The different architectural choices that led to the
suggested solution will also be analysed (5.3.3).

1.3 Research approaches and methods

The process simulation domain is studied from the angles of standardisation
(CAPE-Open 2000; HLA 2000; ISO 1998), current process simulation systems
(Apros 1999; CadsimPlus 2001; Hysys 2000) and simulation research. The
literature study covers the most relevant topics related to the architectural
development of this work. When studying current process simulation systems,
three different simulators are selected as a reference set. The study is carried out
by answering to the same set of questions for each simulator. The questions are
structured in such a way that they will measure the state of the art with respect

 20

to the above-mentioned connectivity, extensibility, co-use, reuse, and
customisation. On the other hand, the questions will also probe the architectural
issues related to the studied simulation systems.

The proposed solution to the formulated research problem is designed and
implemented. The hypothesis related to the model configuration is
experimentally verified by testing the features using example design cases. The
run-time connectivity features are verified using a set of industrial cases where
the proposed solution is applied.

1.4 Results and Contributions

The main results of this thesis are the design and description of a new integration
architecture for the configuration and usage of process simulation models and
the application of current information technologies to implement such an
architecture. Furthermore, it will be shown that:

1. More efficient model reuse and customisation can be achieved with the
proposed architecture if model configurators and equipment manufacturers
share data in a centralised repository (example cases 5.2.1 and 5.2.2)

2. The developed architecture can be used for integrated use of different
simulation tools. In practice, the integrated use depends heavily on the
simulator tool vendors and their willingness to support such architecture
(example case 5.2.3).

3. Flexible and fast enough run-time connectivity between a dynamic process
simulator and a virtual DCS is achieved using OPC as a standard data
exchange interface (industrial cases 5.3.1 and 5.3.2).

The original features of the proposed architecture are its openness, general
distribution and distributed extensibility features. Both configurational and data
connections are based on open ‘de-facto’ standards (XML, SVG, SOAP and
OPC). The fact that the whole data model of the architecture, including graphics,
model topology and parameter values, is represented in the same open format,
opens up the possibilities for better reuse, customisation and configurational co-

 21

use. The general distribution features offer possibilities to use simulation and
simulation configuration resources regardless of where they are located in the
Internet. The security model of the architecture is also designed to meet the
requirements originating from the general distribution. Furthermore, the
architecture can be extended in a distributed manner. New simulation tools can
be linked to the architecture and configurational extension software components
can be developed in one place and distributed through a centralised server in the
Internet.

The research and development work of this thesis was carried out at VTT
Industrial Systems (VTT Automation until the end of 2001) within the P21 and
Gallery projects, both of which also included other work not reported in this
thesis. The author participated in the requirement analyses of the architecture
with other members of the project team (5 persons). He is responsible for the
design and description of the architecture and for the implementation of the OPC
Server and model configuration client tools (Model Explorer, MCKit).

1.5 Structure of the thesis

The thesis consists of six chapters.

Chapter 1. Introduction. Background and motivation, scope, the main research
problem, objective and hypotheses, research methods, main results, contribution
and original features of the study are represented.

Chapter 2. Related Topics in Simulation, Process and Automation Technologies.
Literature study of the state of the art is carried out in terms of simulation
standardisation, state of the art in simulator tools and related academic research.
Both model-centric and data-centric specifications are studied. HLA and CAPE-
Open are studied as examples of model-centric specifications. STEP and PDML
are studied as examples of data-centric specifications. The OPC specification is
introduced as it has an important role in the prototype implementation of the
proposed architecture. The study of the state of the art of the simulators is
carried out by answering to an identical set of questions for a set of simulators.
First, the different features of the process simulation tools are discussed. Three

 22

simulators are selected for closer inspection. Finally, different modelling
languages and other related research is represented.

Chapter 3. The Research and Development Problem. The research and
development problem is analysed in more detailed. The requirements of
customisation, reuse, co-use, more generic extensibility and run-time
connectivity are analysed in separate sections.

Chapter 4. Proposed Architectural Solution. The proposed architecture is
described using the practise recommended in IEEE-1471. First, the stakeholders
and their concerns are identified using use case analyses. Then the viewpoints
for the architectural description are selected. Logical view, data view, security
view, component view and process view are described in separate sections.

Chapter 5. Verification. The alleged features of the architecture are verified.
This chapter represents the deployment view of the proposed architecture.
Different use scenarios, each of which has a certain physical deployment, are
represented in their own sections. First, use scenarios for verification of the
configurational features of the model of the proposed architecture are
represented followed by an introduction of the use scenarios verifying the model
usage features.

Chapter 6. Discussion. The reliability, validity, unique features and generality of
the results are analysed. The conclusions and future prospects are discussed.

 23

2. Related Topics in Simulation, Process
and Automation Technologies

2.1 Introduction

The information technological approaches that are used in the modelling and
simulation have developed over the years. In this chapter, the state of the art of
these approaches is studied. First, the related standardisation and specifications
are probed. Then, the state of the art of the current simulation tools is analysed
by studying a set of commercial process simulators. Finally, a review of other
related research is performed.

A system is a potential source of data (Zeigler 1976). An experiment, on the
other hand, is the process of extracting data from a system by exerting it through
its inputs (Cellier 1991). In this work, the process model and process simulation
are defined as follows:

A process model is a mathematical model of one or more interconnected process
components. An experiment can be applied to a process model in order to
answer questions about the process.

Process simulation is an experiment made with a process model.

A process simulator or a process simulation tool is a program that can be used
for process modelling and simulation. The scale of the process model in the
definition is defined as one or more interconnected process components.
However, the emphasis in this work is on large-scale process simulation. Large
scale means typically tens or hundreds of interconnected process components.

The scope of mathematical modelling and simulation is broad in the process
industry. On the micro-scale level, the process industry may use molecular
modelling methods, on meso-scale level some process simulation tools and on
the macro-scale level some process synthesis and strategic planning methods
(Klemola & Turunen 2001). The emphasis in this work is on meso-scale to
macro-scale modelling and simulation. On these levels, process simulation is
used for process and automation design, control system testing, operator

 24

training, plant operation optimisation, process reliability and safety studies,
process improvements, and for start-up and shutdown analyses.

Industrial processes can be divided into continuous and discrete processes. The
process simulation covered in this work is limited to the simulation of
continuous processes. Furthermore, the simulation of continuous processes can
be divided into steady state and dynamic simulation. The main emphasis in this
work is on dynamic simulation, but most of the analyses done about reuse,
customisation, co-use, extensibility and even run-time connectivity can be also
applied to steady state simulation.

The field of process industry is broad covering such sectors as water treatment,
food industry, pharmaceutical industry, energy industry, metallurgical industry,
pulp and paper industry, oil refining industry and so forth. The main emphasis in
this work is on modelling and simulation of the processes of the energy and pulp
and paper sectors. However, many of the results are generic and are applicable
also to other fields.

2.2 Related standardisation and specifications

2.2.1 CAPE-Open

The CAPE-Open specification defines the interfaces of software components of
a process simulator. The specification was developed in a project sponsored by
the European Community running from January 1997 to June 1999. The project
goal was to enable native components of a simulator to be replaced by those
from another independent source or part of another simulator with a minimum of
effort. Several operating companies, simulator vendors and academic institutions
participated in the project (CAPE-Open 2000). Currently the CAPE-Open
specification is maintained by the CAPE-Open laboratories network (Co-LaN
2002).

CAPE-Open defines a process simulator (known as a flowsheet simulator in the
CAPE-Open specification) as a tool that is used in order to create models of the
manufacturing facilities, processing and/or transformation of materials. The
specification divides process simulators into categories according to the internal

 25

architecture or type of the simulator. Both terms are easily misinterpreted and
thus the internal architecture is referred to as a simulation scheme in this work.
The specification names four different simulation schemes: sequential modular,
equation-based, sequential and non-sequential modular, and modular
hierarchical. The sequential modular scheme is the most common of these
schemes. The given properties of the input stream (flow, temperature) and the
process unit are used for the derivation of the properties for the output stream.
These output properties then act as an input stream specification for the next
process unit. This sequence is continued until the last process unit is reached. An
example of a process simulation tool using this approach is Aspen Plus
(AspenTech 2002). In the equation-based approach every model equation of the
process system is solved simultaneously. The number of equations used
increases considerably with the size of the process plant. A simulating tool using
this approach is e.g. Apros/Apms (Apros 1999). The third category is a hybrid
solver often used in simulators meant for both steady state and dynamic
simulation. CADSIM Plus (CadsimPlus 2001) is an example of a hybrid solver.
The modular hierarchical scheme in the CAPE-Open specification refers most
likely to simulators where the solved modules form hierarchical structures.
However, the specification does not specify this scheme any further nor does it
give any examples of simulators using this scheme.

The specification defines common functionality for all simulation schemes.
These ‘conceptual component types’ are simulator executive, unit operations,
physical properties and numerical solvers. The simulator executive is responsible
for installing other components and registering them with the operating system,
managing interactions with the users, accessing and storing data and reporting
and analysing simulation calculations. The unit operations represent physical
processing unit operations and the possibility to perform specialised roles such
as processing additional calculations to support the process optimisation. An
important functionality incorporated in the simulator is to model the physical
properties and behaviour of the materials used or created by the process. The
physical properties include both thermodynamic properties such as specific heat
capacity and transport properties such as viscosity. The numerical solvers
include both mathematical methods for evaluating the equations that describe a
unit operation and the methods used to evaluate the overall flowsheet.

 26

The concepts stream and port are defined in the specification. Stream is used to
describe different internal representations that simulators use to record the
different types of flows that exist in physical processes. Streams are divided into
material streams, energy streams and information streams. The internal streams
in a simulator are not standardised by CAPE-Open. Instead, standard ways are
defined for accessing and setting the information in the streams. Ports are used
to represent a software interface that enables contents of the proprietary
simulator streams to be accessed. Ports provide a standard way to fetch data
from the simulator executive and to return data to the simulator executive. This
is a useful way especially in a sequential solution scheme. A port has a name,
direction and type. The specification defines material, energy and information
types of ports. Physical property templates are associated with material ports.
This ensures that each material port has an available material object. The
material object can be a single component material system or a multi-component
material system and can contain different physical phases. The similarities and
differences of ports and terminals, introduced in this work, are discussed in
Section 4.5.

In addition to the interface between unit operations and the simulation executive
(ports), also an interface between a unit operation and physical properties
component and interface between a unit operation and numerical component are
defined. The former is done by providing a library of chemical species, physical
property calculation routines and a mechanism for selecting a required set of
chemical species and calculation routines. The latter is done by identifying the
needed generic numerical objects such as a linear algebra object, non-linear
algebra object, differential equation solver object or optimisation object and by
specifying the interfaces for them. More technical information on CAPE-Open
can be found from (Nougues et al. 2001).

The CAPE-Open specification is model-centric. The goal of the specification is
to enable replacement of the components of a simulator by the components from
another independent source. This is why the specification has to penetrate deep
into the solution mechanisms of the individual simulator. The generic blocks of a
process simulator have to be identified and the interfaces inside the simulator
have to be specified. This is one characteristic difference between this work and
the CAPE-Open specification. CAPE-Open specifies interfaces inside the

 27

simulator whereas this work concentrates mainly on specifying the interfaces
between the simulator and other programs.

The reuse requirement is addressed in the CAPE-Open specification mainly
from the model development point of view. The model configuration and
customisation requirements are taken into account only by stating that the
simulator should support some neutral file storage format e.g. pdXi (i.e., STEP
application protocol 231, see Section 2.2.3) for storing the model configuration.
However, the reuse mechanism for model blocks in the CAPE-Open
environment is well defined. It can be further rationalised by a centralised
repository approach as will be described in Section 2.4.1. The extensibility needs
for unit operations, for physical property calculation and for numerical solvers
are well taken into account in the specification. The extensibility needs for
model configuration mechanisms are not addressed. The fact that the model
blocks are interchangeable supports the co-use of different simulator tools and if
the neutral file format is supported, the co-use of configurations is probably also
possible. CAPE-Open does not specify any run-time data connectivity
functionality.

2.2.2 High Level Architecture (HLA)

High Level Architecture (HLA) is a general-purpose architecture for simulation
reuse and interoperability. HLA was developed under the leadership of the
Defence Modelling and Simulation Office (DMSO) in the USA to support reuse
and interoperability across the large numbers of different types of simulations
developed and maintained by the Department of Defence (DoD). HLA Baseline
Definition was completed on August 21, 1996. HLA was adopted as the facility
for distributed simulation systems by the Object Management Group (OMG) in
November, 1998. HLA was approved as an open standard by the Institute of
Electrical and Electronic Engineers (IEEE-1516) in September 2000 (HLA
2000).

HLA defines the concept of federate as a simulation entity (e.g. simulator), as a
supporting utility or as an interface to the live system (e.g. user interface). It
calls the set of federates working together a federation. Federates do not
communicate directly to each other but through a middleman named run-time

 28

infrastructure. These concepts are illustrated in Figure 2.1. HLA is used mainly
in military training simulators, see e.g. VISTA (Quantum3D 1999), and although
it is not particularly a process simulation architecture, the similarities and
differences of this architecture and the approach chosen in this work are
discussed in Section 4.5. HLA is a model-centric specification that specifies the
rules and procedures for designing and implementing functional distributed
simulation federations.

The HLA specification consists of three main documents, HLA Rules, Object
Model Template, and Federate Interface Specification. The HLA Rules
document provides an overview of the High Level Architecture, defines a family
of related HLA documents, and defines the principles of HLA in terms of
responsibilities that federates and federations must assume. HLA specifies 10
main rules for federations and federates. Rules 1, 3 and 6 are listed here. The rest
of the rules and more detailed explanations can be found in (HLA 2000). The
relationship of these rules to the approach in this work is discussed in Section 4.5.

Federation

Run time
infrastructure

Federate

Federate

Federate

Federate

Federate

Figure 2.1 The main concepts of the HLA standard.

• Federation shall have an HLA federation object model (FOM), documented
in accordance with the HLA object model template (OMT).

• During a federation execution, all exchange of FOM data among federates
shall occur via the run time infrastructure (RTI).

 29

• Federates shall have an HLA simulation object model (SOM), documented
in accordance with the HLA OMT.

The HLA OMT provides a template for documenting HLA -relevant information
about classes of simulation or federation objects and their attributes and
interactions. The common template facilitates understanding and comparison of
different simulations and federations and provides the format for a contract
between members of a federation on the types of objects and interactions that
will be supported. The federate interface specification specifies the interface
between the federates and the run-time infrastructure. The interface is arranged
into six service groups, federation management, declaration management, object
management, ownership management, time management and data distribution
management. The interface functionality is described in the specification on a
general level but also IDL, C++, Ada 95, and Java language mappings are given
in (HLA 2000).

2.2.3 Standard for the Exchange of Product Model Data (STEP)

STEP is a family of standards under ISO-10303 for the exchange of product
model data (UKCEB 2001). Parts 1, 11, 28, 221, 227 and 231 of the standard are
discussed in this section. Part 1 explains the main concepts and gives an
overview of the standard. Part 11 defines the EXPRESS description language
used in the other parts. Part 28 specifies the way in which XML can be used to
encode both EXPRESS schemas and the corresponding data. Part 221 is an
Application Protocol (AP) for process plant functional data, part 227 is an AP
for plant spatial configuration and part 231 is an AP for the exchange of process
engineering data. Parts 1, 11 and 227 have already been published. Parts 28, 221
and 231 are still in a draft phase.

It has been stated that STEP is the principal product data exchange standard in
the world (Burkett 1999). The design of STEP attempts to reconcile two
objectives:

• Define a set of data elements that are unambiguous.

• Define a set of data elements that are manageable, robust, and flexible.

 30

STEP defines integrated resources to meet the second of these objectives. The
integrated resources are a collection of schemas written in the EXPRESS
language. Integrated resources are designed to be applicable in all usage
communities that deal with product data. As a result, the schemas are generic
and flexible. The first objective is approached by introducing a technique called
interpretation. Interpretation explains how a generic integrated resource
construction, such as a product, is to be understood within a particular usage
domain. Figure 2.2 illustrates the situation (Alemanni et al. 1999).

The formal language, EXPRESS, is specified for data and model formalisation.
EXPRESS is independent of the language used for computer implementation.
The language specifies generic concepts such as entity, attribute, type, rule and
data types. A short example of the syntax of the EXPRESS language is given in
Appendix A.

Figure 2.2. Different elements of the STEP standardisation (Alemanni et al.
1999).

Part 28 of the STEP standard belongs to the category of implementation methods
in the standard family. This draft specification is meant for XML-representation
of EXPRESS-driven data. The specification defines two approaches for
formulating document-type definitions (DTD) for information described by

 31

using EXPRESS. The two approaches are called early binding and late binding.
Late Bound DTD does not define any constructs that are specific to the schema.
It can be used in the same manner for any EXPRESS schema. Early Bound DTD
is based on the specific schema and embeds specific aspects, such as names or
structures, from the schema in the DTD.

The two approaches can be related using architectural forms defined in
SGML/HyTime or ISO 10744. This is achieved by identifying the relationship
between the two DTDs so that an application can recognise an element defined
in one DTD as equivalent to an element in the meta-DTD and process the data
according to the meta-DTD. EarlyBound DTD is compliant if it has LateBound
DTD as its base architecture (ISO 1999). The early and late bindings are of
interest also in this work and will be further discussed in Section 4.5. Interesting
questions are for example, why late binding is needed and how an XML schema
could be used for expressing architectural forms. Appendix A gives an example
of both Late and Early Bound DTD and XML documents of the EXPRESS
example introduced in the same Appendix.

STEP part 221 is concerned with the functional and physical aspects of plant
items. The different aspects of a plant item relate to different activities, but both
aspects are described by the same documents, e.g., P&IDs, data sheets and their
electronic equivalents. The focus of part 221 (ISO 1997a) is:

• the piping and instrumentation diagram (P&ID), e.g. the arrangement of ink
on paper or pixels on a screen;

• the information that can be understood from a P&ID, e.g. the identification,
classification and connectivity of plant items;

• and property information about the plant items. This can be accessed using
an intelligent P&ID system, but is traditionally presented on an equipment
data sheet.

STEP part 227 specifies an application protocol for the exchange of the spatial
configuration information of process plants, plant systems and ship systems.
This information includes the shape, spatial arrangement and connection
characteristics of piping, HVAC (heating, ventilation and air-conditioning) and
cableway system components, as well as the shape and spatial arrangement

 32

characteristics of other related plant systems (e.g., instrumentation and controls,
and structural systems). (ISO 2001)

STEP part 231 defines an application protocol for the exchange of process
engineering data. It specifies the process engineering and conceptual design
information of process plants, including process designs, unit operations, process
simulations, stream characteristics, and design requirements for major process
equipment. The draft specification is rather extensive (more than 2500 pages)
including about 40 categories of model items. Some central concepts related to
process simulation are: (ISO 1998)

• Unit_operation specifies process functions that perform one or more defined
transformations on process stream(s) and whose performances are calculated
as single logical entities.

• Stream_data specifies the process material, thermal or work energy, signals
or information flowing past a defined point along a path at a particular time.
Streams usually flow into or out of a unit operation or through a port
connection associated with process equipment.

• Process_port represents a flow of material, energy, or signal through the
boundary of a process simulation.

• Material_data specifies a physical material at its related stream conditions
that is used in or by a chemical process.

• Substance_model_data specifies the data associated with mathematical
model parameters that can be used to predict thermodynamic, physical, and
transport properties of the substance.

Part 221 does not cover the spatial arrangements of plant items within a process
plant. Data exchange for activities that involve both functional and spatial data
may require the combined use of part 221 with part 227. On the other hand, part
221 does not cover the simulation of process activities either. Data exchanges for
activities that involve both functional and process simulation data require the
combined use of part 221 and part 231.

 33

The Process Data Exchange Institute (pdXi) is a U.S.-based industrial
consortium, organized as an industry technology alliance under the American
Institute of Chemical Engineers (AIChE). pdXi was formed in 1991 with the
stated purpose of developing open industry approaches for the electronic
exchange of process engineering data. pdXi is the sponsor organization for the
development of the application protocol 231. AP231 has been under
development since 1995 and pdXi has actively participated in the work of the
process plant working group developing AP231 and AP221. (Watts 1999)

2.2.4 Product Data Markup Language (PDML)

Product Data Markup Language (PDML) is a set of XML vocabularies and a
usage structure for deploying product data on the Internet. PDML is not a single
data specification, but rather a structure of related specifications and tools to
deploy and use integrated product data. It has been originally developed to be
used by the weapon system support personnel of the U.S. Department of
Defence. PDML is composed of application transaction sets, an integration
schema, PDML toolkit and a mapping specification between the application
transaction sets and the integration schema. Figure 2.3 illustrates the relationship
between these concepts. (Burkett 1999)

The application transaction sets are vocabularies meaningful within a well-
defined community. The community is defined as the users of a particular legacy
system, such as JEDMICS. JEDMICS is the primary system used by the U.S.
Department of Defence for managing technical data. The application transaction
sets overlap with respect to the data they include. The relationships between the
data defined in these views are established through the mapping to the
integration schema. The integration schema is an EXPRESS schema that serves
as a neutral integration format for exchange of the transaction set data. The
schema is derived from the STEP integrated resource parts 41, 42, 43 and 44.
The relationship between each application transaction set and the integration
schema is specified in the mapping specification. Mapping is more than a
conversion between data structures. It encompasses the interpretation of data
based on contextual values in the same way as interpretations are specified by
mapping tables in STEP. (Shocklee et al. 1998)

 34

<!-- === -->

<!ELEMENT direction (direction.direction_ratios)>
<!ATTLIST direction
 id ID #IMPLIED>

 <!ELEMENT direction.direction_ratios (direction.direction_ratios.item+)>
 <!ATTLIST direction.direction_ratios
 aggregatetype CDATA #FIXED "LIST">
 <!ELEMENT direction.direction_ratios.item (#PCDATA)>
 <!ATTLIST direction.direction_ratios.item
 datatype CDATA #FIXED "REAL">

<!ELEMENT direction_ref EMPTY>
<!ATTLIST direction_ref
 refid IDREF #REQUIRED>

<!-- === -->

<!ELEMENT document (document.id, document.name, document.description,
 document.kind, (document_with_class?, file?)?)>
<!ATTLIST document
 id ID #IMPLIED>

 <!ELEMENT document.id (#PCDATA)>
 <!ATTLIST document.id
 datatype CDATA #FIXED "STRING">
 <!ELEMENT document.name (#PCDATA)>
 <!ATTLIST document.name
 datatype CDATA #FIXED "STRING">
 <!ELEMENT document.description (#PCDATA)>
 <!ATTLIST document.description
 datatype CDATA #FIXED "STRING">
 <!ELEMENT document.kind (document_type_ref)>

<!ELEMENT document_ref EMPTY>
<!ATTLIST document_ref
 refid IDREF #REQUIRED>

Integration
Schema

JEDMICS
Application

Transaction Set
<!-- === -->

<!ELEMENT identifier(#PCDATA)>
<!ATTLIST identifier
 datatype CDATA #FIXED "STRING">

<!-- === -->

<!ELEMENT part_relationship
(part_relationship.other_relating_product_identifier,

part_relationship.other_relating_.other_product_relationship
_name,
 part_relationship.other_product_relationship_description,
part_relationship.related_product)>
<!ATTLIST part_relationship
 id ID #IMPLIED>

 <!ELEMENT
part_relationship.other_relating_product_identifier
(#PCDATA)>
 <!ATTLIST
part_relationship.other_relating_product_identifier
 datatype CDATA #FIXED "STRING">
 <!ELEMENT
part_relationship.other_relating_product_design_version
(#PCDATA)>
 <!ATTLIST
part_relationship.other_relating_product_design_version
 datatype CDATA #FIXED "STRING">

<!ELEMENT part_relationship_ref EMPTY>
<!ATTLIST part_relationship_ref
 refid IDREF #REQUIRED>

Product Structure
Application

Transaction Set
<!-- === -->

<!ELEMENT identifier(#PCDATA)>
<!ATTLIST identifier
 datatype CDATA #FIXED "STRING">

<!-- === -->

<!ELEMENT part_relationship
(part_relationship.other_relating_product_identifier,

part_relationship.other_relating_.other_product_relationship
_name,
 part_relationship.other_product_relationship_description,
part_relationship.related_product)>
<!ATTLIST part_relationship
 id ID #IMPLIED>

 <!ELEMENT
part_relationship.other_relating_product_identifier
(#PCDATA)>
 <!ATTLIST
part_relationship.other_relating_product_identifier
 datatype CDATA #FIXED "STRING">
 <!ELEMENT
part_relationship.other_relating_product_design_version
(#PCDATA)>
 <!ATTLIST
part_relationship.other_relating_product_design_version
 datatype CDATA #FIXED "STRING">

<!ELEMENT part_relationship_ref EMPTY>
<!ATTLIST part_relationship_ref
 refid IDREF #REQUIRED>

Tech Order -4
Application

Transaction Set
<!-- === -->

<!ELEMENT identifier(#PCDATA)>
<!ATTLIST identifier
 datatype CDATA #FIXED "STRING">

<!-- === -->

<!ELEMENT part_relationship
(part_relationship.other_relating_product_identifier,

part_relationship.other_relating_.other_product_relationship
_name,
 part_relationship.other_product_relationship_description,
part_relationship.related_product)>
<!ATTLIST part_relationship
 id ID #IMPLIED>

 <!ELEMENT
part_relationship.other_relating_product_identifier
(#PCDATA)>
 <!ATTLIST
part_relationship.other_relating_product_identifier
 datatype CDATA #FIXED "STRING">
 <!ELEMENT
part_relationship.other_relating_product_design_version
(#PCDATA)>
 <!ATTLIST
part_relationship.other_relating_product_design_version
 datatype CDATA #FIXED "STRING">

<!ELEMENT part_relationship_ref EMPTY>
<!ATTLIST part_relationship_ref
 refid IDREF #REQUIRED>

Product Description
Document Application

Transaction Set
<!-- === -->

<!ELEMENT identifier(#PCDATA)>
<!ATTLIST identifier
 datatype CDATA #FIXED "STRING">

<!-- === -->

<!ELEMENT part_relationship
(part_relationship.other_relating_product_identifier,

part_relationship.other_relating_.other_product_relationship
_name,
 part_relationship.other_product_relationship_description,
part_relationship.related_product)>
<!ATTLIST part_relationship
 id ID #IMPLIED>

 <!ELEMENT
part_relationship.other_relating_product_identifier
(#PCDATA)>
 <!ATTLIST
part_relationship.other_relating_product_identifier
 datatype CDATA #FIXED "STRING">
 <!ELEMENT
part_relationship.other_relating_product_design_version
(#PCDATA)>
 <!ATTLIST
part_relationship.other_relating_product_design_version
 datatype CDATA #FIXED "STRING">

<!ELEMENT part_relationship_ref EMPTY>
<!ATTLIST part_relationship_ref
 refid IDREF #REQUIRED>

Mapping
Specification

Mapping
Specification

Figure 2.3. Relationship of PDML components (Burkett 1999).

The integration performed in the toolkit is driven by the mapping specifications.
Using the mapping specification, the toolkit can convert data encoded according
to an application transaction set to the format specified by the integration
schema. This integrated data set can then be converted back out to data
conforming to another application transaction set (Burkett 1999). The
application transaction sets, the integration schema and mapping specification
and their relationship to the approaches chosen in this work are discussed in
Section 4.5.

2.2.5 OLE for Process Control (OPC)

The OPC Specification is a non-proprietary technical specification that defines a
set of standard interfaces based upon the OLE/COM specifications by Microsoft
(Microsoft 1995). The application of the OPC standard interface makes the
interoperability between automation/control applications, field systems/devices
and business/office applications possible. (OPC 2001)

 35

OPC consists of several sub-specifications and the OPC foundation has currently
many working groups developing new parts to the specification. The most
interesting specifications related to this work are Data Access 2.0 (DA), Data
Exchange (DX), OPC XML, OPC Commands and OPC Security. So far, only
the DA specification has been published. Other specifications are in a draft
phase. The Alarms and Events (AE), Batch and Historical Data Access (HDA)
specifications are not discussed in this work.

OPC DA servers can be implemented as ‘in process’ or ‘out process’ servers. An
in process server is a dynamic link library (dll) that runs in the same process as
the client application. The components implemented in EXE files are out
process servers. An out process server can be local or remote according to the
location of the server with respect to the client process. The underlying
communication is implemented using a proxy and stub mechanism. The proxy
marshals data passed to the interface functions and makes a local or remote
procedure call to the server. The stub un-marshalls parameters and calls the
correct interface function in the component.

The data model of the OPC DA consists of server, group and item objects.
Server and group objects consist of several interfaces. The client can add and
delete group objects, handle error codes and access server status data through the
interfaces of the server object. The client can also browse the server address
space, save and load server configurations and handle public groups. However,
the latter functionality is only available if the interfaces, marked as optional in
the specification, are supported. The server object is a container for group
objects. Group objects are defined and maintained by the client. Through a
group object, the user can add and delete items, activate and deactivate groups
and items and access data values using synchronous or asynchronous
communication. The application and use of DA interfaces in the developed
architecture is discussed in sections 4.7 and 5.3.

OPC DA has mainly been used for vertical data exchange between control
application or field devices and office applications. A connecting client
application is needed for horizontal data exchange between the control
applications (see Figure 2.4). This causes extra overhead in the communication.
Because the data goes through the client process, additional copy operations and
function calls have to be performed. The OPC Data Exchange initiative has been

 36

put forward to avoid this extra overhead and to avoid the extra implementation
of client configuration features into every OPC server. DX specification uses
DA for the communication and specifies extra interfaces for the configuration of
the DA communication between servers. The connection list object defines the
communication between two OPC DA servers. The connection list object
consists of connection group objects and connection group object consists of
connection objects. Connection group and connection objects correspond to the
group and item object in the DA specification.

Figure 2.4. Difference between horizontal and vertical data exchange between
OPC servers.

The goal for the OPC XML initiative is to develop flexible, consistent rules and
formats for exposing plant floor data using XML. The focus is to expose the
same data as the existing OPC interfaces expose. Another objective is to
leverage the work done on Biztalk, SOAP and other XML frameworks. This will
lead to easier web access, for example.

The OPC command specification will be a part of Data Access 3.0. According to
the working group, a command is an action that takes a long time to execute and

Server
supporting
only DA

Server
supporting
only DA

Server sup-
porting both
DA and DX

Server sup-
porting both
DA and DX

Before DX specification After DX specification

Connection
Tool

Configuration
Tool

Configuration and
communication

Configuration

Communication

 37

that changes the state of the server or the data source. The idea is to add two new
interfaces to the OPC DA server object. One is meant for retrieving information
on the commands that the server supports and the other one is meant for
executing those commands. The command information could be for example
name and description information. The command execution is asynchronous and
the command syntax, as well as the command information, is expressed in XML.

The OPC security specification specifies three different levels of security for an
OPC server. On the disabled security level, launch and access permissions to the
OPC server are given to everyone, and access permissions for clients are set for
everyone. On the DCOM security level, launch and access permissions to the
OPC server are limited to selected clients as are access permissions for the client
applications. However, the OPC server does not control access to any vendor-
specific security objects. On the OPC security level, the server controls the
access to vendor specific security objects. On this level, the server can also
support DCOM security.

2.3 Current Process simulation systems

2.3.1 Introduction

The state of the art of the current process simulation systems is analysed in this
section. First, the process simulation tools are grouped according to the common
features in their simulation approaches. Then, some of the tools are analysed in
more detail by posing the same set of questions for each tool. The questions
concentrate on the important properties for the requirements represented in this
work. A short overview of each simulator is also given.

The number of commercial simulation tools is large. The technology review of
the National Technology Agency, TEKES, on process modelling and simulation
lists 16 different modelling and simulation tools in Finland only (Klemola &
Turunen 2001). In the Netherlands, the Agency for Energy and Environment
lists 91 different software tools for process integration, most of them including
simulation capabilities (Novem 2000). It would be quite impossible to cover all
of these tools. The selection of the studied tools is made according to the topics

 38

represented in Section 2.1 and according to the availability of the tools for
testing.

There are many steady state process simulation tools that could benefit from a
link to common software architecture. Many of these tools focus on a specific
application domain, on specific unit operations or on a specific phase in the
process design life cycle. Several focused tools have also been developed in
Finnish universities and companies (Klemola & Turunen 2001). Typically, the
input topology and parameter values are first read from a file, then the steady
state for the process is calculated and, at the end, the output is written to a file.
Graphical user interfaces are used to produce the input file and to represent the
results graphically to the user (Prosim 2000; Balas 1998). Many of the
simulators are implemented as monolith applications having a poor extensibility.

Some of the process simulators have a modelling language of their own. For
example, process simulators built on top of Extend (Extend 2001) platforms,
such as Ideas (Ideas 2001) or Flowmac (Flowmac 2001) use the ModL
modelling language of the Extend platform. Another example is EL, which is the
modelling language used in the EcosimPro platform (Ecosim 2001). In fact, this
is one feature that can be used to characterise a simulation tool. Either it uses a
modelling language of its own or it uses some general programming language,
for example Fortran, C++ or Java.

A process simulation system often has at least two different user groups. The
first group develops new models for different unit operations by programming
new solution algorithms to the system. The users of the second group are often
process engineers configuring the process models using the developed unit
operation models. Generalised simulation systems often focus more on
developing tools for the first user group. This is natural because the system may
be used by a variety of model developers from different application domains, so
the tools must be general. However, one can argue whether the result is the best
possible for the end user. The generality of the simulator can be used as another
feature to characterise a simulation tool. At one end we have very generic tools
such as Matlab (Matlab 2002) or Modelica (Elmqvist et al. 1999) and at the
other end we have very specialised tools for process simulation such as Hysys
(Hysys 2000), CADSIM Plus (CadsimPlus 2001) or Apros/Apms (Apros 1999).

 39

Simulators can be also characterised by the simulation scheme they use. As
described in Section 2.2, for example CAPE-Open divides process simulation
schemes into four categories. From the end users’ point of view the scheme itself
is not important, but rather what can and what cannot be done with the
simulator. Thus, the features for the end user are the capabilities of the
simulator, e.g. the possibility for the analyses of process dynamics, the
resolution and the scalability of the models and the range of validity for the
models. First principle models often have a larger range of validity than models
based only on measurements, for example. The dynamic features are also
implemented in a different way in different tools. For example, some of the tools
may support only dynamics of flows, tank levels and concentrations without
pressure-flow relationships (Wingems 2001).

The application field of the simulation tool is, of course, one feature to
characterise a simulator. When selecting the tools for evaluation, the focus with
respect to the application field has been on energy and the pulp and paper
industry. In other respects, the selected tools support dynamic simulation, are
focused on large scale modelling and the model resolution is on an identical
level, i.e., pressures, mass flows, enthalpies and concentrations can be calculated
in the flow network. The questions addressed to each of the simulation systems
are:

Q1. What is the general software architecture of the simulation system?

Q2. How does the simulator support model reuse from both the model
configuration and from the model development points of view?

Q3. How can the simulation functionality be extended by the user?

Q4. How does the simulator support configurational co-use with other simulation
tools, control systems and process design (CAD) systems?

Q5. What kind of run-time connectivity features does the simulator support, i.e.,
what are the simulators I/O capabilities?

Q6. What are the multi-user and distribution features in the simulator both
during the model configuration and during the usage of the model?

 40

2.3.2 Apros/Apms

Apros (Advanced PROcess Simulator) is a dynamic process simulation tool
developed by VTT and Fortum (Apros 1999). The development of Apros
software started in 1985. At the beginning, the model libraries were developed
for nuclear power plant simulation. Later on, support for the simulation of a
conventional power plant and pulp and paper processes was added. The pulp and
paper version of Apros is called Apms (Advanced Pulp and Paper Mill
Simulator) (Niemenmaa et al. 1998). Apros was originally developed in the
VMS and Unix environments, but nowadays the Windows version of the
software is most commonly used. Apros has a graphical design user interface in
a Windows environment, Grades. The version of the Apros software used in the
evaluation is 5.03.

Q1: The General architecture for the Apros system consists of Apros simulation
server and client programs that communicate with each other using a TCP/IP-
based communication library known as ACL. Client programs can have data
connections and command connections to Apros simulation server. Graphical
design user interface Grades is one example of a client program.

Q2: Model configuration with Apros is modular. The user selects the process,
automation and electrical components from a toolbar and places them on a
canvas (or net according to Grades). The user sets the values for the parameters
of the component and connects it to other components. Both unit operations and
streams are modelled as components (or modules in Apros). Reuse is achieved
by introducing a mechanism for the user for transferring the modelled
components on a canvas into a higher level component. The user can draw a
symbol for this new component and he can export the Apros definitions for the
component in a textual format. The graphics is also exported but in a binary
format. This set of information can be later imported into the system and reused
(template-based approach).

Q3: The user can program his own numerical solution algorithms to Apros using
an external model mechanism. External models are dynamically linked libraries
programmed with C/C++ or Fortran (there are examples and documentation for
these languages). The functions programmed by the user have access to the
variables in the simulation database of Apros and the routines are called after

 41

each time step during the execution. The mechanism does not limit the access to
the variables inside a particular unit operation but the routine can access all the
variables in the simulation database. The mechanism is very powerful but also
vulnerable to coding errors. There is no specific reuse mechanism for the
external models. Of course, the models and their definitions in the database can
be copied from one user to another, but they do not obey any standards for the
usage in other environments. The automation library of Apros also includes a
programmable component type. The user can add simple functionality to the
simulation model by using this component type. The component supports an
expression language similar to the language used in corresponding components
in digital control systems. Using the components of the automation library the
user can, of course, build new simple process models. This is, however, a
different kind of extensibility. Ready-made solution algorithms are combined to
produce new ones, whereas in the external model mechanism entirely new
solution algorithms are programmed into the environment.

Q4: There are no specific configurational co-use mechanisms between Apros
and other process simulation tools, control systems or process design systems.
The best way to create tailored connections between other systems is to use
Apros command queues. These are text files containing Apros database
definitions. Apros can dump the content or a sub-content of its database into a
queue file. The queue file can then be further processed for use in another
system. This kind of tailored co-use can be bidirectional.

Q5: During the simulation execution Apros can write its simulation results into a
file or send and receive data through TCP/IP data connections. The data is sent
and received in data blocks. Among other things this mechanism allows packing
of the binary signals. This may be useful in large projects, e.g. in nuclear power
plant training simulators. The number of signals handled after every time step
(e.g. 100 ms) in real time simulation can be around 30 000. Apros has also an
OPC server built on top of the TCP/IP-based data connection. The OPC server is
a data client for Apros and exposes the simulation data for other applications
through the OPC interfaces.

Q6: Apros is a single user system during the model configuration. Even though
it may have several command connections linked to it, there is no support for
handling different users accessing the same parts of the model. There is also a

 42

limitation that only one simulation run can be executed in one go. However,
several users could be running the same simulation and observing the same
values from different user interfaces. This may be useful, for example in a
situation where a trainer is observing the simulation through his own user
interface and an operator is using the operator station for operating the simulated
process.

The user interface of the client can be located in a different host than the
simulator both during the model configuration and during simulation. However,
usage over the Internet may be difficult since often the TCP/IP communication
ports cannot be opened because of firewalls and other security reasons. The
execution of the simulation can also be distributed. Apros can be synchronised
by using the data connection. In this way, two or more Apros processes can be
installed to different hosts and they can calculate parts of the same process in
parallel.

2.3.3 CADSIM Plus

CADSIM Plus is a product of Aurel Systems Inc (CadsimPlus 2001). The first
version of the CADSIM user interface was developed in 1986 and in the
beginning it was used as an interface for a steady state simulator, MASSBAL.
CADSIM Plus was commercially released in 1995. It combined the CADSIM
drawing interface with a dynamic process simulation engine. CADSIM Plus has
been developed on the Windows platform. The version of the simulator used in
the evaluation is 2.1. The model libraries of the simulator have mainly been
developed for the pulp and paper industry.

Q1: CADSIM Plus is a sequential simulator with a hybrid solution method for
dynamic solving of flow networks and pressure flow networks. The user
interface and the simulation engine of CADSIM Plus form one executable
program. The unit operation, stream and control components as well as the
import/export functions are implemented as dynamic link libraries. The
mechanism enables independent development of the component libraries. The
fixed communication protocols between a simulation component and the
simulation engine must be honoured. Each component (or module as CADSIM
identifies them) must be able to describe to the simulator engine how it is to be

 43

identified on a flowsheet, what its stream variable requirements are and if there
are any limits to the number of inlet or outlet stream connections. This is all
done with callbacks. There are callbacks also to get the names of unit operation
parameters that the user must specify as well as for specifications that can be
exported to the streams for specification on those streams. There are callbacks
for the names of calculated variables and for the measuring units of all variables.
Finally, there are callbacks for the module to set-up, initialise and warm itself
up, as well as to perform its calculations, and ultimately matching routines to
terminate itself. The components developed by the vendor are collected into a
standard library and some optional libraries. The source code of these libraries is
open for the users.

Q2: The model is configured through a graphical user interface in the same way
as in other process design and simulation tools. The look and feel of the user
interface is very similar to conventional CAD programs and the resulting
flowsheets resemble very much P&IDs. Template based model reuse is
supported. Model topology and parameter value information can be copied from
one flowsheet to another. CADSIM Plus includes ready-made drawing parts and
sample drawings for this use.

Q3–Q4: The solution algorithms of unit operation and control models are
compiled and linked into DLLs. These DLLs can be reused between the users if
they are aware of the components others have developed and if they are willing
to share the components. The vendor calls the interface of the DLL mechanism
Open Simulation System Architecture (OSSA). So far, only third party
developers and universities are writing software components to this format so
the reuse of the components is not yet possible in other simulation systems. In
addition to the DLL extension mechanism, CADSIM Plus provides ready-made
automation components that can be used to build new models on a flowsheet.
CADSIM Plus supports conversions to AutoCad and a separate utility to export
from AutoCad. The simulation results can also be annotated to the existing
AutoCad drawings. In addition, graphical conversions to Microstation CAD and
HPGL exist.

Q5: CADSIM Plus supports data exchange using DDE. By using this link,
several CADSIM Plus simulations can be linked together, as can other
simulators, control systems or other applications supporting the specified DDE

 44

link. DDE mechanism also includes the possibility for time synchronisation. The
capacity of the DDE link is from hundreds to a couple of thousands of variables.
The DDE communication can be optimised by grouping the variables according
to priority and by setting different communication frequencies for the groups.
According to Aurel Systems, they have developed OPC DA client support for
the simulator and are currently developing OPC DA Server functionality.

Q6: CADSIM Plus is a single user system during the model configuration phase.
Either the drawing interface or a custom interface (through DDE) can be
connected during run-time. The multi-user features during run-time depend on
the connected software. Some SCADA systems enable multiple clients to
observe values at the same time. The distribution at run time can be done by
connecting different CADSIM Plus simulations using a DDE link.

2.3.4 Hysys

Hysys is a simulation and optimisation product family of Hyprotech Ltd. The
company is a part of AEA Technology (Hysys 2000). Hyprotech Ltd. was
founded in Galgary, Canada, in 1976. The Hysys simulation software was
written in Fortran and the first version was released in 1980. It was called Hysim
at that time. The software was rewritten in C and C++ later during the 1980s and
1990s and it is designed for the Windows operating system. Hysys is an
integrated steady state and dynamic simulator mainly for the oil refining
processes. The version of the Hysys.plant simulation tool used in the evaluation
is 2.4.1.

Q1: The basic software architecture of Hysys is based on COM software
components. The Hysys executable is a COM automation out process server. It
implements interfaces for accessing model configurational data including
topology and parameter values. The model configuration can be changed only
when the simulation engine is not running. The COM objects also include
interfaces for simulation control. In addition, Hysys can use extension COM
components during the simulation. External unit operation models, kinetic
reaction models and property packages can be implemented as extension COM
objects.

 45

Q2: Hysys takes a model-centric approach for model reuse, i.e. binary extension
components can be reused between different simulators. Hysys supports CAPE-
Open, so this model-centric approach is very natural. The model configurations
can be shared between the Hyprotech product family. For instance, a steady state
model can be used by many other Hyprotech programs to optimise the energy
use, regress the thermodynamic models, design multi-component separation
systems and generate P&ID drawings. The model configuration can be accessed
through the COM interfaces and tailored bridges to other programs can be built
on top of the interface. The user can also use templates within Hysys. Parts of
the model can be exported and imported to other models.

Q3: Extensions can be implemented as COM components to the Hysys
environment. The extension type can be a unit operation model, kinetic reaction
model or property package. The extension consists of two parts, the extension
definition and the COM binary component (cf. server extension definition in
Section 4.5.3.) The extensions can be viewed graphically in the Hysys user
interface. These views are built using an extension view editor (cf. dialog
mechanism in Section 4.5.3). Hysys supports CAPE-Open, so the extensions can
also be used in other CAPE-Open compliant simulators.

Other more simulator specific means for extending the functionality are user
variables and the internal spreadsheet. If the user needs to add a stream variable
that is not currently present in standard Hysys this can be done using user
variables. A user variable is a variable with a piece of Visual Basic code
attached to it. The user variables can access all the standard variables in the
Hysys model. Hysys has also an internal spreadsheet. It can be used, e.g., for
calculations where variables from different parts of the model are used. The user
can import variables into a cell and perform calculations in the same way as in a
stand-alone spreadsheet application. Hysys has also an internal, user-defined unit
operation. The user-defined unit operation is a user-defined Visual Basic block
with some input and output streams.

Q4,Q6: Hysys does not support any neutral file format so the configurational co-
use takes place through COM interfaces. The topology, parameter values and
graphics can be accessed through COM objects and exported programatically to
other programs. Same way multi-user and distribution features are supported

 46

through COM/DCOM mechanism. The models can be password protected so
that only an authorised user can open them.

Q5: Hysys has tailored I/O connections implemented to several control systems.
Siemens, Honeywell, Fisher Rosemount, Bailey,Yokogawa and Foxboro are
mentioned in the Hyprotech webpage (Hysys 2000). According to Hyprotech
they have also implemented OPC functionality to the simulator.

2.3.5 Summary

A variety of software approaches can be found in the analysed process
simulators. Legacy features have clearly affected the solutions in some cases.
For example, some solutions have used features of certain operating systems
more openly than others. All three simulators support features for template-
based reuse of ready-made model configurations and external model
mechanisms for model development. None of the simulators support accessories
for distributed deployment of model configurations and external models. The
interfaces for external models are open and well documented in all three
simulators. However, all three specifications are different, so the developed
external models cannot be used in other two simulators. The CAPE-Open
specification, supported by Hysys, seems to be the most promising effort in the
direction of open model development.

The configurational co-use between the analysed three simulators, other
simulators, control systems and process design systems is quite poor. CADSIM
Plus seems to resemble process design CAD programs most closely and it has
graphic export and import functionalities to and from CAD applications. This
seems to be the best level of configurational co-use in the current simulation
tools. None of the tools is extensively using XML or SVG for model
configuration. However, inside CAPE-Open, i.e. in Hysys, XML is being used in
configuration files for the thermodynamic solver framework (Nougues et al.
2001). XML is also supported in the simulation case definitions in the most
recent version of Hysys (3.0). The run-time connectivity features are quite well
implemented in all three simulators. OPC seems to have become the de-facto
standard also for process simulators. However, a common method for handling
simulation control (including synchronisation) and training control lacks from

 47

the current implementations. All the studied simulators are mainly meant for
single user local use, especially during the model configuration. During the
model usage they support certain distribution and multi-user features.

2.4 Related research and development

 Academic research in the field of process simulation software architecture is
rather scarce. Schopfer et al. have developed a co-ordination system for process
simulators (Cheops) where a centralised model repository (Rome) has an
important role (Schopfer et al. 2000). The main idea is to develop and deploy
unit operation models using Rome and execute the models based on different
modelling schemes using Cheops. Schopfer argues that the canonical modelling
concepts of Rome enable the specification of models on a level of physical
understanding rather than on the basis of implementation-specific constructions.
The models can be exported from Rome into textual, e.g. gPROMS or into
binary representations e.g. a CAPE-OPEN compliant software component. The
use of the repository is justified by the reuse and lifecycle arguments.

Figure 2.5 illustrates the data model of Rome. The core of the data model is
represented in the model structure and model behaviour packages. Figure 2.5
shows that the concept of the model is associated to a set of mathematical
equations and variables describing the behaviour of the model. The model
quantities can be published or they can be private. Private quantities cannot be
accessed by other models. The mathematical equations of a model can refer to
any of its internal quantities or to any published variables of its sub-models
(vertical connections). The models can be nested and they can have ports that
enable the connections to other models. The models can also publish quantities
in their ports in order to make them available for information transfer between
different models (horizontal connections). (Schopfer et al. 2000)

Rome is developed using C++ and an object-oriented database, Versant. Rome
provides its functionality for other tools via CORBA. This functionality includes
manipulation of the neutral model representation or retrieval of information
about the model implementation. Rome has also a web user interface known as
RomeWWW. The similarities and differences with regard to the centralised

 48

repository approach chosen in this work are discussed in more detail in Section
5.2.2.

ModelStructure

PortCoupling

Implementations

Model
Implementation

ModelBehavior

Variable

Equation

Documentation

Hypertext
Node

Hypertext
Link

Model

Figure 2.5. Data model of Rome.

It has been stated that the developments in computer-aided process modelling
can be classified into four groups; general modelling languages, process
modelling languages, expert systems and interactive modelling environments
(Marquardt 1996). General modelling languages can be viewed as equation-
oriented simulation languages. MODELICA (Elmqvist et al. 1999), OMOLA
(Mattson & Anderson 1994) and the modelling languages of ASCEND
(ASCEND 2001) and gPROMS (gPROMS 2001) are examples of general
modelling languages. They support hierarchical decomposition and they use
concepts of semantic data modelling and object-oriented programming. The
definition of these languages is confined to a relatively small number of generic
elements.

Process modelling languages are similar to general modelling languages but
they are designed to match the specific issues of a particular application domain.
MODEL.LA (Stephanopoulos et al. 1990) is an example of a language where the
elements are tailored for chemical engineering. Another example of a process
modelling language is the computer implementation of the phenomenon-driven
process design methodology PDPD (Pasanen 2001; Pohjola & Tanskanen 1998).
For example in MODELICA, the basic modelling concepts are generic among
all modelling domains (model, parameter, equation, function, algorithm)

 49

whereas for example in MODEL.LA, the basic modelling elements are generic
only in a specific modelling domain (port, stream or generic unit).

The aim of the expert systems for modelling is to produce a process model from
a formal description of the modelling problem initially provided by a user. The
implementation is based on some knowledge presentation formalism. Interactive
modelling environment is not an automatic process model generator like an
expert system but rather an interactive construction kit consisting of building
blocks. According to Marquardt, there is no system as yet based on this idea.
Some characteristics can be found in MODASS. (Marquardt 1996)

The modelling languages mentioned in this section do not only try to model the
configuration or the structure of a physical system but they also include
equations describing the behaviour of the system. This is the fundamental
difference between these languages and more data-centric approaches, such as
STEP or PDML. It is also the reason why the approach taken in this work is
closer to the one chosen in STEP or PDML.

Seven companies including process industry software vendors and end-user
companies started to work at the beginning of 2001, to define and to deploy
practical XML standards for the process industry. The companies driving this
effort are Chemstations Inc., COADE Inc., ePlantData, Inc., HTRI, Kellogg
Brown & Root, IFP's Industrial Division, and WaveOne.com, Inc. The PlantData
XML standards are initially focused on describing process materials and the
design, specification and procurement of shell and tube heat exchanger
equipment. PlantData XML standards are envisioned to eventually include the
full range of process plant information and process equipment. The aim is to
utilise the work done in STEP to produce this new specification. There is no
draft specification yet available for this effort. (ePlantData 2001)

 50

3. Research and Development Problem

3.1 Introduction

A new software architectural approach is needed for process modelling and
simulation applications in order to satisfy the requirements for reuse,
customisation, co-use, extensibility and run time connectivity (see Chapters 1
and 2). Current information technologies offer possibilities for fulfilling these
needs. The main research problem of the thesis is thus, how to apply current
information technologies to facilitate the use of process simulation and to
enhance the benefits gained from using it. As a development task this means
developing new software architecture for configuration and usage of process
simulation models. Figure 3.1 describes the above requirements and their
relationship to the chosen information technological approach. One should note
that the requirements are not isolated, but they overlap as will be shown in the
following sections.

Figure 3.1. Needs of process modelling and simulation.

Process modelling and simulation

Reuse of
model
configuration

Customisation Configurational
Co-use

Extensibility Run time
connectivity
and co-use

Model configuration Model
development

Model usage

Data-centric Model-centric

MOM
SOAP

XML Software components

Information technology

Reuse of
simulation
models

 51

3.2 Need for better model reuse and easier
customisation

Model reuse can be considered from both the data-centric and model-centric
points of view. Process simulation tools usually carry comprehensive simulation
algorithms and the job of the modeller is to define the model topology, i.e.,
interconnections between the process components and parameter values for the
individual equipment. The topology and the parameter values are referred to in
this work as model configuration.

In spite of the comprehensive algorithms programmed into the process
simulation tools, the modeller has to extend the functionality of the simulator in
many cases. This process of programming individual unit operation models or
other numerical solution algorithms is referred to in this work as model
development.

Model reuse and easier customisation are becoming more and more important as
the models become larger and more detailed. The largest model configurations at
the moment may include more than one thousand configuration diagrams and
more than 30000 I/O signals between the process and its controls (Puska et al.
2001). Without reuse and easy customisation mechanisms the configuration of
such models is time consuming and laborious.

Model configuration especially for a dynamic process simulator is still too
laborious. This is a common reason in industrial engineering not to exploit
dynamic process simulation. The three main reasons for this laboriousness are:
(i) poor reuse of earlier model configurations, (ii) difficulty in finding the proper
parameter values for unit operation models and (iii) lack of appropriate co-use
between the process simulation tools and other process design systems (CAD).

Poor reuse is often a consequence of bad encapsulation mechanisms and of a
working process that does not support sharing of the model configurations. The
more detailed a model is the more an engineer has to know about its content in
order to use the full power of the model.

It can be also difficult to find right parameter values for some unit operations,
e.g. for dynamic simulation for heat exchangers and burners. Sometimes the unit

 52

model is desired to be customised so that it would simulate the equipment of a
specific manufacturer. In this case, the correct parameter values have to be
somehow obtained from the equipment manufacturer.

Reuse of the developed extension algorithms is difficult due to the fact that
different simulators usually support different simulation schemes and the
developed models are very often designed for that particular scheme. As
described in sections 2.2.1 and 2.4.1 there is some standardisation and academic
research efforts in the area of reuse (CAPE-Open 2000). Schopfer describes
different schemes with the following examples (Schopfer et al. 2000):

“During flowsheet design the specification of a simulation experiment for, e.g., Aspen+ is based

on the selection and parametrization of modules that are subsequently used in the underlying

modular simulation scheme. To study the transient behaviour of the process using dynamic

simulation tools such as gPROMS an equation-based representation of the system to be simulated

is well suited for the underlying iteration scheme. As a third example, control engineers use

Matlab/Simulink based on (often linear) state space representations to design and assess control

configurations.”

In this work, the approach to this problem domain is different from the
standardisation or from the referred research. Section 3.4 explains in more detail
how extension components are not only seen as unit operation models or
numerical solution algorithms but rather as a generic way for extending the
functionality of the simulation server. The functionality can contain a search
algorithm that goes through the database of the simulator, a dimensioning
algorithm for sizing of particular type of equipment or a parametricized
constructor for creating the contents of a structural component. These software
components have well defined interfaces in the architecture and they can use the
defined interfaces of the simulation server. The problem of different simulation
schemes in different simulators is not addressed in this thesis. Reuse of the
developed software components can be achieved through a centralised
repository. However, the suitability and correct use of a particular software
component designed for a particular simulator depends wholly on the end user
and on the documentation generated by the model developer.

 53

3.3 Need for better configurational co-use

Different simulation tools are used at different stages of the process and
automation delivery. The balances are calculated in the pre-design stage using
spreadsheet calculators or simple steady state simulation tools. The steady state
models are developed further during the actual design phase or the dynamic
behaviour is already analysed using a dynamic simulator. Data from the
equipment manufacturers is also needed at this stage. During the automation
design stage, the dynamic simulator can be used for designing the control
schemes. Furthermore, when the DCS is configured, the application can be
tested with a dynamic process model. Dynamic models can be also used for
operator training and support. The life cycle consideration is presented in Figure
3.2.

Steady state
simulator

Dynamic
simulator

DCS

Process
pre-design

Control design
& operational
practises

Automation
configuration
and testing

Architectural integration

Data of the
equipment
manufacturer

Process
design

Training
simulator

Operator
training and
support

Life cycle

Figure 3.2. Need for architectural integration from the co-use point of view.

The problem with the use of different tools is the re-configuration that has to be
done when changing from one tool to another. There are two ways for
approaching this problem. Either a simulation tool should support all the
different stages described above or different simulation tools should utilise the
same model configuration. If one simulation tool is made suitable for all of this
use, it should support different model resolutions at different stages and it should
be flexible enough from general usage to detailed troubleshooting. Co-use would
still be needed, e.g., if the model configurations were to be reused by different
organisations using a different tool. The problems with the co-use approach are

 54

that different tools should support the same interfaces. This may be difficult to
achieve due to the large number of simulation tool vendors.

In this thesis, however, better co-use is defined as one of the sub-problems.
Openness and better co-use capabilities are justified features in both approaches.
Also according to a recent modelling and simulation technology review by
(Klemola & Turunen 2001) co-use should be enhanced. The report lists two
interesting conclusions and recommendations related to the co-use, connectivity
and reuse objectives in this work.

• Integration of modelling tools should be enhanced. Tools and models that
support technology transfer, such as operator training and support systems,
should be further developed.

• Knowledge management will be more and more important (cf. Gallery).

The co-use needs do not only appear between different simulation tools but also
between simulation tools and process and automation design systems (CAD). A
concrete example of such a need is a training simulator project. There are several
ways to implement a training simulator. At one end, there stands a case where
the operator displays and automation of the actual DCS are used and only the
process is modelled in a dynamic simulator. At the other end, thereis a case
where the displays are emulated and the process and automation are both
simulated in a dynamic simulator. The choice of way depends mainly on two
facts. Firstly, is the automation application available before the operator training
is due to happen? Secondly, if the application is available, how much does the
extra automation hardware cost in case the first extreme is chosen?

The fact that the DCS manufacturers have nowadays also PC-based versions of
their system has lowered the costs considerably. In practice, the emulated
approach is often necessary because the implementation of the automation
application is not ready before the operator training. This leads to a situation
where the automation is implemented first to the simulation system and then
again to the DCS. If there were better co-use between the systems or if the
project could be scheduled differently this re-configuration could be at least
partly avoided. The problems related to the configurational co-use between a
simulator and a DCS are discussed further in Section 5.3. The problems related

 55

to the co-use of process design systems (CAD) and simulators are not addressed
in this thesis.

3.4 Need for more generic extensibility

As mentioned in Section 3.2, sometimes the numerical solution algorithms of the
simulation tool are not adequate and the user has to extend the functionality of
the simulator. The extensibility of the simulator depends on the interfaces it
supports for this purpose. The tightness of the integration of the user-developed
model to the execution of the rest of the simulation model is also different in
different simulation tools. There are problems both in tight and loose integration
of the model extensions. The more closely the model extension is bound to the
simulation scheme of the simulator the more difficult it is to use the model
anywhere else. On the other hand, using loose integration the user may have
fewer means for influencing the model as a whole, which is often needed to
increase the calculation speed and model resolution.

The user may also have other needs than simulation functionality for extending
the simulation tool. Model development is not the only area where extensibility
is needed. Extendable functionality is also needed in model configuration. This
kind of more generic extensibility may support for example reuse, customisation
and co-use requirements.

The template based approach for model reuse is sometimes not efficient enough.
Suppose for example that the user has integrated a sub-process as a structural
process component. This sub-process contains n sub-components, for instance
tanks connected to each other with pipelines. Now, when reusing the model the
user may have a need for a sub-process with n-1 or n+1 tanks. With the
template-based approach all of these different variations of the model structure
have to be stored in order to be able to copy them to the new project. This takes
a lot of space and effort. Instead, the user may want to parametrisize the creation
of the sub-process component so that in the creation he can give the number of
tanks as an input parameter for the constructor of the sub-process (cf. class
constructor in object-oriented languages). In order to achieve this the user must
be able to extend the functionality of the creation of the sub-process. This means

 56

that the constructing algorithm is programmed using some programming
language.

The simulator user may also want to extend the functionality of the simulator by
creating different dimensioning tools, depending on the application area in which
he is using the simulator. The selection of a pump based on hydraulic properties
in a pipeline dimensioning is an example of such a task. If the simulator does not
already contain such a tool there might be a need to build one. This is possible
without the tool vendor only if the system is extensible enough.

A transformation of the model configuration from one tool to another is needed
in order to co-use the different simulation tools. This transformation can be done
through a common model or directly from one tool to another (5.2.3). In both
cases, a transformation algorithm is needed. The programming of this algorithm
can be also seen as extending the functionality of the simulation tool.

All the sub-problems described above are examples of the need for more generic
extending mechanisms. The more generic approach taken in this thesis naturally
also leads to a loose integration of the model extensions to the simulation
scheme of the simulator.

3.5 Need for more flexible run time connectivity

Already in the 70’s, dynamic simulation models were connected to a control
system in order to test the functionality of the controls and to train the operators
(Juusela & Juslin 1976). However, the connections were tailored for a specific
simulation tool and for a specific DCS and they also lacked the flexibility for on
line modification of the connection. A dynamic connection would enable the
testing of the control schemes section by section even while they are being
configured to the control system. The fact that the solution is independent of any
particular DCS or simulator would enable the use of different tools even at the
same time.

The requirements for a functional run time connection are scalable and fast
enough data exchange, flexible on line configuration and a possibility to control
the execution in both of the connected systems. This control includes simulation

 57

and training control features. An interesting simulation control requirement is
the need to synchronise the execution of the entire system consisting of a DCS
and a simulator. The synchronisation can be realised approximately by setting
the execution speed of the systems to real time. If more accurate synchronisation
is needed, the systems have to be synchronised in every time step. More accurate
synchronisation is necessary, e.g., in cases where the system is executed faster or
more slowly than real time. Simulation and training control features are
discussed in more detail in Section 5.3.

Scalability is needed when dealing with large applications. Connectivitywise, the
size of the application is measured by the number of input and output (I/O)
variables. In a nuclear power plant application the number of I/O variables can
be around 30000 (large), in a conventional power plant usually less than 10000
(middle-sized), and in a small application around 1000 (small). The scope of this
work is from small to middle-size applications. The speed of the connection is
needed in order to test all the control loops of the automation application. Speed
and scalability are not separate requirements. Usually the I/O variables are
divided into groups depending on the communication frequency they need. The
more variables there are at high frequencies the more load there is on the
connection. In this work, the scope is limited to frequencies less than 10 Hz in
real-time simulation. The speed and scalability are discussed in more detail in
Section 5.3.3.

Flexible run-time connectivity is not only needed for a DCS connection. Also
run-time simulator to simulator connections, flexible connections to SCADA
systems and connections to PC-based operator displays may be needed. The
simulator to simulator connection can be used for example in dividing the
simulated model to several simulation engines and running them on different
machines. The connection to SCADA systems can be used for example for
automation testing or for training purposes (Zamarreno et al. 2000).

 58

4. Proposed Architectural Solution

4.1 Introduction

Software architecture can be defined as the fundamental organisation of a system
embodied in its (software) components, their relationships to each other, and to
the environment, and the principles guiding its design and evolution (IEEE
2000). A system, on the other hand, is a collection of (software) components
organised to accomplish a specific function or set of functions. The architectural
solution proposed in this thesis is described according to the practice
recommended by IEEE (IEEE 2000).

The conceptual model of architectural description is shown in Figure 4.1 as a
UML (Fowler 1997) class diagram. According to the conceptual model, every
system has an architecture, it fulfils one or more missions and it is influenced by
its environment (Figure 4.1). The system also has several stakeholders with
specified concerns. The architecture can be recorded by an architectural
description that is organised into one or more architectural views. Each view
addresses one or more of the concerns of the system stakeholders. A view
consists of architectural models and it is used to refer to the expression of a
system architecture with respect to a particular viewpoint covering one set of
concerns. The relationship between a viewpoint and a view is analogous to the
singleton relationship between a class and its instance. (IEEE 2000)

An architectural description should include the following elements (IEEE 2000):

a) Architectural description identification, version, and overview

b) Identification of the system stakeholders and their concerns judged to be
relevant to the architecture

c) Specification of each selected viewpoint to organise the representation of the
architecture and the rationale for those selections

d) One or more architectural views

e) A record of all known inconsistencies among the required constituents of the
architectural description

f) A rationale for selection of the architecture

 59

Environment

Mission

ArchitectureSystem
influences

inhabits

1..*fulfills

has an

Rationale

Concern

Library
Viewpoint

Model

View

1..*

1..*

consists of

participates in

Architectural
Description

1described by 1

provides

1..*
identifies

1..*

organized by

1..*
aggregates

participates in

Stakeholder

1..* has

1..*
identifies

1..*

1..*

has

is important to

Viewpoint

1..*
used to cover

0..1has source 0..1

1..*
establishes methods for

conforms to
1..*

selects

1..*
is addressed to

Figure 4.1. Conceptual model of architectural description according to IEEE
Std 1471-2000 (From IEEE Std. 1471-2000 Copyright 2000 IEEE. All rights
reserved.).

Stakeholders include at least users, acquirers, developers and maintainers of the
system. However, the documentation given here describes the proposed solution
for the research problems listed in the previous chapter and thus does not
provide full software documentation. Therefore, some of the required items are
discarded, e.g. the version numbers and the full analyses of the concerns of the
acquirers, maintainers, and developers. In other words the viewpoints are
selected to cover the concerns of one stakeholder group, i.e. the users, and its
sub-groups.

The identification of the different sub-user stakeholders and their concerns is
described using UML use case diagrams. The users of the system are divided
into four major categories kernel developers, providers, model configurators and
model users. These stakeholders and their concerns are analysed in the next
section.

 60

4.2 Use case analyses

4.2.1 Kernel developer

The users of the proposed simulation architecture can be divided into four major
categories: kernel developers, providers, model configurators, and model users.
As will be explained in the security view, these four user categories have
different security roles in the architecture. The kernel developers are the most
powerful users of the system. Of course the administrators of the model server
hosts may have functions not allowed to the kernel developers, such as adding
users to the operating system or installing software components. However, the
use cases of administrators or maintainers are not analysed here. It should be
noted that the concepts of model client, model server, model server extension
and model client extension are used already in this section but explained in
Section 4.4.

The four user categories correspond also to four security roles in the architecture
as will be seen in the security view section. These security roles form subsets so
that the kernel developers have all rights for interface functionality allowed to
the providers, the providers have all rights for interface functionality allowed to
the model configurators and the model configurators have all rights for interface
functionality allowed to the model users.

The use cases of the kernel developer are shown in Figure 4.2. The actions
specific only for the kernel developers are the development and publication of
client and server extension software components. The kernel developers are also
responsible for adding new departments to the model servers and adding new
users to the departments. Departments are main level elements in the data model
of the architecture as will be described in the data view section.

 61

Building a client or server extension is a task of programming a software
component that conforms to the interface specification of the corresponding
client or server extension sub-type. Server extensions may use the GQL interface
of the model server in their implementation whereas client extensions can use
configuration or data connections in the same way as model clients use them.
Publishing a client or server extension is a task of writing a description for the
extension in GML format and uploading both the description and the binary
component to the model server. The format for the client and server extension
description can be seen in the data view in Figure 4.8.

Figure 4.2. Use cases of kernel developer.

Build and publish a converter

Build and publish a search engine

Build and publish a dimensioning
tool

Build and publish a transformer

Build and publish a model builder

Build and publish an external
model

Build and publish a process
component specific user dialog

Build and publish a server
extension specific user dialog

Add new department to the model
server

Add new user to the department

Build and publish a client
extension

Kernel developer

Build and publish a server
extension

 62

4.2.2 Provider

The provider users provide model templates and process component data for the
model configurators. Equipment manufacturers and library developers are
providers. However, securitywise these two actors belong to the same provider
role.

Figure 4.3. Use cases of provider.

The use cases of providers are shown in Figure 4.3. The providers are
responsible for the development and maintenance of type and symbol libraries.
Type and symbol libraries are elements of the data model of the architecture.
They contain process component type descriptions and graphical symbols as will
be explained in the data view section. The library developers publish template
models for the model configurators. One model server in the architecture has a
special role for this. It acts as a model and parameter value repository for all
simulation users. This model server is called the Gallery. Equipment

Publish equipment data

Manufacturer

Publish a template model

Library developer

Define and publish parametrisation
and symbols for component types

Provider

 63

manufacturers may also publish process component data of their equipment in
the Gallery server. The use of the Gallery server in different scenarios is
discussed further in Chapter 5.

4.2.3 Model configurator

The model configurators use the building blocks and tools that the kernel
developers and providers have published to configure simulation models. The
model configurators are process and automation designers working at consulting
offices, equipment and automation supplier companies or research institutes.

Figure 4.4. Use cases of model configurator.

The use cases of the model configurator are shown in Figure 4.4. In addition to
configuring and documenting simulation models using a model configuration
user interface, the model configurators define monitor and trend sets using
vertical OPC DA data connections. There might be several different monitor and
trend sets configured in the same model using different model servers as the data
source for each set.

Configure and document a model

Configure a data connection
between model servers

Configure a training program

Observe history information

Define access rights for an element

Configure a monitor and trend set

Model configurator

 64

The model configurators also configure horizontal OPC DA data connections
between model servers. The configuration is done using a data exchange user
interface. The data connection between the model servers can be synchronous or
asynchronous depending on the simulation execution in the model servers.

Training programs are configured for the instructor’s interface by the model
configurator. Training programs are operational situations in the modelled
processes that are of particular interest in operator training. For example, a
training program may consist of a malfunction, shut down or start situation.

The kernel developers, providers and model configurators all define access
rights for the elements they create to the model server. Access rights for reading,
writing and executing are given for user groups as will be explained in the data
and security views. All three user groups may also observe history information
about the elements created and modified in the model server.

4.2.4 Model user

Simulation models configured by the model configurators are used by the model
users. Instructors, engineers and operators are model users. Instructors and
operators use simulation models during simulation-assisted training. Engineers
are model users who use the model for example for testing of the control system.
The engineers may also use demonstrational models for example for marketing
purposes. The engineers can also browse the database of the Gallery when
searching for suitable process components. It has to be noticed that securitywise
these three actors have the same role of a model user. The use cases of the model
user are shown in Figure 4.5.

Operators use an operator’s user interface for observing monitor and trend data
and for changing values of the control parameters, e.g., set point values and
binary controls. Vertical OPC DA connections can be used for observing data.

 65

The engineers load model and communication configurations, they can start and
stop a simulation or communication, and they can also save and load different
model states. One model configuration may have several states as will be
explained in Section 4.5. The engineers may also browse the content and
documentation in the model server.

Figure 4.5. Use cases of model user.

Instructors load and run different training programs using an instructor’s
interface. They can record and backtrack the simulation, trigger and monitor
malfunctions and observe the operator log information. Of course, in many cases
the instructors do the same things as the engineers and the operators and the

Model user

Observe monitor and trend values

Change value of a control parameter Operator

Trigger and monitor a malfunction

Record/back track simulation

Observe operator log
Load and run training program

Instructor

Save/load model state

Run/stop simulation

Browse process components and
documentation

Run/stop communication between
model servers

Load models and communication
configurations

Engineer

 66

engineers do the same things as the operators. However, securitywise all three
are equal model users.

4.3 Viewpoints

The viewpoints selected for this architectural description are the logical, data,
security, component, process and deployment viewpoints. The selection has
similarities with the “4+1” approach (Kruchten 1995). The data and security
viewpoints have been added. The physical viewpoint has also been renamed as
deployment viewpoint. In addition the scenarios are not only seen as a
supporting viewpoint for the other viewpoints but also as a route from other
viewpoints to deployment viewpoint. The different viewpoints and the
description procedure are shown in Figure 4.6.

In the logical viewpoint the system is decomposed into a set of key abstractions.
The services of the system to its users are described using these concepts and
their relationships. This viewpoint serves all of the four user groups and it is
used to cover all of their concerns. Together with the use case analyses, logical
viewpoint describes the functionality provided by the architecture. The logical
view of the proposed architecture is analysed in Section 4.4 using the UML class
diagram format.

The data viewpoint describes the data model of the system. This is the data
model common to all software components in the architecture. Individual
software components may have their own inner data models that are not
described in this viewpoint. The data viewpoint addresses all the concerns of the
programmers of the system, the kernel developers, the providers and even the
model configurators. The data model of the proposed architecture is described in
Section 4.5 using a UML class diagram. The name of the data model is GML
(Gallery Markup Language).

 67

The security viewpoint describes the security model of the system. In a
distributed, multi-user environment the security viewpoint as a separate
viewpoint is justified even though many of the security issues may be discussed
already in the other viewpoints. The security model as a whole is described in
Section 4.6. This viewpoint especially addresses the publishing concerns of the
providers.

Figure 4.6. Different viewpoints and the description procedure. The level of
generality in the architectural description with respect to implementation
techniques decreases in the viewpoints further down.

The software components and their relationships are analysed in the component
viewpoint. The system is broken down into subsystems and program libraries in
the way they are developed in the software development environment. The main
interfaces of the system are identified and specified. Usually one software
component is developed by one developer or a small number of developers. This
viewpoint addresses all the concerns of programmers of the system and the
kernel developers. The software component organisation of the proposed
architecture is described in Section 4.7 using the UML component diagram
format.

Logical
Viewpoint

Process
Viewpoint

Deployment
Viewpoint

Component
Viewpoint

Data
Viewpoint

Security
Viewpoint

Scenarios

 68

The process viewpoint takes into account non-functional requirements, such as
performance and availability. It addresses issues of concurrency and distribution,
and how the main abstractions from the logical viewpoint fit within the process
architecture. This viewpoint addresses all the concerns of the kernel developers
and programmers of the system. The process view of the proposed architecture is
analysed in Section 4.8. UML component diagram is used to describe the
process view.

The deployment viewpoint describes the physical architecture of the system. The
proposed architecture may have a different deployment in different cases. These
different deployments use certain features of the proposed architecture. Each
case can be described as a use scenario. The scenarios are chosen so that they
measure the desired customisation, reuse, co-use, extensibility and flexible
connectivity features of the proposed architecture. The scenarios are described
using the UML collaboration diagram format. The objects in the collaboration
diagrams are instances of the classes in the logical view. Each scenario has also
a physical deployment. This deployment is described as a UML deployment
diagram. The different scenarios and deployments are represented in Chapter 5.
This viewpoint addresses all the concerns of all of the users. The viewpoint
clarifies the concepts and mechanisms of the architecture by giving examples of
the usage of the software system. In particular, this viewpoint provides the cases
to verify the two main hypotheses of this thesis.

4.4 Logical view

The logical view to the proposed architecture is described in Figure 4.7 as a
UML class diagram. The architecture consists of model clients and model
servers. As will be shown (Chapter 5), the model server can be a steady state
simulator, dynamic simulator, database or a process station of a control system.
The non-exclusive specialisation in the diagrams refers to the possibility that a
model server instance can be any combination of the sub-types at the same time.
The model client can be a model configuration user interface, data exchange
configuration user interface, the instructor’s user interface or the operator’s
user interface.

 69

The most important part of the architecture is the interface between the model
clients and model servers. In the logical view this is modelled as a connection.
The connection can be a configurational connection or a data connection.

Figure 4.7. Logical view of the architecture. The main concepts are marked in
bold type.

The configurational connection can be a model configuration or a data exchange
configuration connection. The interface used for the model configuration is
known as a GQL (Gallery Query Language) interface. The interface is described
using a protocol that resembles SOAP (Simple Object Access Protocol) (W3C

DX
Configuration UI

Instructors
UI

Operators UI

Steady state
simulator

Dynamic
simulator

Database

Process
station

Converter

Dialog

Component
dialog

Server extension
dialog

Configuration
connection

Data
connection

GQL/HTTPS GQL/GTP OPC DX

OPC DA

Simulation
control

Training
control

HorizontalVertical

Search
engine

Dimensioning
tool

TransformerModel builder

External
model

Model
configuration UI

non-
exclusive non-

exclusive

non-
exclusive

Location and
launching services

Server
extension

User management
services

Model client

uses

Model server

nn

uses

uses

Connection
n

1..n

n

1..n

uses
n

1..n

n

1..n

provides and uses

Client
extension

n

1..n

n

1..n

uses

nn n1..n n1..n

uses

Model configuration
connection

Data exchange
configuration connection

 70

2000a), and it is further discussed in Section 4.7. The underlying protocol for
transporting GQL requests can be either HTTPS (Hyper Text Transfer Protocol
Secure) (W3C 1999) or tailored Gallery Transfer Protocol (GTP) based on the
TCP/IP (Transmission Control Protocol /Internet Protocol).

 The data connection can be an OPC DA connection, simulation control
connection or training control connection. Again, these types are non-exclusive.
Instead, a data connection instance can be any combination of these three sub-
types at the same time. Furthermore, an OPC DA connection can be vertical or
horizontal. A vertical OPC DA connection is created between the model clients
and model servers whereas a horizontal OPC DA connection is created between
two model servers. Simulation and training control connections are further
discussed in Chapter 4.6.

Server and client extension mechanisms have been designed to the architecture
in order to achieve generic extensibility. These mechanisms can be used for
easier model customisation, reuse and co-use purposes as is shown in Chapter 5.

A server extension is a software component that is invoked and executed as a
part of the model server. It has an invocation interface that depends on its type
and it can use the GQL interface of the model server. The server extension can
be a search engine or an external model. Search engines are used for searching
or selecting process components from the database of the model server. External
models are algorithms that are used to extend the simulation functionality of the
model server.

A client extension is a software component that is invoked and executed as a part
of the model client. It has an invocation interface that depends on its type. The
client extension can be a component dialog, server extension dialog,
dimensioning tool, transformer, model builder or converter. Component and
server extension dialogs are used as specialised user interfaces for different
process components and for the different server extensions. Dimensioning tools
are used for finding the right parameter values for process components in the
database of the model server. Transformers are used for transforming a process
component or a set of process components and their parameters from the type
description system of one model server to another. Model builders are used for
parametrisized creation of simulation models. A converter is a client extension

 71

for converting the data of the equipment manufacturer to GML format. Client
extensions can use both configurational and data connections independently of
the model client.

The architecture also provides location and launching services for the model
clients. Through these services, the clients can list the available model servers in
different hosts, launch the desired model servers and create connections. The
architecture provides user management services for the model servers for
authentication of the users and for finding the registered role for the different
users. User roles are discussed more in the use case analyses and in the security
view sections.

4.4.1 Rationale

The distributed client-server pattern, the division of connections into
configurational and data connections, and the use of client and server extension
mechanisms are the most important architectural choices that can be seen in the
logical view.

The lifecycle of numerical solution algorithms in a process simulation is longer
than the lifecycle of a configuration user interface. The development of the
solution algorithms of for example Apros started already in 1985 and the
algorithms are still in use today. Meanwhile the same solver has had several
different user interfaces in different operating systems and in different operating
system versions (Apros 1999). Thus, it is rational to separate the solution
algorithms from the user interface code. As described in Section 2.3, none of the
examined simulators support full multi-user features. The possible need for
multi-user features and solver distribution is also an argument for separating the
solver code and user interface code even into different processes. Furthermore, it
is easier to connect legacy simulators to the architecture using this approach.
One can always argue whether tighter integration would lead to better usability.
However, this fact depends heavily on how good the software interface between
the solver and the user interface is.

The model configurators need both configurational access and data access.
However, the model users do not need configurational access. Thus, it is

 72

beneficial if the architecture is designed and implemented so that it can function
separately with both configurational and data connections. These connection
types are also very different in context and performance. Furthermore, OPC as a
de-facto standard in the field of automation is a justified choice for the data
connection whereas XML and XML-based message passing are reasonable
choices for expressing and manipulating the structural model topology and
process component parameter values. XML is designed for expressing structural
data. It is also designed to be well suited for network usage. There is a good
choice of ready-made tools and software components supporting its usage, e.g.
parsers, editors and databases.

The requirement of generic extensibility leads to the decision of the use of the
server and client extension mechanisms. The functionality of the model server
can be extended at run-time by using software component technology and an
application programming interface to the database of the model server. User
interfaces for different process components and for different server extensions
can be created run-time using the client extension mechanism.

4.5 Data view

The data view explains the common data model for the architecture. This is the
data model that the model clients and servers must agree on in order to
communicate with each other. The data model is different for a configuration
connection and for a data connection. This section mainly discusses the data
model for a configuration connection and, at the end, mapping to the data model
of a data connection is introduced.

The data model of the suggested architecture is shown in Figure 4.8 as a UML
class diagram. The data is processed in the architecture in XML format and thus
the class diagram has one to one correspondence to XML. The XML format is
GML (Gallery Markup Language). The diagram can be read so that classes are
XML elements, class attributes are element attributes and aggregation relations
are element containments. The administration element, its sub-elements, and the
rights elements are discussed in the security view. The other elements are
explained in this section.

 73

Figure 4.8. Data view of the architecture.

Description[D]

Modified and Rights elements can
be sub elements of Dep, TRs, Ca,
C, CT, E, CE and SE. Description
can be sub element of the above
mentioned elements and UD and
GD.

Rights[R]
name[n]
access[n]

Modified[M]
by
at

AccessRights[AR]
name[n]
access[a]

User[U]
name[n]

If type is
terminal refers
to propertyInfo
constraint by
name

Refers to PI
byId when
under Symbol

EndSubConstraint[ESC]
name[n]
<<opt>> allowedIndex[a]
<<opt>> componentType[c]UserDefinition[UD]

name[n]

nn

byName

byName

GroupDefinition[GD]
name[n]
createdBy[cby]

nn

nn

AllowedValue[AV]

OutputArgument[OA]
name[n]
dataType[dt]
<<opt>> unit[u]

InputArgument[IA]
name[n]
dataType[dt]
necessity[ne]
<<opt>> unit[u]
<<opt>> default[d]
<<opt>> vectorNumber[vn]
<<opt>> index[i]

ReferenceRule[RR]
startSubConstraint[s]

nn

Administration[A]

nn

nn

Default[Def]
index[i]
count[c]

Vector[V] nn

Enumeration[E]
name[n]
id

nn

ClientExtension[CE]
id
name[n]
type[t]
binaryId[bid]
<<opt>> Att-n

ServerExtension[SE]
id
name[n]
functionName[fn]
binaryType[bt]
operatingSystem[os]
type[t]
programId
binaryId[bid]
<<opt>> typeId[tid]

nn

nn

TerminalRules[TRs] nnDepartment[Dep]
id
name[n]
<<opt>> suc[s]

nn

VectorInfo[VI]
type[t]
allowedSize[as]
<<opt>> unit[u]
<<opt>> min
<<opt>> max
<<opt>> label[l]

nn nn

Constraint
name[n] nn

Property[P]
id
infoId[iid]
lifted[l]

11

svg::svg

Component[C]
id
name[n]
typeId[tid]
<<opt>> suc[s]
<<opt>> tracked[t]
<<opt>> runnable[r]
<<opt>> loadable[l]11

nn

nn

Category[Ca]
id
name[n]
<<opt>> typeLibrary[tl]
<<opt>> supported[su]
<<opt>> symbolLibrary[sl]

nn

nn

nn

nn

11

nn

nn

svg::defs
11

ComponentType[CT]
id
name[n]
locked[l]
runnable[r]
loadable[lo]
liftValues[lv]
liftTerminals[lt]
composed[c]

nn

byTypeId

PropertyInfo[PI]
id
name[n]
necessity[ne]
<<opt>> trackable[t]

11

nn

byInfoId

nn

svg::g
id

nn

byId

svg::symbol
id
typeId[tid]
type[t]

nn

nn

11

byTypeId

svg::use
id byId

0..10..1

nn

byhref

 74

4.5.1 Basic elements

The data in the model server is divided into departments. A department is a root-
level concept with a name and an id. The users and user groups are defined at the
department level. The model configurations under one department conform to
the modelling rules defined in that department. Thus, in many cases the
department has correspondence to the model server type, e.g. a certain simulator,
linked to the architecture.

The departments consist of categories. The categories can be normal categories,
type libraries or symbol libraries depending on the attribute values. The
modelling rules of the department are defined under the type library. The type
library consists of component type descriptions and one terminal rule
description. Component types are descriptions of the process, automation and
electrical components that can be modelled under the department in question.
The component types can be placed under normal categories in the type library.
Terminal rules describe the reference rules that are used when connecting
process components under the department. The graphical symbols for different
component types and terminals are defined under the symbol library. Graphical
symbols are defined by using SVG (Scalable Vector Graphics) and they have
references to the component type as will be explained later. It is up to the kernel
developers and providers to define the component types, symbols and terminal
rules.

Many elements in the data model have an id attribute. In the architecture,
universally unique identifiers (UUID) (DCE 1998) are used as ids. In addition, a
UUID has to be prefixed with a letter so that the id conforms to XML id
specification. ‘a’ or ‘b’ is used as a prefix in the data model. For example,
aD061ECA0-C4B7-457a-A0E3-ADCB0CAECEAB could be a valid id in the
architecture. One can argue that 37 characters take a lot of space for an id.
However, as will be seen, the use of UUIDs is justified in a distributed
modelling environment.

The model configurations are represented under normal categories as component
hierarchies. The components refer to component type descriptions. This is one
rationale for the usage of UUIDs as identifiers. The reference to the component
type description has to be the same regardless of to which model server the

 75

model configuration is copied. The components consist of properties that refer
to the corresponding property infos in the type description. The property values
are expressed as vector hierarchies that are also described in the type description.
The graphics of each of the model configuration levels are expressed as SVG
under the svg element of the parent component. There are references from the
SVG to the components as will be explained later. It is up to the providers and
model configurators to define the model configurations. The data model does not
contain a concept for a model. The root components that contain other
components are referred to as models.

Model configurations may take a lot of space in XML format. When the data is
processed in the different interfaces in the architecture, short names for the
elements and attributes are used. These short names are expressed in brackets in
Figure 4.8.

4.5.2 Component type description mechanism

Component types are used to describe the process components. The models are
configured under the department using component types from the type library of
the department. It should be noticed that the component hierarchy is not
described in the component type description mechanism. The parametrisation of
the process component is described using property infos. The necessity of
property info can be optional, implied or required. If the necessity is required it
means that the property is always created under the component and the user
always has to give value for the property during its creation. If the necessity is
implied then the property is also always created. However, if the user does not
give the value the value is taken from the default element in the property info
description. If the necessity is optional the property is created under the
component only if the user wishes to create it. The component type is marked
locked as long as the provider or kernel developer makes changes to it. When the
type is locked no instances of that type can be created. After the component type
has been opened other users can start to create instances of that type and the type
description cannot be changed any more. This mechanism ensures that a
component always conforms to its type description.

 76

The values of a property are described under the property info using vector info
hierarchies. Vector info has type, allowed size, unit, min, max and label
attributes. The type of vector info can be any primitive type (boolean, short,
integer, float, double, string, file, reference) or it can be a complex data type
(vector, enumeration). A file property is a reference to a file. A reference is a
string value that defines the UUID of the referred element. If the type is a vector
it means that the instance vector element has vector elements as its sub elements.
These sub vector elements are all described in the corresponding vector info
elements in the description. The enumeration types are described by the kernel
developers and providers under the enumeration elements. The description is
done into the same type library as the component types that are using the
enumerations.

4.5.3 Client and server extension description mechanism

Binary client and server extension software components are described also in the
data model as XML elements. There can be many XML entries for one binary
software component. The client and server extension elements are placed under
a type library. It is up to the kernel developer to define the client and server
extension entries. In the client extension definition the kernel developer defines
the name, type and component type or server extension reference list. The type
can be a component dialog, server extension dialog, dimensioning tool,
transformer, model builder or converter. The kernel developer also provides the
binary software component for the extension. This software component is
referenced using the binaryId and programId attributes. In the server extension
description the kernel developer gives the name, type, function name, and some
other attributes. The function name refers to the name of the function in the
interface of the software component. In addition, the kernel developer defines
the input and output arguments for the server extension. Some of the arguments
are predefined for the server extension type in question, but the other arguments
are free. The input and output argument definitions and the function name are
used by the model server when invoking the server extension. The server
extension type can be a search engine or an external model. In external models a
reference type of argument (both input and output) would be useful and will be
specified to the data model in the future.

 77

4.5.4 Connection mechanism

The user can connect components using a connection mechanism. The
connection is done by using terminal properties. The terminal property can be a
start terminal or end terminal. Thus, the connections can be directional if
needed. The start terminal and end terminal properties are described in the
component type description using property infos with start terminal or end
terminal constraints. The type of vector info of a terminal is reference and the
allowed size is two. The first vector position is used for a reference from the
start terminal to the end terminal (connection reference). The second position is
used for the mapping mechanism (mapping reference). In addition, the start and
end terminals can be typed. The kernel developers and providers can create
terminal rules for guiding the connection of the process components by using the
typing mechanism. The type of the terminal is expressed as a sub-constraint for
the start and end terminal constraints. The corresponding rule for the terminal
type in question can be found under the terminal rules element.

4.5.5 Mapping mechanism

The mapping mechanism is used for two purposes. The terminals of a
component at a lower level can be mapped to a higher level (terminal mapping)
and the value properties at a lower level can be mapped to a higher level (value
mapping). There are two encapsulation rules in the data model. First, there
cannot be a connection reference between the terminals of components that have
a different parent component. Second, the mapping reference can refer only to
the properties of components at the next sub level. These rules force the
connection references between different component hierarchies to go through the
upper level and thus the component encapsulates its content. The value mapping
property is described using property info with a value mapping constraint. This
vector info has the allowed size of one and its type is reference. The value
mapping property can refer to a non-terminal property at the next sub level. This
reference makes the value property of the lower level also visible at the higher
level.

The mapping mechanism for terminals and values, described above, requires that
the mapping properties are defined in the component type description. This kind

 78

of mapping is useful when the model configurator uses the top down modelling
method. In this method, the upper level component and its interface are
described first. After that, the content is configured for it. However, in some
cases the model configurator does not know the upper level interface and the
bottom up modelling method is used. An empty component is created and its
content is configured. After that, terminals and values are mapped to the higher
level in order to define the interface for the empty component. This would be
impossible using the mechanism described above, because the component type
description for the empty component would be already open and could not be
changed. This is the reason why there are two different mapping mechanisms in
the data model. The above-described mapping mechanism is called static
mapping, because the descriptions for the mapping properties are predefined and
can be found in the component type. The other mapping mechanism is called
dynamic mapping. In dynamic mapping, the property from the lower level can
be lifted onto a higher level even though its property info description cannot be
found at the upper level. Dynamically mapped property refers to the property
info at the lower level. Whether the value properties and terminals can be
dynamically mapped can be controlled by the kernel developer and provider
using a lift value and lift terminal attributes in the component type. They can
also control whether the component can have child components using a
composed attribute.

There can be several departments in one model server and thus several type
libraries. In other words, it is possible to configure a model to a model server
using the component types of another model server. However, the model cannot
be necessarily simulated in the model server. The component types the instances
of which can be simulated in the model server are located in a type library
marked as supported by the server. There can be database model servers where
none of the type libraries are supported, i.e. the model server does not contain
any solution algorithms for simulation. The component types the instances of
which form entities that can be simulated are marked as runnable by the server.
Usually these are the component types of the root components of the model
configuration hierarchy. In the same way, the model server can mark the
component types the instances of which form entities that can be loaded to the
memory of the model server separately loadable. This mechanism is meant for
model servers that cannot handle all different model configurations at the same

 79

time. These model servers usually have their own file format for saving the
model configurations.

4.5.6 Documentation and history mechanisms

The model server keeps track of the changes made to the data in the server. This
is illustrated in the data view using modified elements. Modified elements can be
sub elements of departments, categories, client extensions, server extensions,
terminal rules, enumerations, component types and components. Whether the
changes made to the component are tracked or not depends on the tracked
attribute value in the component. Furthermore, the changes in the property
values change the history information of the component only if the kernel
developer or provider has marked the corresponding property info as trackable.
All the above mentioned elements that can have modified sub-elements can also
have description sub elements. The user can write description information to the
different elements in the data model and the description elements help generate
user documentation from the data.

4.5.7 Graphical descriptions

In modern simulation tools, the simulation models are configured using
graphical diagrams. However, in many cases the graphical descriptions are
separate from the model parameter and topology information. Often the graphics
also has its own format. In the GML data model graphics is also expressed in
XML format. The Scalable Vector Graphics (SVG) standard is used for this
purpose.

The kernel developer can draw graphical symbols for different component types,
terminals and connections. The symbols are published under the symbol library
category. SVG symbols for terminals refer to the terminal type using the name
of the terminal type (sub-constraint name under the start terminal or end terminal
constraint in the property info) that has to be unique under a certain department.
The SVG symbol for the component type refers to the component type by type
id. In addition, the component type symbol can use terminal symbols. These
SVG use elements refer to the corresponding property infos by id.

 80

The graphics of the child components is represented under the SVG element of
the parent component. When the graphical information is returned from the
server to the client programs, the needed terminal and component type symbols
are copied under the SVG element using a SVG defs declaration. Connection
symbols behave differently in this respect. They are only used as templates when
the connection lines are drawn and after that the dependency of a specific
connection line to its symbol template disappears. In other words, the connection
symbols are not copied under the defs element. The connection line symbol
graphics is also limited to SVG polylines. The style of the polyline can be
different for different connection symbols.

Components are expressed under SVG g-elements with SVG use elements. The
g-elements refer to the actual component by id and the use elements refer to the
symbols using the href attribute. A connection component also behaves here
slightly differently. It is described also under the g-element that refers to the
corresponding component, but it does not use any symbol information. Instead,
the graphics of the connection line is described separately for every instance
under the g-element.

An example of the usage of the data model is given in Appendix B. The example
includes also some graphical descriptions. The example illustrates the reference
mechanisms explained above. It should be noticed that the graphics part of the
data model has not yet been verified in the implementation.

4.5.8 Monitor, trend and state definitions

Monitor and trend definitions should also be a part of the model configuration.
They have not yet been designed to the data model and thus not represented in
Figure 4.8. Monitor definitions are related to the svg-definitions of a component.
The monitor definitions should be represented in the same way as the graphics of
the sub-components are represented in the svg element of the component. The
extra requirement is that the monitor definitions should also include the
coordinates for retrieving the value through data connections, i.e. the model
server host, model server and property (item) id should be included in the
definition. It would also be convenient if the user could group the monitor
definitions to monitor sets and activate and de-activate them when needed.

 81

Trend definitions are usually related to the root (model) components. However,
it could be convenient if the trend definitions were made under any component.
In the same way as in monitors, the trend definition should include the
coordinates for the retrieved property values, i.e. the model server host, model
server and property (item) id.

The different states of the model should be also part of the model configuration.
This feature has not yet been designed to the data model either. In current
process simulators the model configuration is saved when the state of the model
is saved. When working with big models this usually means that many large files
have to be stored that include the same configurational information over and
over again. Only the calculated variables may have different values. This could
be avoided if the state of the model could be saved and activated inside one
model configuration. In the suggested data model this would mean for example
adding additional vector hierarchies under the property element in the
component instance. Each of the vector hierarchies would correspond to a saved
state. The different states would be listed in the root (model) component and the
active state could be marked. Of course, if the model configuration was changed,
i.e. components were deleted or added, the corresponding states with the same
default values would have to be generated for the added components.

4.5.9 Data model of data connection

The data model of the data connection is much simpler than the data model of
the configuration connection. As explained in Chapter 2, OPC DA uses three
concepts: server, group and item. The mapping of this model to the
configuration connection data model is quite intuitive. The items that can be
monitored and observed using trends are the component properties. In the
simulation control connection the run, stop, load and save functions are directed
to the runnable and loadable components. In the training control connection the
malfunction concepts are most likely modelled as malfunction components in
the model server. Different interfaces are discussed in more detailed in
component view.

 82

4.5.10 References to other specifications

Though there are many mechanisms embedded to the data model some
commonly used mechanisms are also left out. For example inheritance could be
useful in some cases for component types. The kernel developers and providers
could arrange the component types in a type library into inheritance hierarchies.
However, in the field of process components the inheritance hierarchies may not
be so evident and would require very careful planning.

In CAPE-Open, ports have a name, type and direction. In the same way
terminals in the suggested data model have a name, type (typing sub-constraint)
and direction (start or end). However, it has to be understood that although ports
in CAPE-Open describe the actual interface between the software component
(containing the solution algorithm or behaviour) and the simulation engine,
terminals (and references between them) in the suggested data model only
describe the topology of the process. A model server and server extensions can
use this topological information any way they wish in the inner solution
algorithms. The Rome repository described in Section 2.4 is based in many
respects on the CAPE-Open specification, so it has also the same differences
compared to the suggested data model.

Figure 4.9. Similarities between approaches using different specifications.

GML: Simulator1 type library GML: Simulator2 type library

GML: Common type library

GML: Transformer2

HLA: Simulation object model1 HLA: Simulation object model2

HLA: Federation object model

PDML: Application transaction set1 PDML: Application transaction set2

PDML: Integration schema

PDML: Mapping specification1 PDML: Mapping specification2
GML: Transformer1

 83

Three HLA rules were listed in Section 2.2.2. The last one of the listed rules
says that a federate shall have the simulation object model documented and the
first one says that a federation shall have the federation object model
documented. The department may have a correspondence to the model server
type, e.g. a specific simulator, linked to the architecture. Thus, the type library of
that kind of a department can be interpreted as a documentation of the simulation
object model for that model server. Furthermore, the user can also define a
department that does not have a corresponding model server type. The type
library of that department can be used to document a federation object model
common to several model servers. Transformations can be done between the
different departments. If a common model exists the transformation can always
go through that common model and when new model servers are linked to the
architecture they have to define only the transformation to the common model.
However, the common model may be difficult to describe. In those cases, the
transformations can be done straight from one department corresponding to a
certain model server type to another.

Also the PDML approach discussed in Section 2.2.4 has similarities to the
suggested data model in the same way as above. Type libraries of certain model
server can be interpreted as application transaction sets in PDML. The
integration schema, on the other hand, can be modelled as a common type
library. Mapping specifications are transformers between model configurations
in the different departments. The similarities between approaches using different
specifications are shown in Figure 4.9.

A DTD or XML schema can be written for component type description to assist
the kernel developers and providers in writing valid component types. This
approach is similar to the late binding approach of STEP Part 28, discussed in
Section 2.2.3. Another possible approach is to use early binding. This means that
the kernel developers and providers write DTD or XML schema descriptions for
component types. These descriptions are valid according to the ‘meta-DTD’ or
‘meta-Schema’. In order to implement simple functional model servers the
‘meta-DTD’ or ‘meta-Schema’ has to be described in a very compact manner.
This means that the kernel developers have to write similar component type
descriptions as in the suggested approach but using XML schemas. It is,
however, easier to write language than to write grammar. Thus, the late binding
approach was considered to be simpler for the end users.

 84

4.6 Security view

The security model of the architecture can be divided into three parts. The
lowest level is the encryption of the configurational data between the model
servers and model clients. Configuration connections that use HTTPS as a
transport protocol are always encrypted using SSL/TLS technique. Also those
data connections that use HTTPS underneath use the same encryption. The client
authentication feature of SSL/TLS is not used. The encryption feature is
especially important when using Internet-based model and parameter Galleries
or any other model server located in the Internet. Equipment manufacturers or
library developers do not want their information to end up to a third party.
Without the appropriate encryption it is possible to steal configurations from the
line.

Every connection in the architecture is authenticated. The authentication is done
using the user name and password. It should be noticed that in data connections
the third level security of the OPC security specification has to be implemented
for the model servers in order to support the required security model also in the
data connection. The users of the architecture are categorised into four user roles
that correspond to the users listed in the use case analyses. The functions of the
main interface of the architecture (GQL) are categorised accordingly. This
means that a user in a certain user role can call only the functions allowed for
that user role. The user roles are nested so that the kernel developer can call all
the functions that are allowed for the provider, the provider can call all the
functions allowed for the model configurator and the model configurator can call
all the functions allowed for the model user.

The third level in the security is the access mechanism inside the data model
configurated by the user. User definitions are added under the administration
element in the department by the kernel developer. Model configurators can
create user group definitions, add users into them, and define access rights for
the user groups. Model configurators can also define rights for different
elements in the data model by specifying the user groups for whom the access is
granted. The access can be read or write.

 85

4.7 Component view

The component view describes the software component structure and the main
interfaces of the architecture. The component view as an UML component
diagram is shown in figures 4.10 and 4.11. A pure layered architecture would
mean that the software components at one level can access only software
components at a lower level. In this sense, the architecture is not layered.
However, the components are grouped into layers because these layers form
functional groups. The component view is divided into two figures so that Figure
4.10 represents the view of a model server and Figure 4.11 represents the view
of a model client.

The transport layer handles the data transmission between the model clients and
model servers. The main software components of the transport layer are MCTL
(Model Client Transport Layer), MSTL (Model Server Transport Layer) and
MSM (Model Server Manager). MCTL and MSTL are program libraries that
offer functionality for higher level components. MSM is a demon process that is
used for user management and launching services. MSM is always running in a
host where the model servers are executed. In GTP-based communication, these
are the only components that are used in the transport layer. With HTTPS,
commercial web server and stub components are used. The idea on the server
side is to catch the HTTPS messages at the stub and redirect them to the model
server in the local network using GTP. MSM and GQL services are used through
MCTLStub. Data services are used through OPCXMLStub. The message used
for the communication between OPCXMLProxy and Stub comply with the draft
specification of OPC XML.

The next layer in the model server handles the persistence, data access and
extensibility of the model server. All the software components in this layer as
well as the transport layer software components can be reused when legacy
applications or new applications are linked to the architecture. OPCKit
implements the OPC DA and OPC DX interfaces for the model server. In
addition, it implements the simulation control and training control interfaces that
are extensions to the OPC DA functionality. GQLKit implements GQL
functionality for the system. The GQLKit handles security issues and persistence
so that all GML elements that are created to the GQLKit are persistent. The idea
is that the user of the OPCKit and GQLKit libraries can register call backs to the

 86

libraries and customise the response to different functions in his own code. The
GQL specification contains a function for invoking the server extension
components. In this way, the client can use the extended functionality in the
server. In addition, the server extensions can be invoked from the simulator
code. The server extensions themselves can access the GQLKit using an inner
GQL interface.

Figure 4.10. Model server software components.

When legacy simulators are linked to the architecture it is often beneficial to
implement an adaptation software component between the simulator and the
generic kit libraries. In this software component known as Front (often prefixed

OPCKit GQLKit

MSTL

Transport layer

Server
extension

Server
extension

Persistence, data access and extensibility layer

Front

Optional adaptation layer for legacy simulators

MSM

Simulator

Simulation layer

OPCXMLStub MCTLStub

Optional HTTP layer

 87

with the name of the simulator for example AprosFront) the model access and
data access functionality is customised for the simulation tool in question.

On the client side the user interface can use the services of the transport layer
directly or it can use an optional adaptation layer. Different GQL messages are
expressed as function calls in the MCKit interface. In the same way, the
OPCXMLProxy implements the OPC DA interfaces for the HTTPS model
server. This means that the client can access the interfaces as if they were
ordinary OPC DA interfaces in the local network. Client extensions are invoked
from the user interface and the client extensions can access the model servers
using GQL and transport layer services. The configuration user interface
implemented for the architecture is called Model Explorer.

The most important interfaces in the architecture are the GQL, OPC DA, OPC
DX, simulation control and training control interfaces. The GQL interface is the
function interface that is used to manipulate the GML data model described in
the previous section. The GQL interface can be used through different software
components in the architecture. MCKit for example exposes the GQL interface
as a COM automation interface whereas GQLKit exposes it in C++ format for
server extensions and for simulator vendors. The GQL interface between the
model servers and model clients is defined using SOAP like XML messages.
The following is an example of a GQL request and response. It can be seen that
the GQL syntax could be easily changed into SOAP. However, when the
implementation of the system was started the SOAP standard was still in a draft
phase and SOAP tools were not as advanced as today. This was the reason for
using a tailored syntax in the message passing.

<Request>

 <SetCategory>

 <Department>aDAF105DD-0A80-4ec4-AB57- 54F5D7E71D16</Department>

 <Parent>a7E83E3E0-5DEC-4e98-AF53-3890E7ADD740</Parent>

 <Name>Enumerations</Name>

 <Id>a03874FE8-DA5E-46b3-9154-46E0BB5D8E97</Id>

 </SetCategory>

</Request>

 88

<Response status=”ok”>

 <Return seq=”1”/>

</Response>

The user can create categories to the server by using the SetCategory -function.
The GQL specification defines almost 100 functions for the manipulation of
GML data. These functions are not listed in this thesis.

Figure 4.11. Model client components.

The OPC DA interfaces are used for accessing simulation data in the model
servers. The simulation results can be monitored and trended through OPC DA.
The data exchange between different model servers is also handled using OPC
DA. If the model server is OPC DX compliant this kind of horizontal data
connection is configured using the DX standard. If the server does not support
OPC DX then the data between the model servers is transmitted through the data
exchange configuration user interface. The data from the HTTPS model server is
transmitted to another model server in the same way using the data exchange

MCTL MSM

Transport layer

MCKitOPCXMLProxy

Optional adaptation layer

User interface layer

User
interface Client

extension

Client
extension

 89

configuration user interface. The user interface uses the OPCXMLProxy/stub
mechanism underneath. The data exchange configuration user interface
implemented for the architecture is called X-Connector.

The simulation control interfaces are used for loading and saving models, for
listing and changing the model states, for running and stopping the simulation
and for querying the simulation control variables such as real time ratio or
simulation current time. One important feature that is still missing from the
simulation control interface is synchronisation. There may be a need to
synchronise the execution of two or more model servers. For example, when the
dynamic simulation in two model servers is running faster or slower than real
time, synchronisation is needed. Different synchronisation models are discussed
further in Section 5.3.3. The training control interfaces are used for recording
functions and for malfunction control. Both simulation and training control
interfaces are implemented as extension interfaces for the OPC server object.

One HTTPS model server has a special role in the architecture. This model
server is called Gallery. Gallery is located in the Internet so that it is accessible
for all users of the architecture. Gallery can be used for sharing models between
different users and for transmitting process component parameter values from
equipment manufacturers to the simulation users. Furthermore, client and server
extension tools can be distributed through Gallery. When downloading and
uploading models and component information it is important to detect whether
the model or component already exists in the server. This is another rationale for
the usage of GUIDs.

4.8 Process view

The process view discusses the distribution, concurrency and performance
issues of the architecture. In addition, the mapping from the logical concepts to
the physical processes is explained.

The process view of the architecture as an UML component diagram is shown in
Figure 4.12. The model server and model client are implemented as processes in
the architecture. In addition, launching and user management services are
implemented using a separate process, a model server manager.

 90

The architecture is distributed so that the model clients and model servers can be
located in different hosts. When they are in the same local network, the GTP and
RPC mechanism of COM are used. When they lie distributed over the Internet,
HTTPS protocol is used. The transport layer chooses the right protocol
according to the configuration done during the installation of the system. A
model server manager process must be running in every host where the model
servers are executed. The administrator of the system configures the different
model servers and user roles to the model server manager. The distribution
model of the architecture is illustrated in Figure 4.12. It should be noticed that
the configuration in the figure is only one possible deployment of the
architecture.

The architecture is designed so that several model clients can connect to one
server simultaneously. This is needed in the data connections for example if
several trainees are observing the values of one and the same simulation. If
horizontal data connections are configured the model server may need to transfer
values also to other model servers. Concurrency is needed in the configurational
connections e.g. in the Gallery server, where several process designers access
the database at the same time. However, the configurational connections are not
event-based, so the model clients have to refresh the view from time to time in
order to receive up to date information.

When working with simulators, concurrent configuration usage is not practical.
First of all, simulators do not support concurrent simulation of separate parts of
the model at the same time (Section 2.3). Secondly, concurrent model
development in the same simulator is not the way process designers like to work.
Large models are broken down into pieces and the pieces are modelled in
separate simulators by different model configurators. After the pieces have been
tested the larger model is assembled from the pieces. It is probably not worth the
effort to develop a process simulator that could handle this concurrent
development inside one simulator.

 91

The performance of the architecture can be divided into the performance of the
configurational connections and the performance of the data connections. The
model configuration may be large and when expressed in the GML format it
may take a lot of space. For example, a typical medium-size power plant model
(Tuuri & Juslin 1995) takes 15 MB when expressed using GML (does not
include graphics). Copying model configurations of this size from one server to
another takes time depending on the transmission speed of the network
connection.

Figure 4.12. Process view of the architecture using an example deployment to
illustrate the distribution.

Conf. UI1 as model client

Model server manager host3

Simulator as model server

Model server manager host4

Gallery as model server

Conf. UI2 as model client

http server (e.g. IIS)

Application server (e.g. dllhost)

Host1

Host3 Host4

Host2

GQL/GTP

GQL/HTTPS

 92

The model configuration has to be parsed in the model server. Different XML
parsers have very different performances. For example, if the power plant model
is read to the DOM parser of Microsoft (version 2.0) it takes around 2.6 seconds
(Pentium III 800 MHz). The same value with the Xerces parser of Apache XML
project (version 1.51) is more than 40 seconds. Due to the delays in the handling
of large XML documents some of the GQL functions are specified as
asynchronous. This means that in normal GQL functions, the response is
returned immediately as an answer to the request. In an asynchronous GQL
function, the client gets an identifier as a response to the request and later on it
may query the status and the result of the original request.

The functions handling large XML documents such as the functions handling
model configuration and type and symbol libraries are made asynchronous in the
specification. Furthermore, packing is added at the transport layer level if the
transmitted XML package is large. Otherwise, the GQL interface is designed so
that the XML requests and responses are of reasonable size (< 1MB).

The performance of a data connection is crucial for many tasks. For example in
automation testing and in training simulator cases a fast data connection between
the control system and the simulator is vital. This is why efficient
implementation of OPC DA interfaces is important in the architecture. Different
implementation approaches were tested and they are further discussed in Section
5.3.3.

 93

5. Verification

5.1 Introduction

This chapter presents the use scenarios to verify the hypotheses (see Section 1.2)
of the thesis. The use scenarios also form the deployment view to the proposed
architecture. The deployment viewpoint describes the physical architecture of
the system. Different deployments use different features of the proposed
architecture. The use scenarios are chosen so that they measure the desired
customisation, reuse, co-use, extensibility and flexible connectivity features of
the proposed architecture. Section 5.2 focuses on the use scenarios related to
model configuration and Section 5.3 focuses on the use scenarios related to
model usage.

Use scenarios are described using the UML collaboration diagrams. The class
instances in the diagrams are instances of classes represented in the logical view.
It should be noted that the objects are not implementation objects and that the
sequence of actions also contains actions initiated by the user. Each physical
deployment is also described using the UML deployment diagram format.

Figure 5.1. Launching scenario.

Model Explorer : Model
configuration UI

Simulator : Model
server

Location and launching
services

User management
services

Configurational connection :
Configuration connection

1: List model servers 2: Connect

6: Get role

4: Authenticate user
3: Launch server

5: Create connection

7: Get role

 94

Many of the use scenarios include the creation of a configuration connection as a
common scenario. This launching scenario is shown in Figure 5.1. First, a
model client asks the location and launching services to list the model servers
located at a certain host. After the user has selected a model server, the model
client requests a connection to that model server. In this connection request, also
user name and password are given. The location and launching services launch
the desired server (if not already running) and the server authenticates the user
using user management services. If the user is accepted, a new configuration
connection is established. Now the model client can send GQL requests using
this connection. The first request is very often “getRole” giving information
about the role of the user at the model server.

Data connections are created using the COM mechanism and services of the
COM library. Each model server instance has a program id that can be used to
establish an OPC connection to the server. Connection to a remote server also
needs the name of the remote host. When the remote host is located in the
Internet, the OPCXMLProxy/Stub mechanism handles the creation of the data
connection. It should be noticed that data and configurational connections are
independent of each other.

5.2 Verification of the configurational features

5.2.1 Model customisation using manufacturer data and
dimensioning tools

In the proposed architecture, a centralised database model server, known as the
Gallery, can be used for sharing model configurations and component parameter
values among the users. In the following example, a pump manufacturer uploads
information about centrifugal pumps into the Gallery and the simulator users can
use the data for setting the parameter values for a pump in the simulator
program. The selection of the pump is based on the hydraulic properties.

Figure 5.2 illustrates the use scenario for model customisation using
manufacturer data. The main phases in the diagram are:

 95

1. Kernel developer defines a component type description to Gallery (messages
1, 2 in the diagram)

2. Kernel developer programs and uploads extension tools to Gallery (3, 4)

3. Provider downloads converter from Gallery (5, 6)

Figure 5.2. Use scenario of pump dimensioning.

4. Provider uploads equipment data to Gallery (7, 8, 9)

5. Model configurator downloads dimensioning tool from Gallery (10, 11)

Manufacturers UI : Model
configuration UI

Pump data converter :
Converter

Manufacturer's Gallery connection :
GQL/HTTPS

Gallery :
Database

Designer Gallery connection :
GQL/HTTPS

Process designer's UI : Model
configuration UI

Simulator connection :
GQL/GTP

Apros/Apms :
Dynamic simulator

Pump search engine :
Search engine

Pump selector dialog :
Dimensioning tool

Kernel developer Gallery
connection : GQL/HTTPS

Kernel developer's UI : Model
configuration UI

Converter connection :
GQL/HTTPS

Tool Gallery connection :
GQL/HTTPSTool Simulator connection :

GQL/HTTPS

7: Convert data

5: Download converter

8: Upload data 6: Download converter

17: Select pump 11: Download dimensioning tool

10: Download dimensioning tool

12: Browse pump for dimensioning

14: Invoke

13: Browse pump for dimensioning

15: Select pump
18: Get data

20: Set data

2: Set type description

4: Upload extensions

1: Set type description

3: Upload extensions

9: Upload data

16: Select pump19: Get data

21: Set data

 96

6. Model configurator selects the equipment from simulator for dimensioning
(12, 13)

7. Model configurator dimensions the equipment (14, 15, 16, 17, 18, 19, 20,
21)

Figure 5.3. Deployment view of pump dimensioning scenario.

First, the kernel developer writes the component type description for the
centrifugal pump to the type library in the Gallery department at the Gallery
model server. The kernel developer also programs the software components for
pump data conversion, for pump selection based on hydraulic properties and for
pump dimensioning to the simulator (Apros/Apms). The dialogs are
implemented as ActiveX components (Chappell 1996) and the pump selector is
implemented as in process COM automation component (Microsoft 1995). In
addition, the kernel developer uploads the client and server extension
components and their descriptions to the Gallery model server. Model Explorer
is used as a configuration UI for all users in the use scenario.

Manufacturer's
computer

Model explorer as model client

Gallery server

Gallery as model server
Model server manager

Process designer's
computer

Model explorer as model client
Apros as model server
Model server manager

Kernel developer's
computer

Model explorer as model client

 97

The pump data converter is described to the Gallery model server as a client
extension of the type converter and it is associated to the centrifugal pump
component type description. The purpose of the software component is to
convert the hydraulic pump data files of the manufacturer (Sulzer Pumps Finland
in this case) into GML components as described in the component type
description of centrifugal pumps.

The pump search engine is described to the Gallery model server as a server
extension of the type search engine. The purpose of the software component is
to go through the pump instances in the database and select suitable pumps
according to the hydraulic selection criteria i.e. capacity, head and NPSHa.

The pump dimensioning tool is described to the Apros/Apms model server as a
client extension of the type dimensioning tool and it is associated to the
component type description of an Apros/Apms pump. The purpose of the pump-
dimensioning tool is to offer a user interface for the pump search engine server
extension and to transform parameter values from the Gallery centrifugal pump
instance to the Apros/Apms pump instance.

The manufacturer uses the pump data converter for setting and updating pump
data in the Gallery database. In the example case, 10 pump instances are set to
the database. The model configurator downloads the dimensioning tool from the
Gallery to the Apros/Apms model server and sets the parameter values for the
pump in the simulator using the pump search engine in the Gallery and the
dimensioning tool dialog in Apros/Apms. The characteristic curve, e.g., for the
selected pump is automatically transformed and set to the simulator pump.
Transforming is needed because the curve is expressed in a different way in the
Gallery type description than in the Apros/Apms type description. More
information about the selection algorithm and about the type description for
centrifugal pumps can be found in (Luukkanen 2001).

Dialogs use their own connections to the model servers. Separate connections
make them more independent for use in other model clients than Model
Explorer. The deployment view for the use scenario is shown in Figure 5.3. Four
different computer hosts are involved. The processes used in the different hosts
are written under the host symbols.

 98

A similar dimensioning case to that of the centrifugal pumps is also
implemented for shell and tube heat exchangers. The problem with the use of
heat exchangers in the Apros/Apms environment has been the customisation of
the unit operation model. There are many parameter values (number, material,
length, diameter, loss coefficient of tubes, roughness in both tubes and shell,
flow area and length at shell side etc.) that have to be given in order to
dynamically simulate a heat exchanger (pressure/flow solution).

The use scenario for the heat exchanger deployment is very similar to the use
scenario in the pump case (Figure 5.2). The kernel developer implements and
describes the dimensioning tool for the Apros/Apms heat exchanger component
type. In addition, he implements and describes the heat exchanger selector as a
search engine to the Gallery database. The shell and tube heat exchanger
component type description is made according to the TEMA (TEMA 1988)
specification. So the instances that are used in the selection are not instances of a
specific manufacturer, but standardised instances according to the specification.
In other respects, the use scenario is very similar to the pump customisation use
scenario described in Figure 5.2. More detailed information about the selection
and dimensioning algorithms can be found in (Soini 2001).

The two example cases show how the architecture can be used to enhance the
efficiency of model customisation by providing

1. centralised repository, Gallery, for process component data and

2. generic distributed extensibility features for building selectors and
dimensioning tools for different process components.

5.2.2 Model reuse using centralised repository and parametricized
construction

The proposed architecture can be used for reusing the model configurations.
Model reuse can be done in three different ways. In template-based reuse, a
model template is copied to the Gallery database and access rights are set for
other users. When someone else takes the template in use, it may have to be
modified for the particular usage.

 99

In parametricized construction, the logic of building the model configuration is
programmed into a model builder client extension component. The model
builder software component is stored in the Gallery and access rights are set for
other users. When the model builder is used, the user can set the functional
parameters through the user interface of the model builder and the software
component builds the model configuration according to these parameter values.

The third way for model reuse is to combine the template-based and
parametricized construction approaches. Some of the basic templates can be
stored to the Gallery database and the model builder uses these templates as
input and modifies them according to the parameters given by the user.

A machine screen is used here as an example to demonstrate the three reuse
mechanisms. The purpose of the machine screen at a paper mill is to remove
impurities from the pulp suspension before paper machine head box. The aim of
the example case is to use the reuse mechanisms to store the machine screen
assortment of a certain manufacturer (Metso Paper) into the Gallery database
and use this information to ease the work of the model configurator. The
difference from the pump case described in the previous section is that a
machine screen is often not a primitive component in the simulation
environment. It can be modelled as a hierarchical model in e.g. Apros/Apms.
Even though the example model is very small it should be noticed that the same
reuse mechanisms could be used for much larger hierarchical model entities.

The feed in a machine screen is typically axial or tangential. The machine screen
can be modelled as a hierarchical component in the Apros/Apms type library.
However, the two different feed types require different sub-structures (Figure
5.4). In both cases the flow is split to accept and reject. In the case of the
tangential feed there is a pressure loss in the accept line. Instead the axial feed
produces an extra head into the accept line.

A clean template-based approach would mean that the manufacturer maintains
the hierarchical Apros/Apms model palettes at the Apros/Apms department of
the Gallery database. The different feed types and different equipment sizes
should be maintained in the Apros/Apms type library format. This could be a
reasonable option if the manufacturer is also an Apros/Apms user and if all the
other Gallery clients who needed the machine screen data could use it in this

 100

format. It can be seen that a clean template-based approach is best suited for
sharing models between users who use the same simulation tool.

A clean parametricized construction mechanism would mean that the
manufacturer or kernel developer of the Apros/Apms model server maintains a
model builder software component. Using the model builder, the model
configurator could build the different machine screen types to the simulation
model. If the manufacturer wants to make changes to the assortment of machine
screens, the component has to be changed, recompiled and shared through the
Gallery database. This is laborious and, thus, a clean parametricized construction
mechanism is not so feasible if there are dependencies to a changing data set.

Figure 5.4. Sub-structures for a machine screen in Apros/Apms for axial and
tangential feeds.

A combination of the two mechanisms is best suited for the machine screen use
case. It means that the manufacturer maintains the information on machine
screens in the Gallery type library format. This component type description is
described in such a way that it contains all the needed information on machine
screens for all the different simulation tools linked to the architecture. It should
be noticed that the machine screen component instances in the Gallery
department are not hierarchical. Now the kernel developer of Apros/Apms
implements the model builder for machine screens for the simulator. This model
builder can be used for selecting the desired machine screen from the Gallery
and for building the appropriate hierarchical model to Apros/Apms. The use

Tangential Axial

accept

reject

accept

reject

 101

scenario is represented in Figure 5.5. The deployment diagram is the same as for
the pump dimensioning case (Figure 5.3).

Figure 5.5. Use scenario for combination of template based and parametricized
construction of machine screens in Apros/Apms.

The main phases in the use scenario in Figure 5.5 are:

1. Kernel developer defines component type for machine screens, programs
model builder and uploads them to Gallery (1, 2)

2. Provider maintains machine screen data according to component type
description (3, 4)

3. Model configurator downloads model builder from Gallery to Apros/Apms
environment (5, 6, 7, 8)

Kernel developer's UI :
Model configuration UI

Manufacturer's UI : Model
configuration UI

Model configurator's UI :
Model configuration UI

Gallery :
Database

Kernel Gallery connection :
GQL/HTTPS

Manufacturer Gallery
connection : GQL/HTTPS

Configurator Gallery
connection : GQL/HTTPS

Apros/Apms : Dynamic
simulator

Configurator Apros
connection : GQL/GTP

Machine screen constructor
: Model builder

Constructor Gallery connection :
GQL/HTTPS

Constructor Apros
connection : GQL/GTP

1: Set model builder and component type

3: Maintain machine screen data

5: Get model builder

7: Browse to parent component

9: Invoke

2: Set model builder and component type 4: Maintain machine screen data

6: Get model builder

8: Browse to parent component

10: Browse machine screens

12: Get data

14: Build sub-process

11: Browse machine screens

13: Get data

15: Build sub-process

 102

4. Model configurator uses Gallery data and model builder to build appropriate
sub-process into Apros/Apms (9, 10, 11, 12, 13, 14, 15)

The data-centric approach of the architecture can be seen from the examples
represented in this and in the previous sections. The extension mechanisms i.e.
software components are used for data-centric purposes. This is the main
difference between the approaches of Gallery and Rome (see. Section 2.4).
Rome as well as CAPE-Open take a model-centric approach to the reuse and
thus the software component technology is used for extending the simulation
algorithms rather than for supporting model configurational issues.

Version control is an important issue when sharing models through an Internet-
based database. If a model is updated by several users, for example, it should be
possible for them to check out the model or parts of it so that the other users
could see that the model is being used by someone else. This kind of version
control features, other than the history mechanism (4.5.6), have not yet been
implemented to the architecture.

5.2.3 Co-use of a steady state simulator and a dynamic simulator

The proposed architecture can be used for configurational co-use between
different process simulators. Prosim and Apros simulators are used here for an
example of configurational co-use. Prosim is a simulation tool developed by
Endat (Prosim 2000). It focuses on steady state simulation and optimisation of
power plant processes. A small part of a power plant process containing the
turbine and feed water tank was taken as an example configuration (Figure 5.6).
In this process, steam from the superheater of the boiler is led to the turbine.
Most of the steam from the turbine is led through the condenser to the feed water
tank whereas some of it is tapped directly to the feed water tank. The water is
pumped back to the pre-heaters of the boiler from the feed water tank.

The use scenario of the configurational co-use is shown in Figure 5.8. The
deployment view for the use scenario involves only one computer where both
simulators and the user interface are located. Before the model configurator can
use the architecture as described in the use scenario both of the simulators have
to be incorporated into the architecture. The kernel developer has to define the

 103

type libraries for the supported component types of the simulators. The kernel
developer also has to implement a transformer client extension component that
is used in the configurational transformation. The component types for some of
the process components used in the example are shown in Appendix C. The
component types for both Apros and Prosim are listed. From the type
descriptions one can see the difference in the parametrisation of the process
components in the two simulators.

Figure 5.6. Example process.

The mapping from Prosim types to Apros types is done in the transformer
component. For example, the flow in boundary in Prosim is mapped to two
points and a connecting pipe in Apros. The first point and pipe are excluded
from the flow net solution and the other point is a part of the simulation (Figure
5.7).

Flow

Flow

Flow

p&h

TurbineSteam from
superheater

Valve

Feed water tankPump

Water from
condenser

Steam to
condenser

Water to
preheater

 104

Figure 5.7. Mapping from Prosim components to Apros components in the use
scenario. The Prosim component name is shown on the right and the
corresponding Apros components are shown on the left.

It can be seen that the Apros representation for all of the components is more
complex than the Prosim representation, i.e. one to many mapping. This makes
the transformation somewhat easier from Prosim to Apros. The transformation to
the other direction has not been implemented. In the use case sense it is not as
important since the workflow usually goes from steady state to dynamic
modelling.

In the case of one to many correspondence, Apros components can also be
packed as higher level components that correspond to the Prosim components.
The mapping can be seen in Figure 5.7. Measurement and actuator components
are added to the mappings in order to lift the flow measurement values and
control signals to the interface of the higher component.

 105

After the kernel developer has implemented the transformer tool the model
configurator can use it. The model configurator builds the model (Figure 5.8) to
Prosim and simulates the steady state for it. Then he uses the transformer for
transforming the model to Apros. The generated Apros model has to be
considered only as a template. In the dynamic model the model configurator also
has to configure the controls for the model in order to successfully simulate it.
Of course, wizards for configuration of simple control loops could be added also
to the transformer, but the model configurator will probably wish to configure
the controls himself.

Figure 5.8. Use scenario for configurational co-use.

The problem with this approach is the updating of the model. Once the model
has been transformed from Prosim to Apros the model starts to evolve in two
places. One can always design different intelligent update operations to the

Process designers UI : Model
configuration UI

Prosim connection :
GQL/GTP

Apros connection :
GQL/GTP

Prosim proxy : Steady state
simulator

Apros/Apms : Dynamic
simulator

Prosim to Apros :
Transformer

Transaformer prosim
connection : GQL/GTP

Transformer apros
connection : GQL/GTP

Prosim simcont :
Simulation control

Prosim DA :
OPC DA Apros simcont :

Simulation control

Apros DA :
OPC DA

1: Build model

13: Add controls

7: Invoke

3: Run

6: Send data 15: Run
18: Send data

2: Build model

14: Add controls

8: Get model

11: Set model

10: Transform

9: Get model
12: Set model

4: Run

5: Send data

16: Run
17: Send data

 106

transformer. However, according to the author’s experience it is difficult and
time consuming to develop and maintain a transformer that is reliable for such
usage. The main advantage for using a transformer is therefore that one gets a
template of the model to start with so that everything does not have to be
configured all over again. After that, however, the models can be let to evolve
separately.

One way of implementing configurational co-use would beto use a common
model (third type library) between the simulators as described in Chapter 4. The
kernel developer implements the transformer from the common model to Prosim
and the transformer from the common model to Apros. The changes are made
only to the common model and then projected to the simulators. However, the
common model is most likely a union of the parametrisation in both simulators
and thus the Prosim model configurator must also deal with the Apros parameter
values.

In addition to configurational co-use the simulators may also have run time co-
use. This means that the steady state values calculated in the steady state
simulator can be transferred to the dynamic simulator to be used as an initial
state. This kind of a horizontal data connection between the tools can be
configured using X-Connector and OPC DX. The items of the connection can be
kept inactive and the connection can be refreshed when the user wants the initial
state to be transferred.

5.2.4 Empirical models in the architecture

In the proposed architecture, a centralised repository can be used for sharing
measurement data. The following example shows how a disc filter manufacturer
can upload measurement data (called leaftests) of the disc filters to the Gallery.
The data can be used in a dynamic process simulator in order to better adapt the
disc filter model to a certain process. The represented example demonstrates the
extensibility features of the architecture. Due to the lack of measurement data the
example, however, has not yet been completely implemented.

 107

The use scenario of the disc filter case is shown in Figure 5.9. The main phases
in the use scenario are:

1. Kernel developer implements an external model and dialog for it and
uploads them together with the component type description to Gallery (1, 2)

2. Provider uploads disc filter leaftest data to Gallery (3, 4)

3. Model developer uses external model and related measurement data in
simulation (5–16)

4. Disc filter end user can access the measurement data and external model
through the dialog indepent of the simulation usage (17–23)

Figure 5.9. Use scenario of disc filter external model.

Process designers UI :
Model configuration UI

Apros connection :
GQL/GTP

Apros/Apms :
Dynamic simulator

Disc filter end user's UI :
Model configuration UI

Gallery connection :
GQL/HTTPS

Gallery :
Database

Designers gallery connection
: GQL/HTTPS

Simulation connection :
Simulation control

Data connection :
OPC DA

Disc filter extension dialog :
Server extension dialog

Extension dialog
connection : GQL/HTTPS

Kernel developer's UI :
Model configuration UI

Disc filter model :
External model

Disc filter model :
External model

Disc filter manufacturer's UI :
Model configuration UI

Kernel developer connection
: GQL/HTTPS

Manufacturer connection :
GQL/HTTPS

7: Set model and data

5: Get model and data
9: Run

15: Stop

14: Send data (periodic)

8: Set model and data

11: Calculate filtration (periodic)

12: Get data (periodic)

20: Calculate filtration

17: Get dialog
19: Invoke

18: Get dialog

22: Calculate filtration (once)

23: Get data (once)

6: Get model and data

10: Run

16: Stop13: Send data (periodic)

21: Calculate filtration

1: Set type desc, model and dialog
3: Set leaftest data

2: Set type desc, model and dialog

4: Set leaftest data

 108

The filtration model is implemented as an external model (dynamic link library).
The model takes the rotational speed, inlet consistency, freeness and angle of
offset as input parameters. It calculates the drainages and consistencies for
different filtrates (cloudy, clear and super clear) (Mäkinen 2001). The model is
implemented by the kernel developer. The kernel developer also provides the
component type description for the leaftest data of the disc filters. The disc filter
manufacturer (GL&V in this case) maintains the leaftest data in the Gallery
database. Simulator users can download the model and the related measurement
data to the Apros/Apms environment and use the data if they need to adapt the
disc filter model to a certain process. In this case, the model is used periodically
by the simulation engine when it asks the filtration values from the external
model during the execution of calculation time steps.

In addition, the model can be used by the disc filter end users. They can invoke
the model using the server extension dialog implemented by the kernel
developer. In this case, the external model is called only once using the input
arguments given by the user. It should be noticed that the model server provides
fast GQL API for server extensions to access data in the database. Although this
API has the same functionality as the GQL interface, it is used internally which
makes the execution of GQL calls faster than between model clients (or client
extensions) and the model server. The deployment view of this use scenario is
allmost the same as for the pump dimensioning case (see Figure 5.3). Only
difference is that the disc filter end user is accessing the system from own
separate host.

5.3 Verification of the run time connectivity features

5.3.1 DCS testing

The configurational features of the architecture discussed in the previous section
have a larger role in the design phase of a process and automation delivery. The
focus of this section is on the later phases of the delivery life cycle, i.e.,
automation testing and operator training.

The suggested architecture was applied to an automation modernisation project
of an Estonian power plant. The project was carried out by Fortum Power and

 109

Heat in 1999 and 2000. The Estonian power plant is an oil shale combusting
power plant consisting of 8 blocks each with two boilers and one steam turbine.
Each block has an electric output of 200 MW. The control system used in the
modernisation was MetsoDNA (NelesDNA at that time) and the process was
modelled using the Apros simulator. (Rinta-Valkama et al. 2000)

Figure 5.10. Deployment view of the architecture in the DCS testing case.

The physical deployment of the architecture used in this case is represented in
Figure 5.10. The process model ran in one of the computers. The control
software ran in two computers with the process stations in one and the operating
station in the other one. The fourth computer was used to handle the
communication between the two systems. X-Connector was used for the creation
of a vertical data connection to the systems and for transmitting values between
the connections. It should be noted that at that time DX specification did not yet
exist. There were about 2000 signals conveyed simultaneously through this link
in a real time simulation.

Connection host

X-Connector as model client

Operator station
host

MetsoDNA operator station

Simulator host

Apros/Apms as model server

Process station
host

MetsoDNA process station as model server
MetsoDNA debugger
fbCad
MetsoDNA engineering workstation

 110

The use scenario of the architecture is represented in Figure 5.11. It should be
noticed that in the diagram Grades, MetsoDNA debugger, MetsoDNA operator
station and fbCad are described using the concepts of the proposed architecture
even though they do not satisfy the architectural criteria of a model client. They
do not use any connection types of the proposed architecture. In the same way,
the MetsoDNA engineering workstation is not a model server. However, the
applications are included in the diagram to give a better understanding of the
testing procedure.

Figure 5.11. Use scenario of the architecture in the DCS testing case.

Rinta-Valkama describes the testing procedure in the following way (Rinta-
Valkama et al. 2000):

“The testing procedure was rather similar to the control loop commissioning procedure at site.

Each control loop was tuned based on a step response experiment done with the simulator. It was

then checked that the loop was stable, followed the set point and had acceptable dynamics. If the

loop did not function properly, the fault was located using trend plots of the operator station and

the debugger of the automation system. Finally, the problem was fixed and the function block

diagram was updated. Most loops were tested in this fashion. These included steam temperature,

X-Connector : DX
Configuration UI

MetsoDNA process station :
Process station

AprosApms : Dynamic
simulator

MetsoDNA OPS :
Operators UI

Apros data :
OPC DA

Grades : Model
configuration UI

MetsoDNA data
: OPC DA

fbCad : Model
configuration UI

MetsoDNA EWS :
Model server

MetsoDNA debugger :
Model client

5: Send data

10: Write data

6: Write data

9: Send data

3: Run communication

13: Send trend data
4: Send data

11: Write data
1: Run

15: Stop

7: Write data

8: Send data

14: Change automation configuration

17: Load new configuration

2: Run

12: Change parameter values

16: Stop

 111

steam pressure, drum level, flue gas oxygen, electric power, feedwater tank pressure and mill

temperature control loops. The master controls were tested in a more diverse manner. The master

control of the power plant includes the control of the electric power, turbine initial pressure and

pressure in the two boilers. The configuration of the master control was not yet decided, when the

simulation tests were started. Different variations of the master control were tested by simulation,

and compared against each other. After the operation in steady state and in load changes was

checked, it was verified that the control loops worked properly in certain disturbance situations.

These included a forced draught fan trip, a fuel mill trip and quick by-passing of the pre-heaters.”

The experiences from the use case were mainly positive. Quite many changes
were made to the automation application already at the factory during the
simulation-aided testing. Without the testing many of the changes would have
had to be made at the site. The communication was flexible to configure and
easy to modify. The capacity was also adequate for most of the tests. However,
there were some cases where the speed of the data transmission was too slow
and the controllers could not be tuned realistically. Also, the scalability of the
data connection was not adequate for running the entire plant at the same time.
The testing of the entire plant at one go would have included around 7000
signals between the DCS and the simulator. The OPC connection at that time
was able to transmit around 2000 signals between the systems. The lack of
synchronisation between the simulator and the DCS was also a problem with the
motor operated valves, because some control pulses were doubled and some lost.
It was possible to get around this problem in the simulator, but in these cases the
functionality of the valve position control could not be tested.

It will be shown in Section 5.3.3 that with a more efficient OPC implementation
the speed and scalability problems of the data connections have been fixed. Also
the synchronisation issue is discussed in more detail in Section 5.3.3.

5.3.2 Training simulator support

The suggested architecture was applied in a training simulator delivered by
Metso Automation to the Suomenoja power plant in Espoo. The automation
modernisation was done in the plant in 1993 and the training simulator,
including the coal block So1, was delivered in December 2000. The Suomenoja
plant delivers electricity and district heating for the cities of Espoo, Kauniainen

 112

and Kirkkonummi. The maximum electrical power of the plant is 120 MW and
the capacity for district heating is 350 MW. (Yli-Petäys et al. 2001)

The process was modelled using the Apros simulator and the MetsoDNA
distributed control system was connected to the simulator by OPC data access
interfaces and the X-Connector tool. The use scenario of the architecture is
represented in Figure 5.12. An instructor’s interface was used to operate the
system. First, a snapshot corresponding to a certain starting point of a training
program was loaded to both of the systems and then the execution was started. In
addition, the communication configuration was loaded and started. Around 1300
signals were transmitted through the OPC link in a real time simulation. The
instructor could trigger different malfunctions through the instructor’s interface
and he could follow the operations of the operator using trend plots. The
operator operated the process through a normal operator UI, similar to those in
the control room. The deployment view of the system is shown in Figure 5.13.

Figure 5.12. Use scenario of the architecture in the training simulator case.

The use of extension interfaces is necessary in both control system testing and
training simulator cases. OPC DA does not specify the functionality for starting
and stopping the simulation or for the training control features such as

MetsoDNA OPS :
Operators UI

MetsoDNA process station :
Process station

X-Connector : DX
Configuration UI

Instructors interface :
Instructors UI

Apros data1 :
OPC DA

Apros data2 :
OPC DA

Apros/Apms :
Dynamic simulator

Apros simcont :
Simulation control

Apros training :
Training control

MetsoDNA data
: OPC DA

MetsoDNA simcont :
Simulation control

16: Operate

7: Send data
12: Write data

8: Write data

11: Send data

5: Load/run communication

1: Load/run training program
3: Load/run training program

18: Send data

14: Trigger malfunction

6: Send data

13: Write data

17: Send data2: Load/run

15: Trigger malfunction

9: Write data

10: Send data

4: Load/run

 113

malfunction control, recording and backtracking. Also the ability to save and
load snapshots is essential. This functionality is defined in the data connections
of the proposed architecture. Simulation control and training control interfaces
are defined as extensions to the OPCServer COM object.

Figure 5.13. Deployment view of the architecture in the training simulator case.

The experiences from the project were positive both among the training
simulator developers and the operators. In an inquiry made among the process
personnel (22), the average grade for all questions (8), on a scale from 1
(unsatisfied) to 5 (satisfied) was 3.9 (Yli-Petäys et al. 2001). The compound
system was easy to operate through the instructor’s interface. The speed and
scalability of the OPC connection was also adequate for a training simulator of
this scale.

The architecture was also applied in a training simulator delivered to the Sunila
pulp mill. A new bleach plant started production in June, 1998. During the
autumn of 1997, a dynamic simulation model in the Apros/Apms environment
was developed based on the mill’s P&ID’s, functional descriptions of the
equipment, and input from the experts of the main equipment deliverer,

Operator station

Control system
host

Process station as model server

Instructors host

X-Connector as model client
Instructors interface as model client

Simulator host

Apros/Apms as model server

 114

Ahlstrom Machinery Corporation. The model was connected to the TotalPlant
Alcont control system of Honeywell-Measurex and was used for operator
training during spring, 1998. The main controls of the automation application
were simulated in the simulator and the rest of the automation application was
executed in the DCS. (Lappalainen et al. 1999; Tervola et al. 1999)

At that time, the OPC implementation of the simulator and DCS was not as
sophisticated as it is today. The Modbus protocol (Swales 1999) was used for the
communication from the OPC server to the DCS process station. Despite the
‘crude’ implementation 700 signals were transmitted between the systems in a
real time simulation. The simulation control and training control features were
not ready in the compound system at that time. For this reason, the start-up of
the training system and the shift from one training situation to another were quite
time consuming and difficult.

In all of the three industrial cases, one of the conclusions was that the dynamic
simulation model could be used also in other phases of the process or automation
delivery. In the case of the Estonian power plant the model was detailed enough
also to be used in the operator training. In the Sunila case, many problems in site
testing of the automation application were solved as the model was connected to
the doubled DCS system simultaneously with the commissioning at the mill.
With more careful planning and scheduling the model could have been
efficiently used for testing of the automation. In the Suomenoja case the
simulator has been used after the training period during plant operation also for
trouble shooting in different operational practices in unusual situations, e.g. in a
malfunction situation of a process component.

As already discussed in Chapter 3, there are several possible choices to
implement a training simulator. Direct connection of DCS and the simulator, as
the ones described above, is one of these choices. However, a direct connection
is not always possible due to the schedule of the automation delivery project.
Despite the extra work, sometimes the automation application has to be
simulated in the simulator and the operator displays have to be emulated. The
experience from a medium size power plant training simulator shows that in the
emulated case the work is divided between the different work package so that
the process modelling takes about 20%, automation modelling takes around 30%
and display emulation about 50% of the work. Thus, 80% of the work has to be

 115

re-done when the actual control system is configured. It should be noticed that if
the simulator and DCS supported the same kind of configurational connection,
the automation configuration part (30%) could be at least partly reused.

5.3.3 Speed and scalability of the data change

The idea of using OPC between the simulator and DCS (Karhela et al. 1999)
imposed a couple of problems with scalability and speed at the beginning. As
described in the Estonian power plant case the limit in the scalability seemed to
be around 2000 signals in a communication cycle of 200 ms. Recently the OPC
implementation has been studied more carefully and two major improvements
have been made that are also incorporated into the suggested architecture.

Firstly, the industrial cases were carried out with a configuration where the OPC
servers of both the simulator and DCS were located in different processes than
the actual simulator engine and the process station. The OPC interfaces have
now been incorporated into the same process with the simulator engine as
described in the component view of the proposed architecture. Tests for the data
transmission were run using efficient interfacing between the OPCKit
component and the Front component (see Figure 4.10). The simulator input and
output results are shown in Tables 5.1 and 5.2. In order to illustrate how the
enhanced performance of processors will affect the throughput of the OPC
server, the performance values achieved with a PIII 500MHz (Windows NT 4.0
operating system) are compared with the values achieved with an AMD Athlon
1.2GHz (Windows 2000 operating system), both with 256 MB-RAM. In the
output tests all double items were continuously changing and the requested
update period was 200ms. ‘New’ refers to the new OPC implementation and
‘old’ refers to the old implementation of the various processes. (Peltoniemi et al.
2001)

 116

Table 5.1. Performance of synchronous write (Peltoniemi et al. 2001).

Processor Items Time (ms)
new PIII 500MHz 1 1,3
new PIII 500MHz 1000 2,8
new PIII 500MHz 10000 29
new PIII 500MHz 50000 160
new AMD 1.2GHz 1 1,5
new AMD 1.2GHz 1000 2,3
new AMD 1.2GHz 10000 27
new AMD 1.2GHz 50000 120

Table 5.2. Performance of event-based data exchange 2. * denotes that the
processor time consumed for the simulation is included in the CPU server
column. This is a case where the OPC server is integrated into the simulation
engine. The consumed CPU times are divided into privileged, user and total
time. proc. denotes processor. (Peltoniemi et al. 2001)

Processor Items CPU % servr CPU % client CPU % proc. CPU %
priv. user tot. priv.user tot. priv. user tot. simulator

old PIII 500MHz 5000 1 41 42 1 4 5 3 49 52 5
old PIII 500MHz 8000 1 70 71 1 5 6 6 80 86 5
new PIII 500MHz 5000 1 9 10 1 4 6 2 13 15 *
new PIII 500MHz 10000 1 19 20 1 5 6 3 24 27 *
new PIII 500MHz 30000 2 46 48 10 13 23 26 59 85 *
new AMD 1.2GHz 5000 0,1 5 5 0 0,1 0,1 1 5 6 *
new AMD 1.2GHz 10000 1 9 10 1 4 5 7 13 20 *
new AMD 1.2GHz 30000 1 33 34 5 10 15 13 43 56 *
new AMD 1.2GHz 50000 2 56 58 10 14 24 26 70 96 *

The communication between two model servers through X-Connector was also
tested. Table 5.3 shows these results. From the results it can be seen that with the
more sophisticated OPC implementation the number of variables could be
increased with a factor of ~2–4 (lines 2 and 5 in Table 5.2 and lines 1, 3 and 4 in
Table 5.3).

 117

Table 5.3. Performance of two model servers connected with a cross-connector
application. The requested frequency was 200 ms with constantly changing item
values. (Peltoniemi et al. 2001)

Processor Items CPU % CPU % CPU % proc.
X-Con servers priv. user total

old PIII 500MHz 2500 6 45 7 50 57
new PIII 500MHz 2500 6 12 8 17 25
new PIII 500MHz 5000 19 17 10 30 40
new PIII 500MHz 9000 38 27 21 59 80
new AMD 1.2GHz 9000 22 24 9 41 50
new AMD 1.2GHz 11000 39 37 17 64 81

The second improvement in the speed and scalability of the OPC DA connection
between the model servers is to get rid of X-Connector in the communication.
The communication configuration can be done flexibly from a common user
interface like X-Connector, but the communication itself should go directly from
one system to another. This is achieved in the proposed architecture by
implementing OPC DX features to the OPCKit component (See Figure 4.10).
Even though there are no hard numbers yet available from the second
improvement it is evident that this will further improve the speed scalability of
the OPC DA connections.

Synchronisation is needed in the data connections in order to run the compound
system faster or more slowly than real time. As described in the Estonian power
plant case synchronisation is sometimes needed also in real time simulation.
Different synchronisation models in the architecture have been designed and
tested but none of them have been proved yet to be efficient enough. The current
synchronisation model is based on the OPC data change event. In this model, the
client application, e.g. X-Connector, is used as a synchroniser between the
model servers. The client application gives the permission for the model server
to continue to the next time step by releasing the data change event. However,
this model will not work properly in the DX scenario where servers exchange
data directly between each other. Thus it would be beneficial if the DX working
group of the OPC Foundation would specify such a synchronisation model.

The industrial cases show that a standardised approach to the data connection of
a dynamic simulator and DCS provides a flexible and vendor independent way

 118

of configurating data connections between the systems. With sophisticated
implementation the speed and scalability of such a standardised data connection
can be made adequate for simulation-aided automation testing and operator
training purposes. Important features in the connection include simulation
control and training control functionality. The simulation control functionality
includes also synchronisation of the compound system as one very important
feature.

 119

6. Discussion
Information management is becoming more and more important in the fields of
process and automation technologies. In most cases, dynamic process simulation
has been applied quite separately alongside with the traditional methods for
process and automation design, automation testing, operator training, and for
different kinds of troubleshooting during the process and automation delivery
project. It has been characteristic of the usage that simulation tools and the use
of simulation tools have been loosely bound to other tools (also other simulation
tools) used in the design, testing and operation, i.e., manual work has been
required in order to transfer the configuration and simulation data from one tool
to another. Thus, in the information management sense the situation has been
quite poor.

In this work, information management in process simulation is divided into
model development, model configuration and model usage. Furthermore, more
detailed problems of customisation, reuse, co-use, extensibility, and run time
connectivity are identified for these problem sub-domains. Since model
development is quite well addressed by the current standardisation efforts and
simulation tools, the main emphasis of this work is on model configuration and
model usage.

The main results of this thesis are the design and description of a new integration
architecture for the configuration and usage of process simulation models and
the application of current information technologies in the implementation of
such an architecture. Most parts of the proposed architecture are implemented
and verified in the prototype implementations. The parts that are not yet
implemented, including graphics, monitors and trends, are noted in Chapter 4.
Nevertheless, they are included in the architectural description in order to make
the description complete.

It is shown by using pumps, heat exchangers and machine screens as examples
(5.2.1 and 5.2.2) that more efficient model reuse and customisation can be
achieved with the proposed architecture if the model configurators and
equipment manufacturers share data in a centralised repository. Even though
full-scale industrial cases were not carried out, the benefits can already be shown
by the examples. Potential problems concerning the reliability of the results may

 120

arise from the scalability of the XML-based solution. The simulation models
stored to the centralised repository may be large and the equipment
manufacturers may have a lot of component data in the database.

Using a steady state and a dynamic simulation tool as an example (5.2.3) it is
shown that the same architecture can be used for configurational co-use between
different simulators. The benefits of such a co-use depend heavily on the
simulator tool vendors and their will to support the architecture. The support
means that the interfaces of a model server, i.e. configurational and data
connections are implemented in the simulator. Simulator vendors should also
maintain transformer software components from their departments to other
departments. The benefits of the co-use also depend on the logic implemented to
the transformer software components, in other words how well they handle
round-trip engineering and updating problems etc. For simulator tool vendors the
tools of the architecture provide user interface functionality, plug and play
configurational and data connectivity to other tools and possibility for
distributed usage. If these features were offered in a free of charge, common,
middleware package, it could be appealing and beneficial at least for small
simulation tool vendors such as universities, research centers or simulation
development teams inside larger companies in process industry.

The analysed industrial cases (5.3.1 and 5.3.2) show that a flexible and fast
enough run-time connectivity between a dynamic process simulator and a virtual
DCS is achieved using OPC as the standard data exchange interface. The chosen
techniques are shown to be sufficient for simulation-aided automation testing
and for operator training (5.3.3).

The emphasis of the thesis is on large-scale dynamic simulation of continuous
processes of the power, pulp and paper industries. However, the proposed
architecture is quite generic and could also be used in other application fields
inside the process industry, in steady state process simulation and optimisation,
and even in configurational descriptions of batch processes. The purpose of the
proposed architecture is to improve information management in process
simulation. The information management aspect becomes more important as the
sizes of the processes grow. Thus, the benefits of applying the architecture are
more significant in a large-scale simulation.

 121

The original features of the proposed architecture are its openness, general
distribution concept and distributed extensibility features. Both configurational
and data connections are based on open ‘de-facto’ standards (XML, SVG, SOAP
and OPC). The fact that the entire data model of the architecture, including
graphics, model topology and parameter values, is represented in the same open
format opens up the possibilities for better reuse, customisation and
configurational co-use. The general distribution features offer possibilities to use
simulation and simulation configuration resources regardless of their location on
the Internet. The security model of the architecture was also designed to meet
the requirements originating from the general distribution concept. Furthermore,
the architecture can be extended in a distributed manner. New simulation tools
can be linked to the architecture and configurational extension software
components can be developed in one place and distributed through a centralised
server on the Internet.

The logical, data and security viewpoints to the proposed architecture are the
most generic parts of the architectural description. The core of the logical
viewpoint is purely conceptual, which reflects the architectural concepts related
to the requirements of model configuration and model usage. The data viewpoint
does not have to be mapped to XML (except the graphich definitions that are
described using SVG) and can be considered as a conceptual model for
representing model topology and parameter values. Thus, these parts are very
general and not bound to any implementation techniques.

Support for some parts of the data model (graphics, monitors and trends) has not
yet been implemented to the model client and model server tools. These parts are
important for the prototype implementation of the architecture to achieve its full
potential.

The distributed configuration architecture could be used in different phases of
the lifecycle of the mill by the different companies involved. The version control
features of the architecture have to be improved for this kind of heavy
distributed design to be possible. Version control features, e.g. check in, check
out, get latest version, should be included for different elements in the data
model.

 122

Further studying should be also done in order to include 3D graphics to the data
model. 3D models of the mill are often made as a part of the design process. It
would be beneficial to map the relations between this information (e.g. STEP
AP227) and the configurational information needed in the simulation models.

The interface and data model specification could also be extended to include
concepts and functionality for project management and maintenance, so that the
architecture forms a complete technical service frame for the network of
companies involved in a mill lifecycle.

The proposed architecture is an architecture for model configuration and usage.
The model development part was not considered in detail because the current
specifications and current simulation tools already offer bases for model
development. A model-centric specification combined with a more data-centric
approach suggested in this thesis would lead to a comprehensive architectural
description for process simulation. Extension interfaces for unit operation,
physical property packages and reaction kinetics packages would have to be
specified as suggested for example in the CAPE-Open specification. Of course,
the simulation engine itself would also have to support these interfaces.

Simulation and training control features in the data connections are necessary
for model usage in simulation-aided automation testing and operator training.
Features such as running and stopping the simulation, synchronising the
execution of the model servers, recording and back tracking, and malfunction
triggering are not included in the current OPC specification. It would be
beneficial if the DX specification for example could take a stand to the
synchronisation issue. The synchronisation features could be added as an option
to the specification. Other simulation and training control features could be
added to the command part of the DA specification.

 123

References
Ajo, R., Hakonen, S., Harju, H., Järvi, J., Kaskes, K., Lenardic, E., Niukkanen,
E., Nurminen, T., Ritala, P., Tolppanen, M. & Tommila, T. 2001. Laatu
automaatiossa, Parhaat käytännöt (In Finnish). Finnish Automation Society.
ISBN 952-5183-12-2.

Alemanni, M., Aerospazio, A., Fuchs, I. & Gillies, S. 1999. Introducing Step.
http://strategis.ic.gc.ca/stepguide, [referenced 26.10.2001]. ISBN 0-662-64382-8.

Apros, Apros web documentation. 1999. http://www.vtt.fi/aut/tau/ala/apros.htm,
[referenced 8.10.2001].

ASCEND. 2001. ASCEND Documentation, http://www-2.cs.cmu.edu/~ascend/
[referenced 6.11.2001].

AspenTech. 2002. Web documentation of Aspen Plus, http://www.aspentech.com,
[referenced 30.4.2002].

Balas. 1998. Balas documentation, http://www.vtt.fi/ene/balas/, [referenced
8.10.2001].

Banares-Alcantara, R. 2000. Concurrent Process Engineering – State of the Art
and Outstanding Research Issues. http://capenet.chemeng.ucl.ac.uk, [referenced
26.9.2001].

Bogle, D. 2000. State of the Art of Research in Flexibility, Operability &
Dynamics. http://capenet.chemeng.ucl.ac.uk, [referenced 26.9.2001].

Burkett, W. Product Data Markup Language. 1999. A White Paper.
http://www.pdml.org/, [referenced 26.10.2001].

CadsimPlus. 2001. CADSIM Plus home page, http://www.aurelsystems.com,
[referenced 2.12.2001].

 124

CAPE-Open. 2000. CAPE-Open specifications: Conceptual Design Document
(CDD2) for CAPE-OPEN project. http://www.global-cape-open.org/CAPE-
OPEN_standard.html, [referenced 26.9.2001].

Cellier, F. 1991. Continuous System Modelling. New York: Springer-Verlag.

Chappell, D. 1996. Understanding ActiveX and OLE. Redmond, WA: Microsoft
Press. ISBN 1-572-31216-5.

Co-LaN,. 2002. CAPE-Open laboratories network, http://www.colan.org/,
[referenced 2.5.2002].

DCE. 1998. Distributed Computing Environment, UUID draft specification,
http://www.opengroup.org/dce/info/draft-leach-uuids-guids-01.txt, [referenced
23.2.2002].

Ecosim. 2001. Ecosim homepage, http://www.ecosimpro.com/, [referenced
7.11.2001].

Elmqvist, H., Mattsson, S.E. & Otter, M. 1999. Modelica — A Language for
Physical System Modelling. Proceedings of the 1999 IEEE Symposium on
Computer-Aided Control System Design, CACSD'99, Hawaii, August 22–27,
1999.

ePlantData. 2001. ePlantData homepage,
http://www.ePlantData.com,[referenced 7.11.2001].

Extend. 2001. Extend User Manual, http://www.imaginethat.com, [referenced
22.11.2001].

Flowmac. 2001. Flowmac Home page,http://www.papermac.se/, [referenced
22.11.2001].

Fowler, M. 1997. UML Distilled, Applying the standard object modelling
language. Addison-Wesley. ISBN 0-201-32563-2.

 125

gPROMS. 2001. gPROMS Documentation, http://www.psenterprise.com/gPROMS,
[referenced 6.11.2001].

HLA. 2000. HLA Specification. US Department of Defense.
http://www.dmso.mil/public/transition/hla/index_html [referenced 26.3.2002].

Hysys. 2000. Hysys documentation. http://www.hyprotech.com/hysys/, [referenced
8.10.2001].

Ideas. 2001. Ideas Home page, http://www.ideas-simulation.com, [referenced
22.11.2001].

IEA. 1993. Process Integration Definition.
http://www.tev.ntnu.no/iea/pi/definition.html, [referenced 26.9.2001].

IEEE. 2000. IEEE Std 1471-2000, Recommended Practice for Architectural
Description. ISBN 0-7381-2518-0.

ISO. 1997a. ISO 10303-221 - Functional data and their schematic representation
for process plant (Draft 6.6.1997). International Standard Organization (ISO).

ISO. 1997b. ISO 10628 – Flow diagrams for process plants. International
Standard Organization (ISO).

ISO. 1998. ISO 10303-231 - Process engineering data - Process design and
process specifications of major equipment (Draft 24.11.1998). International
Standard Organization (ISO).

ISO. 1999. ISO 10303-28 - XML presentation of EXPRESS-driven data (Draft
21.12.1999). International Standard Organization (ISO).

ISO. 2001. ISO 10303-227 - Plant spatial configuration. International Standard
Organization (ISO).

Juusela, A. & Juslin, K. 1976. A Nonlinear Simulation Model of a BWR Nuclear
Power Plant. In: Technical Research Centre of Finland, Electrical Engineering
Lab. Report 20. 83 p.

 126

Karhela, T., Paljakka, M., Laakso, P., Mätäsniemi T., Ylijoki J. & Kurki, J.
1999. Connecting Dynamic Process Simulator with Distributed Control System
Using OPC Standard. In: TAPPI. Proceedings of Process Control, Electrical, and
Information Conference. Pp. 329–337.

Klemola, K. & Turunen, I. 2001. State of Mathematical Modelling and
Simulation in the Finnish Process Industry, Universities and Research Centres.
In: National Technology Agency, TEKES. Technology Review 107/2001. ISBN
952-457-033-5.

Koolen, J.L.A. 1998. Simple and Robust Design of Chemical Plants. Comp
Chem. Eng., 22. Pp. 255–262.

Kruchten, P. 1995. Architectural Blueprints-The "4+1" View Model of Software
Architecture. IEEE Software 12(6). Pp. 42–50.

Kuikka, S. 1999. A batch process management framework. Domain-specific,
design pattern and software component based approach. In: Technical Research
Centre of Finland. VTT Publications 398. 215 p. ISBN 951-38-5541-4.

Lappalainen, J., Tuuri, S., Karhela, T., Hankimäki, J., Tervola, P., Peltonen, S.,
Leinonen, T., Karppanen, E., Rinne, J. & Juslin, K. 1999. Direct Connection of
Simulator and DCS Enhances Testing and Operator Training. In: TAPPI.
Proceedings of of TAPPI 1999 Engineering / Process & Product Quality
Conference. Pp. 495–502.

Lu, M.L., Batres, R., Li, H.S & Naka, Y. 1997. A G2 Baser MDOOM Testbed
for Concurrent Process Engineering. Comp. Chem. Eng., 21. Pp. 11–16.

Luukkanen, P. 2001. Pump selectors in an integrated simulation environment (In
Finnish), Master's Thesis, Lappeenranta University of Technology.

Mäkinen, M. 2001. Disc Filter External Models in an Integrated Simulation
Environment, Master’s Thesis, Lappeenranta University of Technology.

Marquardt, W. 1996. Trends in computer-aided process modelling. Computers
and chemical engineering, 20, 6/7. Pp. 591–609.

 127

Matlab. 2002. Matlab documentation, http://www.mathworks.com/products/matlab/,
[referenced 22.2.2002].

Mattson, S.E. & Anderson, M. 1994. OMOLA - an object oriented modelling
language. In: Elsevier Science. Recent advances in computer aided control
engineering. Amsterdam, Netherlands: Pp. 291–310.

Microsoft. 1995. The Component Object Model Specification,
http://www.microsoft.com/com/comdocs.asp [referenced 28.2.2002].

Niemenmaa, A., Lappalainen, J., Laukkanen, I., Tuuri, S. & Juslin, K. 1998. A
multi-purpose tool for dynamic simulation of paper mills. Simulation Practice
and Theory 6. Pp. 297–304.

Nougues, J.M., Pinol, D., Rodriguez, J.C., Sama, S. & Svahn, P. 2001. CAPE-
OPEN as a mean to achieve interoperability of Simulation Components. In:
Scandinavian Simulation Society. Proceedings of SIMS 2001 Conference. Pp.
3–21.

Novem. 2000. Web page of Netherlands Agency for Energy and Environment,
http://www.interduct.tudelft.nl/PItools/tools.html, [referenced 7.11.2001].

OPC. 2001. OPC home page. OPC Foundation. http://www.opcfoundation.org,
[referenced 24.10.2001].

Pasanen, A. 2001. Phenomenon-Driven Process Design methodology Computer
implementation and test usage. In: Technical Research Centre of Finland. VTT
Publications 438. 140 p. + app. 26 p. ISBN 951-38-5854-5.

Peltoniemi, J., Karhela, T. & Paljakka, M. 2001. Performance Evaluation of
OPC-based I/O of a Dynamic Process Simulator. In: SCS. The Proceedings of
the 2001 International Symposium on Performance Evaluation of Computer and
Telecommunication Systems (SPECTS). Pp. 231–236. ISBN 1-56555-240-7.

Pohjola, V.J. & Tanskanen, J. 1998. Phenomenon Driven Process Design
Methodology: Formal representation. CD-ROM paper prints of CHISA'98,
Prague, Chech Republic.

 128

Prosim. 2000. Prosim web documentation. http://www.endat.fi/, [referenced
8.10.2001].

Puska, E.K., Norrman, S. & Nihlwing, C. 2001. Three-dimensional Core Models
in Research Simulators. Proceedings of M&C conference at Salt Lake City.

Quantum3D. 1999. Visual Stealt Application for DIS/HLA Applications,
http://www.quantum3d.com/pdf/marconi.pdf, [referenced 1.5.2002].

Rinta-Valkama, J., Välisuo, M., Karhela, T., Laakso, P. & Paljakka, M. 2000.
Simulation Aided Process Automation Testing. In: Elsevier Sciense.
Proceedings of IFAC's Conference on Computer Aided Control System Design.
Pp. 277–280. ISBN 0-08-043660-9.

Schopfer, G., Wedel, L. v. & Marquardt, W. 2000. An Environment Architecture
to Support Modelling and Simulation in the Process Design Lifecycle.
Proceedings of AIChe Annual Meeting 2000, Los Angeles, 12–17.11.2000.

Shocklee, M., Burkett, B. & Yuhwei, Y. 1998. Product Data Marup Language
specification Version 0.6. http://www.pdit.com/pdml/doc/WD-pdml-19981103.doc,
[referenced 26.10.2001].

Soini, S. 2001. Heat Exchanger Dimensioning in an Integrated Simulation
Environment (In Finnish), Master's Thesis, Helsinki University of Technology.

Stephanopoulos, G., Henning, G. & Leone, H. 1990. MODEL.LA. A modelling
language for process engineering. I. The formal framework. In: Elsevier Science.
Computer and chemical engineering, 14, 8. Pp. 813–846.

Swales, A. 1999. Open Modbus/TCP Specification 1.0,
http://www.modicon.com/openmbus/, [referenced 1.4.2002].

TEMA. 1988. Standards of the Tubular Exchanger Manufacturers Association,
7. Edition. New York: TEMA Inc. 224 p.

 129

Tervola, P., Lappalainen, J., Rinne, J., Leinonen, T., Peltonen, S., Karhela, T. &
Juslin, K. 1999. Bleach Plant Training Simulator Featuring Enhanced Linkage
between Simulator and DSC. In: TAPPI. Proceedings of TAPPI 1999 Pulping
Conference. Pp. 1031–1045.

Tuuri, S. & Juslin, K. 1995. Uuden voimalaitos- ja automaatiokonseptin
varmistus esisuunnitteluprojektin aikana (In Finnish). In: Finnish Automation
Society. Proceedings of Finnish Automation days 1995. Pp. 453–457.

UKCEB. 2001. UK Council for Electronic Business, STEP Homepage,
http://www.ukceb.org/step/ ,[referenced 18.2.2002].

W3C. 1999. HTTP Specification, http://www.w3.org/Protocols/Specs.html ,
[referenced 19.2.2002] .

W3C. 2000a. SOAP Specification, http://www.w3.org/TR/SOAP/ , [referenced
19.2.2002].

W3C. 2000b. XML Specification 1.0, http://www.w3.org/TR/2000/REC-xml-
20001006 , [referenced 22.2.2002].

Watts, S. 1999. Web document. http://www.kbintl.com/e-x/stories/99apr005.html,
[referenced 26.10.2001].

Wingems. 2001. Wingems homepage, http://www.pacsim.com/WG/default.shtml,
[referenced 7.11.2001].

Yli-Petäys, J., Pyykkö, J. & Ropponen, H. 2001. Voimalaitossimulaattorin
toteutus ja käyttö voimalaitoksen henkilökunnan koulutuksessa (In Finnish). In:
Finnish Automation Society. Publication Series number 24. Pp. 222–227. ISBN
952-5183-17-3

Zamarreno, J.M., Acebes, F. & Alves, R. 2000. OPC-based real time simulator:
architecture and practical example. In: Scandinavian Simulation Society.
Proceedings of SIMS Simulation Conference 2000. Pp. 109–118.

Zeigler, B. 1976. Theory of Modelling and Simulation. New York: John Wiley.

 130

A1

Appendix A: An example of EXPRESS
language and late and early binding

The following is a short example of an EXPRESS language syntax.

SCHEMA pipe_example;

TYPE pipe_material
= ENUMERATION OF (copper, aluminium, stainless_steel);
END_TYPE;

ENTITY pipe
length: REAL;
diameter: REAL;
material: pipe_material;
END_ENTITY;

END_SCHEMA;

A late bound DTD can be written for the EXPRESS language. The entire
specification for this DTD is given in the ISO-10303-28 draft standard. The
valid XML document according to the DTD for the EXPRESS example shown
above is the following:

<?xml version="1.0"?>
<!DOCTYPE express_driven_data SYSTEM "express-dtd-v6.dtd">

<express_driven_data>
<schema_decl>
<schema_id>pipe_example</schema_id>

<type_decl>
<type_id>pipe_material</type_id>
<underlying_type>

A2

<enumeration>
<enumeration_id>cupper</enumeration_id>
<enumeration_id>aluminium</enumeration_id>
<enumeration_id>stainless_steel</enumeration_id>
</enumeration>
</underlying_type>
</type_decl>

<entity_decl>
<entity_id>pipe</entity_id>
<explicit_attr_block>
<explicit_attr>
<attribute_id>length</attribute_id>
<base_type>
<real/>
</base_type>
</explicit_attr>
<explicit_attr>
<attribute_id>diameter</attribute_id>
<base_type>
<real/>
</base_type>
</explicit_attr>
<explicit_attr>
<attribute_id>material</attribute_id>
<base_type>
<type_ref>pipe_material</type_ref>
</base_type>
</explicit_attr>
</explicit_attr_block>
</entity_decl>

</schema_decl>
</express_driven_data>

A3

In early binding the actual names and structures from the EXPRESS schema are
embedded into the DTD definition. The early bound DTD for the same example
looks as follows:

<!ELEMENT pipe_material EMPTY>
<!ATTLIST pipe_material
source_express_concept_type CDATA #FIXED "enumeration-type"
express_name CDATA #FIXED "pipe_material"
value (copper | aluminium | stainless_steel) #REQUIRED>

<!ELEMENT pipe (pipe.length, pipe.diameter, pipe.material)>
<!ATTLIST pipe id ID #REQUIRED
source_express_concept_type CDATA #FIXED "entity-data-type"
express_name CDATA #FIXED "pipe">

<!ELEMENT pipe.length (real)>
<!ATTLIST pipe.length source_express_concept_type CDATA #FIXED "attribute"
express_name CDATA #FIXED "length">

<!ELEMENT pipe.diameter (real)>
<!ATTLIST pipe.diameter source_express_concept_type CDATA #FIXED "attribute"
express_name CDATA #FIXED "diameter”>

<!ELEMENT pipe.material (pipe.material)>
<!ATTLIST pipe.material source_express_concept_type CDATA #FIXED "attribute"
express_name CDATA #FIXED "material”>

The following is an example of an XML document or an instance of a pipe
according to early bound DTD. If the fixed attributes are not given in the XML
the values are taken from the DTD.

<pipe>
<pipe.length>
<real>2.45</real>
</pipe.length>
<pipe.diameter>
<real>0.25</real>

A4

</pipe.diameter>
<pipe.material>
<pipe_material value=”stainless_steel”/>
</pipe.material>
</pipe>

B1

Appendix B: An example of the usage of the
data model

The following example process is described using the GML format. The purpose
of the example is to illustrate different mechanisms in the data model.

Figure B.1. Example process.

The component type descriptions of the model components are shown below. In
a real case the component types would have more property infos. In order to
keep the example compact, only one property info for the parameter values per
component type is created. Also the ids have been changed from GUIDs to more
intuitive strings.

Sub process component type with one value mapping property and two terminal
properties (one start and one end terminal, both flow type). The value mapping

Tank1

Pipe1

Tank2

Pipe2

Pump1

Subprocess1 Subprocess2

Model1

B2

property is defined to be optional i.e. the instance components do not have to
contain it:

<ComponentType id="subprocess component type" name="Subprocess" locked=”false”
runnable=”false” loadable=”false” liftValues=”true” liftTerminals=”true” composed=”true”>

<PropertyInfo id="tank level mapping property info of subprocess" name="Tank level"
necessity="optional">
<VectorInfo type="reference" allowedSize="1"/>
<Constraint name="valueMapping"/>
</PropertyInfo>

<PropertyInfo id="subprocess input terminal property info" name="Input"
necessity="implied">
<VectorInfo type="reference" allowedSize="2">
<Default/>
<Default/>
</VectorInfo>
<Constraint name="endTerminal">
<Constraint name="flow"/>
</Constraint>
</PropertyInfo>

<PropertyInfo id="subprocess output terminal property info" name="Output"
necessity="implied">
<VectorInfo type="reference" allowedSize="2">
<Default/>
<Default/>
</VectorInfo>
<Constraint name="startTerminal">
<Constraint name="flow"/>
</Constraint>
</PropertyInfo>

</ComponentType>

Tank component type description with one value property (liquid level) and two
terminal properties (one start and one end terminal, both flow type):

<ComponentType id="tank component type" name="Tank" locked=”false”
runnable=”false” loadable=”false” liftValues=”false” liftTerminals=”false”
composed=”false”>

<PropertyInfo id="tank liquid level property info" name="Liquid level" necessity="implied">
<VectorInfo type="double" allowedSize="1" unit="m"/>

B3

<Default>2.0</Default>
</PropertyInfo>

<PropertyInfo id="tank input terminal property info" name="Input" necessity="implied">
<VectorInfo type="reference" allowedSize="2">
<Default/>
<Default/>
</VectorInfo>
<Constraint name="endTerminal">
<Constraint name="flow"/>
</Constraint>
</PropertyInfo>

<PropertyInfo id=" tank ouput terminal property info" name="Output" necessity="implied">
<VectorInfo type="reference" allowedSize="2">
<Default/>
<Default/>
</VectorInfo>
<Constraint name="startTerminal">
<Constraint name="flow"/>
</Constraint>
</PropertyInfo>

</ComponentType>

Pump component type description with one value property (running information)
and two terminal properties (one start and one end terminal, both flow type):

<ComponentType id="pump component type" name="Pump" locked=”false”
runnable=”false” loadable=”false” liftValues=”false” liftTerminals=”false”
composed=”false”>

<PropertyInfo id="pump running property info" name="Running" necessity="implied">
<VectorInfo type="boolean" allowedSize="1"/>
<Default>false</Default>
</PropertyInfo>

<PropertyInfo id="pump input terminal property info" name="Input" necessity="implied">
<VectorInfo type="reference" allowedSize="2">
<Default/>
<Default/>
</VectorInfo>
<Constraint name="endTerminal">
<Constraint name="flow"/>
</Constraint>
</PropertyInfo>

B4

<PropertyInfo id=" pump output terminal property info" name="Output"
necessity="implied">
<VectorInfo type="reference" allowedSize="2">
<Default/>
<Default/>
</VectorInfo>
<Constraint name="startTerminal">
<Constraint name="flow"/>
</Constraint>
</PropertyInfo>

</ComponentType>

Pipe component type description with one value property (length) and two
terminal properties (one start and one end terminal, both flow type):

<ComponentType id="pipe component type" name="Pipe" locked=”false”
runnable=”false” loadable=”false” liftValues=”false” liftTerminals=”false”
composed=”false”>

<PropertyInfo id="pipe length property info" name="Length" necessity="implied">
<VectorInfo type="double" allowedSize="1"/>
<Default>5.0</Default>
</PropertyInfo>

<PropertyInfo id="pipe input terminal property info" name="Input" necessity="implied">
<VectorInfo type="reference" allowedSize="2">
<Default/>
<Default/>
</VectorInfo>
<Constraint name="endTerminal">
<Constraint name="flow"/>
</Constraint>
</PropertyInfo>

<PropertyInfo id="pipe output terminal property info" name="Output" necessity="implied">
<VectorInfo type="reference" allowedSize="2">
<Default/>
<Default/>
</VectorInfo>
<Constraint name="startTerminal">
<Constraint name="flow"/>
</Constraint>
</PropertyInfo>

</ComponentType>

B5

Terminal typing is done here on a very general level. There are only flow type
terminals in the model and all connections are possible. The terminal rules for
these component types could look like the following:

<TerminalRules>

<ReferenceRule startSubConstraint=”flow”>
<EndSubConstraint name=”flow”/>
</ReferenceRule>

</TerminalRules>

The example process can be described using these component types and terminal
rules. It has to be pointed out that all this XML data is processed
programmatically. The model configurators and model users do not have to deal
with the XML. The kernel developers and providers describe the component
types and terminal rules but they do not have to handle instance XML either. By
closely examining the example one can notice that the tank level property is
statically mapped from tank2 to the upper levels and the running information of
pump1 is dynamically mapped to the upper levels. The separator for vector
elements in a reference type of vector is ‘~’. The connection is the first element
of the reference vector of a terminal and mapping is the second element.

<!-- Model1 component with statically mapped liquid level from tank2. Input terminal is
mapped to the input terminal of subprocess1and output terminal is mapped to the output
terminal of subprocess2. The running property of pump1 is dynamically mapped. -->

<Component id="model1 component" name="Model1" typeId="subprocess component
type" tracked="false">

<Property id="statical mapping property of model1 for tank level" infoId="tank level
mapping property info of subprocess">
<Vector>statical mapping property of subprocess2 for tank level</Vector>
</Property>

<Property id="model1 input terminal" infoId="subprocess input terminal property info">
<Vector>~subprocess1 input terminal</Vector>
</Property>

<Property id="model1 output terminal" infoId="subprocess ouput terminal property info">
<Vector>~subprocess2 output terminal</Vector>
</Property>

B6

<Property id="dynamical mapping property of model1 for pump running property"
infoId="pump running property info" lifted="true">
<Vector>dynamical mapping property of subprocess2 for pump running property
</Vector>
</Property>

<!—Subprocess1 component does not contain the optional mapping property defined in
the type description. Input terminal is mapped to the input terminal of tank1and output
terminal is mapped to the output terminal of pipe1. The output terminal is connected to
the input terminal of the pipe1 -->

<Component id="subprocess1 component" name="Subprocess1" typeId="subprocess
component type" tracked="false">

<Property id="subprocess1 input terminal" infoId="subprocess input terminal property
info">
<Vector>~tank1 input terminal</Vector>
</Property>

<Property id="subprocess1 ouput terminal" infoId="subprocess output terminal property
info">
<Vector>pipe1 input terminal~tank1 output terminal</Vector>
</Property>

<Component id="tank1 component" name="Tank1" typeId="tank component type"
tracked="false">

<Property id="tank1 liquid level property" infoId="tank liquid level property info">
<Vector>3.76</Vector>
</Property>

<Property id="tank1 input terminal" infoId="tank input terminal property info">
<Vector>~</Vector>
</Property>

<Property id="tank1 output terminal" infoId="tank output terminal property info">
<Vector>~</Vector>
</Property>

</Component>

</Component>

<Component id="pipe1 component" name="Pipe1" typeId="pipe component type"
tracked="false">

B7

<Property id="pipe1 length property" infoId="pipe length property info">
<Vector>2.5</Vector>
</Property>

<Property id="pipe1 input terminal" infoId="pipe input terminal property info">
<Vector>~</Vector>
</Property>

<Property id="pipe1 output terminal" infoId="pipe output terminal property info">
<Vector> subprocess2 input terminal~</Vector>
</Property>

</Component>

<!—Subprocess2 component with statically mapped liquid level from tank2. Input terminal
is mapped to the input terminal of pump1 and output terminal is mapped to the output
terminal of tank2. The running property of pump1 is dynamically mapped. -->

<Component id="subprocess2 component" name="Subprocess2" typeId="subprocess
component type" tracked="false">

<Property id="statical mapping property of subprocess2 for tank level" infoId="tank level
mapping property info of subprocess">
<Vector>tank2 liquid level property</Vector>
</Property>

<Property id="subprocess2 input terminal" infoId="subprocess input terminal property
info">
<Vector>~pump1 input terminal</Vector>
</Property>

<Property id="subprocess2 output terminal" infoId="subprocess output terminal property
info">
<Vector>~tank2 output terminal</Vector>
</Property>

<Property id="dynamical mapping property of subprocess2 for pump running property"
infoId="pump running property info" lifted="true">
<Vector>pump1 running property</Vector>
</Property>

<Component id="pump1 component" name="Pump1" typeId="pump component type"
tracked="false">

<Property id="pump1 running property" infoId="pump running property info">
<Vector>true</Vector>

B8

</Property>

<Property id="pump1 input terminal" infoId="pump input terminal property info">
<Vector>~</Vector>
</Property>

<Property id="pump1 output terminal" infoId="pump output terminal property info">
<Vector>pipe2 input terminal~</Vector>
</Property>

</Component>

<Component id="pipe2 component" name="Pipe2" typeId="pipe component type"
tracked="false">

<Property id="pipe2 length property" infoId="pipe length property info">
<Vector>4.2</Vector>
</Property>

<Property id="pipe2 input terminal" infoId="pipe input terminal property info">
<Vector>~</Vector>
</Property>

<Property id="pipe2 output terminal" infoId="pipe output terminal property info">
<Vector>tank2 input terminal~</Vector>
</Property>

</Component>

<Component id="tank2 component" name="Tank2" typeId="tank component type"
tracked="false">

<Property id="tank2 liquid level property" infoId="tank liquid level property info">
<Vector>1.45</Vector>
</Property>

<Property id="tank2 input terminal" infoId="tank input terminal property info">
<Vector>~</Vector>
</Property>

<Property id="tank2 output terminal" infoId="tank output terminal property info">
<Vector>~</Vector>
</Property>

B9

</Component>

</Component>

</Component>

The graphichs under the svg element of subprocess 2 would look like the
following. The symbol elements for the components and terminals are copied
from the symbol library. The terminal symbol refers to the terminal type that it
represents. Component symbols refer to the corresponding component types.
The use elements under the component symbol that represent the terminals of
the component refer to the corresponding property info under the component
type description. The use elements that represent the actual component instances
refer to the corresponding components and the connection lines refer to the start
terminal property, the starting point of the connection line.

<svg width="1000px" height="200px" viewBox="0 0 1000 200"
xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">

<defs>

<symbol id="flow terminal symbol" gml:tid=”flow” gml:type=”terminal”>
<rect x="0" y="0" width="3" height="6"
style="fill:rgb(255,64,64);stroke:rgb(0,0,128);stroke-width:1"/>
</symbol>

<symbol id=”pump symbol” gml:tid="pump component type" gml:type=”component”>
<ellipse cx="26" cy="25.5" rx="18" ry="18.5"
style="fill:rgb(192,192,255);stroke:rgb(0,0,128);stroke-width:1"/>
<line x1="44" y1="25.875" x2="26.75" y2="7.125" style="fill:none;stroke:rgb(0,0,0);stroke-
width:1"/>
<line x1="25" y1="43.625" x2="44" y2="26.375" style="fill:none;stroke:rgb(0,0,0);stroke-
width:1"/>
<use id="pump input terminal property info reference" x="5" y="23" xlink:href="#flow
terminal symbol"/>
<use id="pump ouput terminal property info reference" x="44" y="23" xlink:href="#flow
terminal symbol"/>
</symbol>

<symbol id=”tank symbol” gml:tid="tank component type" gml:type=”component”>
<ellipse cx="27.5" cy="10" rx="24.5" ry="8"
style="fill:rgb(192,192,255);stroke:rgb(0,0,128);stroke-width:1"/>

B10

<ellipse cx="27.5" cy="46" rx="24.5" ry="8"
style="fill:rgb(192,192,255);stroke:rgb(0,0,128);stroke-width:1"/>
<line x1="52" y1="10" x2="52" y2="46" style="fill:none;stroke:rgb(0,0,0);stroke-width:1"/>
<line x1="3" y1="10" x2="3" y2="46" style="fill:none;stroke:rgb(0,0,0);stroke-width:1"/>
<use id="tank input terminal property info reference" x="0" y="14" xlink:href="#flow
terminal symbol"/>
<use id="tank output terminal property info reference" x="52" y="40" xlink:href="#flow
terminal symbol"/>
</symbol>

</defs>

<g id="pump1 component reference">

<use x="30" y="6" xlink:href="#pump symbol"/>

</g>

<g id="tank2 component reference">

<use x="200" y="15" xlink:href="#tank symbol" />

</g>

<g id="pipe2 component reference">

<line x1="77" y1="32" x2="200" y2="32" style="fill:none;stroke:rgb(0,0,0);stroke-
width:1"/>

</g>

</svg>

In order to extend the symbol element with its own attributes following DTD
extension declarion has to be added to the beginning of the svg document before
reading it to the SVG renderer:

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20010904//EN"

 "http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd"

[

<!ATTLIST symbol

 xmlns:gml CDATA #FIXED "http://www.simulationsite.com/gml"

 gml:tid CDATA #REQUIRED gml:type CDATA #REQUIRED>

]>

C1

Appendix C: Type library examples of
Prosim and Apros

Prosim and Apros type libraries contain the component type descriptions for the
co-use case represented in Chapter 5. This Appendix lists the pump type
description for both type libraries. One should notice from the description how
differently Prosim and Apros deal with the process components. This is due to
the different simulation schemes used for simulating the components.

Prosim pump type:

<ComponentType locked=”false” runnable=”false” loadable=”false” liftValues=”false”
liftTerminals=”false” composed=”false” name="Pump" id="a251F0FF0-A60D-4090-
ADCD-65ABC0215A5D">

<PropertyInfo name="Is flow copied from outlet" necessity="implied" id="a12DAEFB2-
C96C-44e5-BEBE-13F73FA3A408">
<VectorInfo type="boolean" allowedSize="1">
<Default>true</Default>
</VectorInfo>
</PropertyInfo>

<PropertyInfo name="Efficiency" necessity="implied" id="a63D18836-31C9-489a-8DDA-
342FD596C605">
<VectorInfo type="float" allowedSize="1" min="0" max="1">
<Default>0.8</Default>
</VectorInfo>
</PropertyInfo>

<PropertyInfo name="Losses" necessity="implied" id="a561149A2-ACD7-4a5c-9B76-
A1F293B3AE4D">
<VectorInfo type="float" allowedSize="1" min="0" max="100" unit="%">
<Default>5</Default>
</VectorInfo>
</PropertyInfo>

<PropertyInfo name="Power" necessity="optional" id="a9D0999F8-D5F2-439e-9588-
F49B2D70E37F">
<VectorInfo type="float" allowedSize="1" unit="kW"/>
</PropertyInfo>

<PropertyInfo name="Flow in" necessity="optional" id="aCB296406-EAE4-4a49-B990-
26C104CB0560">

C2

<VectorInfo type="reference" allowedSize="2"/>
<Constraint name="endTerminal">
<Constraint name="Flow in"/>
</Constraint>
</PropertyInfo>

<PropertyInfo name="Flow out" necessity="optional" id="a21BCAC02-A322-41bd-88E3-
592A40E798F7">
<VectorInfo type="reference" allowedSize="2"/>
<Constraint name="endTerminal">
<Constraint name="Flow out"/>
</Constraint>
</PropertyInfo>

<PropertyInfo name="Connection to shaft" necessity="optional" id="a366B1579-C937-
402e-8F8E-0E5B41E04C45">
<VectorInfo type="reference" allowedSize="2"/>
<Constraint name="endTerminal">
<Constraint name="Mechanical coupling"/>
</Constraint>
</PropertyInfo>

</ComponentType>

Apros pump type:

<ComponentType name="BASIC_PUMP_TYPE" locked=”false” runnable=”false”
loadable=”false” liftValues=”false” liftTerminals=”false” composed=”false” id="a1a24ebad-
9635-4690-b17e-c553bafd1e89">

<PropertyInfo name="PU11_ACCURACY_LEVEL" id="a3c6a325d-16e0-46ab-a581-
1eac9efb3a2e" necessity="optional">
<VectorInfo type="a04C57C7B-4AB9-4840-B313-36B685AD564F" allowedSize="1"/>
</PropertyInfo>

<PropertyInfo name="PU11_AREA" id="aa192fde1-fc3d-463a-a976-7f2306519409"
necessity="optional">
<VectorInfo type="float" allowedSize="1"/>
</PropertyInfo>

<PropertyInfo name="PU11_BUSBAR_NAME" id="a36262968-4b8f-42be-933b-
5fda884d5f0c" necessity="optional">
<VectorInfo type="reference" allowedSize="1"/>
</PropertyInfo>

<PropertyInfo name="PU11_COAST_DOWN_TIME" id="a6c6b3505-ebdc-4a11-b0c0-
eb760f592315" necessity="optional">

C3

<VectorInfo type="float" allowedSize="1"/>
</PropertyInfo>

<PropertyInfo name="PU11_CURRENT" id="a89882e43-2599-4060-a6f0-
3aa890215109" necessity="optional">
<VectorInfo type="float" allowedSize="1"/>
</PropertyInfo>

<PropertyInfo name="PU11_CURVE_TYPE" id="a6d35a2e3-edc4-4cd9-b1bc-
2b10dc40b30c" necessity="optional">
<VectorInfo type="integer" allowedSize="1"/>
</PropertyInfo>

<PropertyInfo name="PU11_DENS_NOMINAL" id="a523d925e-fe5c-48c5-b51f-
49f090f85672" necessity="optional">
<VectorInfo type="float" allowedSize="1"/>
</PropertyInfo>

<PropertyInfo name="PU11_FLOW_NOMINAL" id="adc3347ce-c107-4b46-a170-
ec89f3a8a30a" necessity="optional">
<VectorInfo type="float" allowedSize="1"/>
</PropertyInfo>

<PropertyInfo name="PU11_HEAD_CURVE" id="a4cb11975-497a-40b0-b4e5-
f72063078335" necessity="optional">
<VectorInfo type="vector" allowedSize="2">
<VectorInfo type="float" allowedSize="10"/>
</VectorInfo>
</PropertyInfo>

<PropertyInfo name="PU11_HEAD_MAXIMUM" id="a0ec303d4-2dad-4cdf-997d-
032b56a42c1f" necessity="optional">
<VectorInfo type="float" allowedSize="1"/>
</PropertyInfo>

<PropertyInfo name="PU11_HEAD_NOMINAL" id="ac86ca869-ba53-4ac4-966b-
8877a45d9da0" necessity="optional">
<VectorInfo type="float" allowedSize="1"/>
</PropertyInfo>

<PropertyInfo name="PU11_HEAT_CALCULATED" id="af7ba266f-e9e0-4cc3-a1c7-
ebc58532e179" necessity="optional">
<VectorInfo type="boolean" allowedSize="1"/>
</PropertyInfo>

<PropertyInfo name="PU11_LENGTH" id="a6ba5c846-ec57-488e-ae23-f7ff53a47e6a"
necessity="optional">
<VectorInfo type="float" allowedSize="1"/>
</PropertyInfo>

C4

<PropertyInfo name="PU11_LOSS_COEFF_STOPPED" id="a131855b3-618a-4a78-
8944-28d15851d131" necessity="optional">
<VectorInfo type="float" allowedSize="1"/>
</PropertyInfo>

<PropertyInfo name="PU11_MALFUNCTION" id="ae0319b01-701a-4367-a5c3-
4dc2a89b0a03" necessity="optional">
<VectorInfo type="integer" allowedSize="1"/>
</PropertyInfo>

<PropertyInfo name="PU11_MIX_MASS_FLOW" id="aa5322846-0642-476f-bf01-
984a3309f61d" necessity="optional">
<VectorInfo type="float" allowedSize="1"/>
</PropertyInfo>

<PropertyInfo name="PU11_MOTOR_EFFICIENCY" id="ab83631c9-fa19-4299-8919-
bae68db07fab" necessity="optional">
<VectorInfo type="float" allowedSize="1"/>
</PropertyInfo>

<PropertyInfo name="PU11_NPSH" id="a47416b19-59fd-478b-9b5a-2dc8125db80a"
necessity="optional">
<VectorInfo type="float" allowedSize="1"/>
</PropertyInfo>

<PropertyInfo name="PU11_POWER_COEFF" id="a4b3be30a-d459-4658-b21c-
4985f5d867b1" necessity="optional">
<VectorInfo type="float" allowedSize="1"/>
</PropertyInfo>

<PropertyInfo name="PU11_PUMP_EFFICIENCY" id="a3b7af37c-5899-4eb8-adb5-
953cefbfc666" necessity="optional">
<VectorInfo type="float" allowedSize="1"/>
</PropertyInfo>

<PropertyInfo name="PU11_SECTION_NAME" id="adcda06fd-ab72-408e-917b-
cede84d3f8eb" necessity="optional">
<VectorInfo type="a3A307B86-A098-4B05-88CA-551920B709E5" allowedSize="1"/>
</PropertyInfo>

<PropertyInfo name="PU11_SPEED" id="a796273b0-72c7-425c-a842-4d1b0baffac7"
necessity="optional">
<VectorInfo type="float" allowedSize="1"/>
</PropertyInfo>

<PropertyInfo name="PU11_SPEED_NOMINAL" id="a94ee633c-0df1-4636-9097-
c2ba33336cf4" necessity="optional">
<VectorInfo type="float" allowedSize="1"/>
</PropertyInfo>

C5

<PropertyInfo name="PU11_SPEED_SET_POINT" id="a2fc5d02b-6df2-4650-8b19-
07f958a959c4" necessity="optional">
<VectorInfo type="float" allowedSize="1"/>
</PropertyInfo>

<PropertyInfo name="MODULE_NAME" id="a52ebf398-6d34-493f-a28e-49733fc40679"
necessity="optional">
<VectorInfo type="reference" allowedSize="2">
<Constraint name="endTerminal">
<Constraint name="endReference"/>
</Constraint>
</VectorInfo>
</PropertyInfo>

<PropertyInfo name="PU11_CONNECT_POINT_1" id="ae771f3d3-792c-4db8-b4b0-
256ff810d8c6" necessity="optional">
<VectorInfo type="reference" allowedSize="2">
<Constraint name="startTerminal">
<Constraint name="conPoint_POINT"/>
</Constraint>
</VectorInfo>
</PropertyInfo>

<PropertyInfo name="PU11_CONNECT_POINT_2" id="ac3bef610-6f12-4df4-8ce1-
c4c76702d650" necessity="optional">
<VectorInfo type="reference" allowedSize="2">
<Constraint name="startTerminal">
<Constraint name="conPoint_POINT"/>
</Constraint>
</VectorInfo>
</PropertyInfo>

</ComponentType>

Published by

Vuorimiehentie 5, P.O.Box 2000, FIN–02044 VTT, Finland
Phone internat. +358 9 4561
Fax +358 9 456 4374

Series title, number and
report code of publication

VTT Publications 479
VTT–PUBS–479

Author(s)
Karhela, Tommi

Title

A Software Architecture for Configuration and Usage
of Process Simulation Models
Software Component Technology and XML-based Approach

Abstract
Increased use of process simulation in different phases of the process and automation life cycle
makes the information management related to model configuration and usage more important.
Information management increases the requirements for more efficient model customisation
and reuse, improved configurational co-use between different simulators, more generic
extensibility of the simulation tools and more flexible run-time connectivity between the
simulators and other applications.

In this thesis, the emphasis is on large-scale dynamic process simulation of continuous
processes in the power, pulp and paper industries. The main research problem is how to apply
current information technologies, such as software component technology and XML, to
facilitate the use of process simulation and to enhance the benefits gained from using it. As a
development task this means developing a new software architecture that takes into account the
requirements of improved information management in process simulation. As a research
objective it means analysing whether it is possible to meet the new requirements in one
software architecture using open specifications developed in information and automation
technologies.

Process simulation is analysed from the points of view of standardisation, current process
simulation systems and simulation research. A new architectural solution is designed and
implemented. The degree of meeting the new requirements is experimentally verified by testing
the alleged features using examples and industrial cases.

The main result of this thesis is the design, description and implementation of a new integration
architecture for the configuration and usage of process simulation models. The original features
of the proposed architecture are its openness, general distribution concept and distributed
extensibility features.

Keywords
Process simulation, software architecture, XML, software component technology, model configuration

Activity unit
VTT Industrial Systems, Tekniikantie 12, P.O.Box 1301, FIN–02044 VTT, Finland

ISBN Project number
951–38–6011–6 (soft back ed.)
951–38–6012–4 (URL:http://www.inf.vtt.fi/pdf/)

Date Language Pages Price
October 2001 English 129 p. + app. 19 p. C

Series title and ISSN Sold by
VTT Publications
1235–0621 (soft back ed.)
1455–0849 (URL: http://www.inf.vtt.fi/pdf/)

VTT Information Service
P.O.Box 2000, FIN-02044 VTT, Finland
Phone internat. +358 9 456 4404
Fax +358 9 456 4374

	Abstract
	Preface
	Contents
	Abbreviations
	Glossary
	1. Introduction
	1.1 Motivation and background
	1.2 The objectives and hypotheses of the study
	1.3 Research approaches and methods
	1.4 Results and Contributions
	1.5 Structure of the thesis

	2. Related Topics in Simulation, Process and Automation Technologies
	2.1 Introduction
	2.2 Related standardisation and specifications
	2.2.1 CAPE-Open
	2.2.2 High Level Architecture (HLA)
	2.2.3 Standard for the Exchange of Product Model Data (STEP)
	2.2.4 Product Data Markup Language (PDML)
	2.2.5 OLE for Process Control (OPC)

	2.3 Current Process simulation systems
	2.3.1 Introduction
	2.3.2 Apros/Apms
	2.3.3 CADSIM Plus
	2.3.4 Hysys
	2.3.5 Summary

	2.4 Related research and development

	3. Research and Development Problem
	3.1 Introduction
	3.2 Need for better model reuse and easier customisation
	3.3 Need for better configurational co-use
	3.4 Need for more generic extensibility
	3.5 Need for more flexible run time connectivity

	4. Proposed Architectural Solution
	4.1 Introduction
	4.2 Use case analyses
	4.2.1 Kernel developer
	4.2.2 Provider
	4.2.3 Model configurator
	4.2.4 Model user

	4.3 Viewpoints
	4.4 Logical view
	4.4.1 Rationale

	4.5 Data view
	4.5.1 Basic elements
	4.5.2 Component type description mechanism
	4.5.3 Client and server extension description mechanism
	4.5.4 Connection mechanism
	4.5.5 Mapping mechanism
	4.5.6 Documentation and history mechanisms
	4.5.7 Graphical descriptions
	4.5.8 Monitor, trend and state definitions
	4.5.9 Data model of data connection
	4.5.10 References to other specifications

	4.6 Security view
	4.7 Component view
	4.8 Process view

	5. Verification
	5.1 Introduction
	5.2 Verification of the configurational features
	5.2.1 Model customisation using manufacturer data and dimensioning tools
	5.2.2 Model reuse using centralised repository and parametricized construction
	5.2.3 Co-use of a steady state simulator and a dynamic simulator
	5.2.4 Empirical models in the architecture

	5.3 Verification of the run time connectivity features
	5.3.1 DCS testing
	5.3.2 Training simulator support
	5.3.3 Speed and scalability of the data change

	6. Discussion
	References
	Appendix A: An example of EXPRESS language and late and early binding
	Appendix B: An example of the usage of the data model
	Appendix C: Type library examples of Prosim and Apros

