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1 Introduction
“Ich behaupte, daß in diesem Falle eine mit der Gesamtdichte stets wachsende
Zahl von Molekülen in den I. Quantenzustand (Zustand ohne kinetische Energie)
übergeht, während die übrigen Moleküle sich gemäß dem Parameterwert � � �
verteilen. Die Behauptung geht also dahin, daß etwas Ähnliches eintritt wie beim
isothermen Komprimieren eines Dampfes über das Sättigungsvolumen. Es tritt
eine Scheidung ein; ein Teil �kondensiert�, der Rest bleibt ein �gesättigtes ideales
Gas� �� � �� � � ��.”1

These are the words written by Albert Einstein in 1925 [1, 2] to describe the quantum-
statistical phenomenon which has later become known as Bose-Einstein condensation. On-
ly few months earlier, Satyendra Bose had derived Planck’s law for photons using purely sta-
tistical methods. He sent the manuscript to Einstein who translated the paper into German
and submitted it for publication [3]. At that time, however, the Bose-Einstein condensation
was believed merely to be an anomaly of the ideal-gas approximation and that it would not
occur in real, interacting gases.

Owing to the discovery of superfluidity in liquid helium in the late 1930’s, the view
changed. It has since become understood that the Lambda transition of �He is an example
of Bose-Einstein condensation in a strongly interacting system. The identification of Bose-
Einstein condensation in physical systems may be extended even further by identifying the
phenomena of superconductivity in metals and the superfluidity of liquid �He with a Bose-
Einstein condensation of the Cooper pairs. However, such an interpretation is more subtle
since the �He atoms in liquid helium and the electrons in superconductors are fermions—
not bosons.

Generally speaking, Bose-Einstein condensation occurs when a single quantum state of
a many-body system becomes macroscopically occupied by bosonic particles. In practice,
the condensation takes place in the lowest energy state, i.e., in the ground-state of the sys-
tem. Therefore, in order to create such a ‘new state of matter’—a Bose-Einstein condensate
(BEC)—the system must be cooled down to ultralow temperatures.

Major developments in the 1980’s in the areas of laser cooling and trapping of neu-
tral atoms in magnetic fields were crucial steps towards reaching the Bose-Einstein con-
densation in dilute weakly interacting gases [4–7]. Finally, in 1995 evaporative cooling
methods facilitated the required record-low temperatures, leading to the achievement of
Bose-Einstein condensation in magnetically trapped alkali-atom gases [8–10]. As a matter
of curiosity, even a rigorous mathematical proof for the existence of Bose-Einstein conden-
sation in such systems has later been provided [11].

Superfluidity in various systems is manifested through the occurrence of quantized vor-
ticity. In distinction to normal gases, quantized vortices [12, 13] and vortex lattices [14, 15]

1Within the current standard notation � � ���, where � is the inverse temperature, � denotes the
chemical potential, and � � ��� is the fugacity.
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were expectedly found to exist in the trapped atomic BECs. In addition to vortices, other
kinds of topological structures, such as solitons [16] and vortex rings [17] have also been
observed in dilute BECs. Moreover, purely optical confinement of condensates has en-
abled one to trap their different internal spin degrees of freedom simultaneously [18]. Such
spinor condensates may allow for the existence of even more complicated topological struc-
tures, e.g. monopoles [19] and skyrmions [20], in the optically trapped dilute Bose-Einstein
condensates.

During the past few years, BECs have become a novel test bench for exploring many-
body quantum phenomena in interacting systems [21–27]. The strength of the interactions
between the atoms can be controlled by Feshbach resonances [28] and even the sense of
the interaction can be reversed: a repulsion can be changed into an attraction, leading to
the ‘bosenova’ implosion of the condensate [29]. The transition between the Mott insulator
and superfluid states has been observed in BECs confined in optical lattices [30]. The atom
lasers [31–33] and condensates in microtraps [34, 35] are expected to open up new avenues
for applications. Especially gratifying from the theoretical point of view is the fact that there
exist quantitatively accurate approaches yielding predictions in excellent agreement with
experimental observations.

The contents of this Thesis is organized as follows. In Chapter 2 we present the general
mathematical formalism underlying the research in this Thesis. A quantized vortex line is
introduced as a topological defect in the system, arising from the requirement of the irrota-
tionality of the condensate flow field. In the last Section of Chapter 2, the computational
methods that have been employed in the numerical work [Paper VI] are outlined.

Answers to the question of how vortices penetrate condensates are provided in Chap-
ter 3. There the experimental methods for creating vortices are described and subsequently
discussed theoretically. Especially, the role of surface excitations as the seed for the nonlin-
ear dynamics that leads to vortex formation was the motivation for Paper V and is discussed
towards the end of Chapter 3.

Stability properties of vortices and their relation to superfluidity in gaseous BECs was the
starting point for this Thesis project. Papers I and II were the first results from that research.
The energetic stability of vortices with its connection to the precession of an off-centered
vortex line are the topics of Chapter 4. In trying to explain the experimental observations
for vortex precession in terms of stationary solutions for a time-independent system, the
question on the degree to which the dynamics of a moving vortex line may be considered
adiabatic in the quantum-mechanical sense occurred. Paper IV is devoted to studying this
problem which is presented in a slightly different perspective in Chapter 4.

The penultimate Chapter 5 considers systems with multiple circulation, and in par-
ticular, vortex lattices and multiply quantized vortices. This Chapter is concluded with a
discussion on rapidly rotating traps in which interesting phenomena are expected to emerge
such as a transition from a vortex lattice to a giant vortex state with associated quantum-Hall
physics.

Finally, Chapter 6 summarizes this Thesis.
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2 Models

The most rudimentary approach for describing the phenomenon of Bose-Einstein conden-
sation is the analytically soluble ideal-gas approximation described in elementary textbooks
on statistical physics. To incorporate effects of weak particle interactions into the descrip-
tion, the celebrated zero-temperature Gross-Pitaevskii (GP) equation [36, 37] for the macro-
scopic condensate wavefunction is often introduced. In spite of neglecting the noncon-
densate gas, this nonlinear Schrödinger-type equation has become the standard tool for
describing Bose-Einstein condensates due to its relative simplicity and power in predicting
both static and dynamic experimentally verifiable phenomena. The collective quasiparticle
excitation spectrum of the system may be obtained from the coupled Bogoliubov equa-
tions [38, 39] which are also the zero-temperature limit of a more general class of finite-
temperature mean-field approximations. Alternatively, the Bogoliubov equations for the
elementary excitations may be derived by considering the linear response of the condensate
to a driving perturbation [40].

The problem of constructing the appropriate approximating field theory yielding the
correct excitation spectrum for the Bose-condensed systems is highly nontrivial. Two crucial
requirements for a proper approximation are that it is ‘conserving’ [41–43], which ensures
that the calculated phonon velocity coincides with the compressional speed of sound and
‘gapless’, meaning that there is no energy gap in the excitation spectrum of the condensate
[44, 45]. Put more technically, these requirements state that the poles of the single-particle
Green’s function and the density autocorrelation function of the system must coincide and
that the Hugenholtz-Pines relation [46] must be satisfied, implying the existence of a Gold-
stone’s boson [47].

The first-order Hartree-Fock-Bogoliubov (HFB) approximation and its variants are gener-
ically either nonconserving or they contain an energy gap, thus being deficient. Further-
more, they neglect the particle exchange processes and fail to describe the damping of the
collective modes. More sophisticated theories filling these gaps have been introduced, for
instance within the dielectric formalism [48] and using the quantum kinetic formulation
[49–52] taking consistently into account the second-order Beliaev processes in the self-
energies [53, 54]. These are, however, computationally more challenging than the static
self-consistent approximations, such as the gapless but nonconserving HFB-Popov scheme
described in more detail in the following Section. The coupled dynamics of the conden-
sate and the noncondensate as well as the damping of the collective excitations may also be
analyzed within the semi-classical approximation in the quantum-hydrodynamic limit [55].

This Chapter outlines the derivation of the model equations used for the numerical
computations in Papers I–VI. We discuss how an axisymmetric vortex line is incorporated
into the description and finally elucidate the numerical methods used in obtaining the
results of Papers I–VI.
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2.1 Theoretical formulation

A natural starting point for the microscopic description of a weakly interacting Bose gas is
the second-quantized Hamiltonian

�� �

�
������

�
� �

�

��
�� 	 �������

�
����� 
�

	
�

�

��
������ �������������� ��� ������ ����� 
�� 
�� (1)

Above,� is the mass of an atom and the bosonic field operators ������ and ������, respective-
ly, create and annihilate particles at � and ��; they obey the usual canonical commutation
relations

� ������ �������� � Æ��� ��� � ������ ������� � � ������� �������� � �� (2)

Working within a particle number conserving formalism, we introduce the grand-canoni-
cal Hamiltonian �	 � �� � 
 �� , where 
 is the chemical potential and the particle number
operator �� �

�
������ ����� 
�. If the system is rotating at an angular velocity �, the proper

thermodynamic potential to be minimized at a given temperature � is � ��	� � �, where
 denotes the entropy and ��	 � �	 � � � �� [56], the angular momentum operator being
defined as �� � ��� � ����������� ����� 
�.

For dilute Bose-Einstein condensates, the usual approximation for the interparticle inter-
action is a contact potential ������� ��� � �Æ��� ���. The coupling constant � � �������
is given by the Born approximation for the scattering of particles in vacuum with the �-wave
scattering length � determining the range of the interactions. This approximation is well
justified in the ultra-cold, dilute atomic gases considered [57]. The confining potentials for
the atoms in traps have usually been provided by approximately harmonic magnetic fields.
Hence, an external trapping potential may be taken to be of the form ������� �



�
���

���
�,

where ��� is the (isotropic) harmonic trapping frequency.
Adopting the concept of spontaneously broken U(1) gauge symmetry2, the macroscopic

ground-state occupation below the critical condensation temperature is manifested by a
finite expectation value for the boson field ������� � ����. This allows one to separate
the condensate wavefunction ���� from the rest of the field operator according to ����� �

���� 	 �����. Substituting this decomposition into ��	 and expanding the cubic and quartic
operator products according to the self-consistent mean-field approximation as [45]

������ ������ ����� ����� � ������ ������ ����� 	 ����� ������ ������ 	 ���� ����� ������ (3a)
������ ����� ����� � ������ ����� 	 ���� ������� (3b)

where ����� � � ������ ������ and ���� � � ����� ������, leaves us with an effective quadratic
Hamiltonian ���� that may be diagonalized by a canonical transformation. The anomalous

2For a critical discussion on this approach, see for example Ref. [25] and references therein.
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average ����, analogous to the gap function in superconductors, arises from the condensate-
induced correlations between the noncondensate atoms, whereas ����� is the particle density
of the atoms not in the condensed state.

Retaining all terms in Eq. (3) yields the full HFB Hamiltonian which predicts an energy
gap in the spectrum. The somewhat ad hoc Popov approximation (PA) neglects the anoma-
lous correlation function ���� in order to remove the gap. However, this being the justifica-
tion for the neglect of the non-negligible ���� is rather questionable. If both ����� and ����
are omitted, we recover the zero-temperature Bogoliubov approximation (BA). Discussion
on these approximations in terms of Feynman graphs accounted for when calculating the
self-energy diagrams within the Green’s function formalism may be found in Ref. [58]. By
making the coupling constant position dependent according to ���� � ��� 	 �����������,
one may keep the pair correlation function and obtain a gapless spectrum as well [59]. This
leads to two additional, the so-called G1 and G2, approximations which contain a renor-
malizable ultraviolet divergence as also the HFB approximation does [60–62]. The mod-
ification of the coupling constant � may be justified by noting that the resulting effective
interaction yields the correct approximation for the many-body T-matrix in the homoge-
neous limit [62]. The effects of these gapless approximations on the excitation spectrum
and particle densities for vortex states are studied in Paper II. However, none of the above
approximations treats the dynamical properties of the noncondensate, thus being inade-
quate for an accurate modeling of Bose-Einstein condensates at finite temperatures. Above
discussed properties of the mean-field approximations are summarized in Tab. I below.

Table I: Properties of the various mean-field approximations employed in the numerical computa-
tions. Bullets denote an inclusion of the property within the corresponding approximation. In order
to partially take into account effects of the momentum dependence of the collision processes, the
condensate-condensate interactions are treated differently from the other collision processes within
the G1 approximation, see for example Ref. [62].

BA PA HFB G1 G2
gapless 	 	 	 	
conserving 	
noncondensate 	 	 	 	
anomalous average 	 	 	
interaction strength � � � �� ���� ����
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The expectation value of the Heisenberg equation of motion for the field operator
���� ����� �� � � ����� ��� ��	�, yields in the rotating frame of reference the stationary Gross-
Pitaevskii equation within the Popov approximation


���� �

��
� �

�

��
�� 	 �������

�
	 �
����
� 	 �������� ���

�
����� (4)

where 
 stands for the chemical potential3, and the condensate wavefunction is normalized
to the particle number � according to

�
�
����
� 	 ������ 
� � � . Furthermore, �� denotes

the total orbital angular momentum along the rotation axis. In the limit of large particle
number, the quantum pressure, the first term on the rhs of Eq. (4), may be neglected. This
corresponds to the so-called Thomas-Fermi approximation allowing an approximate analytic
solution for the condensate wavefunction and the chemical potential at zero temperature.

Taking Eq. (4) into account, the effective quadratic Hamiltonian may be diagonalized
using the Bogoliubov transformation, ����� �

�
���������� 	 �

�
������

�
��, and requiring the

quasiparticle eigenmodes ������ ����� and the energy eigenvalues �� to satisfy the coupled
HFB-Popov equations

������ 	 ����������� � ��� 	 ���������� (5a)

������ 	 ������������ � ���� 	 ���������� (5b)

Above, � � � ��

��
�� 	 �������� 
	 ���
����
� 	 ������ and an expansion of ����� in terms

of the quasiparticle basis yields the equilibrium noncondensate density

����� �
�
�

�	
�����
� 	 
�����
�
 �

����	�
 � �
	 
�����
�

�
� (6)

where the last term is a contribution of the quantum depletion �

��� which for these

weakly interacting systems is in general less than one per cent. In the first-order mean-
field approximations, the quasiparticles are assumed to be noninteracting, thus obeying the
Bose-Einstein distribution. Requiring the Bogoliubov transformation to obey the bosonic
commutation rules, Eq. (2), sets the normalization condition

�
�
�����
��
������
�� 
� � Æ���

for the quasiparticle amplitudes. Negative-energy (��  �) quasiparticle excitations with
positive norm are referred to as ‘anomalous modes’.

The self-consistent set of Eqs. (4), (5), and (6) with the appropriate normalization condi-
tions needs to be solved iteratively. It is worth noting that temperature only occurs explicitly
in the Bose-Einstein distribution function generating all the temperature-dependent effects
via the density of the noncondensate gas. It is also the distribution function that causes

3However, due to the interactions there is in general a slight difference between the eigenvalue � of the
Gross-Pitaevskii equation and the true thermodynamic chemical potential �� � ����	 . Effects due to this
discrepancy are studied for example in Ref. [63].
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numerical difficulties in the convergence of the self-consistent sums when there exist quasi-
particle modes close to the condensate energy (�� � �). Given a self-consistent solution
for the system, the free energy may be evaluated from the expression [64]

! � � �����	 
� � � (7)

� 
� � �
�

�

����
� 
�� ��

�

����
������ 
�

	
�
�

���� �
�
�

��

�

�����
� 
�

� �"
�
�

��� 	 ��� ���� 	 ���� �� ������ (8)

where �� denotes the Bose-Einstein distribution function.
Part of a typical Bogoliubov quasiparticle excitation spectrum for the Bose-Einstein con-

densate is shown on the lhs of Fig. (1) as a function of the angular momentum quantum
number, #. The presence of a quantized vortex line breaks the time-reversal symmetry, re-
moving the degeneracy between the energies of the quasiparticles with opposite angular
momenta [65]. This fact has been deployed in the experiments to detect the presence of
a vortex by measuring the difference in the oscillation frequency between the quadrupole
modes (# � ��), thus obtaining the expectation value for the angular momentum of the
condensate [66]. Some of the lowest collective modes have been identified on the rhs
of Fig. (1). The Goldstone mode at zero energy (�� � �) and with the relative angular
momentum (# � �) corresponds to the condensate itself and the excitation energies and
angular momenta are measured relative to it. The breathing mode (# � �) describes the
out-of-phase oscillations of the condensate whereas the Kohn (or dipole) mode (# � �) de-
termines the center-of-mass frequency. In this Bogoliubov spectrum, also one anomalous
mode (# � ��) whose density is localized in the vortex core is present. The corresponding
frequency may be associated with that of the off-center precessing motion of the vortex line
[67]. The angular momentum states (# � �� � � � � ) having the lowest energies are called
surface modes; they may be related to the critical trap rotation frequency for vortex nucle-
ation, see Paper IV and Chapter 3 below. For higher energies 
�����
 � 
�����
, such that
the Bogoliubov equations decouple and the corresponding quasiparticle excitation modes
approach those of single-particle states. This property allows for an accurate description of
the high-lying states within the semiclassical approximations.

2.2 Quantized vortex line

The idea of quantized vortices [68] was originally put forward by Onsager [69] and Feyn-
man [70] when considering the superfluid flow properties of liquid helium. In nature,
whirlwinds of various kinds, e.g., tornadoes, waterspouts, dust devils, and swirls in the water
serve as classical analogs to the vortices in the quantum realm.
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Figure 1: Part of the quasiparticle excitation spectrum for a vortex state. (lhs) Energies of
the lowest quasiparticle modes as functions of the angular momentum quantum number �. Due
to the presence of the vortex line, the time-reversal symmetry is broken which lifts the degeneracy
between the angular momentum states with opposite signs. (rhs) few of the lowest collective modes
individualized. Energies are measured with respect to the condensate state, for which �� � �,
� � �.

Starting from the expression for the quantum-mechanical particle current density

� � 
����
�� � � ��
��

������������ ������������ (9)

and separating the amplitude 
����
 and the phase ��� of the condensate wavefunction as
���� � 
����
������, we may identify the velocity field � of the condensate as the gradient of
its phase

� �
�

�
����� (10)

From this expression, it immediately follows for the purely potential flow of the condensate
that

�� � �
�

�
������ � � (11)

implying that the condensate flow must be irrotational unless there is a singularity in the
phase of the condensate wavefunction. An integral of the velocity field around a closed loop
is called circulation

� �

�
� � 
� � �

�
��� (12)
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where � is an integer winding number. The condensate wavefunction must be single-
valued and its phase may only change through a multiple of �� around a closed path—
hence the factor of ��� in the above equation.

It is thus inferred that if one tries to rotate the condensate it stays at rest until a certain
critical threshold rotation velocity is reached, beyond which it becomes energetically favor-
able for the condensate to deform in such a way that a node in its macroscopic wavefunction
develops. The line of vanishing condensate density is called (the core of) a vortex line and
the circulation around it is quantized in units of $��. These topological defects are of-
ten interpreted as being the signature of superfluidity in the system. Vortices may also be
considered as being the quantized response of the irrotational condensate to an irresistible
rotation. In addition to the revolving surface excitations, vortices are the most natural way a
condensate may acquire angular momentum.

By comparing the kinetic and potential energy terms in the Gross-Pitaevskii equation,
one may define a characteristic length scale over which density perturbations can occur in
the condensate [71]. This length is called the healing length and it is given by the expression
% � �������, where �� � ����
����
�� is the peak density of the condensate. The healing
length describes the distance scale, such as the radius of a vortex core, over which the
condensate wavefunction ‘heals’ if locally perturbed from its equilibrium value. Figure 2
shows the computed spatial structure of a singly quantized vortex line for an axisymmetric
system. For a similar plot including the noncondensate present at finite temperatures see,
for example, Paper I.

In the case of cylindrical symmetry, Eq. (10) implies the radial velocity field � � ����&
for the vortex state. Thus the velocity field would become supersonic at distances below the
vortex core radius %, unless the condensate density vanishes there, thus ensuring that the
kinetic energy density remains finite for &� �.

2.3 Numerical implementation

The work reported in Papers I–VI has strongly relied on the detailed numerical solutions for
the stationary vortex states computed using the Gross-Pitaevskii and Bogoliubov equations.
The computational details of our numerical methods are documented in Paper VI; in the
following we concentrate on the relevant physics involved.

In the computational work we have thus far restricted our considerations to axisymmet-
ric vortex states of the form ���� � ��&����, where � is the winding number determining
the number of circulation quanta in the vortex. The equations are solved in a cylindrical
coordinate system, � � �&� '� (� where the condensate is harmonically trapped in the ra-
dial direction. Periodic boundary conditions are imposed in the axial direction implying
the condensate to have the shape of an infinitely long cylinder. However, the physics de-
scribed by this system closest resembles that of a spherical or oblate condensate geometries
in which, for instance, vortex bending is negligible.
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Figure 2: Radial distribution of the condensate density for an axisymmetric vortex line. A density
plot from the top is shown in the inset where the black dot corresponds to a vortex core.

The basic computational mean-field approximation scheme is the following:

i) solve the Gross-Pitaevskii Eq. (4) for the condensate wavefunction ���� and the chem-
ical potential 
 self-consistently with the normalization condition

�
�
����
�	������ 
� �

� , using suitable initialization;

ii) calculate the quasiparticle amplitudes ������ ����� and the excitation eigenenergies
�� using the coupled Bogoliubov Eqs. (5);

iii) compute the noncondensate density ����� and the anomalous correlation function
���� by summing over the quasiparticle eigensolutions; see Eq. (6).

The above steps (i-iii) are repeated until convergence for the computed quantities to pre-
assigned accuracy. At the end of the iteration, the desired thermodynamic quantities, such
as the free energy, may be computed. It is the requirement of self-consistency in the equa-
tions that forbids analytic solutions and also makes the problem computationally challeng-
ing.

All equations are discretized on a spatial grid and the differential operators are handled
within a finite-difference scheme. The generalized stationary Gross-Pitaevskii equation for
the condensate wavefunction is solved iteratively using the relaxation method. The chem-
ical potential for a fixed number of particles is determined by imposing the normalization
condition for the condensate density. The coupled equations for the quasiparticle eigen-
modes are turned into a matrix eigenvalue problem for a narrow band matrix. This is solved
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using the implicitly restarted Arnoldi method implemented in the ARPACK subroutine li-
braries [72]. The direct lattice discretization method is preferred owing to the resulting
sparse structure for the eigenvalue problem which would also allow for taking into account
nonlocal interactions with little additional computational cost. In comparison, an eigen-
function expansion method also used for computing Bogoliubov excitations for vortex states
[73] yields a full matrix in the eigenproblem resulting in a worse computational scaling with
the system size. Moreover, within the method used here, the different parts of the spectrum
may be computed independently of each other facilitating more efficient computation.

To reduce the computational effort, we employ the semi-classical local density approx-
imation for the high-lying quasiparticle states [74, 75]. In practice, this corresponds to as-
suming the quasiparticle amplitudes to be smooth functions of the coordinates, such that
the kinetic energy operators may be replaced with their corresponding classical values. As
a consequence, the Bogoliubov equations reduce to a pair of algebraic equations which are
readily solved for the quasiparticle energies and amplitudes. The noncondensate density,
for instance, may then be obtained from a simple integration over the momenta. This
method yields an excellent approximation if the necessary cutoff is chosen at high enough
energies, for which 
�����
 � 
�����
, causing the Bogoliubov equations to decouple and
the quasiparticles to become single-particle like. In order to further boost the computa-
tional efficiency, over(under)relaxation methods are employed when iteratively solving the
condensate wavefunction (noncondensate density) [Paper VI].
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3 Vortex formation

The evolution of a vortex-free condensate to a state containing quantized circulation is in
general a complicated nonlinear dynamical problem. Nevertheless, using the simple under-
lying physical principles, it is possible to understand, both qualitatively and quantitatively,
the circumstances leading to the onset of vortex formation. In this Chapter, the experimen-
tal methods used to create vortices in Bose-Einstein condensates are presented. The Landau
criterion for the breakdown of superfluidity is expressed in a form suitable for studying the
critical velocity for vortex generation in rotating condensates. The crucial role of the sur-
face modes for the vortex nucleation process, studied in Paper V in greater detail at finite
temperatures, is discussed.

3.1 Creation of vortices

Vortices were first created in a two-component Bose-Einstein condensate [12] using a coher-
ent interconversion between the two internal states [76]. The condensate was first prepared
in one hyperfine state and a part of the particles was then continuously transferred using
microwave field induced transitions into another Zeeman substate, while rotating a laser
beam around the initial condensate. This created a singly quantized vortex into the other
component with the characteristic �� phase winding around it.

Another early method to produce quantized vorticity in Bose-Einstein condensates was
to use a stirring laser beam to rotate the condensate confined in a prolate trap geometry
[13]. In effect, the vortices were created rather via thermal equilibration than by imprinting
the vortex phase directly into the condensate. Later, similar methods, analogous to the ro-
tating bucket experiments for the helium superfluids4, were used to produce large regular
lattices with over one hundred vortices in them [15, 77–79]. In addition to such extrinsic
rotation, vortices have been generated intrinsically by the rotating thermal cloud [80]. In
the latter case, the thermal gas is first rotated and only then cooled below the transition
temperature of the Bose-Einstein condensation. Thus the rotating noncondensate compo-
nent serves to act as the wall of a vessel defining the rotating environment for the newborn
condensate. Vortices are then nucleated after the condensate has grown large enough to
support quantized vorticity.

The physical principle underlying these measurements was to create a time-dependent
rotating anisotropy in the harmonic trapping potential. Such a deformation acts as a re-
volving perturbation, allowing one to determine a rotating frame of reference in which the
Hamiltonian becomes time-independent and the usual thermodynamic arguments apply.
Specifically, for a given rotation velocity of the trap, the condensate tends to minimize the
free energy by ‘adjusting’ its angular velocity to the value which closest matches that of the

4However, since gaseous condensates are trapped by smooth magnetic fields, there is no intrinsic surface
roughness associated with the walls of the bucket that could be responsible for vortex nucleation as for the
helium superfluids.
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trap [25]. Thus, due to the quantum-mechanical nature of the vortices, there exists a finite
threshold frequency of the trap needed to set the condensate into rotation. In a number of
numerical computer simulations, the vortices in the rotating condensates have been verified
to enter the system from the boundary of the condensate [81–84].

Moreover, vortices have been created through the ‘snake’ instability of decaying soli-
tons [85] and in the turbulent wake of a moving object [78, 86]. Dark solitons have been
observed to decay into vortex rings [17]. Most recently, vortices with topological charges
� � � and � � � have been created [87] by exploiting the spin degrees of freedom of
the condensate by continuously changing the direction of the magnetic field confining the
atoms in the ( direction [88, 89].

3.2 Landau criterion

According to a principle proposed by Landau, superfluidity may be destroyed through the
creation of excitations in the system. Considering energy and momentum conservation for
a massive object moving in a superfluid, Landau obtained the minimum velocity for the
perturbation to create excitations in the condensate [90]. This Landau critical velocity is
given by �� � �����)�*��*�, where ) is the energy of an excitation carrying the momentum
*. Specializing to a rotationally invariant system, the critical angular frequency for a circu-
lating perturbation to create (quasiparticle) excitations into a Bose-Einstein condensate is
obtained from the expression

�� � ���
�

���
#


� (13)

Here, ��� is the quasiparticle excitation energy corresponding to the angular momentum
�#. Above ��, the energy of some excitation mode decreases below that of the condensate
itself, see Figs. 3 and 4. This means that the condensate may lower its energy by transferring
particles into that mode. Hence, the higher angular momentum quasiparticle states become
populated and the associated density perturbation may evolve into a quantized vortex.

Comparing the free energies !� between the singly quantized axisymmetric vortex state
(� � �) and a vortex-free condensate (� � �), one may estimate the thermodynamic
critical frequency

�� �
!
 � !�
��

���
	��

� ��

�
(14)

for vortex stability. Above ��, !
 becomes lower than !� in the rotating frame of reference
and hence the state with a vortex is thermodynamically favorable. Another interpretation
for �� is to consider it as the Landau critical angular frequency for creating a topological
vortex excitation in the condensate. However, the interpretations of �� and �� are quite
different, the former determining the threshold for generating quasiparticle excitations in
the system by the rotating perturbation, the latter assuming that all the particles would
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be simultaneously excited into an angular momentum state # � �. In principle, both ��

and �� should be determined in the rotating frame of reference through the conditions
!
 � !� and ����� � �. In the zero-temperature limit, however, these critical frequencies
may be determined in the laboratory frame since the energies of the quasiparticles and
that of the vortex state transform under rotation, respectively, as ����

� � ����
� � �# and

! ���
�
� ! ���

�
����� .

3.3 Surface modes

In a number of recent experiments, the critical rotation frequency for the creation of vortices
has been measured [13–15, 66, 78, 80, 91, 92]. Excluding one exception [78], all of these
papers have reported nucleation thresholds for the entry of the first vortex much higher than
the appropriate thermodynamic value, ��. The explanation is that at rotation velocities
for which the axisymmetric vortex state becomes energetically favorable, there still exists
an energy barrier on the surface of the condensate, hindering vortices from entering the
system. The implication is that vortices penetrate the condensate as a consequence of a
dynamical process outbalancing the surface barrier, thus allowing thermal equilibration to
the lower free energy state. Consequently, hysteretic behavior is expected when the trap
rotation frequency is ramped above the nucleation threshold and back again [93].

In the hydrodynamic limit, it has been shown that the surface energy barrier vanish-
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Figure 3: Quasiparticle excitation energies calculated in the rotating frame of reference for � �

��� �� as functions of the angular momentum quantum number �. The anomalous mode (� �
��) has gained enough in energy to become positive, whereas a further increase in the rotation
frequency would suppress the lowest surface modes to energies below that of the condensate state.
For a further discussion on the surface instability of a rotating Bose-Einstein condensate, see for
example Refs. [94, 95], and Paper V.
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Figure 4: Quasiparticle energies for the nonvortex state scaled by their corresponding angular
momentum quantum numbers, �. States up to energies �� � �� ��� have been plotted. The inset
shows a part of the corresponding symmetric spectrum. The minimum of ���� defines the Landau
critical frequency, see Eq. (13), for the generation of excitations in the system.

es at the Landau critical velocity for the generation of surface modes in the condensate
[96]. These quasiparticle excitations are density perturbations localized in the vicinity of
the condensate surface, allowing for continuous transfer of energy and angular momentum
to the condensate5. The vortices are thus expected to be generated via nonlinear dynamical
evolution from the surface modes propagating around the exterior of the condensate.

The theoretical predictions for the vortex nucleation threshold in terms of the Landau
critical frequency, ��, are in reasonable agreement with many of the available observations.
However, in highly prolate condensate geometries [13, 14, 66, 91] or when the stirring po-
tential has effectively a quadrupolar shape [92], vortices are seen only at very high rotation
frequencies ���� � ���, where �� is the trapping frequency in the plane perpendicular to
the trap rotation axis. This is likely to be explained by the excitation of quadrupolar surface
modes, for which ���# yields the value � ����� under quite general circumstances.

In Ref. [97], the dispersion relation was obtained for harmonically trapped BECs in the
Thomas-Fermi limit. For the surface modes, the dispersion relation reduces to �� � ��


#,

which yields for low angular momentum states a fair estimate. Especially, the quadrupole
mode (# � �) resonance is obtained when the trap rotates at the frequency � ��� ��.

However, for high angular momentum states, the hydrodynamic prediction fails and
yields a divergence in ��. Contrary to this, there exists a minimum in ���# calculated us-
ing the Bogoliubov equations. This minimum defines the Landau critical velocity for the
nucleation of vortices and is found to be in reasonable agreement with the experimen-

5Generically, the rotating states of Bose-Einstein condensates are a superposition of different occupied
surface modes and quantized vortices [27].
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tal observations [98], see also Paper V. In one of the experiments, however, vortices were
observed already at lower rotation velocities, coinciding with the corresponding thermody-
namic equilibrium value �� [78]. A possible explanation for such a low threshold value is
that the vortices were created in the wake of the turbulent flow of the small stirrer for which
the local fluid velocity may exceed the effective rotation velocity of the stirrer [99]. The
motivation for Paper V was to study the temperature dependencies of �� and �� in order to
find out the role of the noncondensate in the vortex nucleation process.

Finally, it is worth noting that in the presence of attractive interactions (�  �), the
free energy of the rotating system is minimized by placing the angular momentum into the
dipole surface mode (# � �), corresponding to the center-of-mass motion of the condensate
[100]. The implication thus is that no vortices are expected to be created in rotating Bose-
Einstein condensates with attractive interactions [27]. Moreover, in the noninteracting limit
(� � �), any small perturbation, e.g., an asymmetry in the trap potential has been shown
to lead to the inversion of the topological charge of the vortex thus implying a structural
instability in the vortex state [101].
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4 Stability of vortices

This Chapter is devoted to a discussion on the stability of quantized vortices in trapped Bose-
Einstein condensates. On a general level, the different stability criteria may be divided into
conditions of dynamical and thermodynamical stability. Usually, instabilities in the dynam-
ical sense are accompanied by complex eigenvalues, whereas negative (excitation) energies
are a signature of thermodynamic instability. These concepts and their implications for the
existence and stability of quantized vortices in BECs are the subject of this Chapter.

We focus to consider stationary states and hence restrict to study the energetic stability
in terms of a state being a global6 or a local minimum of the free energy functional. Besides
the different stability criteria, the problem of a precessing off-axis vortex line is presented
and its connection to the stability issues is discussed. At the end of the present Chapter, we
raise the issue of adiabaticity in the context of quantum mechanics and apply it to a moving
vortex line.

4.1 Thermodynamic stability

A convenient way to determine the thermodynamic stability in the BEC systems under
consideration is in terms of the free energy ! � � ����� � �, see Eq. (8). The state which
has the lowest free energy under the given external circumstances, such as temperature and
rotation frequency of the trap, defines the globally stable state. The metastable states, i.e.,
states which are only local minima of the free energy, are thus eventually expected to decay.
Nevertheless, under suitable circumstances, e.g., when there is negligible dissipation in the
system or a potential barrier, the metastable states may have lifetimes comparable to that
of the condensate itself; hence such states may be observable in experiments. However,
rigorously speaking, even the condensate itself exists only in a metastable state, its lifetime
being determined by the three-body recombination rate.

In nonrotating systems, the vortex-free state has the lowest free energy. If the condensate
possesses angular momentum, for example in the form of vortices, the energy of the system
is lowered by the amount � � ��. Hence there exists a thermodynamic critical rotation
velocity ��, defined by the condition !
 � !�, at which the singly quantized vortex state
becomes globally stable (at a given spatial point). At zero temperature, this frequency for a
singly quantized axisymmetric vortex line is given by Eq. (14). For a schematic illustration
of the stability of a vortex in a rotating trap, see Fig. 5.

In the general case, considering multiply quantized vortices and vortex lattices, the free
energy landscape becomes more complicated as there exists a large number of different
configurations that have to be taken into account when searching for the minima of the
free energy functional. Also, interactions between the vortices complicate the analysis.

6Here we only consider axisymmetric configurations, although the true ground-state corresponds to a
bent vortex [102, 103]. However, in the oblate and spherical trap geometries, vortex bending is negligible.
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4.2 Local stability

A state of the condensate is said to be locally energetically stable if it is a local minimum
of the energy functional. In terms of the elementary excitation energies, local energetic
stability requires the spectrum of the condensate to be positive definite. If there exist neg-
ative quasiparticle excitation energies (with respect to the condensate state) with positive
norm, called anomalous modes, the condensate may lower its energy by transferring atoms
into these modes. When sufficiently populated, such a mode may lift to positive energies or
become the new macroscopic ground-state.

Considering an axisymmetric singly quantized vortex line in a nonrotating trap, one
finds that the free energy of a condensate with a vortex is larger than that of a state without
the vortex. Moreover, the zero-temperature Bogoliubov quasiparticle spectrum for the vor-
tex state contains one or more anomalous modes that are localized in the vortex core and
possesses the relative angular momentum ��� with respect to the condensate. Thus we
conclude that the singly quantized vortex is both locally and globally unstable in the nonro-
tating trap. Physically, if dissipation is nonnegligible, this energetic instability would imply
that an infinitesimal displacement of the vortex from the symmetry axis would cause it to
spiral outwards—ultimately causing the vortex to annihilate at the edge of the condensate
[104].

When the system is rotated, an anomalous mode with the energy ��� and the angular
momentum ��� will gain in energy the amount ��� due to the rotation. Hence, the
singly quantized vortex line will become locally energetically stable at �� � ��� 
��
,
in the sense that then the spectrum of the condensate will contain only positive-energy
quasiparticle excitations. Similarly, the singly quantized axisymmetric vortex state becomes
globally stable at the critical rotation frequency, ��. In prolate condensate geometries in
which the true stationary configuration above �� corresponds to a bent vortex [102, 103],
the frequency threshold for the local stability of a straight vortex line may even exceed ��

[67].
However, the situation is quite different if the noncondensate particles, relevant at finite

temperatures, are included in the theoretical description. Then the thermal gas component
accumulating in the vortex core can effectively act as a stabilizing potential and lift the
anomalous mode to positive energies [73], see also Paper I. In fact, all the self-consistent
finite-temperature approximations studied in Papers I and II predict no anomalous modes
even in the � � � limit, suggesting that the axisymmetric vortex line could be locally
energetically stable even in nonrotating traps. This apparent contradiction between the
zero-temperature Bogoliubov approximation and the finite-temperature theories in the low-
temperature limit seems surprising in light of their close agreement for the collective modes
in irrotational systems [105].

Besides the local energetic instabilities implied by the anomalous modes, complex
eigenvalues may emerge in the spectra of BECs. Such imaginary frequencies occur, for
instance, in the case of multiquantum vortices or when the condensate is perturbed by the
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Figure 5: Schematic for the stability of a vortex as a function of the trap rotation frequency.
(a) In a nonrotating trap, dissipation would cause the vortex slightly displaced from the center of
the trap to spiral out of the condensate. (b) At the metastability frequency ��, the anomalous
core mode turns positive and the axisymmetric vortex state becomes metastable. (c) At ��, the
singly quantized vortex becomes thermodynamically favorable at the center of the trap. However,
there exists an energy barrier on the condensate surface preventing the vortex from entering the
condensate. (d) Finally, at the Landau critical frequency ��, the surface barrier vanishes and
vortices may spontaneously penetrate the system. For a quantitative discussion on the energy
landscape as a function of the vortex position in a rotating trap, see for example Refs. [108, 109]
and [26].

presence of a soliton. They signal a dynamical instability in the system, thus being more
severe from the point of view of the subsequent time-development of the condensate than
the local energetic instabilities; for further discussion, see for example Refs. [106, 107] and
references therein.

4.3 Vortex precession

If a vortex line is displaced from the center of a stationary trap, the vortex starts to precess
around its equilibrium position. In general, the vortex would exhibit spiraling motion but
if the dissipation in the system is weak, the vortex can merely precess around the symmetry
axis. Such precession of the vortex has been experimentally observed and the relevant
precession frequency has been measured [110]. Moreover, excluding the so-called rogue
vortices, the direction of the precession was found to be in the positive direction, i.e., in the
same sense as that of the condensate flow. In addition to the precession, tilting motion of
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the vortex line, induced by anisotropy in the trap potential, has been measured [111].

The precessing motion of the vortex may be understood in terms of the Magnus effect
which induces deviation in the trajectory of rotating objects of various kinds due to the
anisotropy in the flow field around them [68, 112]. Phenomenologically, the vortex core
may be considered as a bubble in a viscous fluid. The density and pressure gradients due
to the inhomogeneity in the particle density and the asymmetry in the velocity field, re-
spectively, result in an effective buoyancy force generally towards the outward direction
in nonrotating traps, see Fig. 6. In a dissipationless system, energy and angular momen-
tum conservation together with the Magnus effect are then responsible for the precessing
motion of the vortex. However, a delicate balance between the various forces, such as
the Magnus force and the drag force due to the thermal excitations, determines the direc-
tion of the resultant buoyancy force, ��, and thus the direction of precession according to
�� � ��� � ����
����
�$�. In particular, sufficient external rotation of the system modifies
the flow field around the vortex core in such a way that the vortex would end up spiraling
inwards to the center of the trap, thus becoming stable in the rotating trap.

Interestingly enough, the frequency of the anomalous mode may be associated with
the precession frequency of the slightly displaced vortex line and the sign of the excitation
with the sense of the precession [67, 113]. The interpretation of the anomalous mode with
energy ��� and relative angular momentum ��� is that the condensate would tend to
populate that state, thus facilitating a transition back into the nonrotating ground-state. The
density perturbation associated with the anomalous mode � ����������� is then viewed as a
revolving perturbation with the frequency ����� in the positive sense [114]. Especially, due
to the linear dependence between �� and �, this implies that if the trap rotation is swept
through ��, the vortex should slow down and eventually change its direction of precession.

For a vortex in two-component condensates, it has been shown [115] that the precession
direction can also be opposite to the direction of the condensate flow for � � �. In general,
to change the precession direction it is sufficient to generate a local minimum in the free
energy since the precession direction depends on its gradient. This may be achieved simply
by rotating the system but also suitable engineering of the density distribution would allow
counter-precessing vortices.

Finite-temperature calculations reported in [73] and in Papers I and II and also discussed
in more length in [116] suggest that the noncondensate gas in the vortex core could cause
sufficient density modification to allow stable vortices even in nonrotating traps. However,
the Popov approximation employed neglects dynamical effects of the noncondensate and
may thus be liable in its predictions in this sense. To settle the precession problem, more
experimental investigations in addition to the available data [110] would be needed. Also
an implementation of the quantum kinetic equations, taking into account the full coupled
dynamics of the condensate and noncondensate, would merit further studies.
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Figure 6: Diagram illustrating the precession of a vortex line. Due to the Magnus effect, an off-
centered vortex line starts to precess around its equilibrium position. The direction of the vortex
velocity �� is perpendicular to both the axis of circulation and the effective buoyancy force ��

exerted on the vortex. Thus the sense of the precessing motion is determined by the pressure and
density gradients, respectively, due to the flow field asymmetry around the vortex core and the
inhomogeneity of the condensate density. Moreover, drag forces due to the thermal excitations may
affect the vortex motion. If the direction of the resultant buoyancy force is outwards (inwards) with
respect to the center of the condensate, the vortex precesses in the clockwise (counter-clockwise)
direction with respect to the condensate flow. In the absence of dissipation, the path of the vortex
will follow a circular trajectory depicted by a dashed line in the figure.

4.4 Adiabaticity

The difference between theory and experiment raises the question as to what extent can one
successfully model dynamic phenomena such as the precession of a vortex line within the
stationary formalism? An answer to this question is facilitated by the adiabatic approxima-
tion of quantum mechanics [117], and its application to dilute Bose-Einstein condensates
is studied in Paper III.

In systems for which the time evolution of the Hamiltonian is slow enough, the eigen-
states of the system change continuously in time and the exact time-dependent eigenstates
may be approximated by the eigenfunctions of the instantaneous Hamiltonian. The adi-
abatic approximation of quantum mechanics yields a measure for determining the extent
to which such an approximation is valid. Formally, the criterion of adiabaticity for time-
dependent Bogoliubov equations may be derived by expanding the solutions of the time-
dependent equations in the basis of the corresponding instantaneous quasistationary eigen-
solutions. Requiring slow time evolution of the physical quantities results in the adiabatic
approximation in terms of the quasistationary eigenstates. The adiabatic approximation may
also be applied to more general dynamical problems than the moving vortices considered
here.
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In particular, we are interested to find out whether the difference between the predic-
tions of the Popov and Bogoliubov approximations for the sign of the anomalous mode and
thence that of the vortex precession direction observed in the experiment might be due to
the nonadiabaticity of the precessing vortex. The opposite sign for the lowest vortex core
mode is essentially due to the partial filling of the vortex core by the noncondensate gas
within the stationary PA. If it were absent, the results of the BA would apply in this regard
even at � �� �. If the velocity of the vortex is too high, the quasiparticles localized in the
vortex core cannot follow the core rigidly, i.e., adiabatically.

Qualitatively, the criterion of the adiabatic approximation for the situation studied may
be discussed in terms of a variant of the Heisenberg uncertainty principle Æ�Æ� � �. The
Hamiltonian describing the vortex line and the quasiparticles moving with it at the velocity
� changes over the time scale %��, where % is the radius of the vortex core. Requiring this
time lapse to be much longer than the intrinsic quantum-mechanical oscillation periods of
the system, i.e., %�� � Æ�, we obtain a criterion for the vortex velocity, � � %��, where
we have used for the ‘energy uncertainty’ Æ� the difference between the energies of the
anomalous mode and that of the condensate ground-state. Inserting the values appropriate
for the experiment we obtain � � �� 
m/s, in comparison to the experimental observation
���� � ��� 
m/s [110]. The conclusion is that owing to the relatively high velocity of the
vortex, the quasiparticle cloud may not be able to adiabatically follow the motion of the
vortex core [Paper III].
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5 Multiple circulation

In addition to an isolated singly quantized vortex, Bose-Einstein condensates can support a
lattice of single-quantum vortices when the rotation frequency of the trap is high enough. In
principle, also vortices with multiply quantized circulation can be formed but such struc-
tures are energetically disfavored and are expected to decay into a set of singly quantized
vortices. Recently, however, vortices with two and four circulation quanta have been topo-
logically created in BECs [87], but the lifetime of such structures remains unknown.

In this Chapter, we discuss the rotational properties and the structure of vortex lattices.
A stabilization method is presented for multiply quantized vortices by an additional pinning
potential. The richness in the vortex phase diagram is further explored by considering traps
that are rotated at nearly the frequency of the harmonic trapping potential.

5.1 Vortex lattices

When the harmonic trap rotation frequency exceeds the threshold for vortex nucleation,
single-quantum vortices penetrate the condensate. Due to the repulsive interaction be-
tween them, they tend to arrange themselves into a triangular Abrikosov lattice. Such struc-
tures have been investigated computationally early on [81] and observed experimentally
[15, 77–79]. Characteristically, these lattices extend and remain highly oriented all the way
to the edge of the condensate. Also different lattice structures have been observed and
structural defects, such as dislocations and grain boundaries, have been reported [15]. The
nonequilibrium properties of vortex lattices have been studied by disturbing the lattice with
quadrupole oscillations [79]. As a result, the lattice planes of an undisturbed hexagonal
lattice were seen to shift to a nearly orthorhombic shape and sheet-like structures were ob-
served in which rows of individual vortices appear to have merged. Also the formation and
decay of vortex lattices at finite temperatures has been studied experimentally [77].

According to the correspondence principle, vortex lattices mimic solid-body rotation,
for which �� � � �� �� � � ��, by distributing the vortices over the condensate area
in such a way that when coarse grained over the individual vortices, the average vorticity
is the same as that of a rigidly rotating liquid. This is achieved if the areal density of the
vortices in a lattice is given by �� � ����$ which may be used to estimate the number of
the vortices in a condensate as a function of the rotation frequency. However, the behavior
of the condensate corresponds to that of a classical rigid-body rotator only on average as the
flow field of the condensate must vanish in the vortex cores.

With increasing rotation frequency of the trap, the condensate cloud expands and be-
comes thinner while accommodating more vortices. In the limit of extreme rotation fre-
quency � � ��, the outward centrifugal force due to the rotation balances the confining
trapping force and the motion of the condensate particles become ballistic.
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5.2 Multiquantum vortices

The well-known argument against the existence of multiquantum vortices is obtained by
considering the energy of a vortex line per unit length ���� � ��. It is thus inferred that
a collection of a single-quantum vortices with the same vorticity has a lower energy than
that of an ��fold quantized vortex. This means that the multiquantum vortex is unstable
against dissociation into a lattice of singly quantized vortices. The inclusion of the effects of
harmonic trapping and the repulsion between the vortices does not change this conclusion
[27].

There are, however, ways of avoiding the dissociation instability problem. In a system
having sufficiently weak interactions between the particles, singly quantized vortices may
be ‘squeezed’ together by applying a stronger than harmonic, e.g., a quartic confining po-
tential [118]. Such strongly confining potentials could possibly be realized with the use of
Laguerre-Gaussian beams [119]. In addition, a topological method for creating multiply
quantized vortices—with the winding number a multiple of two—by deploying the spin
degrees of freedom of the condensate has been suggested [88, 89]. Recently, using such a
method, vortices with two and four circulation quanta have been experimentally created
and observed [87]. These experiments could be used to study the lifetime of multiquantum
vortices, which is limited by the dissociation instability. They also yield information on the
mutual vortex interactions.

In Paper IV, we investigate yet another method for producing multiply quantized circu-
lation in rotating Bose-Einstein condensates. This scheme relies on the stabilizing effect
of an additional pinning potential repelling atoms from its volume. In practice, such a po-
tential could be created by focusing a blue detuned laser beam in the vicinity of the trap
center7. Another advantage of using the pinning potential is that it renders the multiquan-
tum vortex states also locally stable, which cannot be achieved by a mere rotation of the
trap. If created, it would be interesting to study the dissociation dynamics of the decaying
multiquantum vortex when the pinning potential would be turned off.

� � �

Figure 7: Illustration of a lattice of singly quantized vortices (lhs) and a multiquantum vortex
(rhs).

7In a strict sense, a multiquantum vortex state should contain only a single point where the condensate
density and its phase vanish, in distinction to a genuinely toroidal geometry with a quantized superflow
around the torus.
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5.3 Rapidly rotating traps

In harmonically confined condensates, the maximum velocity for the trap rotation is limited
by the trapping frequency �� [120]. However, by using confining potentials that rise faster
than quadratically, it is possible to surpass beyond that limit and to discover interesting
emergent physics [114, 118, 121, 122].

To draw an analogy with type-II superconductors, the vortex-free Bose-Einstein conden-
sate may be associated with the Meissner state of a superconductor. At the critical rotation
frequency ��
, the condensate is penetrated by vortices. Similarly, the lower critical field,
��
, destroys the Meissner state as the field pierces the superconductor along quantized
vortex filaments. As the field strength is further increased, the vortices fill the whole su-
perconducting sample volume as the mean separation between them becomes comparable
to their core radii. Thus a transition to the normal state occurs at the upper critical field,
���. But the scenario of what occurs in dilute BECs when the trap rotation is increased to
high rotation frequencies differs from that of supercondunctors. Moreover, in the helium
superfluids the corresponding limit of rapid rotation is unattainably high and therefore can
not be studied experimentally.

When the rotation velocity exceeds ��
, the Bose-Einstein condensate, while expanding
spatially, becomes populated by singly quantized vortices. More vortices penetrate the con-
densate in proportion to the rotation frequency forming a uniform Abrikosov lattice. Close
to the frequency ��, the system may enter the quantum-Hall regime [123–126]. Ultimate-
ly, the mean separation between the vortices becomes comparable with the radius of the
vortex cores and a single density minimum—or a giant vortex state—is expected to form.
The condensate flow in the remaining toroidal condensate may even become supersonic.
Finally, at yet higher rotation velocities, the radii of the vortices—being comparable to the
peak density of the condensate—diverge. If the condensate would be confined by hard wall-
s, however, the system could become essentially two-dimensional and a Kosterlitz-Thouless
phase transition could possibly occur in such a system [122].
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6 Discussion

In this Dissertation, vortices in dilute Bose-Einstein condensates are studied theoretically
and computationally. This work has been motivated by the remarkable series of past and
expected future experiments unveiling the extraordinary physical properties of these novel
many-body quantum systems—Bose-Einstein condensates. Especially, the stability of differ-
ent vortex structures has been in the focus of the research reported. Also, the problem of
a precessing vortex line and the mechanisms for vortex formation have been considered in
detail. The main conclusions of the work are briefly stated below:

Paper I: The structure and excitation spectrum of an axial vortex line were com-
puted self-consistently at ultralow temperatures. No anomalous vortex mode was
found even in the zero-temperature limit, in contrast to the prediction of the
nonself-consistent Bogoliubov approximation. Furthermore, this result would im-
ply a direction for the precessing vortex opposite to that observed in the experiment.

Paper II: The predictions of three different gapless finite-temperature theories
were compared. Especially, large differences were found between the approxi-
mations in the energies of the lowest vortex core modes. Accordingly, it was argued
that such a notable difference could be used to experimentally discriminate the
validity of the approximations.

Paper III: The adiabatic approximation for dilute Bose-Einstein condensates was
formulated. Specializing to the case of a moving vortex line, it was shown that the
adiabaticity criterion was not satisfied in the vortex precession experiment. The
nonadiabaticity was suggested to be a possible partial reason for the observed pre-
cession direction of the vortex.

Paper IV: A method for creating multiply quantized vortices in harmonically
trapped Bose-Einstein condensates by adding an external pinning potential was
proposed. Such multiquantum vortices were found to be both locally and globally
stable and were argued to be observable using current experimental techniques.

Paper V: The formation processes of vortices were studied at finite temperatures.
The critical trap rotation frequencies for the generation of surface modes with dif-
ferent multipolarities were calculated for a range of temperatures. They were found
to be in fair agreement with the experimental observations and the predictions of
zero-temperature field theories for vortex nucleation.

Paper VI: Efficient numerical methods for computing the structure and the quasi-
particle excitation spectra of dilute Bose-Einstein condensates were reported.
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The work reported in this Thesis could be further extended to encompass studies of con-
densates with spin degrees of freedom. For an accurate comparison with the experiments, all
the three spatial dimensions should be treated on an equal footing in the numerical compu-
tations. Time-dependent, dynamical phenomena would be an interesting subject for further
studies. Especially, the problem of the precessing vortex should be explored thoroughly and
the true character of the anomalous vortex core mode revealed. For that purpose, a compu-
tationally feasible second-order finite-temperature theory, treating consistently the particle
exchange processes between the condensate and noncondensate components as well as the
damping of the collective modes, should be developed.

The realization of Bose-Einstein condensation in dilute gases has provided the possibil-
ity to study topological defects, e.g. vortices, in these novel quantum many-body systems.
Vortices, vortex lattices, vortex rings, and most recently also multiquantum vortices have
thus far been produced in the experiments. In the future more exotic structures, such
as skyrmions and monopoles may be created and observed. The possibility of achieving
molecular condensates bring the realms of quantum mechanics one step closer to daily
macroscopic phenomena. Atom lasers and BECs in microtraps promise enhanced abili-
ty to manipulate atoms coherently on the nanoscale. Applications for these Bose-Einstein
condensed ‘superatoms’ are suggested to be found, for instance, in the areas of lithography
and precision metrology. And, maybe, the study of vortices and their formation processes in
these idealized quantum laboratories—Bose-Einstein condensates—could one day provide
new insight even into our understanding of turbulence in classical fluid dynamics. These
being only the early guesses of what BECs could be good for, the physicists of the new mil-
lennium are guaranteed to have a plethora of interesting physics to be explored. Fortunately
ironic is that, for the time being, a major dilemma for researchers working in the field of
Bose-Einstein condensation seems to be an embarrassment of riches of choosing the next
theoretical or experimental project.
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[Sov. Phys. JETP 13, 451 (1961)].

[38] N. N. Bogoliubov, On the theory of superfluidity, J. Phys. (Moscow) 11, 23 (1947).

[39] A. L. Fetter, Nonuniform states of an imperfect Bose gas, Ann. Phys. (N.Y.) 70, 67 (1972).

[40] P. A. Ruprecht, M. Edwards, K. Burnett, and C. W. Clark, Probing the linear and nonlinear
excitations of Bose-condensed neutral atoms in a trap, Phys. Rev. A 54, 4178 (1996).

[41] G. Baym and L. P. Kadanoff, Conservation laws and correlation functions, Phys. Rev. 124,
287 (1961).

[42] G. Baym, Self-consistent approximations in many-body systems, Phys. Rev. 127, 1391 (1962).

[43] L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics (W. A. Benjamin, Inc., New
York, 1962).

[44] P. C. Hohenberg and P. C. Martin, Microscopic theory of superfluid helium, Ann. Phys. (N.Y.)
34, 291 (1965).

[45] A. Griffin, Conserving and gapless approximations for an inhomogeneous Bose gas at finite
temperatures, Phys. Rev. B 53, 9341 (1996).

[46] N. M. Hugenholtz and D. Pines, Ground-state energy and excitation spectrum of a system of
interacting bosons, Phys. Rev. 116, 489 (1959).

[47] J. Goldstone, Field theories with �superconductor� solutions, Nuovo Cimento 19, 154 (1961).
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Errata


In Paper I, the word Lanczos should be replaced by Arnoldi.


In Paper IV, equation (2.7b) should read

�����r� 	 ���
�

�r����r� � ������r�

.
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Abstracts of Publications I–VI
I We compute the structure of a quantized vortex line in a harmonically

trapped dilute atomic Bose-Einstein condensate using the Popov version of
the Hartree-Fock-Bogoliubov mean-field theory. The vortex is shown to be
(meta)stable in a nonrotating trap even in the zero-temperature limit, thus
confirming that weak particle interactions induce for the condensed gas a
fundamental property characterizing “classical” superfluids. We present the
structure of the vortex at ultralow temperatures and discuss the crucial effect
of the thermal gas component to its energetic stability.

II We compute structures of vortex configurations in a harmonically trapped
Bose-Einstein condensed atom gas within three different gapless self-
consistent mean-field theories. Outside the vortex core region, the density
profiles for the condensate and the thermal gas derived from the Hartree-
Fock-Bogoliubov-Popov theory are found to differ by only a few per cent from
those derived from two of its recently proposed gapless extensions. In the core
region, however, the differences between the density profiles are substantial.
The structural differences are reflected in the energies of the quasiparticle
states localized near the vortex core. In particular, the predictions for the en-
ergy of the lowest quasiparticle excitation derived from the theoretical models
investigated differ considerably.

III Considering a moving vortex line in a dilute atomic Bose-Einstein conden-
sate within time-dependent Hartree-Fock-Bogoliubov-Popov theory, we derive
a criterion for the quasiparticle excitations to follow the vortex core rigidly.
The assumption of adiabaticity, which is crucial for the validity of the station-
ary self-consistent theories in describing such time-dependent phenomena, is
shown to imply a stringent criterion for the velocity of the vortex line. Further-
more, this condition is shown to be violated in the recent vortex precession
experiments.
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IV Multiply quantized vortices in trapped Bose-Einstein condensates are studied
using the Bogoliubov theory. Suitable combinations of a localized pinning
potential and an external rotation of the system are found to energetically
stabilize, both locally and globally, vortices with multiple circulation quanta.
We present a phase diagram for stable multiply quantized vortices in terms
of the angular rotation frequency of the system and the width of the pinning
potential. We argue that multiquantum vortices could be experimentally cre-
ated using a suitable choice of these two parameters.

V The surface mode spectrum is computed self-consistently for dilute Bose-
Einstein condensates, providing the temperature dependence of the sur-
face mode induced vortex nucleation frequency. Both the thermodynam-
ic critical frequency for vortex stability and the nucleation frequency im-
plied by the surface excitations increase as the critical condensation temper-
ature is approached from below. The multipolarity of the destabilizing sur-
face excitation decreases with increasing temperature. The computed finite-
temperature critical frequencies support the experimental observations and
the zero-temperature calculations for vortex nucleation.

VI We compute using a microscopic mean-field theory the structure and the
quasiparticle excitation spectrum of a dilute, trapped Bose-Einstein conden-
sate penetrated by an axisymmetric vortex line. The Gross-Pitaevskii equation
for the condensate and the coupled Hartree-Fock-Bogoliubov-Popov equa-
tions describing the elementary excitations are solved self-consistently using
finite-difference methods. We find locally stable vortex configurations at all
temperatures below ��.
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