Helsinki University of Technology Laboratory of Steel Structures Publications 25 Teknillisen korkeakoulun teräsrakennetekniikan laboratorion julkaisuja 25 Espoo 2003 TKK-TER-25

OPTIMUM DESIGN OF COLD-FORMED STEEL PURLINS USING GENETIC ALGORITHMS

Wei Lu

TEKNILLINEN KORKEAKOULU TEKNISKA HÖGSKOLAN HELSINKI UNIVERSITY OF TECHNOLOGY TECHNISCHE UNIVERSITÄT HELSINKI UNIVERSITE DE TECHNOLOGIE D'HELSINKI

Helsinki University of Technology Laboratory of Steel Structures Publications 25 Teknillisen korkeakoulun teräsrakennetekniikan laboratorion julkaisuja 25 Espoo 2003 TKK-TER-25

OPTIMUM DESIGN OF COLD-FORMED STEEL PURLINS USING GENETIC ALGORITHMS

Wei Lu

Dissertation for the degree of Doctor of Science in Technology to be presented with due permission for public examination and debate in Auditorium R1 at Helsinki University of Technology (Espoo, Finland) on the 24th of January, 2003, at 12 o'clock noon.

Helsinki University of Technology Department of Civil and Environmental Engineering Laboratory of Steel Structures

Teknillinen korkeakoulu Rakennus- ja ympäristötekniikan osasto Teräsrakennetekniikan laboratorio Distribution: Helsinki University of Technology Laboratory of Steel Structures P.O. Box 2100 FIN-02015 HUT Tel. +358-9-451 3701 Fax. +358-9-451 3826 E-mail: srt-sihteerit@hut.fi

© Teknillinen korkeakoulu

ISBN 951-22-6287-8 ISSN 1456-4327 Otamedia Oy Espoo 2003

ABSTRACT

An important advantage of cold-formed steel is the great flexibility of cross-sectional shapes and sizes available to the structural steel designer. However, the lack of standard optimized shapes makes the selection of the most economical shape very difficult. This task is further complicated by the complex and highly nonlinear nature of the rules that govern their designs. In this thesis, genetic algorithms are used to carry out the optimization of cold-formed steel purlins, which are assumed to be continuous over two spans subjected to a gravity load.

A genetic algorithm based optimum design method for cold-formed steel purlins is developed firstly. This method obtains the optimum dimensions for purlins with the highest load efficiency subjected to the geometrical and strength constraints provided in Eurocode 3, Part 1.3, and fabrication constraints. The design of cold-formed steel purlins is based on Eurocode 3, Part 1.3. The integrated design method is general for any shape of cold-formed steel purlins. However, in this thesis, the investigations are concentrated on Z-shape and Σ -shape cold-formed steel purlins. With this design method, an optimization tool and a set of optimum sections that can be easily accessed are provided for structural steel designers and steel manufacturers.

An integration of a modified Eurocode 3 method into genetic algorithm optimization is carried out. Currently, the design of cold-formed steel purlins in Eurocode 3 relies on the effective width approach. The method works by considering the strength reduction due to local plate buckling as an effective width for each element of the cross-section and to a distortional buckling as a reduced thickness for the stiffener. In the modified Eurocode 3 method, the numerical elastic buckling stresses are introduced into the calculation of the effective section properties. Via this integration, it is shown that such numerical method as the finite strip method may also be integrated into the genetic algorithm optimization process. In addition, the modified Eurocode 3 method depends on the buckling types which differs from the variations of the dimension. Thus, the typical buckling types of the Z-shape and Σ -shape cold-formed steel purlins are investigated.

Keywords: cold-formed steel, optimization, genetic algorithms, Z-shape purlin, Σ -shape purlin.

PREFACE

This research has been carried out in the Laboratory of Steel Structures at Helsinki University of Technology. This research has been financially supported by the scholarship for postgraduate studies at the same university for the academic year 2000-2002. Additional financial support has been received from Finnish company Rautaruukki Oyj and from Academy of Finland. The financiers are gratefully acknowledged.

First and foremost, I am truly indebted to my supervisor, Professor Pentti Mäkeläinen, who has provided an excellent study and working environment. I would like to thank him for directing me into this challenging and interesting research field. Without his consistent encouragement and help, this work would have never been completed. Many thanks go to D.Sc. (Tech.) Jyrki Kesti for his useful discussions and comments, especially during the year when he was the acting professor of the Laboratory of Steel Structures.

I would like to thank the guiding professors for my two minor subjects. Professor Erkki Oja, who is from the Laboratory of Computer and Information Science, has provided very helpful discussion when I first entered the field of genetic algorithm. Professor Martti Mikkola from the Laboratory of Theoretical and Applied Mechanics and Professor Juha Paavola from the Laboratory of Structural Mechanics, have guided me to read excellent books in the field of structural mechanics.

I am very grateful to my colleagues Lic. Sc. (Tech.) Jyri Outinen, Lic. Sc. (Tech.) Olli Kaitila, Mr. Olavi Tenhunen, Mr. Aki Vuolio and other colleagues who worked here before, for their kind help both in studying and in everyday life. Special thanks go to Lic. Sc. (Tech.) Olli Kaitila for checking the language of this thesis. I am also very much obliged to the secretaries, Ms. Sinikka Rahikainen, Ms. Varpu Sassi and Ms. Elsa Nissinen, for their kind assistance. I also wish to express my thanks to all the staff members of the Department of Civil and Environmental Engineering for giving me a friendly environment for studying and working.

I would like to express my deep thanks to my parents, for their encouragements and supports in my life, my study and my work, both morally and financially. Many thanks also go to my sister for her love. I would like to thank my parents-in-law for their understanding and support. Last but not the least, I would like to express sincere gratitude to my husband, Dr. Zhongcheng Ma, for the excellent suggestions and discussions in the research field.

Espoo, Otaniemi, June 29, 2002

Wei Lu

LIST OF SYMBOLS

Δ	Effective area
Λ _{eff}	Gross area of cross section
Λ_g	
A _s	
b	Width of the flange for Σ -shape purlin
	Wildth of top flange for Z-snape purlin
	Width of bottom flange for Z-shape purlin
\boldsymbol{b}_p	Width of the flange
$b_{p,c}$	Width of the lip
$b_{p,i}$	Notational width of the plane element <i>i</i>
С	Depth of the lip
CC	Sum of constraint violation function
C_D	Rotational stiffness
c_i	Constraint violation function
e	Shear center of the cross-section
$F_{\bar{c}}$	Fitness function
f	Average fitness for the whole population
f_i	Fitness for each individual
f_y	Yield stress
${f}_{yb}$	Basic yield stress
$g_j(X) \leq 0$	Inequality constraints
h	Height of the cross-section
Н	A schema
h_d	Developed height of a purlin web
$h_j(X) \ge 0$	Equality constraints
I_s	Effective moment of inertia of the stiffener
K	Spring stiffness per unit length
K_A	Lateral stiffness corresponding to the rotational stiffness of the
	connection between the sheeting and purlin
<i>K</i> _{<i>B</i>}	Lateral stiffness due to distortion of the cross-section of purlin
KK	Coefficient in fitness function
κ _σ	
L	Span of the strip
L _{strip}	Length of the surp

m(H,t)	Expected numbers of the particular schema H at generation t
M_{fz}	Bending moment about z-z axis in the free flange due to lateral load
<i>M</i> _y	Bending moment capacity
$M_{y,Sd}$	In-plane bending moment
N (III)	Number of the individuals in the whole populaton
O(H)	Order of a schema H
p_c	Probability to execute crossover
p_i	Selection probability
p_m	Probability to execute mutation
q	Applied load
$q_{h,Fd}$	Lateral load applied on the free flange
t	Thickness of the cross-section
$W_{e\!f\!f,y}$	Effective section modulus for bending about y-y axis
W_{fz}	Gross section modulus of the free flange plus 1/6 web height for
	bending about z-z axis
$Z = F(\)$	General objective function

Greek symbols

$lpha_i$	Normalized constraints
χ	Reduction factor for flexural buckling of the free flange
$\delta(H)$	Length of a schema H
γ_M , γ_{M1}	Partial safety factor
$\overline{\lambda}$	Relative slenderness
$\overline{oldsymbol{\lambda}}_p$	Plate slenderness
V	Poisson's ratio
ρ	Reduction factor to determine the effective width
$\sigma_{_1}$	Compression stress
$\sigma_{_2}$	Tension stress
$\sigma_{\scriptscriptstyle cr}$	Elastic local buckling stress
$\sigma_{_{cr,s}}$	Elastic distortional buckling stress
Ψ	Ratio of compression stress to tension stress

CONTENTS

ABSTR	ACT	3
PREFA	СЕ	5
LIST O	F SYMBOLS	6
CONTE	NTS	8
1 IN7	TRODUCTION	13
1.1	BACKGROUND	13
1.2	OBJECTIVE OF PRESENT STUDY	16
1.3	OUTLINE OF THE THESIS	17
2 DE	SIGN OF COLD-FORMED STEEL PURLINS	19
2.1	Purlin Design Based on Eurocode 3	19
2.1.	1 Elastic buckling stress	20
2.1.	2 Eurocode 3 for effective cross-section properties	22
2.1.	3 Design of the purlin considering free flange behavior	23
3 GE	NODIFIED EUROCODE 5 METHOD FOR EFFECTIVE CROSS-SECTION PROPERTIES	23 5 27
3.1	Overview	27
3.2	ENCODING AND DECODING	28
3.3	FITNESS EVALUATION	29
3.4	SELECTION RULE	30
3.5	CROSSOVER	31
3.6	MUTATION	33
3.7	ELITISM	33
4 GA	-BASED DESIGN OF COLD-FORMED STEEL PURLINS	34
4.1	DESCRIPTION OF THE OPTIMIZATION PROBLEM	34
4.2	OUTLINE OF THE DESIGN PROCESS	36
4.3	COMPUTER IMPLEMENTATION OF GA-BASED DESIGN OF COLD-FORMED STEEL	
	PURLINS	37
4.3.	1 Structures of computer program for optimization using GA	38
4.3.	2 Structure of computer program for design of cold-formed steel purlins	40

	4.3.	<i>Evaluation of the computer program</i>	41
5	BEI	HAVIOR OF Z-SHAPED PURLIN	42
	51	INTRODUCTION	42
	5.1	PURI IN DESIGN BASED ON EUROCODE 3 METHOD	43
	5.2	1 Effects of the dimensions on the cross-section resistance	43
	5.2.	 2 Purlin design considering the free flange behavior based on Eurocode 3 method	45
	5.3	EFFECTS OF THE DIMENSIONS OF THE CROSS-SECTION ON THE ELASTIC BUCKLING STRESS BASED ON FINITE STRIP METHOD	46
	5.3.	1 Elastic buckling stress calculated based on FSM	47
	5.3.	2 Comparison of elastic buckling stress calculated using Eurocode 3 method finite strip method	and 51
	5.4	DESIGN OF Z-SHAPE PURLINS BASED ON MODIFIED EUROCODE 3 METHOD	53
	5.5	COMPARISON OF EUROCODE 3 METHOD AND MODIFIED EUROCODE 3 METHOD	54
	5.5.	1 Comparisons of moment capacity	54
	5.5.	2 Comparisons of load distribution and load efficiency	. 56
	5.5.	3 Discussion	. 57
6	OP	FIMIZATION OF Z-SHAPE PURLINS	59
	6.1	DESCRIPTIONS OF PROBLEMS	59
	6.2	VERIFICATION PROBLEM	60
	6.2.	1 Optimization process	61
	6.2.	2 Selection of parameters	62
	6.2.	3 Sensitivity analysis of the fitness function	66
	6.2.	4 Optimization results	68
	6.2.	5 Analysis of Results	69
	6.3	OPTIMIZATION RESULTS BASED ON EUROCODE 3 METHOD	70
	6.3.	1 Optimization results	. 70
	6.3.	2 Comparisons of the results	. 73
	6.3.	<i>3 Optimum dimensions</i>	. 76
	6.4	Integrating modified Eurocode 3 method into the optimization process .	78
7	BEI	HAVIOR OF Σ -SHAPE PURLINS	80
	7.1	INTRODUCTION	80
	7.2	EFFECTS OF WEB STIFFENERS ON THE SECTION PROPERTIES AND LOAD EFFICIENCY	7
		BASED ON EUROCODE 3	81
	7.2.	1 Effects of the position of web stiffeners	81
	7.2.	2 Effects of the size of the web stiffeners	84
	7.2.	3 Discussions	88
	7.3	EFFECTS OF THE WEB STIFFENER ON THE ELASTIC BUCKLING STRESS CALCULATE	D
	7 2	DASED ON FINITE STRIP WETHOD	90
	1.J.	 Effects of the value of d 	.90
	/.3 7 2		
	7.5.	$D = c_1 c_2 c_3 c_1 me value of n_2 \dots c_n c_n c_n c_n c_n c_n c_n c_n c_n c_n$	
	7.4 7.5	DESIGN OF 2-SHAPE PURLINS BASED ON THE MODIFIED EUROCODE 3 METHOD COMPARISONS OF EUROCODE 3 METHOD AND MODIFIED EUROCODE 3 METHOD	97 99

8	OPTIMIZATION OF Σ-SHAPE PURLINS	102
	3.1 Introduction	102
	3.2 PROBLEM FORMULATION AND SENSITIVITY ANALYSIS	103
	8.2.1 Design variables	103
	8.2.2 <i>Objective function and constraints</i>	104
	8.2.3 Sensitivity analysis of the fitness function	105
	3.3 OPTIMIZATION RESULTS BASED ON THE EUROCODE 3 METHOD	107
	8.3.1 <i>Optimization with freely varied parameters</i>	107
	8.3.2 <i>Optimization with some parameters fixed</i>	110
	8.3.3 Analysis of the results	113
	8.3.4 Optimum dimensions	115
	3.4 Σ -Shaped Purlins without Considering the Free Flange Behavior	115
	8.4.1 Objective function and constraints	115
	8.4.2 Sensitivity analyses of the fitness function to the coefficient KK	110
	$5.4.5 \qquad Optimization results \dots$	120
	5.5 IN TEGRATION OF MODIFIED EUROCODE 5 METHOD INTO THE OPTIMIZATION	120
9	CONCLUSIONS AND FUTURE RESEARCH	122
) 1 METHODOLOGY FOR GA-BASED DESIGN	122
	9.2 GA-BASED DESIGN FOR Z-SHAPE COLD-FORMED STEEL PURLIN	123
	GA -BASED DESIGN FOR Σ -SHAPE COLD-FORMED STEEL PURLINS	125
	4 DISCUSSION AND FUTURE RESEARCH	130
	9.4.1 Discussion	130
	9.4.2 Future research	130
B	BLIOGRAPHY	132
A	PENDIX A OPTIMIZATION RESULTS FOR Z-SHAPE PURLINS	137
	Сногсе 1 (40/13100/35)	137
	Сногсе 2 (40/15…90/40)	144
	CHOICE 3 (FREE OPTIMIZATION)	151
		
A	PENDIX B RESULTS FOR Σ-SHAPE PURLIN WITH OBJECTIVE FUNCTIO)N 150
q_{j}	A _g AND WITH FREELY VARIED PARAMETERS	159
	Single Edge Stiffener	159
	Double Edge Stiffeners	163
A	PENDIX C RESULTS FOR Σ -SHAPE PURLIN WITH D ₂ AND H ₂ FIXED	168
	Choice 1 (free optimization)	168
	Сногсе 2 (40/13100/35)	172
	CHOICE 3 (40/15100/45)	176

APPENDIX D RESULTS FOR Σ -SHAPE PURLIN WITH OBJECTIVE FUNCTION		
M_{y}/A_{g}	181	
SINGLE EDGE STIFFENER		
DOUBLE EDGE STIFFENERS	185	
APPENDIX E RESULTS USING THE MODIFIED EUROCODE 3 METHOD	190	
Z-Shape Purlin		
Σ -Shape Purlin with Single Edge Stiffener (Free Optimized Case)		

1 INTRODUCTION

1.1 Background

Cold-formed steel members provide substantial savings due to their high strength-to-weight ratio. As a result, they have become very popular in the construction of industrial, commercial, and agricultural buildings. An important advantage of cold-formed steel is the greater flexibility of cross-sectional shapes and sizes available to the structural steel designer. Through cold-forming operations, steel sheets, strips or plates can be shaped easily and sized to meet a large variety of design options. Such a large number of design possibilities create a very important challenge of choosing the most economical cold-formed shape in design of steel structures.

A search through structural engineering and computational journals turned out only a few papers on the optimization of cold-formed steel structures. Seaburg et al. (1971) used the direct and gradient search techniques for the minimum weight design of hat-shaped cold-formed light gauge steel members (Adeli et al., 1997). Park et al. (1995) developed a new neural dynamics model for optimization problems with highly nonlinear and complicated constraints. Subsequently, the model is applied to minimum weight design of simply supported cold-formed steel beams based on the AISI Specifications (Adeli et al., 1996; Karim et al., 1999; Adeli et al., 1999; and Karim et al., 2000). Nagy (2000) used the genetic algorithm to obtain the optimum shape of trapezoidal sheeting profiles.

The optimization problem in structural engineering can be defined mathematically as (Kirsch, 1981):

$$g_{j}({X}) \le 0$$
 $j = 1,...,m,$ (1.1.1)

$$h_i({X}) = 0$$
 $j = 1, ..., k$, and (1.1.2)

$$Z = F(\lbrace X \rbrace) \to \min.$$
 (1.1.3)

In the above formula, $\{X\}$ is the vector of the design variables such as material, topological, configurational or geometric layout, and cross-sectional design variables; $g_j(\{X\}) \le 0$ and $h_j(\{X\}) = 0$ are the inequality and equality constraints, respectively; *m* and *k* are the number of inequality and equality constraints, respectively. $Z = F(\{X\})$ is the objective function and may represent the weight, the cost of the structure, or any other criterion. The essential of optimization problem is to find the design variables in the design space under the constraints, which minimize the objective function. In practice, the design variables of the optimization problem in structural engineering are discrete variables. Many mathematical nonlinear and linear programming methods have been developed for solving these optimization problems. However, no single method has been found to be entirely efficient and robust for all different kinds of engineering optimization problems. With these methods, if there is more than one local optimum in the problem, the result will depend on the choice of the starting point, and the global optimum cannot be guaranteed. Furthermore, when the objective function and constraints have multiple or sharp peaks, gradient search becomes difficult and unstable (Adeli et al., 1993).

In this thesis, a genetic algorithm is applied to solve the optimization problem. The Genetic Algorithms (GAs) were invented by John Holland in the 1960s and developed by Holland and his students and colleagues at the University of Michigan in the 1960s and 1970s (Mitchell, 1996). A GA performs a multi-directional search by maintaining a population of potential solutions and encourages information formation and exchange between these directions. As compared to other search and optimization algorithms, GA has the following features (Pohlheim, 1994-1997):

- 1. GAs search a set of points in parallel, not only at a single point;
- 2. GAs do not require derivative information or other auxiliary knowledge. Only the objective function and corresponding fitness affect the direction of search;
- 3. GAs use probability rules; and
- 4. GAs provide a number of potential solutions to a given problem. The final choice is left to user.

In structural engineering, GAs have been mainly applied to the optimization of steel trusses and steel frames (Rajeev, et al., 1992; Adeli et al. 1994 (a) (b); Koumousis et al. 1994; Adeli et al., 1995; Jenkins, 1995; Rajeev et al., 1997; Liu et al., 1999; Erbatur et al., 2000; Pezeshk, et al., 2000; Sarma et al., 2000; Kameshki et al., 2001; and Schilling et al., 2001), to sandwich plates (Sciuva, et al., 2001), and to reinforced concrete member and frames (Koumousis, et al., 1998; and Rajeev et al. 1998).

In this research, the GAs are used to optimize the dimensions of cold-formed steel purlins. When used as purlins in roof assemblies, cold-formed steel sections are usually attached along one flange to the roofing material. Screw fastener are used to attach the sheeting to the purlin, with the purlin in turn bolted to cleats welded to the main load-bearing members of the frame. Cold-formed steel purlins are normally manufactured by roll forming a thin strip of steel to the required section shape. The steel is usually coated with zinc or zinc/aluminum and may have a yield stress in the range of 250-550 MPa (Papangelis et al. 1998).

In contrast to isolated beams and columns, thin-walled roof purlins are often loaded through the member that they support and these, in turn, provide both rotational and translational restraint to the purlins (Jiang et al., 1997). Because of the low torsional stiffness, purlins may undergo flexural distortional buckling or non-linear twisting during bending. Bracing at discrete points along purlins is often used to increase the flexural-torsional buckling resistance. In addition, distortional buckling may occur in the unsheathed compression flanges of braced purlins under wind uplift or at the internal support under gravity load (Papangelis, et al., 1998).

The design of the purlin in this study is mainly based on Eurocode 3, Part 1.3 (1996). Currently the design of cold-formed steel purlins in Eurocode 3 relies on the effective width approach. The method works by considering the strength reduction due to local plate buckling

as an effective width for each element of the cross-section and to a distortional buckling as a reduced thickness of the stiffener. The details of the design process are described in Chapter 3. However, research shows that the elastic distortional buckling stresses calculated using Eurocode 3 are higher than those using the numerical method due to not considering the reduction in the flexural restraints provided by the buckling web in Eurocode 3 for a C-shape column (Kesti et al., 1999 and Kesti, 2000). Thus, a modified Eurocode 3 method is chosen by integrating the numerical elastic buckling stress into the calculation of the effective section properties. With this modified Eurocode 3 method, the interactions amongst the flange, the web and the lip are considered; all buckling modes are taken into account; and the lengthy effective width calculation is reduced especially for the cross-section with multiple intermediate flange stiffener and web stiffeners.

1.2 Objective of Present Study

The main objective of this thesis is to show the capability of the optimization algorithm, GA, in finding out the optimum dimensions of cold-formed steel purlins with various cross-sectional shapes, such as Z-shape and Σ -shape. The main task is to develop an optimization tool that not only can be applied to the optimization of purlins mentioned above but also can be applied further to more complicated cross-sections with a large amount of design variables and more complex constraints. With this tool, the behavior of two types of the cold-formed steel purlins are investigated and a set of the optimum dimensions are provided for both structural steel designers and structural steel manufactures. In addition, another purpose of this research is to indicate such that numerical method as the Finite Strip Method (FSM) may also be integrated into the GA optimization process. By integrating this numerical method to the design process, the interactions amongst the different elements of the cross-section are taken into account in the design process, and the design process is simplified especially for cross-sections with multiple web stiffeners or flange stiffeners.

1.3 Outline of the Thesis

The design process of Eurocode 3, Part 1.3 and the basic idea of the modified Eurocode 3 method are described in Chapter 2. With this modified Eurocode 3 method, the interactions among different elements of the cross-section are taken into account.

Since the GAs are a relatively new area in the field of cold-formed steel structures, the main schemes of GA including the principles, operators and algorithms are introduced in Chapter 3.

In Chapter 4, the optimization problem for the design of cold-formed steel purlins is defined and an optimization tool called ODSP-GA is developed to integrate design of purlins into the GA optimization process. The capability of this optimization tool has been evaluated.

The effects of the dimensions on the behavior of the cold-formed Z-shape purlin are investigated in Chapter 5. These investigations provide the understandings of the optimum dimensions. Moreover, in this chapter, the purlins are designed based on the modified Eurocode 3 method as well and the results are compared with those based on the general Eurocode 3 method.

Chapter 6 provides the optimum dimensions of Z-shape purlins. The optimizations are carried out based on integrating both Eurocode 3 method and modified Eurocode 3 method into the GA optimization process. In order to simplify the optimization process, two relationships of flanges to lips are defined. From these calculations, the nominal optimum dimensions are provided for application purposes.

In Chapter 7, the effects of the position and size of the web stiffener on the behavior of Σ shape purlins are investigated. With such numerical method as FSM, the elastic buckling modes are defined and the elastic buckling stresses are calculated so as to integrate into the modified Eurocode 3 method. The results are compared with the Eurocode 3 method.

Chapter 8 provides the optimum dimensions for the Σ -shape purlin. These optimizations are carried out for the cross-sections both with double edge stiffeners and with single edge

stiffeners. With the similar simplified formula given in Chapter 6, the nominal optimized dimensions for the Σ -shape purlins are provided.

The summaries and conclusions are given in Chapter 9. One advantage of the GA is that it provides the various alternative solutions during the searching process and the final decision is left to the users. The solutions for each case calculated in this study are listed in the Appendices so as to provide enough information for the industrial designers and manufacturers to find the proper nominal dimensions, with the consideration of other practical constraints such as manufacturing tools and processes.

2 DESIGN OF COLD-FORMED STEEL PURLINS

2.1 Purlin Design Based on Eurocode 3

In Eurocode 3, Part 1.3, the free flange of cold-formed purlin is considered as a beam on an elastic foundation and the resistance of the cross-section should be verified as indicated in Figure 2.1.1.

Figure 2.1.1 Beam on an elastic foundation, model of Eurocode 3

When a purlin is continuous over two spans subjected to the gravity load, it should satisfy the following criteria for cross-section resistance:

$$\frac{M_{y,Sd}}{W_{eff,y}} \le \frac{f_y}{\gamma_M}, \qquad (2.1.1)$$

for the restrained flange, and

$$\frac{M_{y,Sd}}{W_{eff,y}} + \frac{M_{fz,Sd}}{W_{fz}} \le \frac{f_y}{\gamma_M},$$
(2.1.2)

for the free flange. The stability of the free flange at the internal support should be checked using the following equation:

$$\frac{1}{\chi} \cdot \frac{M_{y,Sd}}{W_{eff,y}} + \frac{M_{fz,Sd}}{W_{fz}} \le \frac{f_y}{\gamma_{M1}}, \qquad (2.1.3)$$

where $M_{y,Sd}$ is the in-plane bending moment; $W_{eff,y}$ is the effective section modulus of the cross-section for bending about y-y axis; M_{fz} is the bending moment in the free flange due to the lateral load; W_{fz} is the gross elastic section modulus of the free flange plus 1/6 of the web height, for bending about the z-z axis; χ is the reduction factor for flexural buckling of the free flange and γ_M , γ_{M1} are the partial safety factors.

2.1.1 Elastic buckling stress

The determination of the elastic local buckling stresses in Eurocode 3 is based on the element method. The formula for calculating the elastic local buckling stress is provided by

$$\sigma_{cr} = \frac{\pi^2 \cdot E \cdot k_{\sigma}}{12 \cdot (1 - v^2)} \cdot (\frac{t}{b_{p,i}})^2,$$
(2.1.4)

20

where k_{σ} is the relevant buckling factor; ν is the Poisson's ratio; and $b_{p,i}$ is the notational width of the plane element *i* for a cross-section with sharp corners.

The buckling factor, k_{σ} , of the flange is 4, which is chosen from Table 4.1 in Eurocode 3, Part 1.3. If the flange is stiffened with a single edge stiffener, the buckling factor, k_{σ} , of the lip is provided by

$$k_{\sigma} = \begin{cases} 0.5 & \text{if } b_{p,c}/b_p \le 0.35, \\ 0.5 + 0.83 \times \sqrt[3]{(b_{p,c}/b_p - 0.35)^2} & \text{if } 0.35 < b_{p,c}/b_p \le 0.6, \end{cases}$$
(2.1.5)

where $b_{p,c}$ and b_p are widths of the lip and flange, respectively. If the flange is stiffened with a double edge stiffener, the buckling factor, k_{σ} , is obtained from Eurocode 3, Part 1.3 treating the first lip as a doubly supported element in Table 4.1 and the second lip as an outstand element in Table 4.2. The buckling factor of the web is calculated from:

$$k_{\sigma} = \begin{cases} 7.81 - 6.29 \cdot \psi + 9.78 \cdot \psi^2 & -1 < \psi < 0, \\ 23.9 & \psi = 0, \text{ and} \\ 5.98 \cdot (1 - \psi)^2 & -3 < \psi < -1, \end{cases}$$
(2.1.6)

where

$$\psi = \frac{\sigma_2}{\sigma_1}, \qquad (2.1.7)$$

in which σ_1 and σ_2 are the compression and tension stresses, respectively.

The calculation of the elastic distortional buckling stress in Eurocode 3 is based on flexural buckling of the stiffener. The stiffener behaves as a compression member with continuous partial restraint. This restraint has a spring stiffness that depends on the boundary conditions

and the flexural stiffness of the adjacent plane elements of the cross-section. The distortional buckling stress, $\sigma_{cr,s}$, is calculated as:

$$\sigma_{cr,s} = \frac{2\sqrt{KEI_s}}{A_s}, \qquad (2.1.8)$$

where I_s is the effective second moment of inertia of the stiffener and can be calculated by taking the effective area, A_s , about the centroidal axis of the effective area; K is the spring stiffness per unit length and is given by:

$$K = \frac{3 \cdot E \cdot t^3}{12 \cdot (1 - v^2) \cdot b_p^2 \cdot (b_p + h)},$$
(2.1.9)

where *h* is the height of the web.

2.1.2 Eurocode 3 for effective cross-section properties

The effective cross-section properties such as effective section modulus, $W_{eff,y}$ and the effective area, A_{eff} are determined based on effective cross-section obtained by effective width for the element and effective thickness for the stiffener under compression. The effective width of the plane element *i* for the cross-section, $b_{eff,i}$ is obtained using

$$b_{eff,i} = \rho \cdot b_{p,i}, \qquad (2.1.10)$$

where ρ is the reduction factor by which the post-buckling behavior is considered and can be obtained from the following formula

$$\overline{\lambda}_{p} \leq 0.673 \qquad \rho = 1.0,
\overline{\lambda}_{p} > 0.673 \qquad \rho = (1.0 - 0.22/\overline{\lambda}_{p})/\overline{\lambda}_{p},$$
(2.1.11)

where

$$\overline{\lambda}_{p} = \sqrt{\frac{f_{yb}}{\sigma_{cr}}} = 1.052 \frac{b_{p}}{t} \sqrt{\frac{f_{yb}}{E \cdot k_{\sigma}}}, \qquad (2.1.12)$$

The reduction factor, χ , for the thickness of the stiffener can be determined according to the following formula

$$\chi = \frac{1}{\phi + (\phi^2 - \overline{\lambda}^2)^{0.5}},$$
 (2.1.13)

where $\phi = 0.5 \cdot \left[1 + \alpha \cdot (\overline{\lambda} - 0.2) + \overline{\lambda}^2\right]$, $\alpha = 0.13$, $\overline{\lambda} = \sqrt{\frac{f_{yb}}{\sigma_{cr,s}}}$. If $\chi < 1$, it may optionally be

refined iteratively and the iteration will be continued until χ is approximately equal to, but not more than, the previous value.

2.1.3 Design of the purlin considering free flange behavior

The bending moment in the free flange due to lateral load, $q_{h,Fd}$ is determined by

$$M_{fz,sd} = \beta_R \cdot M_{0,fz,Sd}, \qquad (2.1.14)$$

where $M_{0,fz,Sd}$ is the initial lateral bending moment in the free flange without any spring support and determined by transferring the vertical uniform load on the beam to the lateral load on the free flange using

$$q_{h,Fd} = k_h \cdot q_{Fd}$$
, (2.1.15)

where k_h is a coefficient and is given by

$$k_{h} = \begin{cases} \frac{b^{2} \cdot h \cdot t}{4 \cdot I_{u}}, & \text{for } Z \text{ - shape purlins,} \\ \frac{e}{h}, & \text{for } \Sigma \text{ - shape purlins,} \end{cases}$$
(2.1.16)

where I_u is the moment inertia of the cross-section for bending about u-u axis that is perpendicular to the web height; and e is the shear center of the cross-section.

The correction factor, β_R , for the relevant location and boundary condition is given in Table 10.1 in Eurocode 3, Part 1.3, using the value of coefficient R of the spring support given by

$$R = \frac{KL_a^4}{\pi^4 \cdot E \cdot I_{fz}},$$
 (2.1.17)

in which I_{fz} is the second moment of area of the gross cross-section of the free flange plus 1/6 of the web height for bending about z-z axis; L_a is the distance between anti-sag bars, or if none are present, the span L of the purlin is used; and K is the lateral spring stiffness per unit length and is determined from

$$\frac{1}{K} = \frac{1}{K_A} + \frac{1}{K_B},$$
(2.1.18)

where K_A is the lateral stiffness corresponding to the rotational stiffness of the connection between the sheeting and the purlin and is determined by

$$K_{A} = \frac{E \cdot t^{3}}{4 \cdot (1 - v^{2}) \cdot h^{2} \cdot (h_{d} + e)},$$
(2.1.19)

 K_B is the lateral stiffness due to distortion of the cross-section of the purlin and is determined by

$$K_B = \frac{C_D}{h^2},$$
 (2.1.20)

where C_D is the rotational stiffness, which is composed of the rotational stiffness of the connection between the sheeting and purlin, and the rotational stiffness corresponding to the flexural stiffness of the sheeting.

2.2 Modified Eurocode 3 Method for Effective Cross-Section Properties

When designing the cold-formed purlin based on Eurocode 3, Part 1.3, the calculation of effective cross-section properties can be replaced by the modified Eurocode 3 method. The main idea of this method is to integrate elastic local and distortional buckling stresses calculated based on a numerical method, such as Finite Strip Method (FSM), into the design procedure described in Eurocode 3. In this process, the effective width of the plane element *i* for the cross-section, $b_{eff,i}$ is calculated using

$$b_{eff,i} = \rho \cdot b_{p,i}, \qquad (2.2.1)$$

where the reduction factor, ρ , is calculated from

$$\begin{aligned}
\bar{\lambda}_{p} &\leq 0.673 \qquad \rho = 1.0, \text{ and} \\
\bar{\lambda}_{p} &> 0.673 \qquad \rho = (1.0 - 0.22/\bar{\lambda}_{p})/\bar{\lambda}_{p},
\end{aligned}$$
(2.2.2)

where $\overline{\lambda}_p = \sqrt{\frac{f_{yb}}{\sigma_{cr}}}$ is calculated using the numerical elastic buckling stress.

Similarly, the reduction factor, χ , for the thickness of the stiffener can be determined according to the following formula

$$\chi = \frac{1}{\phi + (\phi^2 - \overline{\lambda}^2)^{0.5}}$$
(2.2.3)

where $\phi = 0.5 \cdot \left[1 + \alpha \cdot (\overline{\lambda} - 0.2) + \overline{\lambda}^2\right]$, $\alpha = 0.13$, $\overline{\lambda} = \sqrt{\frac{f_{yb}}{\sigma_{cr,s}}}$. The distortional buckling

stress is calculated using a numerical method instead of using the formula given in Eurocode 3. In this way the interaction among the lip, flange and the web are taken into account due to treating the cross-section as a whole. The elastic local and distortional buckling stresses are calculated using the computer program CUFSM, which has been developed by Schafer (2002) and can be downloaded from the website.

3 GENETIC ALGORITHM: PRINCIPLES, OPERATORS AND ALGORITHMS

3.1 Overview

Holland's GA is a method for moving from one population of "chromosomes" to a new population by using a kind of "natural selection" together with the genetics-inspired operators of crossover (recombination), mutation and inversion (Mitchell, 1996). The structure of the GA is shown in Figure 3.1.1.

Figure 3.1.1 The structure of the GA (Pohlheim, 1994-1997)

At the beginning of the computation, a number of individuals are randomly initialized. The fitness function is then evaluated for these individuals. If the optimization criteria are not met, the creation of new generation starts. Individuals are selected according to their fitness,

recombination (crossover) and mutation are carried out with a certain probability. The offspring is inserted into the population and the new generation is created. This process is repeated until the stopping criteria are reached.

The two major steps in applying genetic algorithm to a particular problem are the specification of the representation and the fitness function. These two items form the bridge between the original problem context and the problem-solving framework (Eiben, Hinterding and Michalewicz, 1999). When defining the GA, we need to choose its components such as selection, mutation and crossover (recombination). Each of these components may have parameters like the probability of the recombination and mutation, the selection rule and the population size. These values greatly determine whether the algorithm will find a near optimum solution and whether to find such a solution efficiently.

3.2 Encoding and Decoding

GA starts with a set of population represented by chromosomes. The encoding of a chromosome is problem dependent. Since any possible data structure can be used as encoding for the creation of a search space to represent a given problem, there are several ways to encode the design variables, such as the binary encoding, gray codes, direct encoding and tree based encoding.

In binary encoding, every chromosome is a string of bits 0 and 1, as shown in Figure 3.2.1. Since the encoding in computers is binary, the binary encoding of a chromosome is natural. However, one problem with the binary encoding is that small changes in the encoding do not always result in small changes in the real design values (Sharpe, 2000).

Figure 3.2.1 Chromosome with binary encoding

Gray codes are such binary encoding that single bit flip in a string leads to a unit change in the encoded value of the string. The difference from the binary encoding is that they are represented as strings of zeros and ones instead of as numbers written in base two. With this encoding, the search space is much smoother.

Direct value encoding can be used in problems where some complicated value such as real numbers are used. In this encoding, every chromosome is a string of real numbers. However, for this encoding it is often necessary to develop some new crossover and mutation operators.

In tree encoding, each chromosome is a tree of some objects, such as functions or commands in programming languages. This encoding is more suitable for genetic programming put forward by Koza (Koza, 1992).

In order to evaluate the fitness of each chromosome, each chromosome should be decoded. The decoding rule depends on what kind of encoding rule is used.

3.3 Fitness Evaluation

The evaluation of the fitness is problem dependent as well. For every individual in the population, a level of fitness must be assigned to it. The fitness of an individual is an indicator of how well an individual is suited to its current environment. Fitness is established by means of a function. Developing this function can be very simple or may be very complex involving a simulation.

GA is suitable for solving unconstrained problems. However, the optimization problems in structural engineering are all constrained problems. Therefore, it is necessary to transform a constrained problem to an unconstrained problem by introducing penalty functions into the objective function if the constraints are violated. Several types of penalties have been presented (Chen and Rajan, 1995, Rajeev and Krishnamoorthy, 1992).

3.4 Selection Rule

Evolution is predicted based on the concept of "survival of fittest". Therefore, it makes sense that the more fit an individual is, the more likely it will be chosen as a parent to the next generation. The selection method determines how individuals are chosen for mating. If the selection method only picks up the best individual, the population will quickly converge to that individual. So the selector should be biased toward better individuals, but also pick up some that are not quite good ones (Wall).

Proportional selection is a selection method, in which the probability of the selection is proportional to the individual fitness. The probability of the selection is defined as

$$p_{i} = \frac{f_{i}}{\sum f_{i}} = \frac{f_{i}}{\bar{f} \cdot N}, \qquad (3.4.1)$$

where p_i is the selection probability for each individual; f_i is the fitness for each individual; \bar{f} is the average fitness for the whole population and N is the number of the individuals in the whole population. Since this selection method works with the explicit values of the fitness, it is easy to make the GA be premature convergence. The solution for this problem is to use the fitness scaling techniques (Poli, 1996).

Ranking selection is a method where all individuals in a population are sorted from the best to the worst and probability of the selection is fixed for the whole evolution process. The distribution of the probability can be linear or non-linear (Poli, 1996). The advantage of this method is that there is no premature convergence and the explicit fitness is not needed. However, this method requires the sorting operation carry out in advance.

Using the selection method mentioned above, the individuals in the population are sampled using two following rules: roulette wheel sampling and stochastic universal sampling. By roulette wheel sampling, each individual is assigned a slice of circular roulette wheel, and the size of the slice is proportional to the individual's fitness. The wheel is spun N times, where N is the number of individuals in the population. With each spin, the individual under the wheel's marker is selected to be in the mating pool as the parents for the next generation. Rather than spinning the roulette wheel N times to select N parents, with stochastic universal sampling, the wheel is spun once but with N equally spaced pointers, which are used to select the N parents.

Tournament selection is a method, in which some numbers of individuals (usually two) compete for selection to the next generation. This competition step is repeated a number of times equal to the size of the population. The essence of this selection is ranking selection with some noise. The advantage of this method is that there is no premature convergence, no global sorting is required and no explicit fitness is needed.

3.5 Crossover

Crossover or recombination is one of the basic operators in GA. With this operator, the genes of the parents are passed to the offspring. It is this operator that gives the GA its exploration ability. There are three basic types of crossover: one-point crossover, two-point crossover and uniform crossover. Whichever method is used, crossover is applied to the individuals of a population with a constant probability, and normally the value of the probability is from 0.5 to 0.8.

One-point crossover

One-point crossover involves cutting the chromosomes of the parents at a randomly chosen common point and exchanging the right-hand side sub-string from the selected point. The scheme of one-point crossover is shown in Figure 3.5.1.

Figure 3.5.1 One-point crossover

Multi-point crossover

The multi-point crossover is carried out at multiple randomly selected points rather than one point and the crossover procedure is similar to that of the one-point crossover, i.e. the substrings of two parents are exchanged at the crossover points. Figure 3.5.2 shows the scheme of two-point crossover.

Figure 3.5.2 Two-point crossover

Uniform crossover

In uniform crossover, each gene of the offspring is selected randomly from the corresponding genes of the parents and each gene is the crossover point. This means that each gene is inherited independently from any other gene and there is no linkage among genes. The one point and two point crossover produce two offspring, whilst uniform crossover produce one offspring.

3.6 Mutation

Mutation is considered as a method to recover lost genetic material rather than to search for best solutions. With mutation involved in GA, it can prevent all solutions of the solved problem from falling into a local minimum. Mutation is performed by randomly inverting one or more genes in the chromosome as shown in Figure 3.6.1.

Figure 3.6.1 Mutation

One of the key issues regarding mutation is the rate at which it is applied. Usually, the probability of the mutation is very small, e.g. 0.001 (Mitchell, 1996). Using the variable mutation rate throughout the run of GA is also possible (Fogarty, 1989; Tuson, 1995).

3.7 Elitism

When creating a new population by crossover and mutation, it is very possible to lose the best individuals. Using elitism can avoid this problem. Elitism is a method that copies the best chromosome or a few best chromosomes to the new population. With this method, the convergence of the algorithm is guaranteed.

4 GA-BASED DESIGN OF COLD-FORMED STEEL PURLINS

4.1 Description of the Optimization Problem

As described in Chapter 2, when the purlin is continuous over two spans, it should satisfy the criteria in the formula (2.1.1) to (2.1.3) for cross-section resistance.

The objective of the optimization is to maximize the load efficiency, which is defined as the distributed load, q, over the gross area of the cross-section, A_g , when the material reaches its yield strength. The bending moments in the above formulas are functions of distributed load q. Therefore, the optimization problem is defined as:

$$Maximize \quad \frac{q}{A_g} \tag{4.1.1}$$

subjected to the following geometrical constraints, which are specified in Eurocode 3:

$$\frac{h}{t} \le 500, \quad \frac{b}{t} \le 60, \quad 0.2 \le \frac{c}{b} \le 0.6, \text{ and } 0.1 \le \frac{d}{b} \le 0.3,$$
 (4.1.2)

where b, c, and h are the overall width of a flange, a lip and a web, respectively, measured to the face of the material. If the cross-section has a second fold along the lip, the value of dis the width of the second edge stiffener.

In addition, there might exist some types of fabrication constraints in practical applications. For instance, the length of the strip, L_{strip} , which is used to form the desired shape of the
cross-section, should be in the range of values that the manufacturer provides. In this analysis, the following condition should be satisfied

$$200 \le L_{strip} \le 625$$
. (4.1.3)

Since in the further analysis, the span of the purlin is set to a fixed value, the span of the purlin is not included in the objective function. The design variables are the dimensions of the cross-section. These values are varied from cross-section to cross-section and will be given in the following chapters, when the detailed cross-sections are presented.

Because a GA is directly used for solving an unconstrained optimization problem, the constrained optimization problem mentioned above should be transformed into an unconstrained problem by including a penalty function (Rajan, S. D., 1995). In this analysis, a quadratic penalty function is used, and the corresponding unconstrained optimization problem becomes

Maximize
$$F = \begin{cases} \frac{q}{A_g} - KK \cdot n \cdot CC & \text{when } \frac{q}{A_g} > KK \cdot n \cdot CC, \text{ and} \\ 0 & \text{otherwise,} \end{cases}$$
 (4.1.4)

where $CC = \sum c_i$ is the sum of constraint violations, c_i , which is given by

$$c_i = \begin{cases} 0 & \text{if } \alpha_i = 0, \text{ and} \\ \alpha_i^2 & \text{otherwise,} \end{cases}$$
(4.1.5)

where α_i are the normalized constraints provided by

$$\alpha_{1} = \frac{h/t}{500} - 1, \quad \alpha_{2} = \frac{b/t}{60} - 1, \quad \alpha_{3} = \frac{c/b}{0.6} - 1, \quad \alpha_{4} = 1 - \frac{c/b}{0.2}$$

$$\alpha_{5} = \frac{d/b}{0.3} - 1, \quad \alpha_{6} = 1 - \frac{d/b}{0.1}, \quad \alpha_{7} = \frac{L_{strip}}{625} - 1, \quad \alpha_{8} = 1 - \frac{L_{strip}}{200}.$$
(4.1.6)

Moreover, *n* is the coefficient that makes the values of q/A_g and *CC* be of the same order so as to avoid one value dominating over the other. In this analysis, the value of *n* is defined as $10^{L_f - 1 - L_c}$ so as to keep the order of *CC* one degree lower than that of q/A_g , in which L_f and L_c are the orders of q/A_g and *CC*, respectively. Moreover, $KK \ge 0$ is a coefficient and the solution of the penalty problem can be made arbitrarily close to the solution of the original problem by choosing *KK* to be sufficiently large (Bazaraa, Sherali and Shetty, 1993). In GA terminology, equation (4.1.7) is called a fitness function that is used in the reproduction phase in order to guide the genetic search. Moreover, when the value of q/A_g is not larger than $KK \cdot n \cdot CC$, the fitness is set to zero so that the strings corresponding to this case are discarded with no chance to enter the mating pool.

4.2 Outline of the Design Process

Figure 4.2.1 shows how the purlin design is integrated into the GA optimization process. The design process is described as follows:

- GA-based design starts by randomly generating an initial population that is composed of candidate solutions to the problem. Each individual in the population is a bit string of fixed length.
- After decoding, these individuals that represents the dimensions of the purlins are sent to the purlin design program.
- The constraints are checked and if the constraints are violated, the penalty is applied.
- By combining the fittest individuals in the previous population, the new generation is created using such operators as selection, crossover and mutation. In order to keep the best individuals in each generation, elitism may also be used.

Figure 4.2.1 Integration of purlin design into GA optimization

This process is continued until the specified stopping criteria are satisfied.

4.3 Computer Implementation of GA-Based Design of Cold-Formed Steel Purlins

A computer program named ODSP-GA is developed for **O**ptimizing the **D**imensions of Zshaped and Σ -shaped cold-formed **S**teel **P**urlins using **G**enetic **A**lgorithms. This program is coded using MATLAB language. In order to obtain the optimum dimension in this analysis, it is necessary to integrate the purlin analysis program into the GA program. However, it is possible that the analysis programs for the engineering optimization problems are not available or the source code of the commercial analysis program cannot be accessed. In some cases, the program for GA and the analysis program for the engineering problem itself are written in two different kinds of computer languages, which might be difficult to combine in the application process. Moreover, by developing this computer program, other analysis software, such as finite strip and finite element analysis software can be easily integrated into the GA-based optimization process. In this study, with ODSP-GA, further research using modified Eurocode 3 method on the optimum dimensions of the cross-section can be carried out.

The program ODSP-GA is mainly composed of two parts: the optimization part using genetic algorithms and the design part for cold-formed steel purlins. The structure and the function of each part are described in the following sections.

4.3.1 Structures of computer program for optimization using GA

The structure of the computer program for optimization using GA is shown in Figure 4.3.1 and the function of each module is described as follows:

Figure 4.3.1 Structure of optimization part using GA

- Input module: with this module, the parameters required by the GA, such as the size of the population, the crossover rate, the mutation rate, the generation required to get the solution and the types of the genetic operators are input.
- Encode module: with this module, a number of population is randomly generated. Currently, only the binary encoding strategy is available.
- Find same individuals: normally, it is quite time consuming to access the analysis program. In the process of the evolution, the same individuals exist. Thus, with this module, the repeated calculation with the same design variables can be avoided.
- Decode module: with this module, the design variables are calculated from the encoded individuals and these design variables are sent to the purlin design program.
- Fitness evaluation module: the distributed load and section properties calculated from the purlin design program are sent to this module. The fitness function including the effect of the penalty violation is calculated here.
- Selection module: the selection principal based on fitness-proportionate selection, rank selection and tournament selection are available in this module. The user can choose these schemes from the input module. Also, the elitism can be either included or not included in the selection process. Two sampling methods are included in this module, roulette wheel sampling and stochastic universal sampling.
- Crossover module: using one of the following schemes, such as one-point crossover, two-point crossover, multi-point crossover and uniform crossover, the crossover is carried out in this module. The position of the crossover point is randomly generated. The crossover rate is provided by the input module.
- Mutation module: with a given mutation rate, the mutation for each bit of the individuals is performed in this module.

4.3.2 Structure of computer program for design of cold-formed steel purlins

The structure of the computer program for the design of cold-formed steel purlins is shown in Figure 4.3.2.

Figure 4.3.2 Structure of computer program for purlin design

The modules in the program are described as follows

Pre-calculation module: in this module, the mid-line dimension of the cross-section is calculated. Furthermore, the gross section properties, such as the position of the neutral axis, the section modulus and moment of inertia are calculated. The computer program CUFSM made by Schafer (2002) was taken for this part of calculation. However, there is no calculation for the shear center in CUFSM. Therefore, this part of the calculation is added. In addition, the calculation of elastic local and distortional buckling stresses is carried out using CUFSM in this module.

- Effective section properties module: in this module, the effective section properties such as effective section modulus and effective moment of inertia are calculated. These calculations are both based on Eurocode 3 and modified Eurocode 3 method.
- Free flange behavior module: in this module, the design of the purlin taking the free flange behavior into account based on Eurocode 3 is carried out. The outputs from this module are sent to the fitness calculation modules in GA.

4.3.3 Evaluation of the computer program

Normally, the calculation of the fitness function is different from the engineering optimization itself. However, the genetic operations such as the selection, the crossover and the mutation can be used in general. Therefore, the program for optimization using GA can be slightly modified to apply to other optimization problems. Furthermore, this part of the program provides several choices for each genetic operator to the users. In addition, it is possible that in each generation there might exist several occurrences of the same individuals. Especially, after several generations from the beginning of running GA, the numbers of the same individuals are increased. It is quite time consuming to repeatedly evaluate this kind of individuals. Thus, the individuals are classified before the evaluation is started in this part of the program.

As far as the computer program for designing the cold-formed steel purlin is concerned, it can currently be used to design Z-shaped and Σ -shaped purlins. However, with slight modifications, the program can be used to design purlins of any other shape. Since the design rules for cold-formed purlins are quite complex, engineers will experience difficulties if they try to obtain results by hand calculation. In particular, the calculation of effective crosssection properties can be very tedious and time consuming. This part of the program can be used independently from the optimization so as to provide a design aid for structural designers.

However, there do exist some needs to improve this program. For instance, a friendly Graphic User Interface (GUI) should be added. Moreover, the design of Z-shaped and Σ -shaped purlins is carried out separately.

5 BEHAVIOR OF Z-SHAPED PURLIN

5.1 Introduction

The Z-shape purlin is assumed to be connected to trapezoidal sheeting at the wider flange. The loading, the span and the dimensions of the cross-section are shown in Figure 5.1.1. In the figure, b_1 is the width of top (wider) flange; b_2 is the width of the bottom flange and c is the depth of the lip; t is the thickness of the cross-section; h is the height of the cross-section and L is the span of the purlin. The width of top flange is assumed to be 6 mm wider than that of the bottom flange so as to overlap easily when being transported to the construction site.

Figure 5.1.1 Dimensions of Z-shaped purlin continuous over two spans under gravity load

In this chapter, the effects of the dimensions on the effective section properties and on the load resistance considering the free flange behavior are investigated firstly in order to obtain the basic information for the possible optimum dimensions. These investigations are based on the Eurocode 3 method. In order to integrate the numerical elastic buckling stress into the

modified Eurocode 3 method, the elastic buckling stresses are calculated using computer software named CUFSM developed by Schafer (Schafer, B., 2002) based on Finite Strip Method (FSM). These results are compared with those calculated using the Eurocode 3 method. Finally, the moment capacity and load efficiency calculated based on the modified Eurocode 3 method are compared with those calculated based on Eurocode 3 method.

The calculations in this chapter are carried out for the cross-sections with the width of the flange being varied from 40 mm to 100 mm with step of 10 mm; the ratio of c to b_2 being varied from 0.2 to 0.6 with step of 0.2; and the height of being varied from 100 mm to 300 mm with step of 100 mm. The thickness of the cross-section is assumed to be 2 mm and the span of the purlin is assumed to be 4 m. The yield strength is 350 MPa and Young's modulus is 210 GPa.

5.2 Purlin Design Based on Eurocode 3 Method

In this section, the effects of the dimensions of the cross-section on the resistance of the crosssection and on the load resistance considering the free flange behavior are investigated. The calculations are based on Eurocode 3, Part 1.3. The symbol, like h100_02, shown in the figures, means that the height of the cross-section is 100 mm and the ratio of c to b_2 is 0.2.

5.2.1 Effects of the dimensions on the cross-section resistance

Figure 5.2.1 shows the effects of the dimensions on the moment capacity of the cross-section. As for the moment capacity, its value is increased with the increase of the width of the flange. This is due to the fact that the effective width for the wider flange is larger than the fully effective width for the narrower flange. For instance, the effective width of flange of 100 mm is higher than the fully effective width of flange of 40 mm. However, the slope of increase is changed when the width of the top flange is more than 70 mm because the top flange is not fully effective after this value. Similarly, the value of moment capacity is increased with the increase of the ratio of c to b_2 and the height of the web.

Figure 5.2.1 Effects of the dimensions on the moment capacity

Figure 5.2.2 shows the effects of the dimensions on the moment efficiency, which is defined as the ratio of the moment capacity to the gross area of the cross-section. As far as the moment efficiency is concerned, its value is decreased with the increase of the gross area of the cross-section. Thus, the maximum value of moment efficiency does not correspond to the widest flange and largest ratio of c to b_2 . This is shown in Figure 5.2.2 (b). The maximum value of moment efficiency is reached when the width of the top flange is 70 mm and the ratio of c to b_2 is 0.4.

Figure 5.2.2 Effects of the dimensions on the moment efficiency

5.2.2 Purlin design considering the free flange behavior based on Eurocode 3 method

Figure 5.2.3 shows the effects of the dimensions of the cross-section on the load resistance applied to the purlin. This load resistance is increased when the ratio of c to b_2 is increased from 0.2 to 0.6 and the width of the flange is increased from 40 mm to 100 mm. The load resistances with a height of 200 mm are higher than those with a height of 100 mm. However, when the height of the cross-section is increased to 300 mm, the load resistances with $c/b_2 = 0.2$ are lower than those with $c/b_2 = 0.4$ or $c/b_2 = 0.6$ and a height of 200 mm. This is due to the fact that the gross section modulus of the free flange is decreased for the cross-section with a height of 300 mm when comparing to those with $c/b_2 = 0.4$ or $c/b_2 = 0.6$, and a height of 200 mm.

Figure 5.2.4 shows the effects of the dimensions on the load efficiency, which is defined as the ratio of the load resistance to the gross area of the cross-section. The load efficiency is not only affected by the load resistance but also by the area of the cross-section. Thus, when the height of the cross-section is increased from 100 mm to 200 mm, the load efficiency is increased. However, for the sections with a height of 300 mm, the load efficiency is decreased for some sections. Besides, the load efficiency is decreased for cross-sections with longer flanges and deeper lips although the load resistance is higher for these sections.

Figure 5.2.3 Effects of the dimensions on the load resistance

Figure 5.2.4 Effects of the dimensions on load efficiency

In summary, the moment capacity is increased with the increase of such dimensions as the width of the flange, the depth of the lip and the height of the web. This is due to the fact that effective widths of the longer elements are larger than those of the shorter fully effective elements. As far as the load resistances are concerned, their values depend not only on the moment capacity but also on the gross section modulus of the free flange plus 1/6 of the web height. Thus, it is possible that the value of the load resistance for the cross-section with longer web height is lower than that with shorter web height. Moreover, as for the moment efficiency or the load resistance efficiency, the maximum value does not occur at the largest dimensions due to the higher area of such cross-section.

5.3 Effects of the Dimensions of the Cross-Section on the Elastic Buckling Stress based on Finite Strip Method

The buckling modes of cold-formed steel sections can be classified as local, distortional and flexural-torsional buckling modes. Local buckling is characterized by internal buckling of the elements of the cross-sections in which there is no relative movement of the nodes. Flexural-torsional buckling is a rigid-body translation of a cross-section without any change in the

cross-section shape. Distortional buckling involves the movement of the nodes relative to one another and occurs at half-wavelength between local and flexural-torsional buckling.

5.3.1 Elastic buckling stress calculated based on FSM

Some typical buckling curves calculated using CUFSM is shown in Figure 5.3.1 in which the symbols like 'h200_b50_02' represents the cross-section with a height of 200 mm, a width of the flange of 50 mm and $c/b_2 = 0.2$.

Figure 5.3.1 Elastic buckling curves (t = 2.0 mm)

The curve, 'h200_b80_04', is a 'standard' buckling curve. The minima of this curve indicate the critical elastic buckling stresses, i.e. the first minimum is the critical local buckling stress and the second minimum is the critical distortional buckling stress. However, for some sections there might exist an indistinct distortional buckling mode (h100_b100_06 and h300_b50_04) and local buckling mode (h200_b50_02), respectively, as shown in Figure 5.3.1. These indistinct buckling modes make the determination of the elastic buckling stress difficult when integrating the finite strip method into the design procedure of Eurocode 3. According to Schafer (2002), the elastic buckling stress in this case can be determined as the minimum value before the current buckling mode is transformed into another buckling mode.

These values are highlighted with circles. Besides, for some sections there is no local buckling mode at all (h300_b50_02). Thus, for this kind of cross-section, the elastic buckling stress is calculated using the Eurocode 3 method in the modified Eurocode 3 design procedure.

Figure 5.3.2 shows the typical local and distortional buckling modes. The main local buckling mode is the combination of the lip, flange and web buckling. However, due to the difference of the width for each element, the buckling is initiated by the longest element amongst the lip (Figure 5.3.2 (c)), the flange (Figure 5.3.2 (d)) and the compression part of the web (Figure 5.3.2 (a)). When the length of each element is similar, the buckling mode is shown in Figure 5.3.2 (b), i.e. the buckling of each element occurs at the same time. In addition, when the lengths of the lip and the flange are not large enough, there exists no local buckling mode, i.e. the distortional buckling mode is the only buckling mode. The typical distortional buckling mode is shown in Figure 5.3.2 (e).

Figure 5.3.2 Elastic local and distortional buckling modes

Figure 5.3.3 and Figure 5.3.4 show effects of variations of the dimensions on the elastic local and distortional buckling stresses. As for the cross-section with a height of 100 mm, when $c/b_2 = 0.4$, the local buckling stress is decreased with the increase of the width of the flange. This is due to the fact that the local buckling mode is transformed from mode (a) via mode (b) to mode (d). When $c/b_2 = 0.6$, the variation of the local buckling stress has a similar trend to that with $c/b_2 = 0.4$. However, when the width of the flange varied from 40 mm to 70 mm, the local buckling stress with $c/b_2 = 0.6$ is lower than that with $c/b_2 = 0.4$. This is because of

the buckling mode (c) for $c/b_2 = 0.6$ rather than the buckling mode (b). In addition, when $c/b_2 = 0.2$ and the width of the flange is 40 mm or 50 mm, no local buckling mode exists, i.e. the distortional buckling mode is the only buckling mode.

Figure 5.3.3 Elastic local buckling stresses

As far as the cross-sections with a height of 200 mm are concerned, the local buckling modes are transformed from mode (a) (the width of the flange is less than 80 mm) to mode (b) when $c/b_2 = 0.2$ or $c/b_2 = 0.4$. However, when $c/b_2 = 0.6$, the buckling mode is transformed from mode (a) to mode (c) with the same variation of the width of the flange. If the height of the cross-section is increased to 300 mm, mode (a) is the only critical buckling mode and the variations of the local buckling stresses are almost the same when the width of the flange is increased from 40 mm to 100 mm and the ratio of c to b_2 is increased from 0.2 to 0.6.

In general, the differences between the width of the flange and the compression part of the web mainly determine the elastic buckling stress. When the width of the flange is larger than that of the compression part of the web, the critical buckling mode is flange buckling. The elastic local buckling stress can be increased by the increase of the lip. However, the increase is not so large. On the other hand, when the width of the flange is less than that of the compression part of the web, the critical buckling mode is web buckling. When the width of the flange and the depth of the lip are not large enough, there exists only the distortional

buckling mode instead of the local buckling mode. Moreover, when lengths of these two elements are similar, the critical buckling mode is mode (b). The elastic bucking stress is increased when the depth of the lip is increased, though the increase is not so large. However, if the depth of the lip is increased further, the critical buckling mode is transformed from buckling mode (b) to buckling mode (c). Besides, when the height is increased from 100 mm to 300 mm, the elastic buckling stresses are decreased with a constant value of width of the flange and depth of the lip. However, when the width of the flange is increased to 80 mm, the differences of the local buckling stresses are not so large due to the critical buckling mode of the flange.

When the height of the cross-section and the width of the flange are fixed, the elastic distortional buckling stress is increased with the depth of the lip. When the width of the flange and the depth of the lip are fixed, the elastic distortional buckling stress decreases with the increase of the height of the web. However, the effects of the width of the flange on the elastic distortional buckling stress are varied with the critical local buckling mode. If mode (a) is the critical buckling mode, the elastic distortional buckling stress is increased with the increase of the width of the flange (cross-sections with a height of 300 mm). If the critical buckling mode is mode (b) or mode (d), the elastic distortional buckling stress is decreased with the increase of the width of the flange (cross-sections with a height of 100 mm).

Figure 5.3.4 Elastic distortional buckling stress

5.3.2 Comparison of elastic buckling stress calculated using Eurocode 3 method and finite strip method

Figure 5.3.5 shows the comparisons of elastic local buckling stresses calculated using the Eurocode 3 method. Such symbols as 'lip_04', 'w_100_04' and 'flange' represent the elastic buckling stress of lip, web and flange, respectively, calculated using the Eurocode 3 method. The symbols such as 'L 100 04' represent the local buckling stress calculated using FSM.

(b) h = 200 mm

(c) h = 300 mm

Figure 5.3.5 Comparisons of elastic local buckling stresses calculated using Eurocode 3 method with those calculated by FSM

When web buckling is the critical local buckling mode, the elastic local buckling stresses calculated using FSM are higher than web buckling stresses calculated using the Eurocode 3 method as shown in Figure 5.3.5 (b) and (c). This is due to the fact that in Eurocode 3, the web element is assumed as simply supported at both ends; while in FSM, the interaction of the flange and web is included. For a similar reason, the elastic buckling stresses calculated using the Eurocode 3 method when the lip-buckling (Figure 5.3.5 (a) if the width of the flange is less than 70 mm and $c/b_2 = 0.6$) and flange buckling (Figure 5.3.5 (a) if the width of the flange is larger than 70 mm and $c/b_2 = 0.4$) are critical, respectively.

Figure 5.3.6 shows the comparisons of elastic distortional buckling stresses calculated using the Eurocode 3 and FSM. For most cross-sections, the values of the elastic distortional buckling stresses calculated using FSM are higher than those calculated using the Eurocode 3 method. However, when the critical local buckling mode is the web-buckling mode, the distortional buckling stress calculated using FSM is less than those calculated using the Eurocode 3 method. This is due to the fact that the effect of the reduction in the flexural restraints provided by the buckling web is not considered in Eurocode 3.

Figure 5.3.6 Comparisons of elastic distortional buckling stresses calculated by EC3 with those calculated by FSM

5.4 Design of Z-Shape Purlins Based on Modified Eurocode 3 Method

The typical buckling modes for Z-shape purlins are local buckling of flange, the lip and the compression part of the web and the distortional buckling mode as shown in Figure 5.3.2. When the effective widths of the flange, the lip and the compression part of the web are determined, the reduction factor, ρ , is calculated using the elastic buckling stress corresponding to the first type of buckling mode. The effective width for the flange is

$$b_{eff,1} = 0.5 \cdot \rho \cdot b$$
, and
 $b_{eff,2} = 0.5 \cdot \rho \cdot b$. (5.4.1)

The effective width of the lip is

$$c_{\text{eff}} = \rho \cdot c \,. \tag{5.4.2}$$

and the effective width of the compression elements is

$$h_{ceff,1} = 0.4 \cdot \rho \cdot h_c, \text{ and}$$

$$h_{ceff,2} = 0.6 \cdot \rho \cdot h_c, \quad (5.4.3)$$

in which h_c is the length of the compression part. When the reduced thickness for the edge stiffener is determined, the reduction factor, χ , is calculated using the distortional buckling stress corresponding to the distortional buckling mode.

5.5 Comparison of Eurocode 3 Method and Modified Eurocode 3 Method

A symbol in the figures shown in this section such as 'EC3_04' means that the calculation is based on the Eurocode 3 method with $c/b_2 = 0.4$; and 'MEC3_04' represents the calculation is based on Eurocode 3 method with $c/b_2 = 0.4$.

5.5.1 Comparisons of moment capacity

Figure 5.5.1 shows comparisons of the moment capacities of the cross-section calculated using the Eurocode 3 method to those calculated using the modified Eurocode 3 method. If the flange buckling is the critical buckling mode, the moment capacity calculated using the modified Eurocode 3 method is higher than that calculated using the Eurocode 3 method (Figure 5.5.1 (a)) due to the fact that the elastic buckling stresses calculated using FSM are

higher than those calculated using the Eurocode 3 method. If the web buckling is the critical buckling mode, the moment capacity calculated using the modified Eurocode 3 method is lower than that calculated using the Eurocode 3 method (Figure 5.5.1 (b) and (c)). Two reasons lead to this result; one is that the effect of the reduction in the flexural restraints provided by the buckling web is not considered in Eurocode 3. The other is that in the modified Eurocode 3 method, the same elastic buckling stress is applied to determine the effective width for the flange, lip and web. When the height of the web is 200 mm, the difference is not so large. However, when the height of the web is 300 mm, the difference is greater.

(b) h = 200 mm

Figure 5.5.1 Comparison of moment capacities calculated using the Eurocode 3 method to those using the modified Eurocode 3 method

5.5.2 Comparisons of load distribution and load efficiency

A comparisons of the load resistances calculated using the Eurocode 3 method to those calculated using the modified Eurocode 3 method are shown in Figure 5.5.2. When comparing to Figure 5.5.1, it can be seen that the variations of the load resistances have similar trends to those of moment capacity since the in-plane bending is dominating instead of bending due to the lateral load.

Figure 5.5.2 Comparisons of load resistances calculated using the Eurocode 3 method to those calculated using the Modified Eurocode 3 method

Figure 5.5.3 shows the comparisons of load efficiencies calculated using the Eurocode 3 method to those calculated using the modified Eurocode 3 method. The optimum dimensions obtained using these two methods are not same due to the different values of the load resistance and the area of the cross-section.

5.5.3 Discussion

In the current Eurocode 3 method, the calculation of bending moment in the free flange due to the lateral load for a Z-shape purlin can be only applied to the cross-section with an equal width of the two flanges. In this thesis, the width of the top flange is 6 mm wider than that of the bottom flange. However, the calculation is still based on the rules specified in Eurocode 3, Part 1.3. Thus, the influence of the position of the shear center and the widths of the two flanges on the behavior of the Z-shape purlins should be investigated further.

Besides, the purlin is attached to the profiled sheeting using screws. This sheeting can provide lateral and rotational restraints to the purlin. The calculation of the local buckling stress using FSM did not consider the effects of these restraints.

Figure 5.5.3 Comparisons of load efficiency calculated using the Eurocode 3 method to those calculated using the modified Eurocode 3 method

6 OPTIMIZATION OF Z-SHAPE PURLINS

In this chapter, the dimensions of the Z-shape purlins, which have been investigated in Chapter 5, are optimized using the computer program, **ODSP-GA**, developed in Chapter 4.

6.1 Descriptions of Problems

The design variables are the width of the top (wider) flange, b_1 , and the depth of the lip, c. Other parameters, such as the thickness of the cross-section, t, the height of the cross section, h, and the span of the purlin, L, are the given variables.

According to Eurocode 3, the ratio of c to b_2 should satisfy the formula

$$0.2 \le \frac{c}{b_2} \le 0.6.$$
 (6.1.1)

Assuming $\alpha = \frac{c}{b_2}$, the depth of the lip, *c*, can be replaced by α . The width of top flange is assumed to be 6 mm greater than that of the bottom flange. The possible values for the design variables are given in Table 6.1.1.

Design variables	Possible values
Width of the top flange b_1	Varied from 40 mm to 100 mm with step 1 mm
Ratio of c to b_2 , α	Varied from 0.2 to 0.6 with step 0.01

Table 6.1.1Values for the design and given variables

The optimization problem is defined as

Maximize
$$\frac{q}{A_g}$$
, (6.1.2)

subjected to the following geometrical constraints specified in Eurocode 3 and fabrication constraints:

$$\frac{h}{t} \le 500, \quad \frac{b_1}{t} \le 60, \text{ and } 200 \le L_{stip} \le 625,$$
 (6.1.3)

where the length of the strip is calculated as:

$$L_{strip} = b_1 + b_2 + 2 \cdot c + h.$$
 (6.1.4)

By integrating the penalty function into the fitness evaluation described in Chapter 4, the constrained problem is transformed into the following unconstrained problem:

Maximize
$$F = \begin{cases} \frac{q}{A_g} - KK \cdot n \cdot CC & \text{when } \frac{q}{A_g} > KK \cdot n \cdot CC, \\ 0 & \text{otherwise.} \end{cases}$$
 (6.1.5)

6.2 Verification Problem

In order to demonstrate the capability and the optimization process of the GA, an example is presented. In the following calculation, the height of the cross-section is set to 150 mm, the thickness of the cross section to 1.5 mm and the length for single span is 4500 mm. Besides, the yield strength is 350 MPa and Young's modulus is 210000 MPa.

6.2.1 Optimization process

Encoding the design variables into fixed-length bit strings is the first step of GA. Binary encoding is used here. The optimization problem described here is a multi-parameter problem. The multi-parameter can be encoded to a single string by simply concatenating the design variables end by end. For example, two design variables are defined in this optimization problem, b_1 and α . The possible values of b_1 are given in Table 6.1.1, which can be represented using six bits. Similarly, the values of α can also be coded using six bits. By concatenating these two 6-bit strings, a single 12-bit string is formed as shown in Figure 6.2.1.

0	0	0	0	1	0	1	0	1	0	1	1
_		l	b_1		-	α					

Figure 6.2.1 Individual string with binary encoding

The actual value of a design variable is calculated from each corresponding binary string. For instance, if the coded binary string is '000010' for b_1 , the value corresponding to this string can be calculated as $0 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 1 \times 2 + 0 \times 2^0 = 2$. Therefore, the width of the top flange is selected as 41 mm, which is the second value in the range of 40 mm to 100 mm with step 1 mm. However, it is possible that the decoded value is larger than the possible number of each design variable. In this case, some values of the design variables are selected twice.

The details for generating the first and the second generation using GA are shown in Table 6.2.1 and Table 6.2.2. The GA starts from randomly generating a group of binary strings (individuals), which are listed in column (2). For demonstration purposes, only eight individuals are listed here. After decoding, the values of the design variables are listed in columns (3) to (4). Then, the constraints are evaluated with results listed in columns (6) to (8) and the calculated penalty (9) is integrated into the computation of the fitness function (10). Using the tournament selection method, the better individuals are selected and sent to the mating pool (12). Using a two-point crossover operator with probability of 80 % (13) and a

one-point mutation operator with probability of 0.001 (14), the first generation (15) is generated. In column (15), two better individuals from previous generation, which are called elitisms, are kept. This first generation is treated at the initial population and the procedure in forming the first generation is repeated until the maximum number of generation provided is reached.

6.2.2 Selection of parameters

There are several options for each genetic operator as given in Chapter 3, such as the fitness proportional selection method, the rank selection method and the tournament selection method, the probability of crossover (crossover rate), the probability of mutation (mutation rate) and the size of the population. In this section, the effects of these options on the behavior of GA are investigated. The investigation is based on the crossover rate of 0.8, the population size of 24 and the mutation rate of 0.001 if the parameters are not specified. The curve in the figures for each given parameter is chosen as the maximum value of fitness for five runs of the GA, in which one run is defined as the complete run of GA.

Figure 6.2.2 shows the effects of such selection methods as the fitness proportional method, the rank selection method and the tournament selection method on the value of fitness. It can be seen that each method leads to a convergence of the calculation. However, the speed of convergence for the rank selection is slower than those for the other two methods. Moreover, there is no big difference when using either the tournament selection method is used for further analysis. In addition, the values of the fitness show no large variations from generation of 30 to 80 in the process of convergence based on tournament selection. Therefore, the maximum generation number for stopping running the GA is chosen as 30.

generation	,
computation:	•
ofe	
details	
The	
Table 6.2.1	

New generation	(15)	000101110100	100110001100	111010011000	100110001101	101101001100	000101110100	101101000011	010111001100
Mutation position	(14)								
Cross-over position	(13)			11, 12		4, 6		7,7	
Mating pool	(12)	000101110100	100110001100	111010011001	100110001100	101101001100	0001011101000	101101001100	010111000011
Selected times	(11)	0	0	1	2	2	1	0	2
Fitness	(10)	0	0.002737	0.000667	0.002974	0.002888	0.002896	0.002620	0.002749
Penalty	(6)	0.007136	0	0.04753	0	0	0	0	0
$\overline{p_1}$	t (8)	65.07	55.47	67.12	30.82	53.42	43.15	52.74	58.22
$\overline{\eta}$	<i>t</i> (7)	102.74	102.74	102.74	102.74	102.74	102.74	102.74	102.74
Total length	(9)	378.50	345.00	422.80	258.18	346.08	296.22	326.40	364.56
c	(2)	23.75	21.06	44.10	13.95	24.96	14.49	15.40	27.20
ω	(4)	0.25	0.26	0.45	0.31	0.32	0.23	0.20	0.32
\mathbf{b}_1	(3)	95	81	98	45	78	63	LL	85
Population	(2)	110111101110	10100100110	111010011001	000101110100	100110001100	010111000011	100101000000	101101001100
No	(1)	1	2	3	4	5	9	7	8

Table 6.2.2The details of computation: generation 2

New generation	(15)	010111001100	100110001101	000101110100	100110001101	000110001100	100101110101	000101110100	010111001100
Mutation position	(14)								
Cross-over position	(13)	7, 8				3, 11		5, 6	
Mating pool	(12)	001100111010	101100011001	001011101000	101100011001	001011101000	101100011001	001011101000	010111001100
Selected times	(11)	3	0	0	3	0	0	0	2
Fitness	(10)	0.002974	0.002888	0.001022	0.002893	0.002749	0.002974	0.002594	0.003143
Penalty	(6)	0	0	0.03861	0	0	0	0	0
$\overline{b_1}$	t (8)	30.82	53.45	67.12	53.42	58.22	30.82	58.22	43.15
$\frac{1}{\eta}$	t (7)	102.74	102.74	102.74	102.74	102.74	102.74	102.74	102.74
Total length	(9)	258.18	346.08	420.96	347.52	364.56	258.18	350.34	306.48
с	(5)	13.95	24.96	43.12	25.74	27.20	13.95	19.55	20.16
α	(4)	0.31	0.32	0.44	0.33	0.32	0.31	0.23	0.32
\mathbf{b}_1	(3)	45	78	86	78	85	45	85	63
Population	(2)	0001011101000	100110001100	111010011000	1001100011001	101101001100	0001011101000	101101000011	010111001100
No	(1)		2	3	4	5	9	7	8

Figure 6.2.2 Effects of selection methods on the value of q/A_g

Such parameters as the size of the population, the crossover rate and the mutation rate have the influences on the behavior of the GA. The size of the population is at least equal to the length of the binary string so as to make all the combinations possible. Figure 6.2.3 shows the effects of the population size on the values of the fitness. The size of the population is set to one, one and a half, two, and two and a half times the length of each individual. In this analysis, the length of the individual is 12, thus, the population sizes are 12, 18, 24 and 30. The size of the population has no big influence in this case and a population size of 24 is chosen for further analysis.

Figure 6.2.3 Effect of the population size on the performance of GA

The crossover rate describes how often crossover occurs and the suggested value is from 0.6 to 0.9 according to Mitchell (1996). Figure 6.2.4 shows the effects of crossover rate on the performance of GA as the rate of crossover is varied from 0.6 to 0.9 with the population size being set to 30 and mutation rate being set to 0.001. In this case, the values of the crossover rate have no big influence on the performance of GA and the value of 0.8 is chosen for further analysis.

Figure 6.2.4 Effects of crossover rate on the performance of the GA

Mutation is used to exploit new information during the running of GA. Figure 6.2.5 shows the effects of the mutation rate on the performance of the GA. When the rate of mutation is varied from 0.0001 and 0.01, the GA shows the better behavior than that when the rate of mutation is 0.1. The value of 0.001 is chosen in the further calculation. This analysis is carried out with the population size of 30 and crossover rate of 0.8.

Figure 6.2.5 Effects of mutation rate on the performance of the GA

In general, the speed of convergence for the rank selection method is slower than those for two other methods, i.e. the tournament selection method and the fitness proportional method. The calculations in this thesis are all based on the tournament selection method. Moreover, the values of the population size, the crossover rate and the mutation rate, which are given in the process of the investigation, all lead GA to convergence except the case with a mutation rate of 0.1. Particularly, the difference of the fitness for each compared case is not so large. In principle, each reasonable investigated value can be chosen in the running of GA. However, in this thesis, a GA is running with the size of the population being two times of the length of the encoded binary string; a crossover rate of 0.8 and a mutation rate of 0.001.

6.2.3 Sensitivity analysis of the fitness function

The sensitivity analyses of fitness to the values of KK given in the objective function are shown in Figure 6.2.6 (a) and (b). The calculation is carried out for the cross-section with a height of 350 mm. Since with this height, the fabrication constraint, i.e. the length of the strip, is more likely to be violated than that with a height of 150 mm.

(b) h=350 mm, t=2.0 mm and L=5000 mm

Figure 6.2.6 Effects of value KK to the value of the fitness in 10 runs

Figure 6.2.6 (a) indicates that when the value of *KK* is varied from 0.01 to 100, the maximum values of the fitness in 10 runs are varied from 0.003376 to 0.003375 N/mm/mm² with the dimension $b_1 = 54$ mm, c = 25.92 mm and $b_1 = 54$ mm, c = 26.88 mm, respectively. In addition, Figure 6.2.6 (b) indicates that when the value of *KK* is varied from 0.01 to 100, the maximum values of the fitness in 10 runs are the same. Therefore, we may conclude that for Z-shape cross-section, the fitness is not sensitive to the value of *KK*. In the further analysis, the value of *KK* is set to 0.1.

6.2.4 Optimization results

Using the above selected parameters, the GA-based design has been running for 10 times and the optimization results are shown in Table 6.2.3. For each run, the GA starts from a different initial population. Thus, it provides the possibility to find the global optimum instead of being stuck to the local optimum. Table 6.2.3 shows that the optimum cross-section has a width of the top flange equal to 54 mm and a depth of the lip equal to 25.92 mm, i.e. the ratio of *c* to b_2 is 0.48. The corresponding value of q/A_g is 0.003376 N/mm/mm². The optimum dimensions are selected as those with the maximum value of fitness in the 10 runs.

No. of	b_1	С	q/A_g	M_y/A_g	q	A_{g}
runs	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm^2)	(N/mm)	(mm^2)
1	53	25.38	0.003375	12515.32	1.45	430.58
2	56	26.50	0.003370	12428.26	1.49	442.61
3	53	23.97	0.003373	12551.13	1.44	426.47
4	54	24.48	0.003375	12527.59	1.45	430.88
5	54	25.44	0.003376	12503.55	1.46	433.68
6	56	25.50	0.003369	12454.37	1.48	439.69
7	53	23.97	0.003373	12551.13	1.44	426.47
8	53	25.38	0.003375	12515.32	1.45	430.58
9	54	25.92	0.003376	12489.93	1.47	435.08
10	54	24.48	0.003375	12527.59	1.45	430.88

Table 6.2.3Optimization results for 10 runs

In order to verify the results obtained here, another kind of optimization process is carried out by simply investigating the effects of the variations of the width of the flange and the depth of the lip on the value of q/A_g for the same purlin. The width of the wider flange is varied from 40 mm to 100 mm with step of 1 mm and the ratio of the depth of the lip to the width of the bottom flange is varied from 0.2 to 0.6 with step of 0.01. Both the geometrical constraints and fabrication constraints are not violated. The optimum dimension is chosen as the one that make the value of q/A_g maximum. The comparisons of the optimum dimensions for these two calculations are shown in Table 6.2.4.

In the table, 'Opt-GA' is the optimization procedure of GA-based design, and 'Opt-Cal' is the other optimization procedure. The maximum value of q/Ag using GA-based design is the

same as that via investigating the variation of the parameter. The corresponding optimum dimensions are the same as well. Thus, the computer program for optimization and selected parameters for GA are verified and can be used for further analysis.

 Table 6.2.4
 Comparison of optimization results by calculation to that by GA

Calculation	b_1	b_2	α	С	q/A_{g}
methods	(mm)	(mm)		(mm)	$(N/mm/mm^2)$
Opt-Cal	54	48	0.54	25.92	0.003376
Opt-GA	54	48	0.54	25.92	0.003376

6.2.5 Analysis of Results

Figure 6.2.7 shows the comparison of other results in 10 runs with the optimum one listed in Table 6.2.3. In the figure, such symbol as '44-051' represents the cross-section with the width of the flange being 54 mm and the ratio of the lip to the bottom flange being 0.54.

Figure 6.2.7 Comparison of other results to the optimum in 10 runs of GA

Figure 6.2.7 shows that both the values of q/A_g and design variables are narrowed down to a relatively small range. This is due to the characteristics of GA, i.e. finding the near optimum. In addition, the purpose of this research is to find the nominal dimension of the cross-section. Thus, the final optimum dimension can be modified based on the results in 10 runs since Figure 6.2.7 shows that a small change of the width of the flange or the depth of the lip does not change the value of q/A_g considerably.

Figure 6.2.7 shows the comparison of value M_y/A_g as well. The differences among the values of M_y/A_g are larger than those among q/A_g . However, this difference is quite small from the point of view of engineering design.

6.3 Optimization Results based on Eurocode 3 Method

6.3.1 Optimization results

With the selected parameters and the design procedures defined in Section 6.2, the GA-based design is applied to Z-shape purlins continuous over two spans subjected to a gravity load with given heights, thicknesses and spans. The design of the purlins is based on Eurocode 3, Part 1.3.

In order to simplify the design process, two formulas, in which the relation of the width of the top flange and the depth of the lip are defined, are provided. The first one is expressed as:

$$c = \frac{11}{30} \cdot (b_1 - 40) + 13. \tag{6.3.1}$$

This formula is derived according to the linear relationship of b_1 and c, i.e. the depth of the lip is 13 mm when the width of the flange is 40 mm; and the depth of the lip is 35 mm when the width of the flange is 100 mm. The other values of c can be interpolated with this
formula. For the comparisons that will be carried out in the following section, this case is called 'Choice 1'. Another relation is that the depth of the lip is 15 mm when the width of the flange is 40 mm, and the depth of the lip is 40 mm when the width of the flange is 90 mm. This relation can be formulated as:

$$c = \frac{1}{2} \cdot (b_1 - 40) + 15.$$
 (6.3.2)

Similarly, this case is called 'Choice 2'. With these two formulas, the optimum dimensions together with the corresponding values of q/A_g for a variety of heights, thicknesses and spans are shown in Table 6.3.1 and Table 6.3.2, respectively.

When compared with equation (6.3.1) and equation (6.3.2), the case with no other limits for the values of b_2 and c except those listed in Eurocode 3, part 1.3 is called 'Choice 3'. The optimum dimensions together with the corresponding values of q/A_g for a variety of heights, thicknesses and spans for this case are shown in Table 6.3.3.

Moreover, the results for these three cases are obtained by choosing the dimension corresponding to the maximum value of q/A_g from 10 runs of GA for each given height, thickness and span. In addition, together with the values of q/A_g , the values of M_y/A_g and the areas of cross-sections corresponding to the optimum dimensions are listed in Table 6.3.3, Table 6.3.1 and Table 6.3.2 as well. The detailed results are shown in Appendix A.

h	L	t	b_1	С	q/A_g	M_y/A_g	A_{g}
(mm)	(mm)	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm^2)	(mm^2)
100	1400	1.0	41	13.37	0.018349	8102.564	190.94
100	1600	1.2	44	14.47	0.015151	8842.566	239.30
100	1900	1.5	53	17.77	0.011658	9518.614	335.35
100	2200	2.0	60	20.33	0.009159	9821.831	483.78
150	1700	1.0	48	15.93	0.015386	9564.788	257.30
150	2000	1.2	51	17.03	0.012168	10901.82	319.49
150	2500	1.5	59	19.97	0.008775	12295.31	432.30
150	3000	2.0	69	23.63	0.006961	13945.02	630.00
200	3000	1.5	63	21.43	0.006970	14138.01	521.26
200	3800	2.0	74	25.47	0.005201	16536.56	754.78
200	4500	2.5	85	29.50	0.004221	18236.01	1016.37
250	3200	1.5	77	26.57	0.006706	14754.75	650.13
250	4300	2.0	81	28.03	0.004475	18444.75	890.28
250	5100	2.5	91	31.70	0.003680	20744.53	1179.72
300	4500	2.0	90	31.33	0.004323	19574.76	1036.50
300	5500	2.5	99	34.63	0.003397	22696.80	1356.51
300	6000	3.0	100	35.00	0.003152	24953.42	1634.39
350	5000	2.0	100	35.00	0.003674	20331.16	1188.07
350	6000	2.5	100	35.00	0.003000	24413.12	1486.23
350	7000	3.0	100	35.00	0.002489	26992.67	1782.39
350	7500	3.5	100	35.00	0.002309	28494.64	2076.55

Table 6.3.1Results for Choice 1

Table 6.3.2Results for Choice 2

h	L	t	b_1	С	q/A_{g}	M_y/A_g	A_{g}
(mm)	(mm)	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(mm^2)
100	1400	1.0	40	15.0	0.018954	8187.290	192.15
100	1600	1.2	44	17.0	0.015718	8926.625	245.18
100	1900	1.5	52	21.0	0.012056	9516.639	341.87
100	2200	2.0	60	25.0	0.009416	9743.894	502.07
150	1700	1.0	48	19.0	0.016022	9650.098	263.19
150	2000	1.2	51	20.5	0.012667	10977.07	327.54
150	2500	1.5	56	23.0	0.009147	12496.60	432.39
150	3000	2.0	68	29.0	0.007238	14009.90	647.11
200	3000	1.5	63	26.5	0.007273	14265.40	536.05
200	3800	2.0	71	30.5	0.005432	16832.61	762.75
200	4500	2.5	85	37.5	0.004380	18362.45	1055.73
250	3200	1.5	76	33.0	0.007040	14977.32	665.99
250	4300	2.0	77	33.5	0.004673	18842.47	896.03
250	5100	2.5	86	38.0	0.003845	21161.99	1186.11
300	4500	2.0	90	40.0	0.004535	19785.73	1070.47
300	5500	2.5	90	40.0	0.003543	23321.97	1338.63
300	6000	3.0	90	40.0	0.003220	25090.94	1604.79
350	5000	2.0	90	40.0	0.003829	21327.71	1168.47
350	6000	2.5	90	40.0	0.003101	25226.00	1461.63
350	7000	3.0	90	40.0	0.002510	27255.40	1752.79
350	7500	3.5	90	40.0	0.002294	28533.48	2041.95

h	L	t	b_1	С	q/A_g	M_y/A_g	A_{g}
(mm)	(mm)	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(mm^2)
100	1400	1.0	40	20.06	0.019821	8069.29	201.87
100	1600	1.2	44	22.80	0.016312	8723.04	258.63
100	1900	1.5	48	25.20	0.012355	9238.82	342.46
100	2200	2.0	56	30.00	0.009596	9448.36	505.99
150	1700	1.0	48	25.20	0.016807	9587.67	275.10
150	2000	1.2	49	25.80	0.013234	11006.92	335.19
150	2500	1.5	56	30.00	0.009449	12305.44	452.83
150	3000	2.0	66	36.00	0.007382	13665.38	666.71
200	3000	1.5	62	33.60	0.007532	14217.23	553.86
200	3800	2.0	70	37.76	0.005559	16655.55	787.29
200	4500	2.5	84	46.80	0.004436	17949.06	1096.57
250	3200	1.5	73	40.20	0.007302	15123.96	678.26
250	4300	2.0	76	42.00	0.004803	18738.68	925.43
250	5100	2.5	86	48.00	0.003918	20865.63	1235.31
300	4500	2.0	87	48.60	0.004675	19878.90	1092.43
300	5500	2.5	94	52.80	0.003635	22940.90	1421.29
300	6000	3.0	100	56.40	0.003375	25115.28	1761.08
350	5000	2.0	89	49.80	0.003952	21361.67	1202.97
350	6000	2.5	91	49.30	0.003187	25175.61	1512.31
350	7000	3.0	95	45.39	0.002601	27657.43	1814.30
350	7500	3.5	95	45.39	0.002384	28952.33	2113.85

Table 6.3.3Results for Choice 3

6.3.2 Comparisons of the results

The comparisons of the values of q/A_g for the three cases mentioned above are shown in Figure 6.3.1. This comparison is carried out based on the ratio of the values of q/A_g for Choice 1 and Choice 2 to those for Choice 3. It can be seen that the values of q/A_g for Choice 3 is about 1.8 % to 4.4 % higher than those for Choice 2 and is about 3.2 % to 8.5 % higher than those for Choice 1. In addition, most of the values of q/A_g for Choice 2 are higher than those for Choice 1 except for the cross-section of 'h350_L75_t35'. This symbol represents the cross-section with a height of 350 mm, a span of 7500 mm and a thickness of 3.5 mm. Other symbols in the figure can be interpreted in a similar way.

Figure 6.3.1 Comparison of the values of q/A_g for three cases

Similarly, Figure 6.3.2 shows the comparisons of values of M_y/A_g for the three cases mentioned above. It can be seen that the values of M_y/A_g for Choice 3 are not always higher than those for Choice 1 and Choice 2. The variation of the ratio, which is defined as the value of M_y/A_g for Choice 1 or Choice 2 over that for Choice 3, is in the range of -5 % to 4 %. In addition, most of the values of M_y/A_g for Choice 2 are higher than those for Choice 1 except the cross-sections labeled 'h100_L19_t15' and 'h100_L22_t20'.

Figure 6.3.3 shows the variations of the ratio of the depth of the lip to the width of the top flange. As for the free optimum case, most values of this ratio are varied from 0.5 to 0.56 except for the two cross-sections of 'h350_L70_t30' and 'h350_L75_t35', whose values are both 0.48. This is due to the fact that for the cross-sections with a height of 350 mm, the fabrication constraint is likely to be violated with the higher value of width of the flange and depth of the lip. As far as the two simplified cases are concerned, the variations of this ratio are quite smooth. For Choice 1, this ratio is in the range of 0.33 to 0.35; while for Choice 2, the ratio is in the range of 0.38 to 0.44.

Figure 6.3.2 Comparison of the values of M_y/A_g for three cases

Figure 6.3.3 Ratio of depth of the lip to the width of the flange

Figure 6.3.4 shows the comparison of optimum dimension with a given height, a thickness and a span to the values of q/A_g calculated by varying the width of the top flange from 40 mm to 100 mm with step 10 mm and the ratio of c/b_2 from 0.2 to 0.6 with step 0.2. The optimum results using GA are represented by two diamonds, in which 'h200_54' represents the cross-section with a height of 200 mm and a ratio of c/b_2 equal to 0.54. It can be seen that the optimum dimensions obtained using GA fit the curve well. However, the corresponding values of q/A_g are different since the span of the purlin optimized using GA is 4500 mm and that from a previous analysis is 4000 mm. It seems that the span has no great influence on the optimum dimensions for the cases listed here.

Figure 6.3.4 Comparisons of optimization results using GA with previous analysis

6.3.3 Optimum dimensions

Analyses from 6.3.2 indicate that, in general, Choice 3 shows the higher values of q/A_g than those for Choice 1 and Choice 2. Furthermore, Choice 2 shows better behavior than that for Choice 1 when both the values of q/A_g and M_y/A_g are compared. However, in order to provide multiple choices to structural designers and steel manufactures, three kinds of optimum dimensions for the Z-shape purlin continuous over two spans under gravity load using GA are proposed in Table 6.3.4 corresponding to the three optimization cases mentioned above.

		Cho	oice 1	Choic	ce 2	Choice 3	
h	t	b_1	С	b_1	С	b_1	С
100	1.0	40	13.0	40	15.0	40	20
100	1.2	45	14.8	45	17.5	45	20
100	1.5	50	16.7	50	20.0	50	25
100	2.0	60	20.3	60	25.0	50	20
150	1.0	50	16.7	50	20.0	50	25
150	1.2	50	16.7	50	20.0	50	25
150	1.5	60	20.3	55	22.5	55	30
150	2.0	70	24.0	70	30.0	65	35
200	1.5	65	22.1	65	27.5	65	35
200	2.0	75	25.9	70	30.0	70	35
200	2.5	85	29.6	85	37.5	85	45
250	1.5	80	27.7	80	35.0	75	40
250	2.0	80	27.7	80	35.0	75	40
250	2.5	90	31.3	90	40.0	85	45
300	2.0	90	31.3	90	40.0	90	50
300	2.5	100	35.0	90	40.0	95	55
300	3.0	100	35.0	90	40.0	100	55
350	2.0	100	35.0	90	40.0	90	50
350	2.5	100	35.0	90	40.0	90	50
350	3.0	100	35.0	90	40.0	95	45
350	3.5	100	35.0	90	40.0	95	45

Table 6.3.4 Proposed optimum dimensions for Z-shape purlin

For Choice 1 and Choice 2, the width of the top flange is determined firstly by rounding the optimum value to the number with '0' or '5' at last position; and the depth of the lip is recalculated according to formula of (6.3.1) or (6.3.2). For instance, for the cross-section with a height of 100 mm and a thickness of 1.5 mm in Choice 1, the optimum width of the flange is 41 mm. The proposed width of the flange is 40 mm and the depth of the lip is recalculated using equation (6.3.1) and is given as 13.0 mm.

For Choice 3, the proposed width of the flange and depth of the lip is determined by rounding the optimum value to the number with '0' or '5' at last position. For instance, the calculated optimum dimensions for the cross-section with a height of 100 mm and a thickness of 1.5 mm are the width of the flange being 48 mm and the depth of the lip being 25.20 mm. Therefore, the proposed optimum dimensions are the width of the top flange being 50 mm and the depth of the lip being 25 mm.

6.4 Integrating modified Eurocode 3 method into the optimization process

In order to show that the numerical analysis program such as CUFSM can be integrated into the GA optimization process, the modified Eurocode 3 method is integrated into GA-based design. The optimum dimensions together with the corresponding values of q/A_g and M_y/A_g are shown in Table 6.4.1. In addition, the optimization results based on the Eurocode 3 method are also listed in the same table. In the table, 'EC3' represents the Eurocode 3 method and 'EC3_M' represents the modified Eurocode 3 method.

Table 6.4.1 shows that the optimum dimensions obtained by integrating the Eurocode 3 method and modified Eurocode 3 method into the GA-based design procedure can be similar (cross-sections with a height of 100 mm and a thickness of 1.0 mm; and with a height of 350 mm and a thickness of 2.0 mm) or be different (other cross-sections listed in the table) depending on the case. However, the difference of the corresponding values of q/A_g is not so large. For instance, the variation is from – 4.1% to 3.8 %.

/ EC3	M_{y}/A_{s}		666.0	0.954	156.0	0.955	0.957	0.907
EC3_M	$q/A_{_{g}}$		1.002	0.994	0.995	1.038	1.026	0.959
3	$oldsymbol{M}_y/oldsymbol{A}_g$	(Nmm/mm ²)	8059.78	9147.820	13601.85	14301.50	18937.30	19350.79
lified Eurocode ($q/A_{_{g}}$	$(N/mm/mm^2)$	0.019864	0.016710	0.007497	0.007310	0.004654	0.003671
Mod	с	(mm)	20.6	30.0	39.5	48.6	56.4	49.3
	b_1	(mm)	41	56	73	87	100	91
	$oldsymbol{M}_{_{Y}}/A_{_{B}}$	(Nmm/mm^2)	8069.29	9587.67	14217.23	14977.32	19785.73	21327.71
Eurocode 3	$q/A_{_{B}}$	(N/mm/mm ²)	0.019821	0.016807	0.007532	0.007040	0.004535	0.003829
	Э	(mm)	20.1	25.2	33.6	33.0	40.0	40.0
	b_1	(mm)	40	48	62	76	90	90
t (mm)			1.0	1.0	1.5	1.5	2.0	2.0
L (mm)			1400	1700	3000	3200	4500	5000
(mm)			100	150	200	250	300	350

7 BEHAVIOR OF Σ -SHAPE PURLINS

7.1 Introduction

In this chapter, the behavior of Σ -shape purlins with one axis of symmetry is investigated. The purlins are connected to profiled sheeting on one flange and are continuous over two spans subjected to a gravity load. The dimensions of the cross-section are shown in Figure 7.1.1. In the figure, b is the width of the flange; c is the depth of the lip; h is the height of the cross-section; h_1 and h_5 are the distances of the web stiffeners to the top and bottom flange, respectively; h_2 and h_4 are the depths of the web stiffener in the direction of the web height; d_s is the depth of the web stiffener perpendicular to the web height; and h_3 is the distance between the stiffeners along the web.

Figure 7.1.1 Dimensions of the cross-section of the Σ -shape purlin

The investigation is concentrated on the effects of the position and the size of the web stiffener on the cross-sectional properties and the load efficiency calculated using Eurocode 3

firstly. After the buckling modes are classified using the computer program CUFSM based on the FSM, the modified Eurocode 3 method for Σ -shape purlins is put forward. The load efficiency and moment efficiency calculated using this modified Eurocode 3 method are compared with those using the Eurocode 3 method.

7.2 Effects of Web Stiffeners on the Section Properties and Load efficiency Based on Eurocode 3

Such effects as the position and the size of the web stiffeners on the effective section modulus and load resistance of a Σ -shape purlin are investigated in this section. The design of the purlin is based on Eurocode 3, Part 1.3.

7.2.1 Effects of the position of web stiffeners

Figure 7.2.1 and Figure 7.2.2 indicate the effects of the position of the web stiffeners on the values of W/A_g and q/A_g , respectively. These calculations are carried out using the cross-section with b = 80 mm, c = 36 mm, $h_2 = 25$ mm and $d_s = 32$ mm. The value of h_1 is varied from 35 mm to 100 mm with a step of 10 mm.

Figure 7.2.1 indicates that for the cross-section with a thickness of 2.0 mm and a height of 350 mm, the value of W/A_g is increased when the height of h_1 is varied from 35 mm to 70 mm. If the value of h_1 is increased further, the value of W/A_g starts to decrease. This is due to the fact that the fully effective element is transferred from h_1 to h_3 after the length of is h_1 more than 70 mm.

If the thickness of the cross-section is increased to 2.5 mm, the value of W/A_g is increased when the length of h_1 is varied from 35 mm to 45 mm. This is due to the fact that with this variation, the length of h_3 is increased to be fully effective. When the length of h_1 is increased further to 91 mm, the value of W/A_g starts to decrease although the lengths of h_1 and h_3 are both fully effective. This decrease is mainly due to the reduced thickness of the stiffener by taking the distortional buckling behavior into account. If the length of h_1 is increased further, the length of h_1 is not fully effective and the value of W/A_g decreases further.

As for the cross-section with a thickness of 3.0 mm, the value of W/A_g is decreased when the length of h_1 is varied from 35 mm to 100 mm. This is due to the fact that the lengths of h_1 and h_3 are both fully effective at the beginning of the variation of h_1 and the reduced thickness of the stiffener is decreased with the increase of h_1 .

Moreover, the value of W/A_g is increased more when the thickness is increased from 2.0 mm to 2.5 mm than when the thickness is increased from 2.5 mm to 3.0 mm. This is due to the fact that the width of the flange is partially effective when the thickness is less than 2.5 mm.

Figure 7.2.1 also shows that the value of W/A_g for the cross-section with a height of 350 mm is larger than that with a height of 300 mm. This is due to the fact that with the same variation of the length of h_1 , the length of h_3 is shorter when the height is 300 mm than when the height is 350 mm.

Figure 7.2.1 Effects of the position of the web stiffeners on the value of W/A_g

Figure 7.2.2 indicates that for the cross-section with a thickness of 2.0 mm and a height of 350 mm, the value of q/A_g is increased when the height of h_1 is varied from 35 mm to 80 mm. When the length of h_1 is increased further, the value of q/A_g starts to decrease. Since the shear center of the cross-section is transferred from a point between the two flanges to a point outside the cross-section with the increase of the length of h_1 . The effects of the length of h_1 on the position of the shear center are shown in Figure 7.2.3. The origin of the coordinate system is assumed to be at the bottom left corner of the cross-section, i.e. at the intersection of the bottom flange to the web. The negative values mean that the position of the shear center is outside the cross-section to the left.

Figure 7.2.2 also shows that for cross-sections with the same height, the values of q/A_g are increased when the thickness is varied from 2.0 mm to 2.5 mm. When the thickness of the cross-section is varied from 2.5 mm to 3.0 mm, there is no great increase of the value of q/A_g . This is due to the fact that the section modulus is increased sharply when the thickness is varied from 2.5 mm to 2.5 mm when compared to the case where the thickness is varied from 2.5 mm to 3.0 mm.

For a cross-section with a thickness of 2.5 mm and a height of 350 mm, the shear center starts to transfer when the length of h_1 is 78 mm, i.e. from the inside of the cross-section if $h_1 < 80$ mm to the outside of the cross-section if $h_1 > 80$. The transfer point of the shear center for the cross-section with a thickness of 3.0 mm and of 2.0 mm is near that with a thickness of 2.5 mm. Thus, the variation of the thickness has no big influence on the position of the shear center for the shear center for this studied cross-section.

In addition, when the height of the cross-section is decreased from 350 mm to 300 mm, the transfer point for the shear center is moved from around $h_1 = 80$ mm to $h_1 = 60$ mm. Thus, the maximum value of q/A_g occurred at $h_1 = 60$ mm for the cross-section with a height of 300 mm. This can also be seen from Figure 7.2.2 and Figure 7.2.3.

Figure 7.2.2 Effects of the position of web stiffeners on the value of q/A_s

Figure 7.2.3 Position of the shear center

7.2.2 Effects of the size of the web stiffeners

Effects of the lengths of h_2 and d_s on the effective section modulus, W, the value of W/A_g , the load resistance, q, and the value of q/A_g are investigated in this section. These calculations are carried out for cross-section with h = 350 mm, b = 80 mm, c = 36 mm and

 $h_1 = 80$ mm. The lengths of h_2 and d_s are, in turn, varied from 5 mm to 40 mm with a step of 1 mm.

For the same length of h_2 , the values of the effective modulus are increased when the value of d_s is varied from 5 mm to 40 mm. When the length of h_2 is varied from 10 mm to 40 mm with the length of d_s being fixed, the effective section modulus in decreased. These effects are shown in Figure 7.2.4

Figure 7.2.4 Effects of the size of the stiffeners on the effective section modulus

Figure 7.2.5 illustrates the effects of the length of h_2 and d_s on the value of W/A_g . With the value of h_2 being fixed, the effective section modulus is increased with the increasing of the length of d_s . However, the amount of increase is not so large. Thus, when the length of d_s is varied from 5 mm to 40 mm, the value of W/A_g is decreased. In addition, the value of W/A_g is increased with the increase of the length of h_2 . This is due to the fact that the increase of the length h_2 at the same time decreases the length of h_3 , which in turn decreases the area of the cross-section.

Figure 7.2.5 Effects of size of the web stiffeners on the value of W/A_g

As shown in Section 7.2.1, the value of load resistance, q and the value of q/A_s depend on the position of the shear center. The effects of the length of h_2 and d_s on the position of the shear center are shown in Figure 7.2.6. The shear center is transferred from outside of the cross-section to the position between the two flanges when the length of d_s is varied from 30 mm to 35 mm.

Figure 7.2.6 Effects of the length of h_2 and d_s on the position of the shear center

Figure 7.2.7 and Figure 7.2.8 shows the effects of the length of h_2 and d_s on the distributed load and the value of q/A_g . It can be seen that the maximum values of q and q/A_g are reached at the point where the applied load passes through the shear center. This case occurs when the length of d_s is varied from 30 mm to 35 mm and the length of h_2 is varied from 10 mm to 40 mm.

Figure 7.2.7 Effects of the size of the stiffeners on the load distribution

Figure 7.2.8 Effects of the size of the web stiffener on the value of q/A_g

In general, with fixed width of the flange and depth of the lip, the value of W/A_g depends on the lengths of h_1 and h_3 . The best position of the web stiffener is at the position where both h_1 and h_3 are starting to be fully effective. Moreover, the longer the length of h_2 and the shorter the length of d_s , the higher the value of W/A_g . The load efficiency depends on the position of the shear center. When the position and the size of the web stiffener make the shear center pass through the shear center, the load efficiency reaches its maximum value.

7.2.3 Discussions

The current Eurocode 3, Part 1.3 (1996) assumes that the load is applied on the top of the web and the shear center of the cross-section is to the left of the applied load as shown in Figure 7.1.1. However, the analyses being carried out in Section 7.2 indicate that the shear center can be located at a point between the top and the bottom flange. In this case, the applied load actually moves to the point on the top flange passing through the shear center. (This is based on a personal discussion with Professor Torsten Höglund from Royal Institute in Sweden.)

In the current Eurocode 3, Part 1.3, the lateral load, $q_{h,Fd}$, acting on the free flange due to torsion and lateral bending is calculated using

$$q_{h,Fd} = k_h \cdot q_{Fd} \,, \tag{7.2.1}$$

where the coefficient k_h for Σ -shape cross-section is calculated as:

$$k_h = \frac{e}{h},\tag{7.2.2}$$

in which e is the distance between the applied load and the shear center. When the shear center is at a point inside the cross-section, the value of e is zero. This makes the value of k_h be zero.

Figure 7.2.9 shows the value of q/A_g that is calculated based on the above-mentioned criteria, i.e. the value of k_h is zero when the shear center is at a point between two flanges.

These calculations are carried out for the cross-section with b = 80 mm, c = 36 mm, $h_2 = 25 \text{ mm}$ and $d_s = 32 \text{ mm}$. The value of h_1 is varied from 35 mm to 100 mm with a step of 1 mm.

When the shear centers are inside the cross-section, the values of q/A_g calculated using e = 0 are higher than those calculated using the Eurocode 3 method. In addition, when e = 0, the variation of the value of q/A_g mainly depends on the effective section modulus, W and the reduction factor for flexural buckling of the free flange, χ . The reduction factor is increased when the length of h_1 is varied from 35 mm to 60 mm with a height of 350 mm. When the length of h_1 is increased further, the reduction factor stays constant. This is shown in Figure 7.2.10. Therefore, the maximum value of q/A_g is reached when the shear center is at a point inside the cross-section instead of the load passing through the shear center.

Figure 7.2.9 Comparisons of the values of q/A_g calculated based on e = 0 to those based on $e \neq 0$

Figure 7.2.10 Effects of the length of h_1 on the reduction factor for flexural buckling of the

free flange

7.3 Effects of the Web Stiffener on the Elastic Buckling Stress Calculated Based on Finite Strip Method

As mentioned in Chapter 3, the main idea in the modified Eurocode 3 method is to integrate the numerical elastic buckling stress into the design process based on Eurocode 3. In this section, the effects of position and size of the web stiffeners on the elastic buckling stresses are investigated. These calculations are carried out for a cross-section with h = 350 mm, t = 2.0 mm and the ratio of c/b = 0.45.

7.3.1 Effects of the position of the stiffener

Figure 7.3.1 shows the effects of the value of h_1 on the elastic buckling stress when the width of the flange, b, is 60 mm. In this calculation, other given dimensions are $h_2 = 25$ mm and $d_s = 32$ mm. The typical buckling modes for this case are shown in Figure 7.3.2.

Figure 7.3.1 Effects of the length of h_1 on the elastic buckling stress (b = 60 mm)

Figure 7.3.2 Buckling modes (b = 60 mm)

When the value of h_1 is varied from 30 mm to 50 mm, there are two types of the local buckling mode: one is the local buckling mode of the flange and the other is the local buckling mode of h_3 . With the same variation of the value of h_1 , the elastic local buckling stresses corresponding to the flange local buckling mode are decreased and those corresponding to the local buckling mode of h_3 are increased. When the value of h_1 is

increased further, the only local buckling mode is the buckling of h_1 and the elastic local buckling stresses corresponding to this mode decrease further. The distortional buckling modes are the same when the length of h_1 is varied from 30 mm to 80 mm and the elastic distortional buckling stresses are decreased with the same variation of h_1 .

If the width of the flange is 80 mm, only one local buckling mode exists with variations of h_1 from 40 mm to 100 mm. However, the element that initiates the buckling is transformed from flange to element of h_1 . The elastic local buckling stresses are decreased with the same variations of h_1 . Moreover, the elastic distortional buckling stress is decreased when the value of h_1 is varied from 40 mm to 80 mm and is increased when the value of h_1 is varied from 80 mm to 100 mm. The buckling curves and the typical buckling modes are shown in Figure 7.3.3 and Figure 7.3.4, respectively.

Figure 7.3.3 Effects of the value of h_1 on the elastic buckling stress (b = 80 mm)

Figure 7.3.4 Buckling modes (b = 80 mm)

In general, with the same width of the flange and depth of the lip, the shorter the length of h_1 , the higher the values of elastic buckling stresses. As for the elastic distortional buckling stresses, their values depend on the relation of the width of the flange to the length of h_1 . If the value of h_1 is increased from a value less than the width of the flange to the value equal to the width of the flange, the distortional buckling stress decreases with the increase of h_1 . If the value of h_1 is increased from a value equal to the width of the flange to a value larger than the width of the flange, the distortional buckling stress increases with the increase of h_1 .

7.3.2 Effects of the value of d_s

The effects of the length of d_s on the elastic buckling stresses with $h_2 = 10$ mm are shown in Figure 7.3.5. In the figure, such symbol as ' $h_1 = 40, d_s = 5$ ' represents a cross-section with $h_1 = 40$ mm and $d_s = 5$ mm.

When the value of d_s is 5 mm and the value of h_1 is varied from 40 mm to 80 mm, three types of critical buckling modes exist: the local buckling mode (Figure 7.3.6 (a)), the web

distortional buckling mode (Figure 7.3.6 (b)), in which the web stiffener moves with other elements on the web, and the conventional distortional buckling mode (Figure 7.3.6 (c)).

When the value of d_s is increased to 35 mm, the type of local buckling mode depends on the value of h_1 . When the value of h_1 is 60 mm, there exist two local buckling modes: one is the buckling of the elements above the web stiffener and the other is the buckling of the element under the web stiffener. When the value of h_1 is increased to 80 mm, only the first buckling mode exists because the value of h_3 is decreased with the increase of the value of h_1 . The distortional buckling mode for both of these two cases is the conventional distortional buckling mode.

The elastic buckling stresses of the indistinct buckling modes can be determined as the minimum value before the current buckling mode is transformed to another buckling mode similar to those of Z-shape purlin described in Chapter 5. For instance, when the half-wavelength is less than 60 mm, the local buckling mode is the flange-lip buckling mode and after that the buckling mode starts to become the web distortional buckling mode. Thus, the elastic local buckling is assumed to occur at half-wavelength of 60 mm.

Figure 7.3.5 Effects of values of d_s on elastic buckling stresses

Figure 7.3.6 Buckling modes (a) Local buckling modes (b) Web distortional buckling mode (c) Distortional buckling mode

In summary, the length of d_s should be large enough to avoid the web distortional buckling mode. The conventional elastic distortional buckling stress is also lower when the web distortional buckling mode occurs.

7.3.3 Effects of the value of h_2

The effects of the length of h_2 on elastic buckling stresses for the cross-section with $d_s = 10$ mm are shown in Figure 7.3.7. In the figure, such symbol as ' $h_1 = 40, h_2 = 5$ ' represents the cross-section with $h_1 = 40$ mm and $h_2 = 5$.

When the length of h_1 is 40 mm and the length of h_2 is varied from 5 mm to 35 mm; or when the length of h_1 is 60 mm and the length of h_2 is 5 mm, there exist three buckling modes, i.e. the local buckling mode of the flange, lip and the element above the web stiffener, the local buckling of the element under the web stiffener and the conventional distortional buckling mode. For the other three cases listed in Figure 7.3.7, the local buckling mode of the element under the web stiffener is replaced by the web distortional buckling mode. The typical buckling modes are shown in Figure 7.3.8. Similar to the length of d_s , the length of h_2 should be large enough to avoid the web distortional buckling mode.

Figure 7.3.7 Effects of value of h_2 on elastic buckling stresses

Figure 7.3.8 Buckling modes (a) Local buckling mode (b) Web distortional buckling mode

7.4 Design of Σ -Shape Purlins Based on the Modified Eurocode 3 Method

The typical buckling modes for Σ -shape purlins from the analyses in Section 7.3 are shown in Figure 7.4.1. These buckling modes can be classified into four types. The first type is the local buckling of the flange, the lip and the element above the web stiffener (Figure 7.4.1 (a)). In this mode, the buckling may be initiated by any one of the above-mentioned elements. The second type is the local buckling of the compression part under the web stiffener (Figure 7.4.1 (b)). The third type is the web distortional buckling mode (Figure 7.4.1 (c)), in which the web stiffener is moved with other elements along the web. The last type is the distortional buckling mode (Figure 7.4.1 (d)).

Figure 7.4.1 Typical buckling modes (a) Local buckling of flange, lip and element above the web stiffener; (b) Local buckling of the element under the web stiffener; (c) Web distortional buckling mode; (d) Conventional distortional buckling mode

When the effective widths of the flange, the lip and the compression element above the web stiffener are determined, the reduction factor, ρ , is calculated using the elastic buckling stress corresponding to the first type buckling mode. The effective width for the flange is

$$b_{eff,1} = 0.5 \cdot \rho \cdot b, \text{ and}$$

$$b_{eff,2} = 0.5 \cdot \rho \cdot b$$
(7.4.1)

the effective width of the lip is

$$c_{eff} = \rho \cdot c , \qquad (7.4.2)$$

and the effective width of the compression elements is

$$h_{\text{leff},1} = 0.4 \cdot \rho \cdot h_1$$
, and
 $h_{\text{leff},2} = 0.6 \cdot \rho \cdot h_1$ (7.4.3)

The calculation of the effective width for the compression part under the web stiffener depends on the actual buckling mode. If the second type of buckling modes is dominated, the effective width of the element is calculated using the elastic local buckling stress corresponding to this buckling mode. The effective width of this element is

$$h_{3eff,1} = 0.4 \cdot \rho \cdot h_3$$
, and
 $h_{3eff,2} = 0.6 \cdot \rho \cdot h_3$
(7.4.4)

If the web distortional buckling mode is critical, the compression parts above and under the web stiffener are designed as a whole element, i.e. the reduction factor is calculated using this buckling stress for the element with a length of $h_1 + h_2 + h_3$. The effective widths are

$$h_{1eff,1} = 0.4 \cdot \rho \cdot h_c,$$

$$h_{1eff,2} = 0,$$

$$h_{3eff,1} = 0, \text{ and}$$

$$h_{3eff,2} = 0.6 \cdot \rho \cdot h_c.$$
(7.4.5)

where h_c is defined as $h_c = h_1 + h_2 + h_3$. For other cases, the effective width of the element is calculated using the method described in Eurocode 3.

When the reduced thickness for the edge stiffener is determined, the reduction factor, χ , is calculated using the distortional buckling stress corresponding to the fourth buckling mode.

As far as the web stiffener is concerned, if the web distortional buckling mode is one of the critical buckling modes, the compressed parts above and under the web stiffener are designed as a single element and the reduced thickness is zero. If the local buckling mode of the compression element under the stiffener is critical, the thickness of the web stiffener is assumed fully effective. For other cases, the reduced thickness is determined using the Eurocode 3 procedure.

7.5 Comparisons of Eurocode 3 Method and Modified Eurocode 3 Method

The comparisons of the values of q/A_g and M_y/A_g calculated based on the Eurocode 3 method and the modified Eurocode 3 method are given in Table 7.5.1. These calculations are carried out for a cross-section with h = 350 mm, t = 2.0 mm and L = 6000 mm. The unit for q/A_g is $N/mm/mm^2$ and for M_y/A_g is $N \cdot mm/mm^2$.

Table 7.5.1 shows that for the case when the local buckling mode of the element under the web stiffener is critical, the values of q/A_g and M_y/A_g calculated based on the modified Eurocode 3 method are 5.1 % and 5.8 % higher than those calculated based on the Eurocode 3 method. When the web distortional buckling mode is one of the local buckling modes, the values of q/A_g and M_y/A_g calculated based on modified Eurocode 3 method are 4.8 % and 6.2 % lower than those calculate using the Eurocode 3 method since the elastic distortional buckling stress is lower than those calculated using the Eurocode 3 method. Thus, the values of q/A_g and M_y/A_g are lower than those calculated using the Eurocode 3 method. Thus, the values of q/A_g and M_y/A_g are lower than those calculated using the Eurocode 3 method. Thus, the values of q/A_g and M_y/A_g are lower than those calculated using the Eurocode 3 method. Thus, the values of q/A_g and M_y/A_g are lower than those calculated using the Eurocode 3 method. Thus, the values of q/A_g and M_y/A_g are lower than those calculated using the Eurocode 3 method. Thus, the values of the differences are not significant since the differences of the distortional buckling stress are not significant. For other cases listed in the table, the differences between the values of these two methods are not very large. The reason is that the elastic local buckling stresses and distortional buckling stresses calculated using the Eurocode 3 method and FSM are not significantly different.

С	h_1	h_{2}	d_{i}	Buckling	ME	C3	E	C 3	MEC	3 / EC3
	1	۲ <u>۷</u>		modes	q/A_g	M_y/A_g	q/A_{g}	M_y/A_g	q/A_g	M_y/A_g
			N		<i>b</i> = 6	0 mm				
27	40	25	32	(a) (b) (d)	0.002191	28067.45	0.002084	26540.30	1.051	1.058
27	40	10	5	(a) (c) (d)	0.002341	24312.19	0.002459	25921.65	0.952	0.938
27	60	20	10	(a) (d)	0.002814	26875.24	0.002825	27005.02	0.996	0.995
36	40	20	10	(a) (d)	0.002697	25909.62	0.002776	26827.80	0.972	0.966
36	60	20	10	(a) (d)	0.002747	26594.38	0.002816	27423.62	0.975	0.970
					<i>b</i> = 8	0 mm				
36	40	25	32	(a) (d)	0.003243	26503.23	0.003238	26458.14	1.002	1.002
36	40	20	10	(a) (d)	0.002897	25318.87	0.002978	26303.41	0.973	0.962
36	60	20	10	(a) (d)	0.002907	25804.15	0.002994	26898.88	0.971	0.959

 Table 7.5.1
 Comparison of Eurocode 3 method (EC3) and modified Eurocode 3 method (MEC3)

The elastic buckling stresses for each element calculated using Eurocode 3 method and based on finite strip method are shown in Table 7.5.2. In the table, the 'web_1' represents the element above the web stiffener and 'web_2' represents the compression part under the web stiffener.

-	
ŏ	
Ē	
Ŧ	
ല	
Ξ	
.8	
Ξ.	
- 🛱	
୍ର	
.=	
_	
2	
Ξ	
2	
- 8	
9	
- 5	
Ē	
Ŧ	
್ತ	
В	
_	
\mathbf{c}	
دە	
Ē	
- 5	
ె	
ō	
5	
- 3	
ΕÌ	
먹	U
Ξ	
5	
цц	
ted u	
ated u	
lated u	
ulated u	
culated u	
alculated u	
calculated u	
s calculated u	
ss calculated u	
ess calculated u	
tress calculated u	
stress calculated u	
z stress calculated u	
ng stress calculated u	D
ing stress calculated v	D
ding stress calculated u	D
kling stress calculated u	D
ickling stress calculated u	D
wickling stress calculated u	D
buckling stress calculated u	D
c buckling stress calculated u	D
tic buckling stress calculated u	D
stic buckling stress calculated u	D
astic buckling stress calculated u	D
Iastic buckling stress calculated u	D
Elastic buckling stress calculated u	D
Elastic buckling stress calculated u	D
Elastic buckling stress calculated u	D
2 Elastic buckling stress calculated u	D
5.2 Elastic buckling stress calculated u	D
.5.2 Elastic buckling stress calculated u	D
7.5.2 Elastic buckling stress calculated u	D
e 7.5.2 Elastic buckling stress calculated u	D
le 7.5.2 Elastic buckling stress calculated u	D
ble 7.5.2 Elastic buckling stress calculated u	

	Dimer	sions	(mm		methods	Elastic	local buck	cling stress ((MPa)	Elastic distortional	Partially effective elements
q	с	h_1	h_2	d_s		flange	lip	web_1	web_2	buckling stress (MPa)	
60	27	40	25	32	EC3	871.87	721.22	2250.13	353.56	419.77	web_2
					FSM		884.86		769.32	671.00	
09	27	40	10	5	EC3	871.87	721.22	2227.61	276.04	419.77	web_2
					FSM		920.64			306.26	compression parts on the web
											(392.83 MPa)
60	27	60	20	10	EC3	871.87	721.22	1026.12	476.01	419.77	web_2
					FSM		861.26		476.01	405.43	web_2
09	36	40	20	10	EC3	871.87	485.11	2227.61	325.58	536.30	web_2
					FSM		601.29		325.58	349.89	flange, web_1, web_2
60	36	60	20	10	EC3	871.87	485.11	1026.12	476.01	536.30	web_2
					FSM		598.58		476.01	379.95	flange, web_1, web_2
80	36	40	25	32	EC3	481.39	399.54	2250.13	353.85	358.04	flange, web_2
					FSM		509.14		353.85	495.36	flange, web_1, web_2
80	36	40	20	10	EC3	481.39	399.54	2227.61	325.85	358.04	flange, web_2
					FSM		505.90		325.85	350.94	flange, web_1, web_2
80	36	60	20	10	EC3	481.39	399.54	1026.12	476.40	358.08	flange, web_2
					FSM		500.56		476.40	368.03	flange, web_1, web_2

8 OPTIMIZATION OF Σ -SHAPE PURLINS

8.1 Introduction

The computer program, ODSP-GA, developed in Chapter 4 is used to optimize the dimensions of Σ -shape purlins, whose behaviors have been investigated in Chapter 7. The purlin is assumed to be continuous over two spans subject to gravity loading. Two types of the cross-sections are mainly considered, one with a single edge stiffener and the other with double edge stiffeners. The dimensions of the cross-section are shown in Figure 8.1.1.

Figure 8.1.1 Dimensions of Σ -shape purlins: (a) cross-section with double edge stiffeners; (b) cross-section with single edge stiffener

In the Figure 8.1.1, *b* is the width of the flange; *c* is the depth of the lip; *h* is the height of the cross-section; h_1 and h_5 are distances of the web stiffeners to the top and bottom flange, respectively; h_2 and h_4 are depth of the web stiffener in the direction of the web height; d_s is

the depth of the web stiffener perpendicular to the web height; h_3 is the distance between the stiffeners along the web; and d is the width of the second edge stiffener.

The optimization is carried out for a set of cross-sections with a given height, thickness and span. The purlins are designed based on two methods: the Eurocode 3 method and the modified Eurocode 3 method. For purlins designed based on the Eurocode 3 method, the optimization is carried out for the cases with freely varied design variables first and then for the simplified cases. In addition, an example is demonstrated in this chapter to show the integration of the modified Eurocode 3 method into the GA optimization process. Moreover, the optimization is also performed with the objective to maximize the moment resistance.

8.2 Problem Formulation and Sensitivity Analysis

8.2.1 Design variables

The design variables are such dimensions of the cross-section as b, c, d, h_1, h_2 and d_s , and the height, the thickness and the span are preassigned variables. According to Eurocode 3, the ratio of c to b should in the range of 0.2 and 0.6, i.e. $0.2 \le c/b \le 0.6$. By assuming $\alpha = c/b$, one of design variables, c, can be replaced by this ratio, α . Similarly, the ratio of the depth of the second lip to the length of the flange, β , whose value is between 0.1 and 0.3, i.e. $0.1 \le \beta = d/b \le 0.3$, can be chosen as one of the design variables instead of the depth of the second lip. Moreover, the ratio of the value of h_1 to the length of the flange is chosen as a design variable instead of the value of h_1 . The design variables are discrete values, and their possible values are listed in Table 6.1.1.

Design variables	Possible values
Length of the flange <i>b</i>	from 40 mm to 100 mm with step 1 mm
Ratio of <i>c</i> to <i>b</i>	from 0.2 to 0.6 with step 0.01
Ratio of d to b	from 0.1 to 0.3 with step 0.01
Ratio of h_1 to b	from 0.45 to 1 with step 0.01
Values of h_2	from 5 to 40 mm with step 1 mm
Values of d_s	from 5 to 40 mm with step 1 mm

Table 8.2.1Values of the design variables

8.2.2 Objective function and constraints

The objective of the optimization is to maximize the load resistance over the gross area of the cross-section, i.e.

$$Maximize \quad \frac{q}{A_g} \tag{8.2.1}$$

subjected to the following constraints according to Eurocode 3, Part 1.3:

$$\frac{h}{t} \le 500$$
, and $\frac{b}{t} \le 60$. (8.2.2)

From the manufacturer's point of view, the sum of flanges, lips and the web should be in the range of the given width of the strip, i.e.

200 mm
$$\leq 2 \cdot b + 2 \cdot c + 2 \cdot d + 2 \cdot h_1 + 2 \cdot h_3 + 2 \cdot \sqrt{h_2^2 + d_s^2} \leq 625 \text{ mm}$$
, (8.2.3)

and the height of the web part above the web stiffener should not be less than 35 mm, i.e.

$$h_1 \ge 35 \text{ mm.}$$
 (8.2.4)

In addition, due to the shape requirement, the following constraint should be satisfied

$$d_s < b$$
. (8.2.5)

The constrained problem defined above is transformed into an unconstrained problem by using a quadratic penalty function as described in Chapter 4. Therefore, the optimization problem becomes:

Maximize
$$F = \begin{cases} \frac{q}{A_g} - KK \cdot n \cdot CC, & \text{when } \frac{q}{A_g} > KK \cdot n \cdot CC, \\ 0, & \text{otherwise.} \end{cases}$$
 (8.2.6)

8.2.3 Sensitivity analysis of the fitness function

Sensitivity analyses of the fitness to the coefficient, *KK*, given in the objective function are shown in Table 8.2.2 and Figure 6.2.6. These analyses are calculated for the cross-section with h = 350 mm, t = 2.5 mm and L = 8000 mm. And the optimization is carried out in 10 runs for each case, in which one run is defined as a complete run of GA.

Table 8.2.2 indicates that when the value of *KK* is increased from 0.5 to 100, the maximum value of fitness in each of the 10 runs is 0.002573 N/mm/mm², and the optimum dimensions are the same for each case. Thus, the variation of *KK* has no influence on finding the maximum values for these cases.

In addition, Figure 8.1.1 shows that the value of KK has effects on finding the number of results in feasible regions. For instance, when the value of KK is 0.5, only five of 10 runs are found in the feasible regions. When the value of KK is increased further, the results found are all in the feasible regions.

KK	b	С	h_1	h_2	d_s	q/A_g	M_y/A_g	A_{g}
	(mm)	(mm)	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm^2)	(mm^2)
0.5	91	33.67	43.68	22	27	0.002573	28214.39	1508.86
1	91	33.67	43.68	22	27	0.002573	28214.39	1508.86
2	91	33.67	43.68	22	27	0.002573	28214.39	1508.86
5	91	33.67	43.68	22	27	0.002573	28214.39	1508.86
10	91	33.67	43.68	22	27	0.002573	28214.39	1508.86
50	91	33.67	43.68	22	27	0.002573	28214.39	1508.86
100	91	33.67	43.68	22	27	0.002573	28214.39	1508.86

Table 8.2.2Effects of value KK to the maximum value of q/A_g in 10 runs

Figure 8.2.1 Effects of value KK to the value of q/A_g in 10 runs

From the above analysis, we conclude that the coefficient, KK, does have an influence on finding the optimum dimensions. But this influence is not so great. Thus, we set KK = 2. If one of the results in 10 runs is not in the feasible domain, the value of KK is increased until all the results in 10 runs are in the feasible domain.

Moreover, from the parametric analysis in Chapter 6, it can be seen that when the values of the crossover rate are varied from 0.6 to 0.9 and the mutation rate from 0.01 to 0.0001, the performance of the GA does not change very much. Thus, in the further analysis, similar parameters to those of optimizing Z-shape purlins are selected, i.e. with a crossover rate of 0.8 and a mutation rate of 0.001. The size of the population is set equal to twice the length of the encoded binary string and the tournament selection method is used.
8.3 Optimization Results Based on the Eurocode 3 Method

The optimization is carried out for the Σ -shape purlins designed based on the Eurocode 3 method in this section. The design variables are freely varied with values provided in Table 6.1.1 and this process is named as 'Optimization with freely varied parameters' in the following analysis. According to the optimization results from the optimization with freely varied parameters, some values of the design variables are fixed and transformed to preassigned variables so as to simplify the optimization process.

8.3.1 Optimization with freely varied parameters

The optimization results with freely varied parameters for the cross-sections with a single edge stiffener are shown in Table 8.3.1, and those for the cross-sections with double edge stiffeners are shown in Table 8.3.2. In the table, the optimum dimensions are chosen as the ones corresponding to the largest value of q/A_g in the 10 runs. The detailed results in 10 runs for each case are given in Appendix B.

Figure 8.3.1 shows the comparisons of the values of q/A_g and M_y/A_g for the cross-section with a single edge stiffener to those with double lip stiffeners. As far as the values of q/A_g are concerned, most of the cross-sections with a single lip stiffener show higher values. As for the value of M_y/A_g , most of the cross-sections with double lip stiffeners show higher values. However, the improvements are not significant, and the maximum improvement is about 5 %. Thus, the cross-section with a single lip stiffener is selected for further analysis.

$oldsymbol{M}_{y}/oldsymbol{A}_{g}$	(Nmm/mm^2)	18210.46	21775.39	23082.50	26373.00	26451.04	29654.31	28808.56	31972.39
$q/A_{_{g}}$	(N/mm/mm ²)	0.007428	0.004723	0.005990	0.003995	0.004241	0.003094	0.003982	0.002398
d_s	(mm)	31	35	35	35	30	27	21	20
h_2	(mm)	31	35	29	30	28	22	38	36
h_1	(mm)	38.71	42.93	46.00	46.00	68.06	43.68	46.80	49.77
С	(mm)	36.34	40.50	46.00	46.00	33.20	33.67	28.08	27.65
q	(mm)	79	81	92	92	83	91	78	79
t	(mm)	1.5	2.5	2.0	3.0	2.0	3.0	2.0	3.0
L	(mm)	4000	5500	5000	6500	6000	7500	6000	8000
Ч	(mm)	250	250	300	300	350	350	400	400

neters
paran
ed
vari
reely
Ð
(with
stiffener
lip
E.
sing
with
ection
cross-s
the
for
results
tion
uza
im
pt
0
3.1
×
he
ab
L

Optimization results for the cross-section with double lip stiffeners (with freely varied parameters) Table 8.3.2

$M_{_{y}}/A_{_{g}}$	(Nmm/mm^2)	18950.84	21870.06	24183.59	26024.20	27258.13	29088.70	29001.89	31714.06
$q/\mathrm{A}_{_{g}}$	$(N/mm/mm^2)$	0.007537	0.004572	0.005921	0.003674	0.004108	0.002762	0.003566	0.002203
d_s	(mm)	33	32	33	31	32	31	18	18
h_2	(mm)	33	32	25	12	31	67	68	40
h_1	(mm)	37.24	40.04	49.41	47.79	74.48	73.15	59.86	63.14
p	(mm)	18.24	15.40	19.44	18.63	15.20	15.40	9.49	10.01
с	(mm)	36.48	32.34	38.88	37.26	31.92	31.57	20.44	21.56
q	(mm)	9 <i>L</i>	LL	18	18	9 <i>L</i>	LL	£1	LL
t	(mm)	1.5	2.5	2.0	3.0	2.0	3.0	2.0	3.0
Г	(mm)	4000	5500	5000	6500	0009	7500	0009	8000
Ч	(mm)	250	250	300	300	350	350	400	400

Figure 8.3.1 Comparison of the values of q/A_g and M_y/A_g for the cross-section with single lip stiffener to those with double lip stiffeners

In addition, from the results listed in Table 8.3.1, it can be seen that for the cross-sections with the same height, but with different thicknesses and spans, the optimum dimensions are similar except for the cross-section with a height of 350 mm. In order to verify the results for the two cross-sections with a height of 350 mm listed in the table, two extra results in 10 runs are given in Table 8.3.3 together with that of the optimum dimension (No.1) for the cross-section with t = 3.0 mm, and L = 7500 mm.

Table 8.3.3Comparisons of optimum dimension with two other cases for the cross-sectionwith H = 350 mm, t = 3.0 mm, and L = 7500 mm

No.	b	С	h_1	h_2	d_s	q/A_g	M_y/A_g	A_{g}
	(mm)	(mm)	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(mm^2)
1	91	33.67	43.68	22	27	0.003094	29654.31	1808.544
2	83	32.37	68.06	25	29	0.002941	28966.28	1756.449
3	83	33.20	68.06	28	30	0.002926	29021.34	1760.186

When compared to the optimum dimension for the cross-section with a thickness of 2 mm (Table 8.3.1), the dimensions of No. 2 in Table 8.3.3 are quite similar to the optimum dimensions with a thickness of 2 mm; and the dimensions of No. 3 are the same as those with a thickness of 2.0 mm. However, the values of q/A_g corresponding to these two cross-sections are both lower than those of No. 1 listed in Table 8.3.3. Therefore, the dimensions of No. 1, which has not similar dimensions to those with a thickness of 2 mm, are the optimum dimensions of the cross-section with a thickness of 3 mm. This dissimilarity is possibly due to the transformation of the shear center when the thickness is increased to 3.0 mm.

8.3.2 Optimization with some parameters fixed

In order to simplify the optimization process, such dimensions as d_s and h_2 are treated as preassigned variables taken from the analysis in Section 8.3.1. According to the results shown in Table 8.3.1, the values of d_s and h_2 are set to 32 mm and 25 mm, respectively. Also the value of h_1 is redefined as not less than 45 mm, i.e. $h_1 \ge 45$. Therefore, the objective of the optimization is to find the optimum values of b, c, and h_1 so as to maximize the value of q/A_g . This optimization process is named as Choice 1.

For further simplification of the optimization process, two other cases are defined according to the relation of the width of the flange to the depth of the lip similar to Z-shape purlin. One is called Choice 2, i.e. the relation between c and b is defined as:

$$c = \frac{11}{30} \cdot (b - 40) + 13, \qquad (8.3.1)$$

and the other is called Choice 3, i.e. the relation between c and b is defined as:

$$c = \frac{1}{2} \cdot (b - 40) + 15.$$
 (8.3.2)

The optimization results are shown in Table 8.3.4, Table 8.3.5, and Table 8.3.6. The results for these three cases are obtained by choosing the dimensions corresponding to the maximum value of q/A_g from 10 runs of GA for each given height, thickness and span. The detailed results are shown in Appendix C. Besides, together with q/A_g , the values of M_y/A_g and the areas of the cross-sections corresponding to the optimum dimensions are listed in these three tables.

As for the cross-section with a height of 400 mm, the optimum value of d_s and h_2 shown in Table 8.3.1 are 20 mm or 21 mm, and 36 mm or 38 mm, respectively, due to the limitation of strip length. Therefore, with the given values of d_s and h_2 , i.e. $d_s = 32$ mm and $h_2 = 20$ mm, the corresponding values of q/A_g are lower than those with the optimum value of d_s and h_2 . Thus, the values of d_s and h_2 are modified to $d_s = 20$ mm and $h_2 = 36$ mm. In order to reduce the variation of the dimensions, an extra calculation is carried out for the cross-section $d_s = 20$ and $h_2 = 25$. The optimization results for these cases are also listed in Table 8.3.4, Table 8.3.5 and Table 8.3.6.

			$d_s = 1$	$32, h_2 = 2$	25, and h_1	≥45		
h	L	t	b	С	h_1	q/A_g	M_y/A_g	
(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm^2)	
250	4000	1.5	82	30.34	45.10	0.007343	17786.29	
250	5500	2.5	82	31.98	45.10	0.004713	21629.42	
300	5000	2.0	92	34.96	46.00	0.005946	22941.95	
300	6500	3.0	92	36.80	46.00	0.003983	26201.57	
350	6000	2.0	84	37.80	70.56	0.004248	26458.07	
350	7500	3.0	97	24.25	66.93	0.003056	27787.72	
400	6000	2.0	71	25.56	66.74	0.002769	28720.87	
400	8000	3.0	71	25.56	66.74	0.001733	31143.81	
			$d_s = 1$	$20, h_2 = 3$	36, and h_1	≥ 40		
400	6000	2.0	77	30.03	44.66	0.003881	29029.81	
400	8000	3.0	80	27.20	53.60	0.002400	31915.50	
			$d_s = 1$	$20, h_2 = 2$	25, and h_1	= 50		
400	6000	2.0	75	30.00	50.00	0.003843	28902.46	
400	8000	3.0	85	22.40	50.00	0.002391	30440.39	

 Table 8.3.4
 Optimization results for Choice 1

			$d_s = 3$	$32, h_2 = 2$	5, and h_1	₁ ≥ 45	
h	L	t	b	С	h_1	q/A_{g}	M_y/A_g
(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)
250	4000	1.5	82	28.40	45.92	0.007251	17677.34
250	5500	2.5	83	28.77	47.31	0.004631	21342.53
300	5000	2.0	92	32.07	47.84	0.005870	22759.06
300	6500	3.0	93 32.43		49.29	0.003936	25863.51
350	6000	2.0	85	29.50	76.50	0.004123	25627.49
350	7500	3.0	86	29.87	78.26	0.002938	28535.15
400	6000	2.0	71	24.37	68.16	0.002743	28540.75
400	8000	3.0	71	24.37	68.16	0.001721	30961.31
			$d_s = 1$	$20, h_2 = 3$	36 , and h_1	≥40	
400	6000	2.0	77	26.57	44.66	0.003868	28488.79
400	8000	3.0	79	27.30	49.77	0.002397	31924.56
			$d_s = 1$	$20, h_2 = 2$	25 , and h_1	$=5\overline{0}$	
400	6000	2.0	76	26.20	50.00	0.003827	28245.20
400	8000	3.0	78	26.93	50.00	0.002362	31649.54

Table 8.3.5Optimization results for Choice 2

Table 8.3.6Optimization results for Choice 3

			$d_s = 1$	$32, h_2 = 2$	25, and h_1	≥ 45				
h	L	t	b	С	h_1	q/A_{g}	M_y/A_g			
(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)			
250	4000	1.5	82	36.00	45.10	0.007132	17895.76			
250	5500	2.5	82	36.00	45.10	0.004640	21783.30			
300 5000 2.0 81 35.50 59.94 0.005842 23480.35										
300 6500 3.0 92 41.00 45.08 0.003943 26386.94										
350	6000	2.0	84	37.00	72.24	0.004253	26397.66			
350	7500	3.0	84	37.00	72.24	0.002967	29143.63			
400	6000	2.0	67	28.50	53.60	0.002442	29134.13			
400	8000	3.0	67	28.50	53.60	0.001516	31399.44			
			$d_s = d_s$	$20, h_2 = 3$	36 , and h_1	≥40				
400	6000	2.0	69	29.50	60.03	0.003836	29813.52			
400	8000	3.0	71	30.50	66.03	0.002212	31931.37			
			$d_s =$	$20, h_2 = 2$	25, and h_1	= 50				
400	6000	2.0	73	31.50	50.00	0.003835	29158.77			
400	8000	3.0	73	31.50	50.00	0.002270	31994.46			

8.3.3 Analysis of the results

Figure 8.3.2 and Figure 8.3.3 show the comparisons of the values of q/A_g and M_y/A_g , respectively, for the three cases mentioned above. This comparison is carried out based on the ratio of the values of q/A_g or M_y/A_g for Choice 2 or Choice 3 to those for Choice 1. In these two figures, the filled squares and triangles represent the results for the cross-section with $d_s = 32$ and $h_2 = 25$; and unfilled squares and triangles represent the cross-section with $d_s = 20$, $h_2 = 36$ when the height is 400 mm.

Figure 8.3.2 Comparison of the values of q/A_g amongst three cases

With $d_s = 32$ mm and $h_2 = 25$ mm, the values of q/A_g for the three cases mentioned above have no big difference when the heights are 250 mm and 300 mm, respectively. When the height is increased to 350 mm, Choice 2 shows the lowest value. But the difference is not significant. When the height is 400 mm, Choice 3 gives lowest value and the difference is much larger than the cases either Choice 1 or Choice 2.

When the cross-sections with $d_s = 20$ mm and $h_2 = 36$ mm are considered, the values of q/A_g are higher than those with $d_s = 32$ mm and $h_2 = 25$ mm when the height of the web is

400 mm for all the three cases mentioned above. However, if compared to either Choice 1 or Choice 2, the values for Choice 3 are still lower. For the cross-sections with $d_s = 20$ mm and $h_2 = 25$ mm, the values of q/A_g are decreased in comparison to the case with $d_s = 20$ mm and $h_2 = 36$ mm. But they are much higher than those with $d_s = 32$ mm and $h_2 = 25$ mm. Thus, the fixed dimension can be set to $h_2 = 25$ mm and d = 20 mm for the cross-section with the height of the web of 400 mm, and $h_2 = 25$ and d = 32 for other types of crosssections.

Figure 8.3.3 shows the comparisons of the values of M_y/A_g amongst the three cases mentioned above. For most of the cross-sections, Choice 3 shows higher values of M_y/A_g than those for Choice 1, whereas Choice 2 shows lower values than those for Choice 1. This is due to the fact that the objective is to maximize q/A_g instead of M_y/A_g . However, the differences are not great.

Figure 8.3.3 Comparison of the values of M_y/A_g amongst the three cases

8.3.4 Optimum dimensions

The analyses described in Section 8.3.3 indicate that Choice 1 gives the higher values of q/A_g than the two simplified cases. Further Choice 2 shows better behavior than that for Choice 3 when the values of q/A_g are compared. However, in order to provide multiple choices to the structural designers and steel manufacturers, three kinds of optimum dimensions for the Σ -shape purlin continuous over two spans under gravity load using GA are proposed in Table 8.3.7.

Table 8.3.7Proposed optimum dimensions for Σ -shaped purlin

Sect	tions		(Choice	1			Cł	oice 2	2			(Choice	3	
h	t	b	С	h_1	h_2	d_s	b	С	h_1	h_2	d_s	b	С	h_1	h_2	d_s
250	1.5	80	30	50	25	32	80	27.7	50	25	32	80	35.0	50	25	32
250	2.5	80	30	50	25	32	80	27.7	50	25	32	80	35.0	50	25	32
300	2.0	90	35	50	25	32	90	31.3	50	25	32	80	35.0	50	25	32
300	3.0	90	35	50	25	32	90	31.3	50	25	32	90	40.0	50	25	32
350	2.0	85	35	70	25	32	85	29.5	70	25	32	85	37.5	70	25	32
350	3.0	95	25	70	25	32	85	29.5	70	25	32	85	37.5	70	25	32
400	2.0	75	30	50	25	20	75	25.8	50	25	20	75	32.5	50	25	20
400	3.0	85	25	50	25	20	80	27.7	50	25	20	75	32.5	50	25	20

8.4 Σ-Shaped Purlins without Considering the Free Flange Behavior

In this section, the optimization is carried out to maximize the value of M_y/A_g instead of q/A_g . The optimization is carried out for the freely varied design variables for the cross-section with a single edge stiffener and with double edge stiffeners.

8.4.1 Objective function and constraints

The optimization problem in this section is defined as

Maximize
$$\frac{M_y}{A_g}$$
 (8.4.1)

subjected to the similar constraints described in Section 8.2.2. Therefore, the constrained optimization problem is transformed into the following unconstrained problem:

Maximize
$$F = \begin{cases} \frac{M_y}{A_g} - KK \cdot n \cdot CC, & \text{when } \frac{q}{A_g} > KK \cdot n \cdot CC, \\ 0, & \text{otherwise.} \end{cases}$$
 (8.4.2)

8.4.2 Sensitivity analyses of the fitness function to the coefficient KK

The sensitivity analyses of the value of M_y/A_g to the coefficient, *KK*, are shown in Table 8.4.1. These analyses are carried out for a cross-section with h = 250 mm, t = 1.5 mm and L = 4000 mm.

Table 8.4.1 Sensitivity analyses of the value of M/A_g to the coefficient KK

KK	b	С	h_1	h_2	d_s	q/A_g	M_y/A_g	A_{g}
	(mm)	(mm)	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm^2)	(mm^2)
0.5	55	26.4	35.75	33	33	19535.18	0.004347	632.71
1	55	26.4	35.75	33	33	19535.18	0.004347	632.71
2	55	26.4	35.75	33	33	19535.18	0.004347	632.71
5	55	26.4	35.75	33	33	19535.18	0.004347	632.71
10	55	26.4	35.75	33	33	19535.18	0.004347	632.71
50	55	26.4	35.75	33	33	19535.18	0.004347	632.71
100	55	26.4	35.75	33	33	19535.18	0.004347	632.71

Table 8.4.1 indicates that the value of *KK* has no influence on finding the optimum dimensions for this special cross-section. Thus, we set KK = 2. If one of the results in 10 runs is not in the feasible regions, the value of *KK* is increased until all the results in 10 runs are in the feasible regions.

116

8.4.3 Optimization results

The optimization is carried out for a cross-section with a single edge stiffener and a crosssection with double edge stiffeners. All parameters are freely varied except $h_1 \ge 35$ mm. The results for the cross-section with a single edge stiffener are given in Table 8.4.2 and in Table 8.3.6 for the cross-section with double edge stiffeners.

The comparisons of the values of q/A_g and M_y/A_g for the cross-sections with a single edge stiffener to those for the cross-section with double lip stiffeners are shown in Figure 8.4.1. It can be seen that the values of q/A_g for the cross-section with double edge stiffener are higher than those for the cross-section with a single edge stiffener when the thickness is increased from the lower value to the higher value. However, the values of M_y/A_g are almost the same for these two cases.

Figure 8.4.1 Comparisons of the values of q/A_g and M_y/A_g for the cross-section with single edge lip to that with double edge lips

$oldsymbol{M}_{_{\mathcal{Y}}}/A_{_{\mathcal{B}}}$	(Nmm/mm^2)	0.004347	0.002993	0.003604	0.002518	0.002897	0.002094	0.002949	0.001756
$q/A_{_{g}}$	$(N/mm/mm^2)$	19535.18	22271.84	24695.43	26744.68	27641.35	30225.33	30003.48	32605.93
d_s	(mm)	33	S	S	S	6	S	6	5
h_2	(mm)	33	S	14	14	22	14	22	14
h_1	(mm)	35.75	39.50	60.03	64.32	67.45	84.39	60.03	67.45
С	(mm)	26.40	44.24	38.64	53.76	42.60	48.72	41.40	39.76
q	(mm)	55	62	69	96	71	87	69	71
t	(mm)	1.5	2.5	2.0	3.0	2.0	3.0	2.0	3.0
Г	(mm)	4000	5500	5000	6500	6000	7500	6000	8000
Ч	(mm)	250	250	300	300	350	350	400	400

Table 8.4.2 Optimization results for the free optimization with single edge stiffener (Objective function being M_y/A_g)

\mathbf{A}_{g}
~
N
~
gu
.ē
1 L
<u>.</u>
ct
En
e F
<u>14</u> .
ğ
Je
ð
Š
ere
en
ĮĮĮ
Sti
e.
ğ
e
ple
nc
ď
ith
<u>آ</u>
'n
Ei.
Za
Ξ.
Ē
do
ŝ
fre
e
th
or
s f
ult
SSI
l r(
OL
ati
IZ
ш.
pt
0
ŝ
4
ŝ
ble
a a

1										
	$oldsymbol{M}_{_{\mathcal{Y}}}/A_{_{\mathcal{B}}}$	(Nmm/mm ²)	0.004177	0.004020	0.003700	0.003045	0.002790	0.002554	0.002545	0.002022
	$q/A_{_{g}}$	$(N/mm/mm^2)$	19961.07	22174.70	25115.03	26660.30	28158.44	29888.14	29948.13	31838.95
	$d_{_S}$	(mm)	32	23	6	22	6	18	6	20
	h_2	(mm)	32	23	22	40	22	31	22	36
	h_1	(mm)	39.20	35.20	49.50	48.50	51.00	40.94	43.50	35.00
	p	(mm)	11.27	15.20	19.80	17.46	20.40	14.24	17.40	11.90
	С	(mm)	23.03	30.40	39.60	35.89	40.80	29.37	34.80	24.50
	q	(mm)	49	80	99	<i>L</i> 6	89	68	85	70
	t	(mm)	1.5	2.5	2.0	3.0	2.0	3.0	2.0	3.0
	Т	(mm)	4000	5500	5000	6500	0009	7500	0009	8000
	Ч	(mm)	250	250	300	300	350	350	400	400

Moreover, the values of q/A_g and M_y/A_g are compared for two cases, one with q/A_g as the objective function and the other with M_y/A_g as the objective function. The results are shown in Figure 8.4.2.

Figure 8.4.2 Comparisons of the cases with q/A_g as the objective function and with M_y/A_g as the objective function

Figure 8.4.2 shows that when the objective function is q/A_g , the values of q/A_g are higher than those of cross-sections with M_y/A_g as the objective function. However, the values of M_y/A_g with q/A_g as the objective function are lower than those with M_y/A_g as the objective function. However, the difference is not too large.

When comparing the optimum dimensions listed in Table 8.4.2 to those listed in Table 8.3.1, it can be seen that the optimum dimensions differs a lot. This can explained with the investigation in Chapter 7. Chapter 7 shows that the maximum value of q/A_g is reached when the applied load passing through the shear center. However, the maximum value of M_y/A_g occurs when the lengths of h_1 and h_3 are starting to be fully effective; the length of d_s becomes shorter; and the value of h_2 becomes larger.

8.5 Integration of Modified Eurocode 3 Method into the Optimization

A demonstration example is used to show how the modified Eurocode 3 method can be integrated into the GA optimization process for Σ -shape purlins. The objective of the optimization is to maximize the value of q/A_g for a cross-section with h = 350 mm, t = 2.0mm and L = 6000 mm. The optimization results for 10 runs are shown in Table 8.5.1. The optimum dimensions for the cross-section are b = 83 mm, c = 33.20 mm, $h_1 = 68.06$ mm, $h_2 = 28$ mm and $d_s = 30$ mm.

No.	b	С	h_1	h_2	d_s	q/A_{g}	M_y/A_g	A_{g}
	(mm)	(mm)	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm^2)	(mm^2)
1	81	28.35	59.94	17	25	0.004188	26622.36	1147.992
2	83	33.20	68.06	28	30	0.004236	26421.06	1174.677
3	80	27.20	56.00	16	24	0.004145	26698.31	1138.002
4	82	30.34	63.96	21	27	0.004215	26549.78	1159.877
5	83	33.20	68.06	28	30	0.004236	26421.06	1174.677
6	83	33.20	68.06	28	30	0.004236	26421.06	1174.677
7	83	33.20	68.06	28	30	0.004236	26421.06	1174.677
8	83	33.20	68.06	28	30	0.004236	26421.06	1174.677
9	91	33.67	43.68	22	27	0.004206	25915.39	1206.821
10	82	30.34	63.96	21	27	0.004215	26549.78	1159.877

Table 8.5.1 Optimization results for 10 runs using the modified Eurocode 3 method

Table 8.5.2 lists the comparisons of optimization results designed based on the Eurocode 3 method (EC3) to those based on the modified Eurocode 3 method (MEC3). Table 8.5.2 indicates that for this specific cross-section, the optimal dimensions based on 'MEC3' are the same as those based on 'EC3'; and the values of q/A_g and M_y/A_g calculated using 'MEC3' are about 0.12 % and 0.13 % lower than those calculated using 'EC3', respectively.

Table 8.5.2Comparisons of optimization results based on the Modified Eurocode 3method (MEC3) with those based on the Eurocode 3 method (EC3)

Methods	b	С	h_1	h_2	d_s	q/A_g	M_y/A_g	A_{g}
	(mm)	(mm)	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(mm^2)
EC3	83	33.20	68.06	28	30	0.004241	26451.04	1174.68
MEC3	83	33.20	68.06	28	30	0.004236	26421.06	1174.68

There are two types of buckling modes in the modified Eurocode 3 method for this specific cross-section, i.e. the local buckling modes of the flange, lip and the element above the web stiffener; and the conventional distortional buckling mode. The buckling mode of the element under the web stiffener is neither local buckling of this element nor the web distortional buckling. Therefore, this element is designed according to the Eurocode 3 method and the elastic local buckling stress for this element is the same as that calculated using Eurocode 3 method. The other elastic buckling stresses calculated using these two methods are shown in Table 8.5.3. In the table, 'web_1' refers to the element above the web stiffener and 'web_2' refers to the compression part under the web stiffener.

 Table 8.5.3
 Elastic buckling stress calculated using EC3 and MEC3 (MPa)

Methods	flange	lip	web_1	web_2	Distortional buckling
EC3	446.32	424.92	817.68	682.47	314.99
MEC3		454.44		682.47	454.44

The elastic local buckling stress of 'web_1' calculated using the modified Eurocode 3 method is lower than that calculated using the Eurocode 3 method. Thus, this element is fully effective when designed based on Eurocode 3 and is not fully effective when using the modified Eurocode 3 method. However, the elastic distortional buckling stress calculated using 'MEC3' is higher than that calculated using 'EC3'. Thus, the values of q/A_g and M_g/A_g calculated using these two methods are almost the same.

9 CONCLUSIONS AND FUTURE RESEARCH

An important advantage of cold-formed steel is the great flexibility of cross-sectional shapes and sizes available to the structural steel designer. However, the lack of standard optimized shapes makes the selection of the most economical shape very difficult. This task is further complicated by the complex and highly nonlinear nature of the rules that govern their designs. A survey of the literature shows that only relatively little work has been done in this area. In this thesis, a relatively new method is introduced into the field of cold-formed steel, i.e. Genetic Algorithms (GAs). With GAs, the optimization is carried out for the cold-formed steel purlins that are continuous over two spans subjected to a gravity load. The following sections summarize the conclusions and suggest further research from the studies in this thesis.

9.1 Methodology for GA-Based Design

The main methodology to perform the GA-based design for the cold-formed steel purlin is via computer programs. Therefore, a computer program named **ODSP-GA** is developed firstly. It is composed of two parts: the first part is the optimization with GA, and the second part is the design of cold-formed steel purlins.

The first part of the program provides several choices for the users, such as three kinds of selection methods with two types of the sampling methods and four kinds of crossover operators. In order to avoid the repeated evaluation of fitness for the same individuals appearing in one generation, the different individuals in one generation are first picked out so as to improve the efficiency of the calculation. Although the calculation of the fitness function is varied with the engineering optimization itself, the genetic operations such as the selection, the crossover and the mutation can be used in general. Therefore, the program for

optimization using GA can be slightly modified to allow its application to other optimization problems.

As far as the computer program for the design of cold-formed steel purlins is concerned, it can currently be used to design Z-shaped and Σ -shaped purlins. However, with the slight modifications, the program can be used for purlin design with other shapes. The design rules for cold-formed purlins are complex and engineers might experience difficulty in hand calculation. In particular, the calculation of effective cross-section properties can be tedious and time consuming. Thus, this part of the program may be used independently from the optimization part so as to provide a design aid for structural designers and a tool for researchers.

9.2 GA-Based Design for Z-Shape Cold-Formed Steel Purlin

The behavior of Z-shape cold-formed steel purlins is investigated in Chapter 5 using the second part of the computer program **ODSP-GA**. The investigations are carried out based on the Eurocode 3 method and the modified Eurocode 3 method, and the following conclusions are made:

- (1) When the purlin is designed based on Eurocode 3, the moment capacity of the cross-section is increased with the increase of such dimensions as the width of the flange, the depth of the lip and the height of the web. This is due to the fact that the effective widths of the longer elements are larger than those of the shorter fully effective elements. As far as the distributed loads are concerned, their values depend not only on the moment capacity but also on the gross section modulus of the free flange plus 1/6 of the web height. Thus, it is possible that the value of the load resistance for the cross-section with greater web height is lower than that with smaller web height. Moreover, as for the moment efficiency or the load efficiency, the maximum value does not occur at the largest dimensions due to the larger area of such a cross-section.
- (2) The main local buckling mode is the combination of the lip, flange and web buckling. However, due to the difference of the length for each element, buckling might be

initiated by the longest element amongst the lip, the flange and the compression part of the web. When the length of each element is similar, the buckling of each element occurs at the same time. In addition, when the widths of the lip and the flange are not great enough, there exists no local buckling mode, i.e. the distortional buckling mode is the only buckling mode.

- (3) The difference between the width of the flange and the width of the compression part of the web mainly determines the elastic buckling stress. When the width of the flange is larger than that of the compression part of the web, the critical buckling mode is flange buckling. The elastic local buckling stress can be increased by the increase of the lip. On the other hand, when the width of the flange is less than that of the compression part of the web, the critical buckling. When the width of the flange and the depth of the lip are not large enough, there exists only distortional buckling mode and no local buckling mode. Moreover, when the lengths of these two elements are similar, the elastic bucking stress is increased when the depth of the lip is increased, though the increase is not so large. However, if the depth of the lip is increased further, lip buckling mode becomes the critical buckling mode.
- (4) The elastic distortional buckling stress increases with the increase of the depth of the lip and decreases with the increase of the height of the web. However, the effects of the width of the flange on the elastic distortional buckling stress vary with the critical local buckling mode. If web buckling is the critical buckling mode, the elastic distortional buckling stress is increased with the increase of the width of the flange. If the critical buckling mode is flange buckling, the elastic distortional buckling stress is decreased with the increase of the width of the flange.
- (5) The elastic buckling stresses calculated using FSM are higher than those calculated using the Eurocode 3 method due to the interaction of the elements. For most cross-sections, the values of the elastic distortional buckling stresses calculated using FSM are higher than those calculated using the Eurocode 3 method. However, when webbuckling mode is the critical local buckling mode, the distortional buckling stresses calculated using FSM are smaller than those calculated using the Eurocode 3 method. This is due to the fact that the effect of the reduction in the flexural restraints provided by the buckling web is not considered in Eurocode 3.

- (6) If the flange buckling is the critical buckling mode, the moment capacity calculated using the modified Eurocode 3 method is higher than that calculated using the Eurocode 3 method due to the fact that the elastic buckling stresses calculated using FSM are higher than those calculated using the Eurocode 3 method. If the web buckling is the critical buckling mode, the moment capacity calculated using the modified Eurocode 3 method is lower than those calculated using the Eurocode 3 method. Two reasons lead to this result; one is that the effect of the reduction in the flexural restraints provided by the buckling web is not considered in Eurocode 3. The other is that in the modified Eurocode 3 method, the same elastic buckling stress is applied to determine the effective width for the flange, lip and web. The larger the height, the larger the difference.
- (7) The comparisons of load efficiencies calculated using two given methods show that the optimum dimensions are not the same due to the different values of the load resistance and the area of the cross-section.

In Chapter 6, such parameters as the selection method, the crossover rate and the mutation rate are selected before the GA-based design is carried out. The following conclusions are drawn:

- (1) The behaviors of the three selection methods are mainly investigated, i.e. rank selection method, tournament selection method and fitness proportional method. In general, the speed of convergence for the rank selection method is slower than those for the other two methods: the tournament selection method and the fitness proportional method. The calculations in this thesis are all based on the tournament selection method.
- (2) Moreover, the values of the population size, the crossover rate and the mutation rate, which are given in the process of the investigation, all lead GA to convergence except the case with high mutation rate of 0.1. In particular, the difference among the fitness for the compared cases is not large. In principle, each reasonable investigated value can be chosen in the running of GA. However, in this thesis, a GA is running with the

size of the population being two times the length of the encoded binary string, the crossover rate being 0.8 and the mutation rate being 0.001.

(3) The sensitivity analyses of fitness to the values of KK given in the objective function indicate that the variation of KK has no influence on finding the maximum value of the fitness, but has effects on the number of results found in feasible regions. Thus, in this thesis, the value of KK is set to an initial value in the beginning. If one of the results in 10 runs is not in the feasible domain, the value of KK is increased until all the results in 10 runs are in the feasible domain.

With the selected parameters, the GA-based design is applied to Z-shape purlins continuous over two spans subjected to a gravity load with given heights, thicknesses and spans. The following conclusions are made:

- (1) The running of the GA shows that both the values of q/A_g and design variables are narrowed down to a relatively small range. This is due to the characteristics of GA, i.e. finding the near optimum. In addition, the purpose of this research was to find the nominal dimension of the cross-section. Thus, the final optimum dimension can be modified based on the results in 10 runs since a small change of the width of the flange or the depth of the lip does not change the value of q/Ag so much. Therefore, the detailed results are provided in the Appendixes.
- (2) The optimization is carried out for three cases, Choice 1, Choice 2 and Choice 3, which are distinguished by the relation of the width of the top flange and the depth of the lip. Analyses indicate that, in general, Choice 3 shows higher values of q/A_g than those for the two simplified cases. Furthermore, Choice 2 shows better behavior than that for Choice 1 when both the values of q/A_g and M/A_g are compared.
- (3) In order to provide multiple choices to structural designers and steel manufactures, three kinds of optimum dimensions for the Z-shape purlin continuous over two spans under gravity load using GA are proposed. For the two simplified cases, the width of the top flange is determined firstly by rounding the optimum value to the number with '0' or '5' at last position. The depth of the lip is then recalculated according to the

relation of the width of the top flange and the depth of the lip. For the 'free optimization case', the proposed width of the flange and the depth of the lip is determined by rounding the optimum value to the number with '0' or '5' at last position.

(4) In order to show that a numerical analysis program such as CUFSM can be integrated into the GA optimization process, the modified Eurocode 3 method is integrated into GA-based design. Analyses show that the optimal dimensions obtained by integrating the Eurocode 3 method and the modified Eurocode 3 method into the GA-based design procedure can be similar or be different.

9.3 GA-Based Design for Σ -Shape Cold-Formed Steel Purlins

The behavior of Σ -shaped cold-formed steel purlins is investigated in Chapter 7. The investigation is concentrated on the effects of the position and the size of the web stiffener on the cross-sectional properties and the load efficiency based on the Eurocode 3 method and the modified Eurocode 3 method, and the following conclusions are made:

- (1) When design is based on the Eurocode 3 method, the best position of the web stiffener for gaining the higher value of W/A_g is at the point where both h_1 and h_3 are starting to become fully effective. Moreover, the longer the length of h_2 and the shorter the length of d_s , the higher the value of W/A_g . The load efficiency depends on the position of the shear center. When the position and the size of the web stiffener make the applied load passing through the shear center, the load efficiency reaches its maximum value.
- (2) When the width of the flange and the depth of the lip are fixed, the shorter the length of h_1 is, the higher the values of elastic local buckling stresses are. As for the elastic distortional buckling stresses, their values depend on the relation of the width of the flange to the length of h_1 . If the value of h_1 is increased from a value less than the width of the flange to a value equal to the width of the flange, the distortional buckling

stress decreases with the increase of h_1 . If the value of h_1 is increased from a value equal to the width of the flange to a value larger than the width of the flange, the distortional buckling stress increases with the increase of h_1 .

- (3) The length of d_s should be large enough to avoid the web distortional buckling mode. The conventional elastic distortional buckling stress is decreased also when the web distortional buckling mode occurs.
- (4) The buckling modes can be classified into four types. The first type is the local buckling of the flange, the lip and the element above the web stiffener. In this mode, the buckling may be initiated by any one of the mentioned above elements. The second type is the local buckling of the compression part under the web stiffener. The third type is the web distortional buckling mode, in which the web stiffener is moved with other elements along the web. The last type is the distortional buckling mode.
- (5) When the critical local buckling mode is the local buckling of the element under the web stiffener, the values of q/A_g and M_y/A_g calculated based on the modified Eurocode 3 method are higher than those calculated based on the Eurocode 3 method. When the web distortional buckling mode is one of the local buckling modes, the values of q/A_g and M_y/A_g calculated based on the modified Eurocode 3 method are lower than those calculated based on the elastic distortional buckling stress is lower than those calculated using the Eurocode 3 method.

When Σ -shape purlins, which are continuous over two spans and subjected to a gravity load with given heights, thicknesses and spans, are optimized with GAs, the following conclusions are drawn:

(1) The optimization is firstly carried out for cross-sections with a single edge stiffener and with double edge stiffeners. As far as the values of q/A_g are concerned, most of the cross-sections with a single lip stiffener show higher values. As for the value of M_y/A_g , most of the cross-sections with double lip stiffeners show higher values. However, the improvements are not large, and the maximum improvement is about 5%.

- (2) In order to simplify the optimization process, such dimensions as d_s and h_2 are treated as preassigned variables and set to 32 mm and 25 mm, respectively. Similarly to Z-shape purlins, the optimization is carried out for three cases, Choice 1, Choice 2 and Choice 3, which is distinguished by the relation of the width of the top flange and the depth of the lip. Analyses indicate that the case with freely varied b, c and h_1 shows higher values of q/A_g than the two simplified cases. Furthermore, Choice 2 shows better behavior than for Choice 3 when the values of q/A_g are compared.
- (3) In order to provide multiple choices to structural designers and steel manufacturers, three kinds of optimum dimensions for Σ -shape purlins continuous over two spans under gravity load are proposed using GA.
- (4) The optimization is also carried out to maximize the value of M_y/A_g instead of q/A_g . Analyses show that when the objective function is q/A_g , the values of q/A_g are higher than those for which the objective function is M_y/A_g . In addition, the values of M_y/A_g with q/A_g as objective function are lower than those of with M_y/A_g as objective function. However, the difference is not very large. When comparing the optimum dimensions for these two cases, it can be seen that the optimum dimensions differ a lot. This can be explained by the investigation in Chapter 7. Chapter 7 shows that the maximum value of q/A_g is reached when the applied load passes through the shear center. However, the maximum value of M_y/A_g occurs when the lengths of h_1 and h_3 are starting to be fully effective, the length of d_s becomes shorter; and the value of h_2 becomes larger.
- (5) A demonstration example is used to show how the modified Eurocode 3 method is integrated into the GA optimization process for Σ -shape purlins. The comparisons of optimization results based on the Eurocode 3 method to those based on the modified

Eurocode 3 method indicate that for this specific cross-section, the optimal dimensions are the same using these two methods.

9.4 Discussion and Future Research

9.4.1 Discussion

The current Eurocode 3, Part 1.3 (1996) assumes that the load is applied on the top of the web and the shear center of the cross-section is to the left of the applied load for the Σ -shape purlin. In the current Eurocode 3, Part 1.3, the lateral load, $q_{h,Fd}$, acting on the free flange due to torsion and lateral bending is calculated using the distance between the applied load and the shear center, which is not zero. However, the analyses being carried out in Section 7.2 indicate that the shear center can be located at a point inside the cross-section between the top and bottom flanges. In this case, the applied load moves to the point on the top flange passing through the shear center. The lateral load is actually zero.

When the shear center is at a point inside the cross-section between two flanges, the values of q/A_g calculated based on zero distance between the applied load and the shear center are higher than those calculated using the Eurocode 3 method. In addition, the variation of q/A_g mainly depends on the effective section modulus, W, and the reduction factor for flexural buckling of the free flange, χ . Therefore, the maximum value of q/A_g is reached when the shear center is at a point inside the cross-section between two flanges and not when the load passes through the shear center.

9.4.2 Future research

In the current Eurocode 3 method, the calculation for bending moment in the free flange due to the lateral load for Z-shape purlins can be only applied to cross-sections with equal width of flanges. In this thesis, the width of the top flange is 6 mm wider than that of the bottom

flange. However, the calculation is still based on the rules specified in Eurocode 3, Part 1.3. Thus, the influence of the position of the shear center and the widths of the two flanges on the behavior of the Z-shape purlins should be investigated further.

The purlin is attached to the profiled sheeting using some connections. This sheeting can provide lateral and rotational restraints to the purlin. The calculation of the elastic buckling stresses using FSM did not consider the effects of these restraints.

There do exist some needs to improve the developed computer program, ODSP_GA, for example, a friendly Graphic User Interface (GUI) should be added. Right now, the program is only suitable for binary encoding. Moreover, the design of Z-shaped and Σ -shaped purlins is carried out separately.

The modified Eurocode 3 method is only applied in this thesis to some specific cases for demonstration purpose. However, in the process of the integration of the elastic buckling stresses into the modified Eurocode 3 method for general cases, the elastic buckling stresses and buckling modes can be very different for different section. It might be time consuming to do the calculation. Neural networks could be used in determination of the elastic buckling stresses and buckling modes (Lu et al., 2000 and Lu, 2000).

The GA-based design concept in this thesis is applied to the optimization of cold-formed steel purlins. However, it could find more applications in the field of cold-formed steel design for other members, especially those with multiple stiffeners along the flange and web.

BIBLIOGRAPHY

Adeli, H. and Cheng, N.T. (1994a). Augmented Lagrange genetic algorithm for structural optimization. *Journal of Aerospace Engineering*, Vol. 7, No.1, pp. 104-118.

Adeli, H. and Cheng, N.T. (1994b). Concurrent genetic algorithms for optimization of large structures. *Journal of Aerospace Engineering*, Vol. 7, No.3, pp. 276-296.

Adeli, H. and Kumar, S. (1995a). Distributed genetic algorithm for structural optimization. *Journal of Aerospace Engineering*, Vol. 8, No.3, pp. 156-163.

Adeli, H. and Park, H. S. (1995b). A dynamic neural network model for structural optimization-theory. *Computers and Structures*, Vol. 57, No.3, pp. 383-390.

Adeli, H. and Park, H. S. (1995c). A dynamic neural network model for structural optimization-application to plastic design of structures. *Computers and Structures*, Vol. 57, No.3, pp. 391-399.

Adeli, H. and Karim, A. (1997). Neural network model for optimization of cold-formed steel beams. *Journal of Structural Engineering*, Vol.123, No.11, pp.1535-1543.

Bazaraa, M. S., Sherali, H. D. and Shetty, C. M. (1993). Nonlinear programming: theory and algorithms, Second Edition. John Wiley & Sons, Inc.

Camp, C., Pezeshk, S. and Cao, G. Z. (1998). Optimized design of two-dimensional structures using a genetic algorithm. *Journal of Structural Engineering*, Vol. 124, No. 5, pp. 551-559.

Chen, S.Y. and Rajan, S.D. (1995). Using genetic algorithm as an automatic structural design tool. *IEEE International Conference on Acoustics, Speech and Signal Processing,* http://www.causalproductions.com/TEMP/INDEX/IC95_TOC.HTM.

Clarke, M. J. and Hancock, G. J. (2000). Purlin design to AISI LRFD using rational buckling analysis. *15th International Specialty Conference on Cold-Formed Steel Structures*, St. Louis, Missouri, U.S.A., October 19-20, pp.457-470.

Cogan, B. (2001). The evaluation of genetic algorithms. *Scientific Computing World*, May/June, pp. 28-31.

Eiben, A.E., Hinterding, R. and Michalewicz, Z. (1999). Parameter control in evolutionary algorithms. *IEEE transactions on evolutionary computation*, Vol. 3, No. 2.

ENV 1993-1-3, Part 1.3 (1996): General Rules. Supplementary Rules for Cold-Formed Thin Gauge Members and Sheeting.

Erbatur, F., Hasancebi, O., Tutuncu I. and Kilic, H. (2000). Optimal design of planar and space structures with genetic algorithms. Computers and Structures, Vol. 75, pp. 209-224.

Goldberg, D. E. (1989). *Genetic Algorithms in Search, Optimization, and Machine Learning*. Addison-Wesley publishing Company, INC.

Hajela, P. and Kim, B. (1995). GA based learning in cellular automata models for structural analysis. *IEEE International Conference on Acoustics, Speech and Signal Processing,* http://www.causalproductions.com/TEMP/INDEX/IC95_TOC.HTM.

Hajela, P. and Cho, H. (1998). Genetic algorithms in topologic design of grillage structures. *Computer-Aided Civil and Infrastructure Engineering*, Vol. 13, pp. 13-22.

Ings, N. L. and Trahair, N. S. (1984). Lateral buckling of restrained roof purlins. *Thin-Walled Structures*, Vol. 2, pp.285-306.

Jang, J.-S. R., Sun, C.-T. and Mizutani (1997). *Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence*. Prentice Hall.

Jenkins, W. M. (1992). Plane frame optimum design environment based on genetic algorithm. *Journal of Structural Engineering*, Vol. 118, No. 11, pp. 3103-3112.

Jenkins, W. M. (1998). Improving structural design by genetic search. *Computer-Aided Civil and Infrastructure Engineering*, Vol. 13, pp. 5-11.

Jiang, C. and Davies (1997). Design of thin-walled purlins for distortional buckling. *Thin-Walled Structures*, Vol. 29, No. 1-4, pp.189-202.

Kameshki, E. S. and Saka, M. P. (2001). Genetic algorithm based optimum bracing design of non-swaying tall plane frames. *Journal of Constructional Steel Research*, Vol. 57, pp. 1081-1097.

Karim, A. and Adeli, H. (1999a). Global optimum design of cold-formed steel Z-shape beams. *Practice and Periodical on Structural Design and Constructions*, Vol.4, No.1, pp. 17-20.

Karim, A. and Adeli, H. (1999b). Global optimum design of cold-formed steel hat-shape beams. *Thin-Walled Structures*, Vol.35, pp. 275-288.

Karim, A. and Adeli, H. (2000). Global optimum design of cold-formed steel I-shape beams. *Practice and Periodical on Structural Design and Constructions*, Vol.5, No.2, pp. 78-81.

Kesti, J. (2000). Local and distortional buckling of perforated steel wall studs. Research Report, TKK-TER-19, Laboratory of Steel Structures, Helsinki University of Technology.

Kesti, J. and Davies, J. M. (1999). Local and distortional buckling of thin-walled short columns. *Thin-Walled Structures*, Vol. 34, No. 2, pp. 115-134.

Kirsch U. (1981). *Optimum Structural Design: Concepts, Methods and Applications,* McGraw-Hill Book Company.

Kolari, K. and Talja, A. (1994). Design of Cold-Formed Beam-Columns Restrained by Sheeting. Technical Research Center of Finland, Espoo.

Koumousis, V. K. and Georgiou, P. G. (1994). Genetic algorithms in discrete optimization of steel truss roofs. *Journal of Computing in Civil Engineering*, Vol. 8, No.3, pp.309-325.

Kounousis, V. K. and Arsenis, S. J. (1998). Genetic algorithms in optimal detailed design of reinforced concrete members. *Computer-Aided Civil and Infrastructure Engineering*, Vol. 13, pp. 43-52.

Koza, J.R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection, The MIT Press, Cambridge, Massachusetts, London, England.

Laine, M. (1997). Design of Cold-Formed Steel Purlins Assisted by Testing. Licentiate Thesis, Tampere University of Technology, Tampere, Finland.

Laine, M. (1998). Design of steel purlins based on testing: test methods & interpretation of test results. *Journal of Constructional Steel Research*, Vol. 46, No. 1-3, Paper No.317.

Liu, P., Chan, C. M. and Wang, Z. M. (1999). Optimal sizing/shape design of steel portal frames using genetic algorithms. *Proceedings of 2nd International conference on Advances in Steel Structures*, December 15-17, Hong Kong, China, pp.1081-1088.

Lu, W. and Mäkeläinen, P. (2001a). A neural network model for local and distortional buckling behavior of cold-formed steel compression members. *9th Nordic Steel Construction Conference*, 18-20 June 2001 Helsinki, Finland, pp341-348.

Lu, W. and Mäkeläinen, P. (2001b). Prediction of elastic local and distortional buckling behavior of cold-formed steel compression C-section using neural network model. 2nd European Conference on Computational Mechanics: Solids, Structures and Coupled Problems in Engineering, 26-29 June, Cracow, Poland.

Lu, W. and Mäkeläinen, P. (2000). Study on the distortional buckling behaviour of thinwalled compression members using neural network model. *Fifth Finnish Steel Structures R&D Days*, 18-19 January, Espoo, Finland, pp.260-267.

Lu, W. (2000). Neural Network Model for Distortional Buckling Behavior of Cold-Formed Steel Compression Members. Research Report, TKK-TER-16, Laboratory of Steel Structures, Helsinki University of Technology.

Michalewicz, Z. and Michalewicz, M. (1997). Evolutionary computation techniques and their applications. *IEEE International Conference on Intelligent Processing Systems*, October 28-31, Beijing, China, pp.14-25.

Mitchell, M. (1996). An Introduction to Genetic Algorithms. The MIT Press.

Nagy, Z. (2000). Evolution of optimum trapezoidal sheeting profile based on Eurocode, using finite strip method and genetic algorithm. *Proceedings of 3rd International Conference on Coupled Instabilities in Metal Structures*, Lisbon, Portugal, 21-23, September, pp. 643-650.

Neubert, M. C. and Murray, T. M. (2000). Estimation of restraint forces for Z-purlin roofs under gravity loads. *15th International Specialty Conference on Cold-Formed Steel Structures*, St. Louis, Missouri, U.S.A., October 19-20, pp.497-516.

Obitko, M. (1998). Genetic Algorithm. http://cs.felk.cvut.cz/~xobitko/ga/main.html.

Papangelis, J. P., Hancock, G. J. and Trahair, N. S. (1998). Computer design of cold-formed C- and Z-section purlins. *Journal of Constructional Steel Research*, Vol. 46, No. 1-3, Paper No. 098.

Peköz, T. and Soroushian, P. (1982). Behavior of C- and Z- purlins under wind uplift. 6th Specialty Conference on Cold-Formed Steel Structures, St. Louis, Missouri, pp.409-429.

Pezeshk, S. and Camp, C. V. and Chen, D. (2000). Design of nonlinear framed structures using genetic optimization. *Journal of Structure Engineering*, Vol. 126, No. 3, pp. 382-388.

Pohlheim, H. (1994-1997). Genetic and evolutionary algorithms: principles, methods and algorithms. *Genetic and Evolutionary Algorithm Toolbox for use with Matlab (GEATbx)*. http://www.systemtechnik.tu-ilmenau.de/~pohlheim/GA_Toolbox/algindex.html

Poli, R. (1996). *Introduction to Evolutionary Computation*. http://www.cs.bham.ac.uk/~rmp/slide_book

Polyzois, D. and Guillory Jr., L. J. (1991). Finite strip method for analysis of cold-formed purlins. *Journal of Engineering Mechanics*, Vol. 17, No. 1, pp.184-204.

Rajan, S. D. (1995). Sizing, shape, and topology design optimization of trusses using genetic algorithm. *Journal of Structural Engineering*, Vol. 121, No. 10, pp. 1480-1487.

Rajeev, S. and Krishnamoorthy, C. S. (1992). Discrete optimization of structures using genetic algorithms. *Journal of Structural Engineering*, Vol. 118, No. 5, pp.1233-1250.

Rajeev, S. and Krishnamoorthy, C. S. (1997). Discrete optimization of structures using genetic algorithms-based metrologies for design optimization of trusses. *Journal of Structural Engineering*, Vol. 123, No. 3, pp.350-358.

Rajeev, S. and Krishnamoorth, C. S. (1998). Genetic algorithm-based methodology for design optimization of reinforced concrete frames. *Computer-Aided Civil and Infrastructure Engineering*, Vol. 13, pp. 63-74.

Rousch, G. J. and Hancock, G. J. (1994). Comparison of a non-linear purlin model with tests. 12th International Specialty Conference on Cold-Formed Steel Structures, St. Louis, Missouri, U.S.A., October 18-19, pp.121-149.

Sarma, K. C. and Adeli, H. (2000). Fuzzy genetic algorithm for optimization of steel structures. *Journal of Structural Engineering*, Vol. 126, No. 5, pp. 596-604.

Schilling, S. and Werner, F. (2001). Practical design of steel frame structures using different optimization algorithms and building codes. *European Conference on Computational Mechanics*, Krakow, Poland, June 26-29.

Schafer, B. (2002). *Elastic Buckling of Thin-Walled Structures*. http://www.ce.jhu.edu/bschafer/.

Sciuva, M. D., Lomario, D. and Voyat, J. P. (2001). Evolutionary algorithms their use in multiconstrained optimization of laminated and sandwich plates. *European Conference on Computational Mechanics*, Krakow, Poland, June 26-29.

Sharpe, O. J. (2000). Towards a Rational Methodology for Using Evolutionary Search Algorithms. http://www.cogs.susx.ac.uk/users/olivers/thesis.html

Toropov, V. V., Machfouz, S.Y. and Westbrook, R. K. (1995). Discrete design optimization of 3-dimensional steel structures using a genetic algorithm. *IEEE International Conference on Acoustics, Speech and Signal Processing,* http://www.causalproductions.com/TEMP/INDEX/IC95_TOC.HTM.

Wall, M. Introduction to Genetic Algorithms. http://lancet.mit.edu/~mbwall/presentations/IntroToGAs/

Willis, C. T. and Wallace, B. (1990). Behavior of cold-formed steel purlins under gravity loading. *Journal of Structural Engineering*, Vol. 116, No. 8, pp.2061-2069.

Yu, W. W. (1991). Cold-formed Steel Design, Second Edition. John Wiley & Sons, Inc.

OPTIMIZATION RESULTS FOR Z-SHAPE PURLINS

Choice 1 (40/13...100/35)

h=100 *mm*, *L*=1400 *mm* and *t*=1.0 *mm*

No.	b_1	С	q/A_g	M/A_{g}	q	A_{g}
orrun	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	41	13.37	0.018349	8102.564	3.503527	190.9376
2	41	13.37	0.018349	8102.564	3.503527	190.9376
3	44	14.47	0.018217	7929.123	3.621669	198.8096
4	41	13.37	0.018349	8102.564	3.503527	190.9376
5	42	13.73	0.018329	8058.936	3.547803	193.5616
6	42	13.73	0.018329	8058.936	3.547803	193.5616
7	42	13.73	0.018329	8058.936	3.547803	193.5616
8	40	13.00	0.018326	8119.137	3.451048	188.3136
9	40	13.00	0.018326	8119.137	3.451048	188.3136
10	42	13.73	0.018329	8058.936	3.547803	193.5616

h=100 *mm*, *L*=1600 *mm* and *t*=1.2 *mm*

No.	b_1	С	q/A_g	M/A_{g}	q	A_{g}
of run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	44	14.47	0.015151	8842.566	3.625647	239.3003
2	44	14.47	0.015151	8842.566	3.625647	239.3003
3	44	14.47	0.015151	8842.566	3.625647	239.3003
4	46	15.20	0.015144	8811.810	3.720051	245.6416
5	43	14.10	0.015127	8835.233	3.571870	236.1296
6	44	14.47	0.015151	8842.566	3.625647	239.3003
7	44	14.47	0.015151	8842.566	3.625647	239.3003
8	44	14.47	0.015151	8842.566	3.625647	239.3003
9	44	14.47	0.015151	8842.566	3.625647	239.3003
10	44	14.47	0.015151	8842.566	3.625647	239.3003

9518.614

9510.555

9518.614

9485.110

9518.614

9485.110

9502.609

9518.614

9518.614

 \overline{A}_{g}

 (mm^2)

335.3523

335.3523

339.3429

335.3523

327.3709

335.3523

327.3709

331.3616

335.3523

335.3523

q

3.909658

3.951490

3.909658

3.812648

3.909658

3.812648

3.861471

3.909658

3.909658

No. M/A_g q/A_g b_1 С of run $(N/mm/mm^2)$ (Nmm/mm^2) (N/mm) (mm) (mm) 9518.614 1 53 17.77 0.011658 3.909658

0.011658

0.011645

0.011658

0.011646

0.011658

0.011646

0.011653

0.011658

0.011658

17.77

18.13

17.77

17.03

17.77

17.03

17.40

17.77

17.77

h=100 mm, L=1900 mm and t=1.5 mm

53

54

53

51

53

51

52

53

53

h-	100	mm	L - 2200	mm	and	t - 2.0	mm
n -	100	mm,	L = 2200	mm	unu	1-2.0	mun

No.	b_1	С	q/A_{g}	M/A_{g}	q	A_{g}
or run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm^2)	(N/mm)	(mm^2)
1	60	20.33	0.009159	9821.831	4.430757	483.7803
2	60	20.33	0.009159	9821.831	4.430757	483.7803
3	59	19.97	0.009158	9806.486	4.381605	478.4229
4	60	20.33	0.009159	9821.831	4.430757	483.7803
5	59	19.97	0.009158	9806.486	4.381605	478.4229
6	59	19.97	0.009158	9806.486	4.381605	478.4229
7	60	20.33	0.009159	9821.831	4.430757	483.7803
8	60	20.33	0.009159	9821.831	4.430757	483.7803
9	59	19.97	0.009158	9806.486	4.381605	478.4229
10	59	19.97	0.009158	9806.486	4.381605	478.4229

h=150 mm, L=1700 mm and t=1.0 mm

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
or run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	47	15.57	0.015382	9632.352	3.917446	254.6816
2	48	15.93	0.015386	9564.788	3.958989	257.3056
3	47	15.57	0.015382	9632.352	3.917446	254.6816
4	48	15.93	0.015386	9564.788	3.958989	257.3056
5	48	15.93	0.015386	9564.788	3.958989	257.3056
6	48	15.93	0.015386	9564.788	3.958989	257.3056
7	48	15.93	0.015386	9564.788	3.958989	257.3056
8	52	17.40	0.015336	9283.575	4.106898	267.8016
9	48	15.93	0.015386	9564.788	3.958989	257.3056
10	48	15.93	0.015386	9564.788	3.958989	257.3056

2

3

4

5

6

7

8

9

10

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
of run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	52	17.40	0.012163	10837.82	3.924543	322.6656
2	51	17.03	0.012168	10901.82	3.887639	319.4949
3	54	18.13	0.012140	10704.61	3.994305	329.0069
4	51	17.03	0.012168	10901.82	3.887639	319.4949
5	51	17.03	0.012168	10901.82	3.887639	319.4949
6	51	17.03	0.012168	10901.82	3.887639	319.4949
7	52	17.40	0.012163	10837.82	3.924543	322.6656
8	52	17.40	0.012163	10837.82	3.924543	322.6656
9	51	17.03	0.012168	10901.82	3.887639	319.4949
10	50	16.67	0.012167	10961.14	3.848651	316.3243

h=150 *mm*, *L*=2000 *mm* and *t*=1.2 *mm*

h=150 *mm*, *L*=2500 *mm* and *t*=1.5 *mm*

No.	b_1	С	q/A_g	M/A_{g}	q	A_{g}
orrun	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	60	20.33	0.008774	12273.13	3.827844	436.2869
2	59	19.97	0.008775	12295.31	3.793539	432.2963
3	59	19.97	0.008775	12295.31	3.793539	432.2963
4	58	19.60	0.008774	12312.83	3.757898	428.3056
5	59	19.97	0.008775	12295.31	3.793539	432.2963
6	59	19.97	0.008775	12295.31	3.793539	432.2963
7	60	20.33	0.008774	12273.13	3.827844	436.2869
8	60	20.33	0.008774	12273.13	3.827844	436.2869
9	59	19.97	0.008775	12295.31	3.793539	432.2963
10	59	19.97	0.008775	12295.31	3.793539	432.2963

h=150 *mm*, *L*=3000 *mm* and *t*=2.0 *mm*

No.	b_1	С	q/A_g	M/A_{g}	q	A_{g}
of run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	69	23.63	0.006961	13945.02	4.385648	629.9963
2	69	23.63	0.006961	13945.02	4.385648	629.9963
3	70	24.00	0.006959	13943.05	4.421236	635.3536
4	69	23.63	0.006961	13945.02	4.385648	629.9963
5	70	24.00	0.006959	13943.05	4.421236	635.3536
6	73	25.10	0.006933	13886.92	4.516087	651.4256
7	70	24.00	0.006959	13943.05	4.421236	635.3536
8	72	24.73	0.006942	13907.11	4.485058	646.0683
9	70	24.00	0.006959	13943.05	4.421236	635.3536
10	69	23.63	0.006961	13945.02	4.385648	629.9963

No.	b_1	С	q/A_{g}	M/A_g	q	A_{g}
of run	(mm)	(mm)	(N/mm/mm ²)	(Nmm/mm ²)	(N/mm)	(mm^2)
1	64	21.80	0.006969	14074.83	3.660312	525.2496
2	64	21.80	0.006969	14074.83	3.660312	525.2496
3	63	21.43	0.006970	14138.01	3.633212	521.2589
4	64	21.80	0.006969	14074.83	3.660312	525.2496
5	64	21.80	0.006969	14074.83	3.660312	525.2496
6	65	22.17	0.006966	14010.20	3.686554	529.2403
7	63	21.43	0.006970	14138.01	3.633212	521.2589
8	62	21.07	0.006968	14195.13	3.604409	517.2683
9	64	21.80	0.006969	14074.83	3.660312	525.2496
10	63	21.43	0.006970	14138.01	3.633212	521.2589

h=200 mm, L=3000 mm and t=1.5 mm

h=200 *mm*, *L*=3800 *mm* and *t*=2.0 *mm*

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
or run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	74	25.47	0.005201	16536.56	3.925249	754.7829
2	73	25.10	0.005200	16549.64	3.896807	749.4256
3	74	25.47	0.005201	16536.56	3.925249	754.7829
4	76	26.20	0.005200	16505.36	3.980265	765.4976
5	74	25.47	0.005201	16536.56	3.925249	754.7829
6	74	25.47	0.005201	16536.56	3.925249	754.7829
7	71	24.37	0.005195	16570.33	3.837869	738.7109
8	74	25.47	0.005201	16536.56	3.925249	754.7829
9	74	25.47	0.005201	16536.56	3.925249	754.7829
10	74	25.47	0.005201	16536.56	3.925249	754.7829

h=200 mm, L=4500 mm and t=2.5 mm

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
of run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	88	30.60	0.004212	18211.18	4.366066	1036.546
2	88	30.60	0.004212	18211.18	4.366066	1036.546
3	86	29.87	0.004220	18242.52	4.317801	1023.098
4	86	29.87	0.004220	18242.52	4.317801	1023.098
5	86	29.87	0.004220	18242.52	4.317801	1023.098
6	86	29.87	0.004220	18242.52	4.317801	1023.098
7	85	29.50	0.004221	18236.01	4.289704	1016.374
8	85	29.50	0.004221	18236.01	4.289704	1016.374
9	86	29.87	0.004220	18242.52	4.317801	1023.098
10	85	29.50	0.004221	18236.01	4.289704	1016.374

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
of run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	78	26.93	0.006705	14684.05	4.386163	654.1189
2	77	26.57	0.006706	14754.75	4.359573	650.1283
3	77	26.57	0.006706	14754.75	4.359573	650.1283
4	80	27.67	0.006702	14541.89	4.437290	662.1003
5	78	26.93	0.006705	14684.05	4.386163	654.1189
6	77	26.57	0.006706	14754.75	4.359573	650.1283
7	78	26.93	0.006705	14684.05	4.386163	654.1189
8	76	26.20	0.006705	14825.10	4.332262	646.1376
9	78	26.93	0.006705	14684.05	4.386163	654.1189
10	77	26.57	0.006706	14754.75	4.359573	650.1283

h=250 *mm*, *L*=3200 *mm* and *t*=1.5 *mm*

h=250 mm, L=4300 mm and t=2.0 mm

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
of run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	79	27.30	0.004468	18491.08	3.930305	879.5696
2	81	28.03	0.004475	18444.75	3.984420	890.2843
3	80	27.67	0.004474	18476.05	3.958761	884.9269
4	81	28.03	0.004475	18444.75	3.984420	890.2843
5	81	28.03	0.004475	18444.75	3.984420	890.2843
6	82	28.40	0.004472	18383.63	4.005212	895.6416
7	79	27.30	0.004468	18491.08	3.930305	879.5696
8	81	28.03	0.004475	18444.75	3.984420	890.2843
9	81	28.03	0.004475	18444.75	3.984420	890.2843
10	79	27.30	0.004468	18491.08	3.930305	879.5696

h=250 *mm*, *L*=5100 *mm* and *t*=2.5 *mm*

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
orrun	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	91	31.70	0.00368	20744.53	4.341746	1179.718
2	90	31.33	0.00368	20757.54	4.316864	1172.994
3	91	31.70	0.00368	20744.53	4.341746	1179.718
4	92	32.07	0.00368	20730.13	4.366127	1186.442
5	91	31.70	0.00368	20744.53	4.341746	1179.718
6	91	31.70	0.00368	20744.53	4.341746	1179.718
7	92	32.07	0.00368	20730.13	4.366127	1186.442
8	92	32.07	0.00368	20730.13	4.366127	1186.442
9	91	31.70	0.00368	20744.53	4.341746	1179.718
10	91	31.70	0.00368	20744.53	4.341746	1179.718

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
of run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	90	31.33	0.004323	19574.76	4.480671	1036.500
2	90	31.33	0.004323	19574.76	4.480671	1036.500
3	90	31.33	0.004323	19574.76	4.480671	1036.500
4	88	30.60	0.004322	19707.64	4.433351	1025.786
5	90	31.33	0.004323	19574.76	4.480671	1036.500
6	90	31.33	0.004323	19574.76	4.480671	1036.500
7	88	30.60	0.004322	19707.64	4.433351	1025.786
8	92	32.07	0.004322	19438.70	4.525886	1047.215
9	90	31.33	0.004323	19574.76	4.480671	1036.500
10	90	31.33	0.004323	19574.76	4.480671	1036.500

h=300 *mm*, *L*=4500 *mm* and *t*=2.0 *mm*

h=300 mm, L=5500 mm and t=2.5 mm

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
of run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	95	33.17	0.003389	22763.75	4.505500	1329.614
2	100	35.00	0.003397	22660.46	4.630338	1363.234
3	99	34.63	0.003397	22696.80	4.608168	1356.510
4	100	35.00	0.003397	22660.46	4.630338	1363.234
5	100	35.00	0.003397	22660.46	4.630338	1363.234
6	100	35.00	0.003397	22660.46	4.630338	1363.234
7	100	35.00	0.003397	22660.46	4.630338	1363.234
8	100	35.00	0.003397	22660.46	4.630338	1363.234
9	99	34.63	0.003397	22696.80	4.608168	1356.510
10	99	34.63	0.003397	22696.80	4.608168	1356.510

h=300 *mm*, *L*=6000 *mm* and *t*=3.0 *mm*

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
of run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	95	33.17	0.003116	24768.31	4.967417	1593.940
2	100	35.00	0.003152	24953.42	5.151420	1634.394
3	99	34.63	0.003146	24918.52	5.115656	1626.303
4	100	35.00	0.003152	24953.42	5.151420	1634.394
5	100	35.00	0.003152	24953.42	5.151420	1634.394
6	100	35.00	0.003152	24953.42	5.151420	1634.394
7	100	35.00	0.003152	24953.42	5.151420	1634.394
8	94	32.80	0.003108	24728.00	4.928958	1585.850
9	99	34.63	0.003146	24918.52	5.115656	1626.303
10	99	34.63	0.003146	24918.52	5.115656	1626.303
No.	b_1	С	q/A_g	M/A_g	q	A_{g}
--------	-------	-------	---------------	------------------------	----------	----------
of run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	95	33.17	0.003662	20671.56	4.252164	1161.287
2	100	35.00	0.003674	20331.16	4.364854	1188.074
3	99	34.63	0.003672	20400.13	4.343162	1182.716
4	100	35.00	0.003674	20331.16	4.364854	1188.074
5	100	35.00	0.003674	20331.16	4.364854	1188.074
6	100	35.00	0.003674	20331.16	4.364854	1188.074
7	100	35.00	0.003674	20331.16	4.364854	1188.074
8	94	32.80	0.003658	20738.05	4.228273	1155.930
9	99	34.63	0.003672	20400.13	4.343162	1182.716
10	99	34.63	0.003672	20400.13	4.343162	1182.716

h=350 mm, L=5000 mm and t=2.0 mm

h=350 *mm*, *L*=6000 *mm* and *t*=2.5 *mm*

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
orrun	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	95	33.17	0.002971	24462.92	4.316084	1452.614
2	100	35.00	0.003000	24413.12	4.458823	1486.234
3	99	34.63	0.002995	24425.70	4.431332	1479.510
4	100	35.00	0.003000	24413.12	4.458823	1486.234
5	100	35.00	0.003000	24413.12	4.458823	1486.234
6	100	35.00	0.003000	24413.12	4.458823	1486.234
7	100	35.00	0.003000	24413.12	4.458823	1486.234
8	94	32.80	0.002964	24468.71	4.285839	1445.890
9	99	34.63	0.002995	24425.70	4.431332	1479.510
10	99	34.63	0.002995	24425.70	4.431332	1479.510

h=350 *mm*, *L*=7000 *mm* and *t*=3.0 *mm*

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
orrun	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	95	33.17	0.002444	26758.93	4.257824	1741.940
2	100	35.00	0.002489	26992.67	4.436163	1782.394
3	99	34.63	0.002481	26948.22	4.401664	1774.303
4	100	35.00	0.002489	26992.67	4.436163	1782.394
5	100	35.00	0.002489	26992.67	4.436163	1782.394
6	100	35.00	0.002489	26992.67	4.436163	1782.394
7	100	35.00	0.002489	26992.67	4.436163	1782.394
8	94	32.80	0.002434	26708.64	4.220302	1733.850
9	99	34.63	0.002481	26948.22	4.401664	1774.303
10	99	34.63	0.002481	26948.22	4.401664	1774.303

No.	b_1	С	q/A_g	M/A_{g}	q	A_{g}
of run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm^2)	(N/mm)	(mm^2)
1	95	33.17	0.002260	28230.23	4.586305	2029.267
2	100	35.00	0.002309	28494.64	4.794569	2076.554
3	99	34.63	0.002300	28444.05	4.754325	2067.096
4	100	35.00	0.002309	28494.64	4.794569	2076.554
5	100	35.00	0.002309	28494.64	4.794569	2076.554
6	100	35.00	0.002309	28494.64	4.794569	2076.554
7	100	35.00	0.002309	28494.64	4.794569	2076.554
8	94	32.80	0.002249	28173.83	4.542432	2019.810
9	99	34.63	0.002300	28444.05	4.754325	2067.096
10	99	34.63	0.002300	28444.05	4.754325	2067.096

h=350 *mm*, *L*=7500 *mm* and *t*=3.5 *mm*

Choice 2 (40/15...90/40)

h=100 *mm*, *L*=1400 *mm* and *t*=1.0 *mm*

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
of run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	40	15	0.018954	8187.290	3.642009	192.1536
2	40	15	0.018954	8187.290	3.642009	192.1536
3	44	17	0.018809	7934.279	3.830834	203.6736
4	40	15	0.018954	8187.290	3.642009	192.1536
5	40	15	0.018954	8187.290	3.642009	192.1536
6	40	15	0.018954	8187.290	3.642009	192.1536
7	40	15	0.018954	8187.290	3.642009	192.1536
8	40	15	0.018954	8187.290	3.642009	192.1536
9	40	15	0.018954	8187.290	3.642009	192.1536
10	40	15	0.018954	8187.290	3.642009	192.1536

h=100 mm, L=1600 mm and t=1.2 mm

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
of run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	44	17.0	0.015718	8926.625	3.853692	245.1776
2	44	17.0	0.015718	8926.625	3.853692	245.1776
3	44	17.0	0.015718	8926.625	3.853692	245.1776
4	43	16.5	0.015688	8927.192	3.791698	241.6976
5	43	16.5	0.015688	8927.192	3.791698	241.6976
6	44	17.0	0.015718	8926.625	3.853692	245.1776
7	44	17.0	0.015718	8926.625	3.853692	245.1776
8	44	17.0	0.015718	8926.625	3.853692	245.1776
9	44	17.0	0.015718	8926.625	3.853692	245.1776
10	44	17.0	0.015718	8926.625	3.853692	245.1776

No.	b_1	С	q/A_g	M/A_{g}	q	A_{g}
or run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	52	21.0	0.012056	9516.639	4.121481	341.8736
2	52	21.0	0.012056	9516.639	4.121481	341.8736
3	54	22.0	0.012031	9488.423	4.218348	350.6336
4	52	21.0	0.012056	9516.639	4.121481	341.8736
5	51	20.5	0.012043	9501.273	4.064270	337.4936
6	52	21.0	0.012056	9516.639	4.121481	341.8736
7	51	20.5	0.012043	9501.273	4.064270	337.4936
8	52	21.0	0.012056	9516.639	4.121481	341.8736
9	52	21.0	0.012056	9516.639	4.121481	341.8736
10	52	21.0	0.012056	9516.639	4.121481	341.8736

h=100 *mm*, *L*=1900 *mm* and *t*=1.5 *mm*

h=100 *mm*, *L*=2200 *mm* and *t*=2.0 *mm*

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
orrun	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	60	25.0	0.009416	9743.894	4.727291	502.0736
2	60	25.0	0.009416	9743.894	4.727291	502.0736
3	61	25.5	0.009415	9753.278	4.782617	507.9536
4	60	25.0	0.009416	9743.894	4.727291	502.0736
5	59	24.5	0.009414	9733.492	4.671313	496.1936
6	59	24.5	0.009414	9733.492	4.671313	496.1936
7	60	25.0	0.009416	9743.894	4.727291	502.0736
8	60	25.0	0.009416	9743.894	4.727291	502.0736
9	59	24.5	0.009414	9733.492	4.671313	496.1936
10	60	25.0	0.009416	9743.894	4.727291	502.0736

h=150 *mm*, *L*=1700 *mm* and *t*=1.0 *mm*

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
of run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	47	18.5	0.016015	9722.324	4.168990	260.3136
2	48	19.0	0.016022	9650.098	4.216983	263.1936
3	47	18.5	0.016015	9722.324	4.168990	260.3136
4	48	19.0	0.016022	9650.098	4.216983	263.1936
5	48	19.0	0.016022	9650.098	4.216983	263.1936
6	48	19.0	0.016022	9650.098	4.216983	263.1936
7	48	19.0	0.016022	9650.098	4.216983	263.1936
8	52	21.0	0.015969	9348.799	4.386950	274.7136
9	48	19.0	0.016022	9650.098	4.216983	263.1936
10	49	19.5	0.016020	9576.360	4.262618	266.0736

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
orrun	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	52	21.0	0.012664	10908.15	4.192083	331.0176
2	51	20.5	0.012667	10977.07	4.148957	327.5376
3	54	22.0	0.012644	10764.98	4.273449	337.9776
4	51	20.5	0.012667	10977.07	4.148957	327.5376
5	51	20.5	0.012667	10977.07	4.148957	327.5376
6	51	20.5	0.012667	10977.07	4.148957	327.5376
7	51	20.5	0.012667	10977.07	4.148957	327.5376
8	52	21.0	0.012664	10908.15	4.192083	331.0176
9	51	20.5	0.012667	10977.07	4.148957	327.5376
10	50	20.0	0.012664	11043.52	4.103978	324.0576

h=150 *mm*, *L*=2000 *mm* and *t*=1.2 *mm*

h=150 mm, L=2500 mm and t=1.5 mm

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
or run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	55	22.5	0.009146	12532.48	3.914720	428.0136
2	56	23.0	0.009147	12496.60	3.955225	432.3936
3	55	22.5	0.009146	12532.48	3.914720	428.0136
4	56	23.0	0.009147	12496.60	3.955225	432.3936
5	56	23.0	0.009147	12496.60	3.955225	432.3936
6	55	22.5	0.009146	12532.48	3.914720	428.0136
7	55	22.5	0.009146	12532.48	3.914720	428.0136
8	56	23.0	0.009147	12496.60	3.955225	432.3936
9	55	22.5	0.009146	12532.48	3.914720	428.0136
10	56	23.0	0.009147	12496.60	3.955225	432.3936

h=150 *mm*, *L*=3000 *mm* and *t*=2.0 *mm*

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
of run	(mm)	(mm)	(N/mm/mm ²)	(Nmm/mm ²)	(N/mm)	(mm^2)
1	68	29.0	0.007238	14009.90	4.683779	647.1136
2	68	29.0	0.007238	14009.90	4.683779	647.1136
3	68	29.0	0.007238	14009.90	4.683779	647.1136
4	68	29.0	0.007238	14009.90	4.683779	647.1136
5	68	29.0	0.007238	14009.90	4.683779	647.1136
6	73	31.5	0.007188	13863.86	4.862900	676.5136
7	70	30.0	0.007230	13983.21	4.763804	658.8736
8	69	29.5	0.007238	14006.57	4.726223	652.9936
9	67	28.5	0.007237	14011.00	4.640460	641.2336
10	68	29.0	0.007238	14009.90	4.683779	647.1136

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
or run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	63	26.5	0.007273	14265.40	3.898750	536.0536
2	64	27.0	0.007272	14196.25	3.930172	540.4336
3	63	26.5	0.007273	14265.40	3.898750	536.0536
4	64	27.0	0.007272	14196.25	3.930172	540.4336
5	64	27.0	0.007272	14196.25	3.930172	540.4336
6	59	24.5	0.007250	14512.55	3.759580	518.5336
7	63	26.5	0.007273	14265.40	3.898750	536.0536
8	62	26.0	0.007272	14332.94	3.866264	531.6736
9	64	27.0	0.007272	14196.25	3.930172	540.4336
10	63	26.5	0.007273	14265.40	3.898750	536.0536

h=200 mm, L=3000 mm and t=1.5 mm

h=200 mm, L=3800 mm and t=2.0 mm

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
orrun	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	72	31.0	0.005431	16797.89	4.174639	768.6336
2	72	31.0	0.005431	16797.89	4.174639	768.6336
3	71	30.5	0.005432	16832.61	4.143437	762.7536
4	70	30.0	0.005432	16864.94	4.111276	756.8736
5	71	30.5	0.005432	16832.61	4.143437	762.7536
6	73	31.5	0.005429	16760.89	4.204928	774.5136
7	71	30.5	0.005432	16832.61	4.143437	762.7536
8	72	31.0	0.005431	16797.89	4.174639	768.6336
9	71	30.5	0.005432	16832.61	4.143437	762.7536
10	71	30.5	0.005432	16832.61	4.143437	762.7536

h=200 mm, L=4500 mm and t=2.5 mm

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
orrun	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	88	39.0	0.004364	18270.50	4.703733	1077.874
2	88	39.0	0.004364	18270.50	4.703733	1077.874
3	85	37.5	0.004380	18362.45	4.624477	1055.734
4	82	36.0	0.004379	18363.64	4.526132	1033.594
5	83	36.5	0.004380	18364.53	4.559483	1040.974
6	82	36.0	0.004379	18363.64	4.526132	1033.594
7	84	37.0	0.004380	18364.12	4.592256	1048.354
8	84	37.0	0.004380	18364.12	4.592256	1048.354
9	83	36.5	0.004380	18364.53	4.559483	1040.974
10	84	37.0	0.004380	18364.12	4.592256	1048.354

No. M/A_g q/A_g b_1 С q A_{g} of run (Nmm/mm^2) $(N/mm/mm^2)$ (N/mm) (mm^2) (mm) (mm) 1 76 33.0 0.007040 14977.32 4.688484 665.9936 33.0 0.007040 14977.32 4.688484 665.9936 2 76 3 0.007040 4.688484 76 33.0 14977.32 665.9936 4 75 32.5 0.007039 15054.65 4.657244 661.6136 5 75 32.5 0.007039 15054.65 4.657244 661.6136 6 76 33.0 14977.32 0.007040 4.688484 665.9936 7 74 32.0 0.007037 15131.49 4.625060 657.2336 8 74 32.0 0.007037 15131.49 4.625060 657.2336 9 75 32.5 0.007039 15054.65 4.657244 661.6136 75 32.5 10 0.007039 15054.65 4.657244 661.6136

h=250 mm, L=3200 mm and t=1.5 mm

h=250 *mm*, *L*=4300 *mm* and *t*=2.0 *mm*

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
of run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	78	34.0	0.004673	18782.38	4.214851	901.9136
2	77	33.5	0.004673	18842.47	4.187470	896.0336
3	77	33.5	0.004673	18842.47	4.187470	896.0336
4	78	34.0	0.004673	18782.38	4.214851	901.9136
5	78	34.0	0.004673	18782.38	4.214851	901.9136
6	77	33.5	0.004673	18842.47	4.187470	896.0336
7	78	34.0	0.004673	18782.38	4.214851	901.9136
8	80	35.0	0.004669	18651.44	4.266200	913.6736
9	78	34.0	0.004673	18782.38	4.214851	901.9136
10	77	33.5	0.004673	18842.47	4.187470	896.0336

h=250 mm, L=5100 mm and t=2.5 mm

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
or run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	88	39	0.003844	21095.94	4.616241	1200.874
2	88	39	0.003844	21095.94	4.616241	1200.874
3	86	38	0.003845	21161.99	4.560300	1186.114
4	86	38	0.003845	21161.99	4.560300	1186.114
5	88	39	0.003844	21095.94	4.616241	1200.874
6	86	38	0.003845	21161.99	4.560300	1186.114
7	86	38	0.003845	21161.99	4.560300	1186.114
8	86	38	0.003845	21161.99	4.560300	1186.114
9	86	38	0.003845	21161.99	4.560300	1186.114
10	86	38	0.003845	21161.99	4.560300	1186.114

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
orrun	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	90	40.0	0.004535	19785.73	4.854450	1070.474
2	90	40.0	0.004535	19785.73	4.854450	1070.474
3	90	40.0	0.004535	19785.73	4.854450	1070.474
4	88	39.0	0.004535	19934.10	4.800740	1058.714
5	89	39.5	0.004535	19860.34	4.827917	1064.594
6	90	40.0	0.004535	19785.73	4.854450	1070.474
7	88	39.0	0.004535	19934.10	4.800740	1058.714
8	90	40.0	0.004535	19785.73	4.854450	1070.474
9	90	40.0	0.004535	19785.73	4.854450	1070.474
10	89	39.5	0.004535	19860.34	4.827917	1064.594

h=300 *mm*, *L*=4500 *mm* and *t*=2.0 *mm*

h=300 mm, L=5500 mm and t=2.5 mm

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
orrun	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	87	38.5	0.003529	23413.27	4.645736	1316.494
2	90	40.0	0.003543	23321.97	4.742144	1338.634
3	89	39.5	0.003539	23354.56	4.710856	1331.254
4	89	39.5	0.003539	23354.56	4.710856	1331.254
5	89	39.5	0.003539	23354.56	4.710856	1331.254
6	90	40.0	0.003543	23321.97	4.742144	1338.634
7	87	38.5	0.003529	23413.27	4.645736	1316.494
8	90	40.0	0.003543	23321.97	4.742144	1338.634
9	90	40.0	0.003543	23321.97	4.742144	1338.634
10	90	40.0	0.003543	23321.97	4.742144	1338.634

h=300 *mm*, *L*=6000 *mm* and *t*=3.0 *mm*

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
orrun	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	87	38.5	0.003180	24938.63	5.018493	1578.154
2	90	40.0	0.003220	25090.94	5.166782	1604.794
3	89	39.5	0.003207	25041.46	5.118124	1595.914
4	89	39.5	0.003207	25041.46	5.118124	1595.914
5	89	39.5	0.003207	25041.46	5.118124	1595.914
6	90	40.0	0.003220	25090.94	5.166782	1604.794
7	87	38.5	0.003180	24938.63	5.018493	1578.154
8	90	40.0	0.003220	25090.94	5.166782	1604.794
9	90	40.0	0.003220	25090.94	5.166782	1604.794
10	90	40.0	0.003220	25090.94	5.166782	1604.794

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
of run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	87	38.5	0.003808	21538.42	4.381884	1150.834
2	90	40.0	0.003829	21327.71	4.473592	1168.474
3	89	39.5	0.003822	21398.99	4.443725	1162.594
4	89	39.5	0.003822	21398.99	4.443725	1162.594
5	89	39.5	0.003822	21398.99	4.443725	1162.594
6	90	40.0	0.003829	21327.71	4.473592	1168.474
7	87	38.5	0.003808	21538.42	4.381884	1150.834
8	90	40.0	0.003829	21327.71	4.473592	1168.474
9	90	40.0	0.003829	21327.71	4.473592	1168.474
10	90	40.0	0.003829	21327.71	4.473592	1168.474

h=350 *mm*, *L*=5000 *mm* and *t*=2.0 *mm*

h=350 *mm*, *L*=6000 *mm* and *t*=2.5 *mm*

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
of run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	87	38.5	0.003073	25300.75	4.423748	1439.494
2	90	40.0	0.003101	25226.00	4.531871	1461.634
3	89	39.5	0.003092	25253.29	4.496764	1454.254
4	89	39.5	0.003092	25253.29	4.496764	1454.254
5	89	39.5	0.003092	25253.29	4.496764	1454.254
6	90	40.0	0.003101	25226.00	4.531871	1461.634
7	87	38.5	0.003073	25300.75	4.423748	1439.494
8	90	40.0	0.003101	25226.00	4.531871	1461.634
9	90	40.0	0.003101	25226.00	4.531871	1461.634
10	90	40.0	0.003101	25226.00	4.531871	1461.634

h=350 *mm*, *L*=7000 *mm* and *t*=3.0 *mm*

No. of run	b_1	С	q/A_{g}	M/A_{g}	q	A_{g}
orrain	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm^2)	(N/mm)	(mm^2)
1	87	38.5	0.002465	27061.03	4.254442	1726.154
2	90	40.0	0.002510	27255.40	4.399293	1752.794
3	89	39.5	0.002495	27192.03	4.351814	1743.914
4	89	39.5	0.002495	27192.03	4.351814	1743.914
5	89	39.5	0.002495	27192.03	4.351814	1743.914
6	90	40.0	0.002510	27255.40	4.399293	1752.794
7	87	38.5	0.002465	27061.03	4.254442	1726.154
8	90	40.0	0.002510	27255.40	4.399293	1752.794
9	90	40.0	0.002510	27255.40	4.399293	1752.794
10	90	40.0	0.002510	27255.40	4.399293	1752.794

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
of run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	87	38.5	0.002247	28330.80	4.519038	2010.814
2	90	40.0	0.002294	28533.48	4.684835	2041.954
3	89	39.5	0.002279	28467.29	4.630489	2031.574
4	89	39.5	0.002279	28467.29	4.630489	2031.574
5	89	39.5	0.002279	28467.29	4.630489	2031.574
6	90	40.0	0.002294	28533.48	4.684835	2041.954
7	87	38.5	0.002247	28330.80	4.519038	2010.814
8	90	40.0	0.002294	28533.48	4.684835	2041.954
9	90	40.0	0.002294	28533.48	4.684835	2041.954
10	90	40.0	0.002294	28533.48	4.684835	2041.954

h=350 mm, L=7500 mm and t=3.5 mm

Choice 3 (free optimization)

h=100 *mm*, *L*=1400 *mm* and *t*=1.0 *mm*

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
orrun	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	40	20.06	0.019821	8069.294	4.001341	201.8688
2	40	15.98	0.019179	8181.224	3.721451	194.0352
3	56	23.50	0.017822	7023.375	4.262833	239.1936
4	41	20.65	0.019763	8000.179	4.049832	204.9216
5	40	20.06	0.019821	8069.294	4.001341	201.8688
6	46	22.80	0.019281	7657.916	4.215812	218.6496
7	40	20.06	0.019821	8069.294	4.001341	201.8688
8	40	20.06	0.019821	8069.294	4.001341	201.8688
9	41	20.65	0.019617	7855.583	4.139724	211.0272
10	44	22.42	0.019532	7780.891	4.181474	214.0800

h=100 *mm*, *L*=1600 *mm* and *t*=1.2 *mm*

No.	b_1	С	q/A_g	M/A_{g}	q	A_{g}
orrun	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	43	21.83	0.016293	8763.954	4.139416	254.0632
2	44	22.04	0.016265	8759.222	4.178035	256.8704
3	44	22.80	0.016312	8723.037	4.218877	258.6336
4	43	21.83	0.016293	8763.954	4.139416	254.0632
5	44	22.42	0.016291	8742.151	4.198943	257.7520
6	43	21.83	0.016293	8763.954	4.139416	254.0632
7	43	21.83	0.016293	8763.954	4.139416	254.0632
8	44	22.04	0.016265	8759.222	4.178035	256.8704
9	42	21.24	0.016270	8768.581	4.073471	250.3744
10	44	22.42	0.016291	8742.151	4.198943	257.7520

No. M/A_g q/A_g b_1 С q A_{g} of run (Nmm/mm^2) $(N/mm/mm^2)$ (N/mm) (mm^2) (mm) (mm) 1 48 24.78 0.012345 9262.166 4.212605 341.2312 2 48 24.78 0.012345 9262.166 4.212605 341.2312 337.7856 3 47 24.60 0.012353 9242.310 4.172693 4 48 24.78 0.012345 9262.166 4.212605 341.2312 5 47 24.19 0.012343 9264.970 4.154517 336.5884 6 56 29.50 0.012203 9121.224 4.617239 378.3736 7 25.20 **48** 0.012355 9238.816 4.231034 342.4576 8 48 25.20 0.012355 9238.816 4.231034 342.4576 9 48 25.20 0.012355 9238.816 4.231034 342.4576 10 49 25.80 0.012354 9234.027 4.288272 347.1296

h=100 mm, L=1900 mm and t=1.5 mm

h=100 *mm*, *L*=2200 *mm* and *t*=2.0 *mm*

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
or run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	55	28.91	0.009588	9462.814	4.772774	497.8008
2	56	29.50	0.009590	9470.044	4.833476	504.0336
3	58	29.64	0.009574	9526.179	4.906058	512.4224
4	60	31.86	0.009560	9458.214	5.056934	528.9648
5	56	29.50	0.009590	9470.044	4.833476	504.0336
6	56	29.50	0.009590	9470.044	4.833476	504.0336
7	56	30.00	0.009596	9448.362	4.855401	505.9936
8	56	29.50	0.009590	9470.044	4.833476	504.0336
9	55	28.91	0.009588	9462.814	4.772774	497.8008
10	55	24.99	0.009495	9610.722	4.580845	482.4344

h=150 mm, L=1700 mm and t=1.0 mm

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
of run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	47	20.50	0.016343	9729.276	4.317151	264.1536
2	45	23.01	0.016796	9836.653	4.453240	265.1328
3	48	24.78	0.016772	9599.288	4.600280	274.2912
4	46	23.60	0.016799	9759.061	4.505134	268.1856
5	46	22.80	0.016712	9774.276	4.456348	266.6496
6	46	23.60	0.016799	9759.061	4.505134	268.1856
7	48	24.36	0.016732	9608.147	4.575875	273.4848
8	41	17.85	0.016209	10138.81	4.012402	247.5456
9	48	25.20	0.016807	9587.674	4.623444	275.0976
10	43	21.83	0.016753	9985.479	4.339607	259.0272

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
orrun	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	49	25.80	0.013234	11006.92	4.435810	335.1936
2	50	25.08	0.013145	10974.46	4.414595	335.8432
3	49	25.37	0.013208	11022.05	4.414102	334.1960
4	49	25.37	0.013208	11022.05	4.414102	334.1960
5	52	23.46	0.012911	10887.01	4.347523	336.7248
6	49	25.37	0.013208	11022.05	4.414102	334.1960
7	49	25.37	0.013208	11022.05	4.414102	334.1960
8	48	24.78	0.013206	11091.73	4.364733	330.5072
9	49	25.37	0.013208	11022.05	4.414102	334.1960
10	49	24.51	0.013148	11045.48	4.367909	332.2008

h=150 *mm*, *L*=2000 *mm* and *t*=1.2 *mm*

h=150 *mm*, *L*=2500 *mm* and *t*=1.5 *mm*

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
orrun	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	58	30.68	0.009411	12220.07	4.335335	460.6592
2	57	30.09	0.009430	12283.25	4.300174	456.0164
3	54	28.32	0.009441	12408.74	4.173935	442.0880
4	56	25.50	0.009286	12454.37	4.082953	439.6936
5	57	30.09	0.009430	12283.25	4.300174	456.0164
6	55	24.99	0.009288	12492.40	4.043049	435.2844
7	54	28.32	0.009441	12408.74	4.173935	442.0880
8	56	29.50	0.009437	12327.45	4.259496	451.3736
9	56	30.00	0.009449	12305.44	4.278843	452.8336
10	54	28.32	0.009441	12408.74	4.173935	442.0880

h=150 *mm*, *L*=3000 *mm* and *t*=2.0 *mm*

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
of run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	66	36.00	0.007382	13665.38	4.921713	666.7136
2	72	38.94	0.007330	13559.01	5.143616	701.7584
3	65	34.81	0.007377	13705.10	4.854889	658.1288
4	66	36.00	0.007382	13665.38	4.921713	666.7136
5	67	31.11	0.007303	13917.31	4.757497	651.4648
6	67	31.11	0.007303	13917.31	4.757497	651.4648
7	67	31.11	0.007303	13917.31	4.757497	651.4648
8	66	36.00	0.007382	13665.38	4.921713	666.7136
9	65	35.40	0.007382	13672.60	4.875169	660.4416
10	66	35.40	0.007377	13698.51	4.901210	664.3616

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
of run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	61	32.45	0.007520	14308.80	4.118050	547.5876
2	61	32.45	0.007520	14308.80	4.118050	547.5876
3	72	38.94	0.007416	13441.11	4.439540	598.6584
4	61	32.45	0.007491	14335.81	4.078013	544.3756
5	61	32.45	0.007520	14308.80	4.118050	547.5876
6	60	32.40	0.007531	14362.48	4.100591	544.5216
7	61	31.35	0.007491	14335.81	4.078013	544.3756
8	62	33.60	0.007532	14217.23	4.171536	553.8656
9	63	33.63	0.007517	14161.09	4.186011	556.8732
10	62	33.60	0.007532	14217.23	4.171536	553.8656

h=200 mm, L=3000 mm and t=1.5 mm

h=200 mm, L=3800 mm and t=2.0 mm

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
or run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	70	37.76	0.005559	16655.55	4.376418	787.2928
2	71	38.35	0.005558	16616.86	4.410110	793.5256
3	72	38.94	0.005555	16576.24	4.442811	799.7584
4	70	37.76	0.005545	16703.12	4.337722	782.2752
5	71	38.35	0.005558	16616.86	4.410110	793.5256
6	68	37.20	0.005550	16650.05	4.314096	777.2576
7	72	37.62	0.005542	16625.88	4.403319	794.5840
8	70	37.76	0.005559	16655.55	4.376418	787.2928
9	73	39.53	0.005552	16533.80	4.474568	805.9912
10	72	38.94	0.005555	16576.24	4.442811	799.7584

h=200 mm, L=4500 mm and t=2.5 mm

No.	b_1	С	q/A_{g}	M/A_g	q	A_{g}
or run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	84	46.02	0.004435	17991.23	4.845901	1092.732
2	84	46.80	0.004436	17949.06	4.863996	1096.570
3	84	46.02	0.004435	17991.23	4.845901	1092.732
4	83	45.43	0.004435	17998.64	4.811646	1084.909
5	83	46.20	0.004436	17957.07	4.829570	1088.698
6	88	49.20	0.004416	17832.80	4.981103	1128.058
7	83	43.89	0.004431	18072.90	4.773161	1077.332
8	88	41.82	0.004387	18170.39	4.789457	1091.748
9	75	40.71	0.004416	18022.20	4.514945	1022.327
10	83	45.43	0.004435	17998.64	4.811646	1084.909

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
of run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	71	38.35	0.007285	15305.49	4.859272	667.0156
2	73	40.20	0.007302	15123.96	4.952915	678.2576
3	73	39.53	0.007289	15140.61	4.929224	676.3012
4	73	39.53	0.007289	15140.61	4.929224	676.3012
5	71	38.35	0.007285	15305.49	4.859272	667.0156
6	70	38.40	0.007295	15371.63	4.845775	664.2416
7	74	38.76	0.007255	15081.98	4.911652	676.9728
8	71	39.00	0.007299	15289.70	4.882716	668.9136
9	73	39.53	0.007289	15140.61	4.929224	676.3012
10	72	38.94	0.007288	15223.33	4.894839	671.6584

h=250 *mm*, *L*=3200 *mm* and *t*=1.5 *mm*

h=250 mm, L=4300 mm and t=2.0 mm

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
orrun	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	76	41.30	0.004797	18764.01	4.426172	922.6896
2	76	42.00	0.004803	18738.68	4.444690	925.4336
3	75	40.71	0.004794	18816.54	4.393829	916.4568
4	75	40.71	0.004794	18816.54	4.393829	916.4568
5	77	42.60	0.004802	18669.61	4.473677	931.7056
6	73	40.20	0.004788	18876.25	4.341239	906.6176
7	76	39.90	0.004782	18803.06	4.386324	917.2016
8	78	42.48	0.004794	18625.37	4.482893	935.1552
9	75	40.71	0.004794	18816.54	4.393829	916.4568
10	76	41.30	0.004797	18764.01	4.426172	922.6896

h=250 *mm*, *L*=5100 *mm* and *t*=2.5 *mm*

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
orrun	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	86	47.20	0.003916	20901.80	4.821621	1231.378
2	86	48.00	0.003918	20865.63	4.840345	1235.314
3	86	47.20	0.003916	20901.80	4.821621	1231.378
4	86	47.20	0.003916	20901.80	4.821621	1231.378
5	85	47.40	0.003915	20882.09	4.806018	1227.442
6	88	49.20	0.003916	20786.50	4.899504	1251.058
7	86	48.00	0.003918	20865.63	4.840345	1235.314
8	88	48.38	0.003914	20823.72	4.880450	1247.023
9	85	39.50	0.003863	21136.43	4.591390	1188.574
10	85	46.61	0.003913	20917.62	4.787478	1223.555

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
of run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	87	47.79	0.004668	19902.23	5.084555	1089.250
2	86	48.00	0.004675	19957.95	5.077571	1086.154
3	87	48.60	0.004675	19878.90	5.107264	1092.426
4	87	47.79	0.004668	19902.23	5.084555	1089.250
5	87	48.60	0.004675	19878.90	5.107264	1092.426
6	88	49.20	0.004675	19799.02	5.136190	1098.698
7	85	47.40	0.004674	20036.09	5.047076	1079.882
8	82	45.60	0.004666	20264.14	4.950417	1061.066
9	89	48.97	0.004667	19742.60	5.141385	1101.716
10	85	47.40	0.004674	20036.09	5.047076	1079.882

h=300 mm, L=4500 mm and t=2.0 mm

h=300 *mm*, *L*=5500 *mm* and *t*=2.5 *mm*

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
or run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	87	48.60	0.003618	23249.78	4.942488	1366.186
2	93	51.33	0.003633	23040.00	5.118765	1409.137
3	94	52.80	0.003635	22940.90	5.166227	1421.290
4	93	51.33	0.003633	23040.00	5.118765	1409.137
5	94	51.92	0.003631	22975.15	5.145415	1416.960
6	96	54.00	0.003630	22799.84	5.216501	1437.034
7	94	52.80	0.003635	22940.90	5.166227	1421.290
8	96	54.00	0.003630	22799.84	5.216501	1437.034
9	97	45.50	0.003568	22971.62	4.995863	1400.134
10	97	53.69	0.003624	22763.36	5.219409	1440.428

h=300 *mm*, *L*=6000 *mm* and *t*=3.0 *mm*

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
of run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	99	47.43	0.003328	25389.85	5.665236	1702.059
2	94	51.92	0.003338	25136.48	5.671384	1699.040
3	99	55.80	0.003370	25115.28	5.903286	1751.610
4	100	55.46	0.003372	25157.64	5.919868	1755.517
5	99	55.80	0.003370	25115.28	5.903286	1751.610
6	97	54.60	0.003360	25112.08	5.821417	1732.666
7	100	56.40	0.003375	25115.28	5.943270	1761.082
8	100	56.40	0.003375	25115.28	5.943270	1761.082
9	100	47.94	0.003333	25396.74	5.703137	1710.998
10	87	47.79	0.003274	25055.58	5.347084	1633.150

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
of run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	87	47.79	0.003932	21534.74	4.668858	1187.250
2	86	48.00	0.003932	21595.16	4.656158	1184.154
3	90	48.72	0.003943	21311.69	4.741524	1202.656
4	91	49.30	0.003947	21232.37	4.771669	1208.850
5	89	49.80	0.003952	21361.67	4.754359	1202.970
6	88	49.20	0.003946	21440.45	4.722420	1196.698
7	91	48.45	0.003939	21243.14	4.748322	1205.518
8	91	48.45	0.003939	21243.14	4.748322	1205.518
9	96	43.20	0.003857	20884.14	4.646258	1204.538
10	87	47.79	0.003932	21534.74	4.668858	1187.250

h=350 mm, L=5000 mm and t=2.0 mm

h=350 mm, L=6000 mm and t=2.5 mm

No.	b_1	С	q/A_g	M/A_{g}	q	A_{g}
orrun	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	91	49.30	0.003187	25175.61	4.819386	1512.310
2	91	48.45	0.003181	25188.38	4.797614	1508.128
3	93	46.98	0.003175	25141.25	4.796546	1510.735
4	91	49.30	0.003187	25175.61	4.819386	1512.310
5	95	45.39	0.003163	25072.4	4.784147	1512.752
6	91	49.30	0.003187	25175.61	4.819386	1512.310
7	94	45.76	0.003166	25111.31	4.779073	1509.653
8	91	48.45	0.003181	25188.38	4.797614	1508.128
9	96	44.10	0.003149	25020.31	4.758767	1511.326
10	87	47.79	0.003158	25294.54	4.690115	1485.200

h=350 *mm*, *L*=7000 *mm* and *t*=3.0 *mm*

No.	b_1	С	q/A_g	M/A_g	q	A_{g}
orrun	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	90	50.40	0.002584	27424.63	4.687586	1814.362
2	97	42.77	0.002588	27619.07	4.685120	1810.632
3	93	46.98	0.002596	27589.12	4.703785	1811.875
4	95	45.39	0.002601	27657.43	4.718544	1814.302
5	95	45.39	0.002601	27657.43	4.718544	1814.302
6	91	49.30	0.002590	27488.70	4.697169	1813.770
7	96	44.10	0.002597	27667.07	4.706999	1812.586
8	96	44.10	0.002597	27667.07	4.706999	1812.586
9	96	44.10	0.002597	27667.07	4.706999	1812.586
10	89	47.31	0.002563	27456.35	4.587514	1790.149

No.	b_1	С	$q/A_{_g}$	M/A_g	q	A_{g}
orrun	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm^2)	(N/mm)	(mm^2)
1	100	40.42	0.002373	28902.73	5.015918	2114.060
2	97	42.77	0.002378	28929.41	5.016098	2109.562
3	93	46.98	0.002377	28912.37	5.018875	2111.015
4	98	42.32	0.002380	28943.07	5.030187	2113.368
5	96	44.10	0.002382	28946.90	5.030269	2111.846
6	100	40.42	0.002373	28902.73	5.015918	2114.060
7	102	38.40	0.002359	28815.29	4.986332	2113.922
8	97	42.77	0.002378	28929.41	5.016098	2109.562
9	96	44.10	0.002382	28946.90	5.030269	2111.846
10	95	45.39	0.002384	28952.33	5.039681	2113.852

h=350 *mm*, *L*=7500 *mm* and *t*=3.5 *mm*

APPENDIX B

Results for Σ -Shape Purlin with Objective Function q/A_s and with Freely Varied Parameters

Single Edge Stiffener

h=250 mm, L=4000 mm and t=1.5 mm

			-	-	-			-	-		
$A_{_{g}}$	(mm^2)	759.3749	729.4002	718.1628	755.8002	729.4002	714.3499	714.3499	714.3499	737.2089	725.5289
b	(N/mm)	5.588404	5.417857	5.313578	5.577774	5.417857	5.298046	5.298046	5.298046	5.367056	5.364968
$oldsymbol{M}_{_{\mathcal{Y}}}/A_{_{\mathcal{B}}}$	(Nmm/mm ²)	17867.07	18210.46	18281.58	17908.07	18210.46	18158.14	18158.14	18158.14	18098.08	18065.90
$q/A_{_g}$	$(N/mm/mm^2)$	0.007359	0.007428	0.007399	0.007380	0.007428	0.007417	0.007417	0.007417	0.007280	0.007395
d_s	(mm)	37	31	29	36	31	30	30	30	32	32
h_2	(mm)	37	31	29	36	31	30	30	30	32	32
h_1	(mm)	43.74	38.71	36.66	42.93	38.71	39.50	39.50	39.50	40.80	41.60
С	(mm)	42.12	36.34	34.32	41.31	36.34	31.60	31.60	31.60	37.60	33.60
q	(mm)	81	79	78	81	79	79	<i>6L</i>	<i>4</i>	80	80
No. of	TINT	1	2	3	4	5	9	L	8	6	10
		_				_	_			_	_

r	١
X	
Ę	
Ē	

h=250 mm, L=5500 mm and t=2.5 mm

No. of	q	С	h_1	h_2	d_s	$q/A_{_{g}}$	$\boldsymbol{M}_{y}/\boldsymbol{A}_{g}$	b	\mathbf{A}_{g}
ITNT	(mm)	(mm)	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	81	42.12	43.74	37	37	0.004635	21682.98	5.877090	1268.084
2	80	37.60	40.80	32	32	0.004703	21923.87	5.787881	1230.736
3	80	32.80	41.60	31	31	0.004697	21831.05	5.660604	1205.082
4	81	40.50	42.93	35	35	0.004723	21775.39	5.931933	1256.038
5	81	40.50	42.93	35	35	0.004723	21775.39	5.931933	1256.038
9	81	40.50	42.93	35	35	0.004723	21775.39	5.931933	1256.038
7	80	32.80	41.60	31	31	0.004697	21831.05	5.660604	1205.082
8	82	43.46	45.92	38	38	0.004650	21586.22	5.959551	1281.635
6	80	37.60	40.80	32	32	0.004703	21923.87	5.787881	1230.736
10	80	37.60	40.80	32	32	0.004703	21923.87	5.787881	1230.736

h=300 mm, L=5000 mm and t=2.0 mm

	T	1	- 1				-	-	-	-	
$A_{g}^{(1)}$	(mm)	00/.0011	1175.316	1054.494	1116.302	1175.316	1129.802	1175.316	1156.766	1143.926	1099.142
<i>b</i>	(IN/MM)	0.8884/9	7.040185	5.998255	6.613975	7.040185	6.676683	7.040185	6.888479	6.708126	6.435609
M_{y}/A_{g}	(25140.90	23082.50	23493.29	23178.33	23082.50	23196.99	23082.50	23146.90	23143.48	23540.13
$q/A_s^{0.1}$	(mm/mm/n)		0.005990	0.005688	0.005925	0.005990	0.005910	0.005990	0.005955	0.005864	0.005855
d_s	(mm)	52	35	28	30	35	32	35	32	30	32
h_2	(mm)	24	29	23	27	29	31	29	24	20	24
μ_1	(mm)	41.80	46.00	56.00	39.60	46.00	43.68	46.00	41.86	37.80	58.32
C	(mm)	42.11	46.00	30.40	36.00	46.00	38.22	46.00	42.77	40.50	38.07
q	(mm)	۶ ۰	92	80	90	92	91	92	91	90	81
No. of run	÷	- (2	3	4	5	9	7	8	6	10

APPENDIX B

h=300 mm, L=6500 mm and t=3.0 mm

$A_{_{g}}$	(mm^2)	1692.464	1759.026	1759.026	1759.026	1759.026	1692.464	1759.026	1755.143	1732.828	960 6521
b	(N/mm)	6.709734	7.026430	7.026430	7.026430	7.026430	6.709734	7.026430	7.011604	6.884105	7 026430
$oldsymbol{M}_y/oldsymbol{A}_g$	(Nmm/mm ²)	26295.59	26342.64	26342.64	26342.64	26342.64	26295.59	26342.64	26373.00	26477.74	26342 64
$q/A_{_{g}}$	$(N/mm/mm^2)$	0.003964	266£00.0	0.003995	0.003995	266£00.0	0.003964	266£00.0	0.003995	0.003973	266200.0
d_s	(mm)	32	35	35	35	35	32	35	34	32	35
h_2	(mm)	31	0 E	30	30	30	18	30	L2	54	0٤
h_1	(mm)	43.68	46.00	46.00	46.00	46.00	43.68	46.00	46.00	41.86	46.00
С	(mm)	38.22	46.00	46.00	46.00	46.00	38.22	46.00	45.08	42.77	46.00
q	(mm)	16	92	92	92	92	16	92	92	16	60
No. of	IINT	1	2	3	4	5	9	7	8	6	10

h=350 mm, L=6000 mm and t=2.0 mm

No. of	q	С	h_1	h_2	d_s	$q/A_{_{g}}$	$M_{_{\mathcal{Y}}}/A_{_{\mathcal{B}}}$	d	$A_{_{g}}$
11111	(mm)	(mm)	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	83	36.52	66.40	18	29	0.004216	26379.73	5.054609	1199.033
2	83	34.03	68.06	30	31	0.004200	26511.13	4.948987	1178.393
3	83	36.52	66.40	17	29	0.004222	26350.62	5.069989	1200.806
4	83	33.20	68.06	28	30	0.004241	26451.04	4.981339	1174.677
5	83	33.20	68.06	28	30	0.004241	26451.04	4.981339	1174.677
9	83	33.20	68.06	28	30	0.004241	26451.04	4.981339	1174.677
L	83	34.03	68.06	30	31	0.004200	26511.13	4.948987	1178.393
8	83	36.52	66.40	17	29	0.004222	26350.62	5.069989	1200.806
6	84	35.28	72.24	31	32	0.004213	26414.51	5.008149	1188.838
10	82	30.34	63.96	21	27	0.004160	26202.89	4.825355	1159.877

r	١
X	
Ę	
Ē	

h=350 mm, L=7500 mm and t=3.0 mm

No. of	q	С	h_1	h_2	d_s	$q/A_{_{g}}$	$M_{_{\mathcal{Y}}}/A_{_{\mathcal{S}}}$	b	$oldsymbol{A}_{g}$
IIIII	(mm)	(mm)	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	16	33.67	43.68	22	27	0.003094	29654.31	5.595716	1808.544
2	83	32.37	68.06	25	29	0.002941	28966.28	5.165940	1756.449
3	68	31.15	35.60	18	25	0.002967	29404.21	5.284973	1781.102
4	83	32.37	68.06	25	29	0.002941	28966.28	5.165940	1756.449
5	91	33.67	43.68	22	27	0.003094	29654.31	5.595716	1808.544
9	84	35.28	72.24	31	32	0.002975	29096.90	5.299895	1781.619
L	06	32.40	39.60	20	26	0.003037	29572.83	5.450091	1794.702
8	89	31.15	35.60	18	25	0.002967	29404.21	5.284973	1781.102
6	90	32.40	39.60	20	26	0.003037	29572.83	5.450091	1794.702
10	91	33.67	43.68	22	27	0.003094	29654.31	5.595716	1808.544

h=400 mm, L=6000 mm and t=2.0 mm

			_	_	_		_	_	_	_	_
$A_{_{g}}$	(mm^2)	1203.870	168.6611	168.6611	168.6611	1194.599	1203.870	1198.538	1163.335	1168.400	1194.599
b	(N/mm)	4.793574	4.639892	4.639892	4.639892	4.620091	4.793574	4.676307	4.414218	4.238897	4.620091
${oldsymbol{M}}_y/{oldsymbol{A}}_{_B}$	(Nmm/mm^2)	28801.56	28585.49	28585.49	28585.49	28477.95	28801.56	28702.46	29101.59	27710.81	28477.95
$q/{ m A}_{_{g}}$	$(N/mm/mm^2)$	0.003982	0.003867	0.003867	0.003867	0.003867	0.003982	0.003902	0.003794	0.003628	0.003867
d_s	(mm)	21	20	20	20	20	21	21	20	18	20
h_2	(mm)	38	36	36	36	36	38	38	35	40	36
h_1	(mm)	46.80	46.02	46.02	46.02	42.35	46.80	43.12	66.03	44.66	42.35
с	(mm)	28.08	27.30	27.30	27.30	26.95	28.08	27.72	24.85	21.56	26.95
q	(mm)	78	78	78	78	LL LL	78	LL	71	LL LL	LL LL
No. of		1	2	3	4	5	9	L	8	6	10

B
X
P
E
Ы

h=400 mm, L=8000 mm and t=3.0 mm

No. of	q	С	h_1	h_2	d_s	$q/A_{_{g}}$	${oldsymbol{M}}_y/{oldsymbol{A}}_s$	b	$A_{_{g}}$
IIIII	(mm)	(mm)	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	6 <i>L</i>	22.12	52.14	39	18	0.002271	31075.32	4.012551	1767.013
2	6L	27.65	49.77	36	20	0.002398	31972.39	4.332544	1806.820
3	78	27.30	46.02	36	20	0.002385	31867.55	4.290817	1798.828
4	81	26.73	57.51	32	18	0.002313	31855.91	4.186682	1810.429
5	62	27.65	49.77	36	20	0.002398	31972.39	4.332544	1806.820
9	80	22.40	56.00	39	18	0.002273	31107.54	4.033326	174.591
7	81	22.68	59.94	39	18	0.002271	31140.26	4.047509	1782.169
8	81	21.06	59.13	35	16	0.002183	30826.85	3.863942	1769.806
6	62	27.65	49.77	36	20	0.002398	31972.39	4.332544	1806.820
10	62	27.65	49.77	36	20	0.002398	31972.39	4.332544	1806.820

Double Edge Stiffeners

h=250 mm, L=4000 mm and t=1.5 mm

	_	_	_	_	_	_	_	_	_	_	_
$A_{_{B}}$	(mm^2)	773.7143	796.4980	773.7143	796.4980	742.1829	695.7180	773.7143	802.2627	742.1829	768.0664
b	(N/mm)	5.831786	5.955103	5.831786	5.955103	5.580537	5.097669	5.831786	5.987334	5.580537	5.765347
$oldsymbol{M}_{_{\mathcal{Y}}}/A_{_{\mathcal{S}}}$	(Nmm/mm^2)	18950.84	18715.39	18950.84	18715.39	18937.47	19173.67	18950.84	18649.29	18937.47	18987.62
$q/A_{_g}$	$(N/mm/mm^2)$	0.007537	0.007477	0.007537	0.007477	0.007519	0.007327	0.007537	0.007463	0.007519	0.007506
d_s	(mm)	33	36	33	36	31	28	33	37	31	32
h_2	(mm)	33	36	33	36	31	28	33	37	31	32
h_1	(mm)	37.24	39.00	37.24	39.00	39.00	43.52	37.24	39.78	39.00	36.48
d	(mm)	18.24	19.50	18.24	19.50	15.00	12.24	18.24	20.28	15.00	17.48
С	(mm)	36.48	39.78	36.48	39.78	30.75	25.84	36.48	40.56	30.75	35.72
q	(mm)	92	78	92	78	75	89	92	78	75	92
No. of run		1	2	3	4	5	9	L	8	6	10

A
N
9
Ē
Ы

h=250 mm, L=5500 mm and t=2.5 mm

No. of run	q	С	d	h_1	h_2	d_s	$q/A_{_{B}}$	$M_{_{\mathcal{Y}}}/A_{_{\mathcal{S}}}$	b	$A_{_{g}}$
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm^2)	(N/mm)	(mm^2)
1	76	35.72	17.48	36.48	32	32	0.004538	21875.88	5.804947	1279.250
2	78	39.00	19.50	39.00	35	35	0.004556	21750.23	6.019403	1321.280
3	75	30.00	14.25	38.25	30	30	0.004553	21873.43	5.582433	1226.220
4	78	39.00	19.50	39.00	35	35	0.004556	21750.23	6.019403	1321.280
5	75	30.00	14.25	38.25	30	30	0.004553	21873.43	5.582433	1226.220
9	77	32.34	15.40	40.04	32	32	0.004572	21870.06	5.747873	1257.307
7	76	35.72	17.48	36.48	32	32	0.004538	21875.88	5.804947	1279.250
8	75	30.00	14.25	38.25	30	30	0.004553	21873.43	5.582433	1226.220
6	75	30.00	14.25	38.25	30	30	0.004553	21873.43	5.582433	1226.220
10	76	35.72	17.48	36.48	32	32	0.004538	21875.88	5.804947	1279.250

h=300 mm, L=5000 mm and t=2.0 mm

Vo. of run	q	С	d	^{1}y	h_2	d_s	$q/A_{_{g}}$	$oldsymbol{M}_{_{\mathcal{Y}}}/A_{_{\mathcal{B}}}$	b	$A_{_{g}}$
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(N/mm/mm ²)	(Nmm/mm^2)	(N/mm)	(mm^2)
1	62	34.76	17.38	45.03	18	29	0.005843	24187.05	6.668271	1141.151
2	81	38.88	19.44	49.41	25	33	0.005921	24183.59	6.955722	1174.679
3	81	38.88	19.44	49.41	25	33	0.005921	24183.59	6.955722	1174.679
4	81	38.88	19.44	49.41	25	33	0.005921	24183.59	6.955722	1174.679
5	81	38.88	19.44	49.41	25	33	0.005921	24183.59	6.955722	1174.679
9	80	37.60	18.40	49.60	24	32	0.005905	24228.60	6.850539	1160.075
7	62	34.76	17.38	45.03	18	29	0.005843	24187.05	6.668271	1141.151
8	LL	32.34	16.17	42.35	14	27	0.005649	24152.73	6.325669	1119.797
9	81	38.88	19.44	49.41	25	33	0.005921	24183.59	6.955722	1174.679
10	79	34.76	17.38	45.03	18	29	0.005843	24187.05	6.668271	1141.151

\mathbf{a}	
X	
<u>a</u>	
Ξ	
P	

h=300 mm, L=6500 mm and t=3.0 mm

No. of run	q	С	p	$\mu_{\rm I}$	h_2	d_s	$q/A_{_{g}}$	$oldsymbol{M}_{y}/oldsymbol{A}_{g}$	b	$oldsymbol{A}_{g}$
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	85	39.95	19.55	51.00	23	32	0.003597	26070.94	6.425111	1786.181
2	83	40.67	19.92	51.46	27	34	0.003668	25940.07	6.533517	1781.292
3	81	37.26	18.63	47.79	21	31	0.003674	26024.20	6.397051	1741.061
4	82	40.18	19.68	52.48	27	34	0.003655	25888.44	6.473071	1771.050
5	81	38.07	18.63	48.60	24	32	0.003667	25986.87	6.394807	1743.703
9	81	38.07	18.63	48.60	24	32	0.003667	25986.87	6.394807	1743.703
L	62	34.76	17.38	45.03	18	29	0.003589	26047.56	6.117681	1704.758
8	84	41.16	20.16	53.76	27	34	0.003595	25929.03	6.440299	1791.533
6	83	40.67	19.92	51.46	27	34	0.003668	25940.07	6.533517	1781.292
10	81	38.07	18.63	48.60	24	32	0.003667	25986.87	6.394807	1743.703

h=350 mm, L=6000 mm and t=2.0 mm

No. of run	q	с	p	h_1	h_2	d_s	$q/A_{_{g}}$	$M_{_y}/A_{_g}$	d	$A_{_g}$
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	74	27.38	13.32	68.82	22	27	0.004033	27156.69	4.687849	1162.305
2	16	31.92	15.20	74.48	31	32	0.004108	27258.13	4.923711	1198.458
3	92	31.92	15.20	74.48	31	32	0.004108	27258.13	4.923711	1198.458
4	76	31.92	15.20	74.48	31	32	0.004108	27258.13	4.923711	1198.458
5	73	24.82	11.68	64.24	15	24	0.003917	26719.88	4.477622	1143.243
9	76	31.92	15.20	74.48	31	32	0.004108	27258.13	4.923711	1198.458
7	75	28.50	13.50	00.69	24	28	0.004080	27218.73	4.780477	1171.611
8	76	31.92	15.20	74.48	31	32	0.004108	27258.13	4.923711	1198.458
6	75	28.50	13.50	69.00	24	28	0.004080	27218.73	4.780477	1171.611
10	77	30.80	14.63	72.38	27	30	0.004072	27258.51	4.865644	1194.875

B	
X	
Ģ	
E	
P	

h=350 mm, L=7500 mm and t=3.0 mm

No. of run	q	С	d	h_1	h_2	d_s	$q/A_{_{B}}$	$M_{_{\mathcal{Y}}}/A_{_{\mathcal{S}}}$	b	$A_{_{g}}$
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	77	30.80	14.63	72.38	27	30	0.002755	29068.61	4.920998	1786.456
2	77	31.57	15.40	73.15	29	31	0.002762	29088.71	4.960405	1796.250
3	77	31.57	15.40	73.15	29	31	0.002762	29088.71	4.960405	1796.250
4	76	30.40	14.44	72.96	28	30	0.002734	29009.74	4.853568	1775.264
5	77	30.80	14.63	72.38	27	30	0.002755	29068.61	4.920998	1786.456
9	77	30.80	14.63	72.38	27	30	0.002755	29068.61	4.920998	1786.456
L	77	29.26	13.86	70.84	23	28	0.002724	29030.42	4.825316	1771.662
8	77	31.57	15.40	73.15	29	31	0.002762	29088.71	4.960405	1796.250
6	77	30.80	14.63	72.38	28	30	0.002749	29077.83	4.906695	1784.677
10	77	31.57	15.40	73.15	29	31	0.002762	29088.71	4.960405	1796.250

h=400 mm, L=6000 mm and t=2.0 mm

No. of run	q	С	p	h_1	h_2	d_s	$q/A_{_{g}}$	$oldsymbol{M}_{_{y}}/A_{_{g}}$	b	$A_{_{g}}$
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm^2)	(N/mm)	(mm^2)
1	70	24.50	11.90	35.00	36	20	0.003486	29141.57	4.178717	1198.771
2	71	19.88	9.23	58.22	39	18	0.003565	28968.39	4.169073	1169.387
3	75	20.25	9.75	60.75	37	17	0.003477	28821.73	4.129624	1187.636
4	70	24.50	11.90	35.00	36	20	0.003486	29141.57	4.178717	1198.771
5	75	19.50	6	60.00	36	16	0.003395	28588.23	4.008165	1180.502
9	73	20.44	9.49	59.86	39	18	0.003566	29001.89	4.209878	1180.441
7	73	20.44	9.49	59.86	39	18	0.003566	29001.89	4.209878	1180.441
8	73	20.44	9.49	59.86	39	18	0.003566	29001.89	4.209878	1180.441
6	75	20.25	9.75	60.75	37	17	0.003477	28821.73	4.129624	1187.636
10	73	20.44	9.49	59.86	39	18	0.003566	29001.89	4.209878	1180.441

APPENDIX B

h=400 mm, L=8000 mm and t=3.0 mm

q A_s	(N/mm) (mm^2)	.625143 1792.949	3.702551 1748.643	3.961724 1798.216	178921 1797.806	3.797846 1792.558	885999 1782.032	3.961724 1798.216	.961724 1798.216	1.916920 1790.379	
${oldsymbol{M}}_y/{oldsymbol{A}}_g$	(Nmm/mm^2)	31838.95 3	31319.06 3	31714.06 3	31308.43 3	31409.69 3	31587.80 3	31714.06 3	31714.06 3	31644.15 3	
$q/{ m A}_{_{g}}$	$(N/mm/mm^2)$	0.002022	0.002117	0.002203	0.002102	0.002119	0.002181	0.002203	0.002203	0.002188	
d_s	(mm)	20	18	18	14	15	18	18	18	18	
h_2	(mm)	36	39	40	31	33	39	40	40	39	
μ_1	(mm)	35.00	58.22	63.14	63.18	62.41	61.50	63.14	63.14	63.84	
p	(mm)	11.90	9.23	10.01	8.91	9.48	9.75	10.01	10.01	9.88	
с	(mm)	24.50	19.88	21.56	19.44	19.75	21.00	21.56	21.56	21.28	
q	(mm)	70	71	LL	81	62	75	LL	77	76	
No. of run		1	2	3	4	5	9	7	8	6	

APPENDIX C

Results for Σ -Shape Purlin with d_2 and h_2 fixed

Choice 1 (free optimization)

Case 1 $d_s = 32 \text{ mm}, h_2 = 25 \text{ mm}, h_1 \ge 45 \text{ mm}$

No.	b	С	h_1	$q/A_{_g}$	M_y/A_g	q	A_{g}
orrun	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	82	30.34	45.1	0.007343	17786.29	5.348977	728.4802
2	82	31.16	45.1	0.007324	17814.10	5.353052	730.8746
3	82	29.52	45.92	0.007312	17737.72	5.309157	726.0858
4	82	29.52	45.92	0.007312	17737.72	5.309157	726.0858
5	84	21.84	49.56	0.007045	17089.73	4.998658	709.5002
6	83	24.90	48.14	0.007197	17440.19	5.149737	715.5154
7	82	30.34	45.92	0.007283	17771.84	5.305602	728.4802
8	82	30.34	45.1	0.007343	17786.29	5.348977	728.4802
9	83	25.73	47.31	0.007235	17495.28	5.194086	717.9390
10	82	27.88	45.92	0.007213	17663.00	5.203012	721.2970

h=250 mm, L=4000 mm and t=1.5 mm

h=250 mm, L=5500 mm and t=2.5 mm

No.	b	С	h_1	q/A_g	M_y/A_g	q	A_{g}
of run	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	82	31.16	45.92	0.004697	21566.54	5.729378	1219.786
2	83	27.39	48.14	0.004606	21206.85	5.555949	1206.157
3	82	33.62	45.10	0.004691	21709.40	5.778872	1231.889
4	82	32.80	45.10	0.004707	21671.51	5.779499	1227.854
5	84	23.52	49.56	0.004524	20696.21	5.392686	1192.037
6	83	28.22	47.31	0.004638	21296.96	5.612686	1210.241
7	83	29.88	47.31	0.004616	21427.56	5.623671	1218.408
8	82	32.80	45.10	0.004707	21671.51	5.779499	1227.854
9	82	32.80	45.10	0.004707	21671.51	5.779499	1227.854
10	82	31.98	45.10	0.004713	21629.42	5.768460	1223.820

No.	b	С	h_1	q/A_{g}	M_y/A_g	q	A_{g}
of run	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	92	34.96	46.00	0.005946	22941.95	6.710315	1128.614
2	92	34.04	47.84	0.005913	22892.95	6.652094	1125.008
3	92	34.96	46.00	0.005946	22941.95	6.710315	1128.614
4	92	34.96	46.00	0.005946	22941.95	6.710315	1128.614
5	93	29.76	49.29	0.005873	22571.34	6.531582	1112.150
6	80	43.20	55.20	0.005842	23632.83	6.507086	1113.875
7	93	29.76	49.29	0.005873	22571.34	6.531582	1112.150
8	80	43.20	55.20	0.005842	23632.83	6.507086	1113.875
9	92	34.96	46.00	0.005946	22941.95	6.710315	1128.614
10	92	36.80	46.00	0.005916	23009.74	6.719811	1135.827

h=300 *mm*, *L*=5000 *mm* and *t*=2.0 *mm*

h=300 *mm*, *L*=6500 *mm* and *t*=3.0 *mm*

No.	b	С	h_1	q/A_g	M_y/A_g	q	A_{g}
orrun	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	92	36.80	46.00	0.003983	26201.57	6.775930	1701.267
2	92	34.96	47.84	0.003961	26061.78	6.695544	1690.374
3	92	36.80	46.00	0.003983	26201.57	6.775930	1701.267
4	92	36.80	46.00	0.003983	26201.57	6.775930	1701.267
5	92	35.88	47.84	0.003949	26115.45	6.697014	1695.820
6	93	31.62	49.29	0.003943	25794.92	6.611212	1676.521
7	92	36.80	46.00	0.003983	26201.57	6.775930	1701.267
8	92	38.64	46.00	0.003957	26284.92	6.774268	1712.159
9	92	36.80	46.00	0.003983	26201.57	6.775930	1701.267
10	92	35.88	46.00	0.003965	26153.02	6.724748	1695.820

h=350 mm, L=6000) mm and t=2.0 m	ım
------------------	------------------	----

No.	b	С	h_1	q/A_g	M_y/A_g	q	A_{g}
of run	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	84	35.28	72.24	0.004210	26331.27	5.037382	1196.508
2	84	35.28	72.24	0.004210	26331.27	5.037382	1196.508
3	84	36.12	70.56	0.004197	26402.75	5.035382	1199.801
4	85	31.45	76.50	0.004157	25815.40	4.927804	1185.415
5	84	37.8	70.56	0.004248	26458.07	5.124950	1206.387
6	84	35.28	72.24	0.004210	26331.27	5.037382	1196.508
7	85	32.30	74.80	0.004210	25976.09	5.004405	1188.747
8	86	27.52	78.26	0.004093	25237.84	4.805309	1173.929
9	84	37.80	70.56	0.004248	26458.07	5.124950	1206.387
10	96	24.96	64.32	0.004111	24512.76	4.946397	1203.094

						-	
No.	b	С	h_1	$q/A_{_g}$	M_y/A_g	q	A_{g}
orrun	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm^2)	(N/mm)	(mm^2)
1	97	24.25	66.93	0.003056	27787.72	5.514900	1804.571
2	97	24.25	66.93	0.003056	27787.72	5.514900	1804.571
3	86	29.24	78.26	0.002940	28465.52	5.200820	1768.991
4	96	24.96	62.40	0.002988	28042.53	5.387775	1802.854
5	85	33.15	76.50	0.002955	28849.48	5.278335	1786.219
6	85	32.30	76.50	0.002960	28778.79	5.272010	1781.187
7	85	35.70	74.80	0.002968	29057.38	5.347043	1801.315
8	86	29.24	78.26	0.002940	28465.52	5.200820	1768.991
9	85	34.00	74.80	0.002980	28939.40	5.338236	1791.251
10	96	24.96	64.32	0.003015	28009.89	5.434750	1802.854

h=350 mm, L=7500 mm and t=3.0 mm

h=400 *mm*, *L*=6000 *mm* and *t*=2.0 *mm*

No.	b	С	h_1	q/A_g	M_y/A_g	q	A_{g}
orrun	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	70	26.60	64.40	0.002720	28905.37	3.279124	1205.603
2	71	25.56	66.74	0.002769	28720.87	3.33744	1205.446
3	71	23.43	68.16	0.002705	28376.11	3.237665	1197.096
4	70	26.60	64.40	0.002720	28905.37	3.279124	1205.603
5	70	26.60	63.00	0.002696	28883.84	3.249903	1205.603
6	71	24.14	68.16	0.002734	28500.91	3.279942	1199.880
7	69	26.22	60.72	0.002593	28841.83	3.111544	1200.193
8	70	24.50	64.40	0.002667	28683.75	3.201110	1200.115
9	70	26.60	64.40	0.002720	28905.37	3.279124	1205.603
10	71	24.85	66.03	0.002729	28592.13	3.282367	1202.663

h=400 *mm*, *L*=8000 *mm* and *t*=3.0 *mm*

No.	b	С	h_1	q/A_g	M_y/A_g	q	A_{g}
of run	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	80	16.80	53.60	0.001699	29596.98	3.072130	1807.827
2	71	25.56	66.74	0.001733	31143.81	3.130396	1806.406
3	71	24.14	68.16	0.001717	30929.98	3.086889	1797.999
4	71	25.56	66.74	0.001733	31143.81	3.130396	1806.406
5	71	19.17	66.03	0.001596	30112.47	2.823360	1768.577
6	71	24.85	66.03	0.001714	31066.71	3.089611	1802.203
7	69	26.91	59.34	0.001619	31326.10	2.919056	1802.558
8	70	24.50	64.40	0.001672	31112.45	3.006640	1798.355
9	70	26.60	63.00	0.001684	31304.41	3.043060	1806.643
10	71	24.85	66.03	0.001714	31066.71	3.089611	1802.203

Case 2 $d_s = 20 \text{ mm}, h_2 = 36 \text{ mm}, h_1 \ge 40 \text{ mm}$

No.	b	С	h_1	q/A_g	M_y/A_g	q	A_{g}
or run	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	77	29.26	44.66	0.003879	28919.23	4.669192	1203.655
2	77	29.26	44.66	0.003879	28919.23	4.669192	1203.655
3	77	30.03	43.12	0.003879	28980.82	4.681020	1206.673
4	78	28.86	46.80	0.003874	28858.29	4.671474	1206.007
5	77	30.03	44.66	0.003881	29029.81	4.682865	1206.673
6	77	30.03	44.66	0.003881	29029.81	4.682865	1206.673
7	77	30.03	43.12	0.003879	28980.82	4.681020	1206.673
8	76	31.16	41.04	0.003875	28806.02	4.643660	1198.245
9	77	30.03	43.12	0.003879	28980.82	4.681020	1206.673
10	78	28.86	48.36	0.003872	28904.83	4.670140	1206.007

h=400 *mm*, *L*=6000 *mm* and *t*=2.0 *mm*

h=400 mm, L=8000 mm and t=3.0 mm

No.	b	С	h_1	q/A_g	M_y/A_g	q	A_{g}
of run	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	80	26.4	53.60	0.002398	31800.14	4.329013	1805.340
2	79	27.65	52.14	0.002393	31972.20	4.324488	1806.820
3	79	27.65	49.77	0.002398	31972.39	4.332544	1806.820
4	79	27.65	52.14	0.002393	31972.20	4.324488	1806.820
5	79	27.65	49.77	0.002398	31972.39	4.332544	1806.820
6	80	27.20	53.60	0.002400	31915.50	4.344432	1810.076
7	80	27.20	53.60	0.002400	31915.50	4.344432	1810.076
8	78	28.86	48.36	0.002387	32086.94	4.315609	1808.063
9	78	27.30	46.02	0.002398	31972.39	4.332544	1806.820
10	79	26.07	49.77	0.002394	31749.60	4.302870	1797.466

Case 3 $d_s = 20mm, h_2 = 25mm, h_1 = 50mm$

h = 400mm, L = 6000mm, t = 2.0mm

No.	b	С	h_1	q/A_g	M_y/A_g	q	A_{g}
orrun	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	76	28.88	50.00	0.003839	28677.33	4.626483	1205.116
2	75	30.00	50.00	0.003843	28902.46	4.633455	1205.586
3	80	21.60	50.00	0.003766	27119.82	4.489689	1192.258
4	75	28.50	50.00	0.003840	28681.96	4.606492	1199.706
5	77	27.72	50.00	0.003831	28430.73	4.614547	1204.489
6	80	20.80	50.00	0.003758	26961.98	4.468304	1189.122
7	73	30.66	50.00	0.003839	29082.74	4.607976	1200.334
8	76	26.60	50.00	0.003829	28312.81	4.580606	1196.178
9	80	24.80	50.00	0.003794	27721.58	4.571194	1204.802
10	75	30.00	50.00	0.003843	28902.46	4.633455	1205.586

No.	b	С	h_1	q/A_g	M_y/A_g	q	A_{g}
of run	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	84	21.00	50.00	0.002390	30589.32	4.319252	1807.186
2	81	24.30	50.00	0.002389	31269.58	4.321483	1808.962
3	84	21.00	50.00	0.002390	30589.32	4.319252	1807.186
4	79	26.07	50.00	0.002373	31543.55	4.289957	1807.600
5	82	22.96	50.00	0.002390	31018.36	4.318997	1806.949
6	85	20.40	50.00	0.002391	30440.39	4.326330	1809.554
7	83	21.58	50.00	0.002388	30726.92	4.309165	1804.700
8	85	20.40	50.00	0.002391	30440.39	4.326330	1809.554
9	81	23.49	50.00	0.002384	31121.00	4.300988	1804.167
10	75	29.25	50.00	0.002316	31855.05	4.174639	1802.746

h = 400mm, L = 8000mm, t = 3.0mm

Choice 2 (40/13...100/35)

Case 1 $d_s = 32 \text{ mm}, h_2 = 25 \text{ mm}, h_1 \ge 45 \text{ mm}$

h=250 mm, L=4000 mm and t=1.5 mm

No.	b	С	h_1	q/A_g	M_y/A_g	q	A_{g}
of run	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	82	28.40	45.92	0.007251	17677.34	5.240819	722.8154
2	82	28.40	45.92	0.007251	17677.34	5.240819	722.8154
3	82	28.40	45.92	0.007251	17677.34	5.240819	722.8154
4	82	28.40	45.92	0.007251	17677.34	5.240819	722.8154
5	83	28.77	47.31	0.007190	17691.89	5.197209	722.8154
6	82	28.40	45.92	0.007251	17677.34	5.240819	722.8154
7	82	28.40	45.92	0.007251	17677.34	5.240819	722.8154
8	82	28.40	45.92	0.007251	17677.34	5.240819	722.8154
9	84	29.13	49.56	0.006853	17512.22	5.008504	730.7967
10	82	28.40	45.92	0.007251	17677.34	5.240819	722.8154

h=250 mm, L=5500 mm and t=2.5 mm

No.	b	С	h_1	q/A_g	M_y/A_g	\overline{q}	A_{g}
orrun	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	83	28.77	47.31	0.004631	21342.53	5.616745	1212.930
2	84	29.13	49.56	0.004485	21296.09	5.470710	1219.654
3	84	29.13	49.56	0.004485	21296.09	5.470710	1219.654
4	82	28.40	45.92	0.004585	21372.90	5.530148	1206.206
5	83	28.77	48.14	0.004590	21326.75	5.567772	1212.930
6	84	29.13	49.56	0.004485	21296.09	5.470710	1219.654
7	83	28.77	47.31	0.004631	21342.53	5.616745	1212.930
8	84	29.13	50.4	0.004485	21296.09	5.470710	1219.654
9	83	28.77	47.31	0.004631	21342.53	5.616745	1212.930
10	83	28.77	47.31	0.004631	21342.53	5.616745	1212.930

No.	b	С	h_1	q/A_{g}	M_y/A_g	q	A_{g}
orrun	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	92	32.07	47.84	0.005870	22759.06	6.558143	1117.272
2	93	32.43	49.29	0.005824	22703.06	6.538021	1122.629
3	92	32.07	47.84	0.005870	22759.06	6.558143	1117.272
4	92	32.07	47.84	0.005870	22759.06	6.558143	1117.272
5	92	32.07	47.84	0.005870	22759.06	6.558143	1117.272
6	82	28.40	63.96	0.005726	22968.91	6.091139	1063.699
7	92	32.07	47.84	0.005870	22759.06	6.558143	1117.272
8	92	32.07	47.84	0.005870	22759.06	6.558143	1117.272
9	92	32.07	47.84	0.005870	22759.06	6.558143	1117.272
10	93	32.43	49.29	0.005824	22703.06	6.538021	1122.629

h=300 *mm*, *L*=5000 *mm* and *t*=2.0 *mm*

h=300 *mm*, *L*=6500 *mm* and *t*=3.0 *mm*

No.	b	С	h_1	q/A_g	M_y/A_g	q	A_{g}
orrun	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	92	32.07	47.84	0.003887	25856.33	6.503212	1673.245
2	93	32.43	49.29	0.003936	25863.51	6.616924	1681.336
3	93	32.43	51.15	0.003886	25827.36	6.533428	1681.336
4	92	32.07	45.08	0.003818	25913.70	6.387904	1673.245
5	93	32.43	49.29	0.003936	25863.51	6.616924	1681.336
6	83	28.77	65.57	0.003628	25157.38	5.806381	1600.429
7	93	32.43	49.29	0.003936	25863.51	6.616924	1681.336
8	92	32.07	47.84	0.003887	25856.33	6.503212	1673.245
9	93	32.43	49.29	0.003936	25863.51	6.616924	1681.336
10	93	32.43	49.29	0.003936	25863.51	6.616924	1681.336

h=350 mm, L=6000) mm and t=2.0 mm
------------------	-------------------

No.	b	С	h_1	q/A_g	M_y/A_g	q	A_{g}
of run	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	86	29.87	78.26	0.004076	25480.00	4.822036	1183.128
2	85	29.50	76.50	0.004123	25627.49	4.855876	1177.771
3	85	29.50	76.50	0.004123	25627.49	4.855876	1177.771
4	85	29.50	76.50	0.004123	25627.49	4.855876	1177.771
5	85	29.50	76.50	0.004123	25627.49	4.855876	1177.771
6	85	29.50	76.50	0.004123	25627.49	4.855876	1177.771
7	85	29.50	76.50	0.004123	25627.49	4.855876	1177.771
8	86	29.87	78.26	0.004076	25480.00	4.822036	1183.128
9	85	29.50	76.50	0.004123	25627.49	4.855876	1177.771
10	85	29.50	75.65	0.004107	25678.69	4.836639	1177.771

No.	b	С	h_1	$q/A_{_{q}}$	M_{y}/A_{a}	q	A_{a}
of run	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	86	29.87	78.26	0.002938	28535.15	5.208493	1772.701
2	86	29.87	78.26	0.002938	28535.15	5.208493	1772.701
3	85	29.50	76.5	0.002900	28506.94	5.116889	1764.611
4	86	29.87	78.26	0.002938	28535.15	5.208493	1772.701
5	86	29.87	78.26	0.002938	28535.15	5.208493	1772.701
6	86	29.87	78.26	0.002938	28535.15	5.208493	1772.701
7	86	29.87	79.12	0.002923	28523.52	5.180908	1772.701
8	86	29.87	78.26	0.002938	28535.15	5.208493	1772.701
9	86	29.87	78.26	0.002938	28535.15	5.208493	1772.701
10	86	29.87	78.26	0.002938	28535.15	5.208493	1772.701

h=350 mm, L=7500 mm and t=3.0 mm

h=400 *mm*, *L*=6000 *mm* and *t*=2.0 *mm*

No.	b	С	h_1	q/A_g	M_y/A_g	q	A_{g}
of run	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	71	24.37	68.16	0.002743	28540.75	3.293440	1200.768
2	71	24.37	68.16	0.002743	28540.75	3.293440	1200.768
3	71	24.37	68.16	0.002743	28540.75	3.293440	1200.768
4	71	24.37	68.16	0.002743	28540.75	3.293440	1200.768
5	71	24.37	68.16	0.002743	28540.75	3.293440	1200.768
6	71	24.37	68.16	0.002743	28540.75	3.293440	1200.768
7	71	24.37	68.16	0.002743	28540.75	3.293440	1200.768
8	71	24.37	68.16	0.002743	28540.75	3.293440	1200.768
9	71	24.37	68.16	0.002743	28540.75	3.293440	1200.768
10	70	24.00	64.40	0.002621	28481.46	3.133216	1195.411

h=400 mm, L=8000 mm and t=3.0 mm

No.	b	С	h_1	q/A_g	M_y/A_g	q	A_{g}
of run	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	71	24.37	68.16	0.001721	30961.31	3.097019	1799.341
2	71	24.37	68.16	0.001721	30961.31	3.097019	1799.341
3	71	24.37	68.16	0.001721	30961.31	3.097019	1799.341
4	71	24.37	68.16	0.001721	30961.31	3.097019	1799.341
5	71	24.37	68.16	0.001721	30961.31	3.097019	1799.341
6	71	24.37	68.16	0.001721	30961.31	3.097019	1799.341
7	71	24.37	68.16	0.001721	30961.31	3.097019	1799.341
8	71	24.37	68.16	0.001721	30961.31	3.097019	1799.341
9	71	24.37	68.16	0.001721	30961.31	3.097019	1799.341
10	71	24.37	68.16	0.001721	30961.31	3.097019	1799.341

Case 2 $d_s = 20 \text{ mm}, h_2 = 36 \text{ mm}, h_1 \ge 40 \text{ mm}$

No.	b	С	h_1	q/A_g	M_y/A_g	q	A_{g}
of run	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	78	26.93	46.02	0.003865	28524.68	4.632127	1198.454
2	77	26.57	44.66	0.003868	28488.79	4.615393	1193.097
3	78	26.93	46.02	0.003865	28524.68	4.632127	1198.454
4	77	26.57	44.66	0.003868	28488.79	4.615393	1193.097
5	78	26.93	46.02	0.003865	28524.68	4.632127	1198.454
6	77	26.57	44.66	0.003868	28488.79	4.615393	1193.097
7	77	26.57	44.66	0.003868	28488.79	4.615393	1193.097
8	77	26.57	44.66	0.003868	28488.79	4.615393	1193.097
9	78	26.93	46.02	0.003865	28524.68	4.632127	1198.454
10	71	24.37	67.45	0.003776	29072.69	4.383865	1160.953

h=400 *mm*, *L*=6000 *mm* and *t*=2.0 *mm*

h=400 mm, L=8000 mm and t=3.0 mm

No.	b	С	h_1	q/A_g	M_y/A_g	q	A_{g}
of run	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	79	27.30	49.77	0.002397	31924.56	4.326179	1804.748
2	79	27.30	49.77	0.002397	31924.56	4.326179	1804.748
3	79	27.30	49.77	0.002397	31924.56	4.326179	1804.748
4	79	27.30	49.77	0.002397	31924.56	4.326179	1804.748
5	79	27.30	49.77	0.002397	31924.56	4.326179	1804.748
6	79	27.30	50.56	0.002396	31926.66	4.323995	1804.748
7	79	27.30	50.56	0.002396	31926.66	4.323995	1804.748
8	79	27.30	49.77	0.002397	31924.56	4.326179	1804.748
9	79	27.30	49.77	0.002397	31924.56	4.326179	1804.748
10	71	24.37	67.45	0.002200	31240.22	3.828707	1740.023

Case 3 $d_s = 20mm, h_2 = 25mm, h_1 = 50mm$

h = 400mm, L = 6000mm, t = 2.0mm

No.	b	С	h_1	q/A_g	M_y/A_g	q	A_{g}
of run	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	78	26.93	50.00	0.003822	28234.07	4.607084	1205.325
2	76	26.20	50.00	0.003827	28245.20	4.572064	1194.610
3	76	26.20	50.00	0.003827	28245.20	4.572064	1194.610
4	76	26.20	50.00	0.003827	28245.20	4.572064	1194.610
5	76	26.20	50.00	0.003827	28245.20	4.572064	1194.610
6	76	26.20	50.00	0.003827	28245.20	4.572064	1194.610
7	76	26.20	50.00	0.003827	28245.20	4.572064	1194.610
8	76	26.20	50.00	0.003827	28245.20	4.572064	1194.610
9	76	26.20	50.00	0.003827	28245.20	4.572064	1194.610
10	71	24.37	50.00	0.003411	28243.61	3.983170	1167.824

No.	b	С	h_1	q/A_g	M_y/A_g	q	A_{g}
of run	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	78	26.93	50.00	0.002362	31649.54	4.267478	1806.791
2	78	26.93	50.00	0.002362	31649.54	4.267478	1806.791
3	78	26.93	50.00	0.002362	31649.54	4.267478	1806.791
4	78	26.93	50.00	0.002362	31649.54	4.267478	1806.791
5	78	26.93	50.00	0.002362	31649.54	4.267478	1806.791
6	77	26.57	50.00	0.002346	31583.43	4.220068	1798.701
7	77	26.57	50.00	0.002346	31583.43	4.220068	1798.701
8	78	26.93	50.00	0.002362	31649.54	4.267478	1806.791
9	78	26.93	50.00	0.002362	31649.54	4.267478	1806.791
10	71	24.37	50.00	0.002029	31140.72	3.550959	1750.157

h = 400mm, L = 8000mm, t = 3.0mm

Choice 3 (40/15...100/45)

Case 1 $d_s = 32 \text{ mm}, h_2 = 25 \text{ mm}, h_1 \ge 45 \text{ mm}$

h=250 mm, L=4000 mm and t=1.5 mm

No.	b	С	h_1	q/A_{g}	M_y/A_g	q	A_{g}
of run	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	82	36.00	45.10	0.007132	17895.76	5.313072	745.0074
2	82	36.00	45.10	0.007132	17895.76	5.313072	745.0074
3	82	36.00	45.10	0.007132	17895.76	5.313072	745.0074
4	82	36.00	45.10	0.007132	17895.76	5.313072	745.0074
5	83	36.50	47.31	0.007132	17895.76	5.313072	745.0074
6	82	36.00	45.10	0.007132	17895.76	5.313072	745.0074
7	82	36.00	45.10	0.007132	17895.76	5.313072	745.0074
8	82	36.00	45.10	0.007132	17895.76	5.313072	745.0074
9	84	37.00	49.56	0.006637	17703.69	5.003036	753.7674
10	82	36.00	45.10	0.007132	17895.76	5.313072	745.0074

h=250 mm, L=5500 mm and t=2.5 mm

No.	b	С	h_1	q/A_g	M_y/A_g	q	A_{g}
of run	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	82	36.00	45.10	0.004640	21783.30	5.770677	1243.598
2	84	37.00	49.56	0.004370	21669.85	5.498469	1258.358
3	84	37.00	49.56	0.004370	21669.85	5.498469	1258.358
4	82	36.00	45.10	0.004640	21783.30	5.770677	1243.598
5	82	36.00	45.92	0.004603	21767.23	5.723891	1243.598
6	84	37.00	49.56	0.004370	21669.85	5.498469	1258.358
7	82	36.00	45.10	0.004640	21783.30	5.770677	1243.598
8	84	37.00	50.40	0.004370	21669.85	5.498469	1258.358
9	84	37.00	49.56	0.004370	21669.85	5.498469	1258.358
10	82	36.00	45.10	0.004640	21783.30	5.770677	1243.598

No.	b	С	h_1	q/A_{g}	M_y/A_g	q	A_{g}
of run	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	92	41.00	45.08	0.005830	23090.33	6.717781	1152.291
2	81	35.50	59.94	0.005842	23480.35	6.353880	1087.611
3	81	35.50	59.94	0.005842	23480.35	6.353880	1087.611
4	81	35.50	59.94	0.005842	23480.35	6.353880	1087.611
5	81	35.50	59.94	0.005842	23480.35	6.353880	1087.611
6	81	35.50	59.13	0.005812	23493.17	6.321630	1087.611
7	81	35.50	59.94	0.005842	23480.35	6.353880	1087.611
8	92	41.00	45.08	0.005830	23090.33	6.717781	1152.291
9	81	35.50	59.94	0.005842	23480.35	6.353880	1087.611
10	81	35.50	59.94	0.005842	23480.35	6.353880	1087.611

h=300 *mm*, *L*=5000 *mm* and *t*=2.0 *mm*

h=300 *mm*, *L*=6500 *mm* and *t*=3.0 *mm*

No.	b	С	h_1	q/A_g	M_y/A_g	q	A_{g}
orrun	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	92	41.00	45.08	0.003943	26386.94	6.806465	1726.131
2	92	41.00	45.08	0.003943	26386.94	6.806465	1726.131
3	92	41.00	45.08	0.003943	26386.94	6.806465	1726.131
4	92	41.00	45.08	0.003943	26386.94	6.806465	1726.131
5	92	41.00	45.08	0.003943	26386.94	6.806465	1726.131
6	82	36.00	61.50	0.003669	25633.34	6.006847	1637.331
7	92	41.00	45.08	0.003943	26386.94	6.806465	1726.131
8	92	41.00	45.08	0.003943	26386.94	6.806465	1726.131
9	92	41.00	45.08	0.003943	26386.94	6.806465	1726.131
10	92	41.00	45.08	0.003943	26386.94	6.806465	1726.131

h=350 mm, L=6000) mm and t=2.0 m	m
------------------	------------------	---

No.	b	С	h_1	q/A_g	M_y/A_g	q	A_{g}
of run	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	83	36.50	68.06	0.004089	26482.74	4.896334	1197.371
2	83	36.50	68.06	0.004089	26482.74	4.896334	1197.371
3	83	36.50	66.40	0.004047	26480.23	4.846002	1197.371
4	84	37.00	72.24	0.004253	26397.66	5.117790	1203.251
5	83	36.50	68.06	0.004089	26482.74	4.896334	1197.371
6	84	37.00	72.24	0.004253	26397.66	5.117790	1203.251
7	84	37.00	72.24	0.004253	26397.66	5.117790	1203.251
8	71	30.50	68.16	0.003248	26853.68	3.660196	1126.811
9	83	36.50	68.06	0.004089	26482.74	4.896334	1197.371
10	71	30.50	68.16	0.003248	26853.68	3.660196	1126.811

No.	b	С	h_1	q/A_{g}	M_y/A_g	q	A_{g}
orrun	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	83	36.50	68.06	0.002854	29149.16	5.120167	1794.211
2	83	36.50	68.06	0.002854	29149.16	5.120167	1794.211
3	83	36.50	66.40	0.002833	29176.40	5.082615	1794.211
4	83	36.50	68.06	0.002854	29149.16	5.120167	1794.211
5	83	36.50	68.06	0.002854	29149.16	5.120167	1794.211
6	84	37.00	72.24	0.002967	29143.63	5.350646	1803.091
7	84	37.00	72.24	0.002967	29143.63	5.350646	1803.091
8	71	30.50	68.16	0.002193	28320.39	3.701658	1687.651
9	83	36.50	68.06	0.002854	29149.16	5.120167	1794.211
10	71	30.50	68.16	0.002193	28320.39	3.701658	1687.651

h=350 *mm*, *L*=7500 *mm* and *t*=3.0 *mm*

h=400 *mm*, *L*=6000 *mm* and *t*=2.0 *mm*

No.	b	С	h_1	q/A_g	M_y/A_g	q	A_{g}
of run	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	67	28.50	53.60	0.002442	29134.13	2.933732	1201.291
2	67	28.50	53.60	0.002442	29134.13	2.933732	1201.291
3	67	28.50	53.60	0.002442	29134.13	2.933732	1201.291
4	67	28.50	53.60	0.002442	29134.13	2.933732	1201.291
5	67	28.50	53.60	0.002442	29134.13	2.933732	1201.291
6	67	28.50	53.60	0.002442	29134.13	2.933732	1201.291
7	67	28.50	53.60	0.002442	29134.13	2.933732	1201.291
8	66	28.00	50.16	0.002319	29036.75	2.772563	1195.411
9	67	28.50	53.60	0.002442	29134.13	2.933732	1201.291
10	67	28.50	53.60	0.002442	29134.13	2.933732	1201.291

No.	b	С	h_1	q/A_g	M_y/A_g	q	A_{g}
of run	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	67	28.50	53.60	0.001516	31399.44	2.729545	1800.131
2	67	28.50	53.60	0.001516	31399.44	2.729545	1800.131
3	67	28.50	53.60	0.001516	31399.44	2.729545	1800.131
4	67	28.50	53.60	0.001516	31399.44	2.729545	1800.131
5	67	28.50	53.60	0.001516	31399.44	2.729545	1800.131
6	67	28.50	53.60	0.001516	31399.44	2.729545	1800.131
7	67	28.50	53.60	0.001516	31399.44	2.729545	1800.131
8	67	28.50	53.60	0.001516	31399.44	2.729545	1800.131
9	67	28.50	53.60	0.001516	31399.44	2.729545	1800.131
10	67	28.50	53.60	0.001516	31399.44	2.729545	1800.131
Case 2 $d_s = 20 \text{ mm}, h_2 = 36 \text{ mm}, h_1 \ge 40 \text{ mm}$

No.	b	С	h_1	q/A_g	M_y/A_g	q	A_{g}
of run	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	69	29.50	59.34	0.003840	29797.89	4.504687	1173.235
2	69	29.50	59.34	0.003840	29797.89	4.504687	1173.235
3	69	29.50	59.34	0.003840	29797.89	4.504687	1173.235
4	70	30.00	62.30	0.003826	29882.60	4.511836	1179.115
5	69	29.50	59.34	0.003840	29797.89	4.504687	1173.235
6	69	29.50	59.34	0.003840	29797.89	4.504687	1173.235
7	70	30.00	63.00	0.003821	29897.36	4.505953	1179.115
8	70	30.00	62.3	0.003826	29882.60	4.511836	1179.115
9	69	29.50	59.34	0.003840	29797.89	4.504687	1173.235
10	69	29.50	59.34	0.003840	29797.89	4.504687	1173.235

h=400 *mm*, *L*=6000 *mm* and *t*=2.0 *mm*

h=400 mm, L=8000 mm and t=3.0 mm

No.	b	С	h_1	q/A_g	M_y/A_g	q	A_{g}
of run	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	69	29.50	60.72	0.002170	31785.49	3.816199	1758.572
2	71	30.50	66.03	0.002212	31931.37	3.928931	1776.332
3	71	30.50	66.03	0.002212	31931.37	3.928931	1776.332
4	71	30.50	66.03	0.002212	31931.37	3.928931	1776.332
5	71	30.50	66.03	0.002212	31931.37	3.928931	1776.332
6	71	30.50	66.03	0.002212	31931.37	3.928931	1776.332
7	71	30.50	66.74	0.002209	31927.13	3.923069	1776.332
8	70	30.00	62.30	0.002206	31865.74	3.899260	1767.452
9	71	30.50	66.03	0.002212	31931.37	3.928931	1776.332
10	70	30.00	62.30	0.002206	31865.74	3.899260	1767.452

Case 3 $d_s = 20mm, h_2 = 25mm, h_1 = 50mm$

h = 400mm, L = 6000mm, t = 2.0mm

No.	b	С	h_1	q/A_{g}	M_y/A_g	q	A_{g}
orrun	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	69	29.50	50.00	0.003507	29150.91	4.138172	1180.106
2	73	31.50	50.00	0.003835	29158.77	4.615307	1203.626
3	71	30.50	50.00	0.003693	29170.35	4.401574	1191.866
4	73	31.50	50.00	0.003835	29158.77	4.615307	1203.626
5	73	31.50	50.00	0.003835	29158.77	4.615307	1203.626
6	71	30.50	50.00	0.003693	29170.35	4.401574	1191.866
7	72	31.00	50.00	0.003786	29165.71	4.534304	1197.746
8	72	31.00	50.00	0.003786	29165.71	4.534304	1197.746
9	71	30.50	50.00	0.003693	29170.35	4.401574	1191.866
10	71	30.50	50.00	0.003693	29170.35	4.401574	1191.866

APPENDIX C

No.	b	С	h_1	$q/A_{_g}$	M_y/A_g	q	A_{g}
01 Tull	(mm)	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	69	29.50	50.00	0.002032	31642.52	3.593472	1768.706
2	73	31.50	50.00	0.002270	31994.46	4.095378	1804.226
3	71	30.50	50.00	0.002150	31821.48	3.840255	1786.466
4	73	31.50	50.00	0.002270	31994.46	4.095378	1804.226
5	73	31.50	50.00	0.002270	31994.46	4.095378	1804.226
6	71	30.50	50.00	0.002150	31821.48	3.840255	1786.466
7	72	31.00	50.00	0.002209	31908.29	3.966727	1795.346
8	72	31 00	50 00	0.002209	31908 29	3 966727	1795 346

31821.48 31821.48

3.840255

3.840255

1786.466

1786.466

0.002150 0.002150

h = 400mm, L = 8000mm, t = 3.0mm

30.50 30.50 50.00 50.00

71 71

9

10

APPENDIX D

Results for Σ -Shape Purlin with Objective Function M_y/A_g

Single Edge Stiffener

h=250 mm, L=4000 mm and t=1.5 mm

			_	_	_	_	_				_
$A_{_{S}}$	(mm^2)	632.714	634.191	632.714	632.714	632.714	629.899	638.346	629.899	637.036	632.714
$q/A_{_{g}}$	$(N/mm/mm^2)$	0.004647	0.004893	0.004647	0.004647	0.004647	0.004721	0.004502	0.004721	0.004815	0.004647
$M_{_{\mathcal{Y}}}/A_{_{\mathcal{B}}}$	(Nmm/mm^2)	19535.18	19472.65	19535.18	19535.18	19535.18	19531.89	19518.55	19531.89	19465.42	19535.18
d_s	(mm)	33	32	33	33	33	32	35	32	33	33
h_2	(mm)	33	32	33	33	33	32	35	32	33	33
h_1	(mm)	35.75	37.52	35.75	35.75	35.75	35.75	35.75	35.75	37.52	35.75
с	(mm)	26.40	26.32	26.40	26.40	26.40	25.85	27.50	25.85	26.88	26.40
q	(mm)	55	56	55	55	55	55	55	55	56	55
No. of run		1	2	3	4	5	9	7	8	6	10

1	l
X	
Ę	
Ē	
2	(
	ĺ

h=250 mm, L=5500 mm and t=2.5 mm

No. of run	q	С	h_1	h_2	d_s	$M_{_{\mathcal{Y}}}/A_{_{\mathcal{B}}}$	$q/{\rm A}_{_{g}}$	${f A}_{_{B}}$
	(mm)	(mm)	(mm)	(mm)	(mm)	(Nmm/mm^2)	$(N/mm/mm^2)$	(mm^2)
1	82	33.54	36.66	28	28	21984.72	0.004648	1192.769
2	62	44.24	39.50	5	Ś	22271.84	0.002993	1203.461
3	80	44.80	41.60	5	5	22269.02	0.002991	1211.136
4	80	35.20	40.80	29	29	21981.92	0.004517	1212.814
5	6 <i>L</i>	44.24	39.50	5	5	22271.84	0.002993	1203.461
9	6 <i>L</i>	44.24	39.50	5	5	22271.84	0.002993	1203.461
7	6 <i>L</i>	44.24	39.50	5	5	22271.84	0.002993	1203.461
8	80	44.80	41.60	5	5	22269.02	0.002991	1211.136
6	62	44.24	39.50	5	5	22271.84	0.002993	1203.461
10	80	44.80	41.60	5	5	22269.02	0.002991	1211.136

h=300 mm, L=5000 mm and t=2.0 mm

No. of run	q	С	h_1	h_2	d_s	$M_{_{y}}/A_{_{g}}$	$q/A_{_g}$	$oldsymbol{A}_{_{g}}$
	(mm)	(mm)	(mm)	(mm)	(mm)	(Nmm/mm^2)	(N/mm/mm ²)	(mm ²)
1	67	39.53	52.93	20	8	24677.39	0.003796	994.5754
2	69	38.64	60.03	14	S	24695.43	0.003604	996.3098
3	69	38.64	60.03	14	5	24695.43	0.003604	996.3098
4	69	38.64	60.03	14	5	24695.43	0.003604	996.3098
5	69	38.64	60.03	14	5	24695.43	0.003604	996.3098
9	63	32.13	39.06	32	36	24337.79	0.003555	1006.268
7	69	38.64	60.03	14	5	24695.43	0.003604	996.3098
8	67	39.53	52.93	20	8	24677.39	0.003796	994.5754
6	69	38.64	60.03	14	5	24695.43	0.003604	996.3098
10	67	39.53	52.93	20	8	24677.39	0.003796	994.5754

APPENDIX D

h=300 mm, L=6500 mm and t=3.0 mm

$A_{_{g}}$	(mm^2)	1731.621	1731.621	1731.951	1740.857	1731.621	1695.011	1731.621	1731.621	1731.621	1731.621
$q/A_{_{g}}$	$(N/mm/mm^2)$	0.002524	0.002524	0.002524	0.002518	0.002524	0.002539	0.002524	0.002524	0.002524	0.002524
M_{y}/A_{g}	(Nmm/mm^2)	26737.21	26737.21	26735.36	26744.68	26737.21	26713.29	26737.21	26737.21	26737.21	26737.21
d_s	(mm)	5	5	5	Ś	5	5	5	5	5	5
h_2	(mm)	14	14	13	14	14	13	14	14	14	14
h_1	(mm)	59.85	59.85	59.85	64.32	59.85	42.77	59.85	59.85	59.85	59.85
c	(mm)	53.20	53.20	53.20	53.76	53.20	50.96	53.20	53.20	53.20	53.20
q	(mm)	95	95	95	96	95	16	56	95	95	65
No. of run		1	2	3	4	5	9	7	8	6	10

h=350 mm, L=6000 mm and t=2.0 mm

No. of run	q	С	$^{1}\!Y$	h_2	$d_{_S}$	$M_{_{\mathcal{Y}}}/A_{_{\mathcal{B}}}$	q/A_s	$oldsymbol{A}_{g}$
	(mm)	(mm)	(mm)	(mm)	(mm)	(Nmm/mm^2)	(N/mm/mm ²)	(mm^2)
1	71	41.89	67.45	20	8	27630.56	0.002856	1117.507
2	71	41.89	67.45	20	8	27630.56	0.002856	1117.507
3	71	41.89	67.45	19	8	27608.05	0.002855	1117.785
4	71	41.89	67.45	20	8	27630.56	0.002856	1117.507
5	71	42.60	67.45	22	9	27641.35	0.002897	1121.181
9	67	34.17	52.26	32	36	27198.22	0.002830	1127.945
<i>L</i>	71	41.89	67.45	20	8	27630.56	0.002856	1117.507
8	71	41.89	67.45	20	8	27630.56	0.002856	1117.507
6	71	42.60	67.45	22	6	27641.35	0.002897	1121.181
10	71	41.89	67.45	20	8	27630.56	0.002856	1117.507

1	l
X	
Ę	
Ē	
2	(
	ĺ

h=350 mm, L=7500 mm and t=3.0 mm

No. of run	q	Э	h_1	h_2	d_s	$M_{_{\mathcal{Y}}}/A_{_{\mathcal{B}}}$	$q/{ m A}_{_{g}}$	$A_{_{g}}$
	(mm)	(mm)	(mm)	(mm)	(mm)	(Nmm/mm^2)	(N/mm/mm ²)	(mm^2)
1	83	48.14	67.23	18	2	30072.10	0.002129	1781.228
2	95	35.15	58.9	40	22	29720.36	0.002657	1800.726
3	87	48.72	84.39	13	5	30221.97	0.002093	1806.070
4	87	48.72	84.39	14	S	30225.33	0.002094	1805.740
5	87	48.72	84.39	14	5	30225.33	0.002094	1805.740
9	89	34.71	35.60	26	29	29823.22	0.002817	1803.969
7	87	48.72	84.39	14	5	30225.33	0.002094	1805.740
8	87	48.72	84.39	14	5	30225.33	0.002094	1805.740
6	87	48.72	84.39	14	5	30225.33	0.002094	1805.740
10	87	48.72	84.39	14	5	30225.33	0.002094	1805.740

h=400 mm, L=6000 mm and t=2.0 mm

с	h_2	d_s	$M_{_{y}}/A_{_{g}}$	$q/A_{_g}$	$A_{_{g}}$
(mm)	(mm)	(mm)	(Nmm/mm^2)	(N/mm/mm ²)	(mm^2)
52.93	20	8	29677.73	0.002839	1190.575
63.70	18	7	29979.13	0.002858	1205.646
60.03	19	8	29897.20	0.002889	1203.319
67.45	14	5	29937.75	0.002770	1204.540
53.35	22	6	29319.89	0.002569	1118.829
60.03	22	9	30003.48	0.002949	1206.637
60.03	22	6	30003.48	0.002949	1206.637
63.70	18	7	29979.13	0.002858	1205.646
60.03	22	6	30003.48	0.002949	1206.637
66.03	36	20	29128.80	0.003792	1162.847

8
A
H
Δ

h=400 mm, L=8000 mm and t=3.0 mm

1805.977 1807.631 1809.118 1809.118	0.001756 0.001789 0.001821 0.001821	32605.93 32580.77 32551.28 32551.28	5 9 9	14 18 22 22	67.45 63.70 60.03 60.03	39.76 40.60 41.40 41.40	71 70 69 69
1802.739	0.002306	32018.93	22	40	43.12	28.49	
1805.813	0.002226	31654.96	16	28	61.50	25.42	
1805.977	0.001756	32605.93	5	14	67.45	39.76	
1803.691	0.001793	32489.70	8	20	60.03	40.71	
1807.631	0.001789	32580.77	L	18	63.70	40.60	
1784.866	0.001741	32169.42	8	20	52.93	39.53	
(mm^2)	$(N/mm/mm^2)$	(Nmm/mm^2)	(mm)	(mm)	(mm)	(mm)	
$A_{_{g}}$	q/A_s	$M_{_{\mathcal{Y}}}/A_{_{\mathcal{B}}}$	d_s	h_2	h_1	С	

Double Edge Stiffeners

h=250 mm, L=4000 mm and t=1.5 mm

No. of runbcd h_1 h_2 d_s M_y/A_g q/A_g q/A_g A_g No. of run(mm)(mm)(mm)(mm)(mm)(mm)(mm)(mm)(mm)1(mm)(mm)(mm)(mm)(mm)(mm)(mm)(mm)14722.0910.8137.6323219961.070.00406624.11024923.0311.2739.2323219961.070.004347634.03834923.0311.2739.2323219961.070.004347634.03844923.0311.2739.2323219961.070.004347634.03854922.0510.7838.71303019951.070.004347634.03864722.0910.8137.6323219961.070.004482627.32764722.0910.8137.6323219954.000.004482627.11074722.0910.8137.6323219945.400.004060624.11084722.0910.8137.6323219945.400.004060624.11074722.0910.8137.6323219945.400.004060624.11084722.0910.8137.6323219945.400.004060624.11094923.	r	_										
No. of runbcd h_1 h_2 d_s M_y/A_g q/A_g (mn)(mn)(mn)(mn)(mn)(mn)(mn)(Ninm/mn ²) q/A_g (mn)(mn)(mn)(mn)(mn)(mn)(Ninm/mn ²) $(N'mm/mn2)$ $(N'mm/mn2)$ 14722.0910.8137.6323219945.40 0.00406 24923.0311.2739.2323219961.07 0.004347 34923.0311.2739.2323219961.07 0.004347 44923.0311.2739.2323219961.07 0.004347 54923.0311.2739.2323219961.07 0.004347 64722.0910.8137.6323219952.00 0.004347 74722.0910.8137.6323219952.00 0.004347 84722.0910.8137.6323219945.40 0.004360 84722.0910.8137.6323219945.40 0.004060 94923.0311.2739.2323219945.40 0.004360 74722.0910.8137.6323219945.40 0.004060 84722.0910.8137.6323219945.40 0.004060 94923.0311.2739.2 <th>$oldsymbol{A}_{g}$</th> <th>(mm^2)</th> <th>624.110</th> <th>634.038</th> <th>634.038</th> <th>634.038</th> <th>627.327</th> <th>624.110</th> <th>624.110</th> <th>624.110</th> <th>634.038</th> <th>634.038</th>	$oldsymbol{A}_{g}$	(mm^2)	624.110	634.038	634.038	634.038	627.327	624.110	624.110	624.110	634.038	634.038
No. of runbcd h_1 h_2 d_s M_y/A_g (mm)(mm)(mm)(mm)(mm)(mm)(mm)(mm)(mm)(mm)(mm)(mm)(mm)14722.0910.8137.6323219945.4024923.0311.2739.2323219961.0734923.0311.2739.2323219961.0744923.0311.2739.2323219961.0754923.0311.2739.2323219961.0764722.0910.8137.6323219961.0774722.0910.8137.6323219945.4074722.0910.8137.6323219945.4074722.0910.8137.6323219945.4084722.0910.8137.6323219945.4094923.0311.2739.23219945.40	$q/A_{_g}$	$(N/mm/mm^2)$	0.00406	0.004347	0.004347	0.004347	0.004482	0.004060	0.004060	0.004060	0.004347	0.004347
No. of run b c d h_1 h_2 d_s (mm)(mm)(mm)(mm)(mm)(mm)14722.0910.8137.632322 4923.0311.2739.232 3234923.0311.2739.2323244923.0311.2739.2323254923.0311.2739.2323264722.0910.7838.71303074722.0910.8137.6323274722.0910.8137.6323284722.0910.8137.6323294923.0311.2739.2323274722.0910.8137.6323284722.0910.8137.6323294923.0311.2739.23232	$oldsymbol{M}_{_{Y}}/A_{_{B}}$	(Nmm/mm ²)	19945.40	19961.07	19961.07	19961.07	19952.00	19945.40	19945.40	19945.40	19961.07	19961.07
No. of run b c d h_1 h_2 (mm)(mm)(mm)(mm)(mm)14722.0910.8137.63224923.0311.2739.23234923.0311.2739.23244923.0311.2739.23254923.0311.2739.23264722.0510.7838.713074722.0910.8137.63284722.0910.8137.63294923.0311.2739.232	d_s	(mm)	32	32	32	32	30	32	32	32	32	32
No. of run b c d h_1 1(mm)(mm)(mm)(mm)14722.0910.8137.624923.0311.2739.234923.0311.2739.254923.0311.2739.264722.0510.7838.7164722.0910.8137.674722.0910.8137.684722.0910.8137.694923.0311.2739.2	h_2	(mm)	32	32	32	32	30	32	32	32	32	32
No. of run b c d 1 (mm) (mm) (mm) 1 47 22.09 10.81 2 49 23.03 11.27 3 49 23.03 11.27 4 49 23.03 11.27 5 49 23.03 11.27 6 47 22.09 10.81 7 47 22.09 10.81 8 47 22.09 10.81 9 49 23.03 11.27	$^{1}\!Y$	(mm)	37.6	39.2	39.2	39.2	38.71	37.6	37.6	37.6	39.2	39.2
No. of run b c 1 47 22.09 2 49 23.03 3 49 23.03 4 49 23.03 5 49 23.03 6 47 22.09 7 47 22.09 8 47 22.09 9 49 23.03	p	(mm)	10.81	11.27	11.27	11.27	10.78	10.81	10.81	10.81	11.27	11.27
No. of run b 1 (mm) 2 49 3 49 4 49 5 49 6 47 7 47 8 47 9 49	С	(mm)	22.09	23.03	23.03	23.03	22.05	22.09	22.09	22.09	23.03	23.03
No. of run 1 2 2 3 3 6 6 9 9	q	(mm)	47	49	49	49	49	47	47	47	49	49
	No. of run		1	2	3	4	5	9	7	8	6	10

$oldsymbol{A}_{g}$	(mm^2)	1248.539	1249.212	1259.080	1248.539	1259.080	1248.539	1243.197	1263.791	1243.336	1248 539
q/A_s	$(N/mm/mm^2)$	0.003928	0.004241	0.004115	0.003928	0.004115	0.003928	0.004020	0.003874	0.004174	0.003928
$oldsymbol{M}_{_{\mathcal{Y}}}/A_{_{\mathcal{B}}}$	(Nmm/mm^2)	22159.53	22102.43	22145.30	22159.53	22145.30	22159.53	22174.70	22125.25	22113.66	22159 53
d_s	(mm)	22	26	25	22	25	22	23	22	25	22
h_2	(mm)	22	26	25	22	25	22	23	22	25	22
^{1}y	(mm)	35.26	35.10	36.00	35.26	36.00	35.26	35.20	36.12	35.10	35 26
d	(mm)	14.76	15.60	16.00	14.76	16.00	14.76	15.20	15.12	15.60	14 76
с	(mm)	30.34	31.98	32.00	30.34	32.00	30.34	30.40	31.08	31.20	30 34
q	(mm)	82	78	80	82	80	82	80	84	78	82
No. of run		1	2	3	4	5	9	7	8	6	10

h=250 mm, L=5500 mm and t=2.5 mm

h=300 mm, L=5000 mm and t=2.0 mm

$A_{_{g}}$	(mm^2)	1072.678	1078.901	1057.939	1078.901	1064.005	1072.678	1057.939	1072.678	1064.005	1072.678
$q/A_{_{g}}$	$(N/mm/mm^2)$	0.003662	0.003706	0.003653	0.003706	0.003700	0.003662	0.003653	0.003662	0.003700	0.003662
${oldsymbol{M}}_{_{\mathcal{Y}}}/A_{_{\mathcal{B}}}$	(Nmm/mm ²)	25096.02	25112.88	25092.07	25112.88	25115.03	25096.02	25092.07	25096.02	25115.03	25096.02
d_s	(mm)	8	6	8	9	6	8	8	8	6	8
h_2	(mm)	20	22	20	22	22	20	20	20	22	20
$^{1}\!\eta$	(mm)	50.32	51.00	48.84	51.00	49.50	50.32	48.84	50.32	49.50	50.32
d	(mm)	19.72	20.4	19.14	20.4	19.80	19.72	19.14	19.72	19.80	19.72
Э	(mm)	40.12	40.80	38.94	40.80	39.60	40.12	38.94	40.12	39.60	40.12
q	(mm)	89	89	99	68	99	89	99	89	99	68
No. of run		1	2	3	4	5	9	7	8	6	10

APPENDIX D

APPENDIX D

h=300 mm, L=6500 mm and t=3.0 mm

		_	_	_	_	_	_	_	_	_	_
$A_{_{g}}$	(mm^2)	1759.919	1759.919	1741.567	1750.743	1741.567	1730.907	1759.919	1759.919	1741.567	1759 919
$q/A_{_g}$	$(N/mm/mm^2)$	0.003045	0.003045	0.003069	0.003039	0.003069	0.003009	0.003045	0.003045	0.003069	0 003045
$m{M}_{_{\mathcal{Y}}}/m{A}_{_{\mathcal{B}}}$	(Nmm/mm^2)	26660.30	26660.30	26644.31	26656.76	26644.31	26637.37	26660.30	26660.30	26644.31	26660 30
d_s	(mm)	22	22	22	22	22	20	22	22	22	27
h_2	(mm)	40	40	40	40	40	36	40	40	40	40
h_1	(mm)	48.50	48.50	47.50	49.92	47.50	48.00	48.50	48.50	47.50	48 50
p	(mm)	17.46	17.46	17.10	17.28	17.10	16.32	17.46	17.46	17.10	17 46
С	(mm)	35.89	35.89	35.15	35.52	35.15	33.6	35.89	35.89	35.15	35 80
q	(mm)	<i>L</i> 6	26	56	96	56	96	26	26	56	<i>L</i> 0
No. of run		1	2	3	4	5	9	7	8	6	10

h=350 mm, L=6000 mm and t=2.0 mm

$A_{_{g}}$	(mm^2)	1185.417	1176.901	1181.789	1185.417	1176.901	1176.901	1200.156	1176.901	1170.678	1176.901
$q/A_{_{g}}$	$(N/mm/mm^2)$	0.002770	0.002790	0.002725	0.002770	0.002790	0.002790	0.002784	0.002790	0.002751	0.002790
$M_{_{y}}/A_{_{g}}$	(Nmm/mm^2)	28084.09	28158.44	28003.40	28084.09	28158.44	28158.44	28055.94	28158.44	28079.76	28158.44
d_s	(mm)	8	6	7	8	6	6	8	6	8	6
h_2	(mm)	20	22	18	20	22	22	20	22	20	22
h_1	(mm)	51.80	51.00	51.10	51.80	51.00	51.00	53.28	51.00	50.32	51.00
р	(mm)	20.30	20.40	20.30	20.30	20.40	20.40	20.88	20.40	19.72	20.40
С	(mm)	41.30	40.80	40.60	41.30	40.80	40.80	42.48	40.80	40.12	40.80
q	(mm)	70	68	70	70	68	68	72	68	68	68
No. of run		1	2	3	4	5	9	7	8	6	10

Η	
X	
Ę	
PE	
AP	

h=350 mm, L=7500 mm and t=3.0 mm

c		d	h_1	h_2	d_s	$oldsymbol{M}_{_{\mathcal{Y}}}/oldsymbol{A}_{_{\mathcal{B}}}$	$q/A_{_{S}}$	$oldsymbol{A}_{g}$
m)	(mm)	(mm)	(mm)	(mm)	(mm)	(Nmm/mm^2)	$(N/mm/mm^2)$	(mm^2)
	28.21	13.65	40.04	27	16	29824.60	0.002486	1796.775
	26.97	13.02	39.06	24	14	29709.87	0.002415	1794.018
	26.97	13.02	39.06	24	14	29709.87	0.002415	1794.018
	27.9	13.50	41.40	27	16	29773.24	0.002481	1788.132
	29.37	14.24	40.94	31	18	29888.14	0.002554	1798.062
	31.08	15.12	43.68	39	22	29841.98	0.002670	1789.345
	31.08	15.12	43.68	39	22	29841.98	0.002670	1789.345
	29.58	14.79	40.89	33	19	29872.43	0.002583	1792.107
	39.76	19.88	48.99	13	5	29659.96	0.001872	1763.605
	41.44	20.72	52.54	13	5	29808.03	0.001915	1796.284

h=400 mm, L=6000 mm and t=2.0 mm

No. of run	q	С	p	h_1	h_2	d_s	$M_{_{\mathcal{Y}}}/A_{_{\mathcal{S}}}$	$q/A_{_{g}}$	$A_{_{g}}$
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(Nmm/mm ²)	$(N/mm/mm^2)$	(mm^2)
1	61	25.62	12.20	58.56	32	32	29912.31	0.002589	1200.082
2	59	34.81	17.11	42.48	20	8	29839.33	0.002523	1202.351
3	61	25.62	12.20	58.56	32	32	29912.31	0.002589	1200.082
4	60	25.20	12.00	58.80	32	32	29839.62	0.002530	1193.731
5	58	34.80	17.40	43.50	22	6	29948.13	0.002545	1200.421
9	61	25.62	12.20	58.56	32	32	29912.31	0.002589	1200.082
7	61	25.62	12.20	58.56	32	32	29912.31	0.002589	1200.082
8	58	34.80	17.40	43.50	22	6	29948.13	0.002545	1200.421
6	57	34.20	17.10	41.61	22	6	29776.17	0.002500	1192.973
10	58	34.80	17.40	43.50	22	6	29948.13	0.002545	1200.421

APPENDIX D

h=400 mm, L=8000 mm and t=3.0 mm

$A_{_{g}}$	(mm^2)	1792.949	1798.464	1798.216	1787.334	1795.543	1781.521	1798.216	1795.543	1795.543	1784,295
$q/A_{_{g}}$	$(N/mm/mm^2)$	0.002009	0.001459	0.002203	0.001433	0.001452	0.002179	0.002203	0.001452	0.001452	0.001419
$M_{_Y}/A_{_g}$	(Nmm/mm^2)	31838.95	31674.46	31714.06	31592.11	31700.71	31588.28	31714.06	31700.71	31700.71	31550.35
d_s	(mm)	20	8	18	8	6	18	18	6	6	6
h_2	(mm)	36	20	40	20	22	40	40	22	22	22
h_1	(mm)	35.00	42.48	63.14	42.92	43.50	61.50	63.14	43.50	43.50	41.61
d	(mm)	11.90	17.11	10.01	16.82	17.40	9.75	10.01	17.40	17.40	17,10
С	(mm)	24.50	34.81	21.56	34.22	34.80	21.00	21.56	34.80	34.80	34.20
q	(mm)	70	59	LL LL	58	58	75	LL LL	58	58	57
No. of run		1	2	3	4	5	9	L	8	6	10

APPENDIX E

Results using the Modified Eurocode 3 Method

Z-Shape Purlin

h=100 *mm*, *L*=1400 *mm* and *t*=1.0 *mm*

No. of	b_1	С	q/A_g	M/A_g	q	A_{g}
run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	44	22.04	0.019772	7954.697	4.218377	213.3504
2	40	20.06	0.019850	8085.967	4.007060	201.8688
3	44	22.42	0.019771	7919.435	4.232648	214.0800
4	42	21.24	0.019854	8022.121	4.129104	207.9744
5	40	20.06	0.019850	8085.967	4.007060	201.8688
6	42	20.52	0.019820	8074.155	4.094598	206.5920
7	44	22.8	0.019767	7883.179	4.246084	214.8096
8	45	19.89	0.019586	8098.025	4.135413	211.1424
9	41	20.65	0.019864	8059.779	4.070652	204.9216
10	41	20.65	0.019864	8059.779	4.070652	204.9216

h=150 mm,	L=1700 n	mm and t=	1.0 mm
-----------	----------	-----------	--------

No. of	b_1	С	q/A_g	M/A_g	q	A_{g}
run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm^2)	(N/mm)	(mm^2)
1	55	28.91	0.016682	9196.292	4.932186	295.6608
2	56	29.00	0.016671	9189.853	4.963914	297.7536
3	55	28.91	0.016682	9196.292	4.932186	295.6608
4	57	30.09	0.016654	9181.520	4.993062	299.8080
5	57	30.60	0.016708	9114.495	5.058132	302.7456
6	57	29.07	0.016654	9181.520	4.993062	299.8080
7	56	30.00	0.016710	9147.820	5.007456	299.6736
8	53	28.20	0.016650	9213.074	4.836034	290.4576
9	57	26.01	0.016422	9248.449	4.827078	293.9328
10	55	24.99	0.016352	9263.601	4.711489	288.1344

No. of	b_1	С	q/A_g	M/A_g	q	A_{g}
run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	73	39.53	0.007497	13601.85	4.523062	603.3012
2	73	39.53	0.007497	13601.85	4.523062	603.3012
3	76	41.30	0.007494	13481.21	4.625308	617.2296
4	73	39.53	0.007497	13601.85	4.523062	603.3012
5	76	41.30	0.007494	13481.21	4.625308	617.2296
6	71	39.00	0.007491	13623.09	4.464286	595.9136
7	76	39.90	0.007488	13565.89	4.590936	613.1416
8	76	41.30	0.007494	13481.21	4.625308	617.2296
9	73	39.53	0.007497	13601.85	4.523062	603.3012
10	76	41.30	0.007494	13481.21	4.625308	617.2296

h=200 *mm*, *L*=3000 *mm* and *t*=1.5 *mm*

h=250 mm, L=3200 mm and t=1.5 mm

No. of	b_1	С	q/A_g	M/A_g	q	A_{g}
run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	86	47.20	0.007292	14347.99	5.371779	736.6576
2	87	48.60	0.007310	14301.50	5.436406	743.6656
3	87	47.79	0.007301	14327.93	5.412500	741.3004
4	87	47.79	0.007301	14327.93	5.412500	741.3004
5	87	48.60	0.007310	14301.50	5.436406	743.6656
6	81	42.75	0.007196	14450.44	5.102153	709.0636
7	87	48.60	0.007310	14301.50	5.436406	743.6656
8	87	47.79	0.007301	14327.93	5.412500	741.3004
9	87	41.31	0.007180	14458.94	5.186465	722.3788
10	87	47.79	0.007301	14327.93	5.412500	741.3004

h=300 *mm*, *L*=4500 *mm* and *t*=2.0 *mm*

No. of	b_1	С	q/A_g	M/A_g	q	A_{g}
run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	99	54.87	0.004637	18960.59	5.397618	1164.044
2	94	51.92	0.004584	18953.95	5.193528	1132.880
3	99	55.80	0.004645	18940.99	5.423606	1167.690
4	95	52.51	0.004596	18957.08	5.235151	1139.113
5	99	54.87	0.004637	18960.59	5.397618	1164.044
6	97	54.60	0.004625	18943.64	5.343064	1155.146
7	100	56.40	0.004654	18937.30	5.463066	1173.962
8	100	56.40	0.004654	18937.30	5.463066	1173.962
9	100	47.94	0.004558	19039.10	5.199932	1140.798
10	87	47.79	0.004491	18916.57	4.891877	1089.250

No. of	b_1	С	q/A_g	M/A_{g}	q	A_{g}
run	(mm)	(mm)	$(N/mm/mm^2)$	(Nmm/mm ²)	(N/mm)	(mm^2)
1	90	49.56	0.003660	19329.34	4.414114	1205.949
2	97	42.77	0.003646	19388.20	4.400476	1206.772
3	93	46.98	0.003668	19380.38	4.429246	1207.595
4	95	45.39	0.003667	19396.75	4.434333	1209.202
5	95	45.39	0.003667	19396.75	4.434333	1209.202
6	91	49.30	0.003671	19350.79	4.437142	1208.850
7	95	43.61	0.003644	19383.38	4.380345	1202.225
8	91	49.30	0.003671	19350.79	4.437142	1208.850
9	96	44.10	0.003658	19395.27	4.419214	1208.066
10	93	46.98	0.003668	19380.38	4.429246	1207.595

h=350 mm, L=5000 mm and t=2.0 mm

APPENDIX E

Z-Shape Purlin with Single Edge Stiffener (Free Optimized Case)

h=350 mm, L=6000 mm and t=2.0 mm

$\mathbf{A}_{_{g}}$	(mm^2)	1147.992	1174.677	1138.002	1159.877	1174.677	1174.677	1174.677	1174.677	1206.821	1159.877
q	(N/mm)	4.808137	4.975697	4.717307	4.889052	4.975697	4.975697	4.975697	4.975697	5.075303	4.889052
$M_{_{y}}/A_{_{g}}$	(Nmm/mm ²)	26622.36	26421.06	26698.31	26549.78	26421.06	26421.06	26421.06	26421.06	25915.39	26549.78
$q/{ m A}_{_{g}}$	(N/mm/mm ²)	0.004188	0.004236	0.004145	0.004215	0.004236	0.004236	0.004236	0.004236	0.004206	0.004215
d_s	(mm)	25	30	24	27	30	30	30	30	27	27
h_2	(mm)	17	28	16	21	28	28	28	28	22	21
h_1	(mm)	59.94	68.06	56.00	63.96	68.06	68.06	68.06	68.06	43.68	63.96
С	(mm)	28.35	33.20	27.20	30.34	33.20	33.20	33.20	33.20	33.67	30.34
q	(mm)	81	83	80	82	83	83	83	83	91	82
No. of	IINI	1	2	3	4	5	9	7	8	6	10

HELSINKI UNIVERSITY OF TECHNOLOGY LABORATORY OF STEEL STRUCTURES PUBLICATIONS

TKK-TER-11	Ma, Z., Måkeläinen, P.,
	Numerical Analysis of Steel-Concrete Composite Slim Floor Structures in Fire, 1999.
TKK-TER-12	Kaitila, O., The Behaviour of Steel-Concrete Composite Frames in Fire Conditions, 1999.
TKK-TER-13	Kesti, J., Mäkeläinen, P. (toim./ eds.), Fifth Finnish Steel Structures Days 1819.1.2000.
TKK-TER-14	Malaska, M., Ma, Z., Mäkeläinen, P. Study on Composite Slim Floor Beams, 2000.
TKK-TER-15	Hara, R., Kaitila, O., Kupari, K., Outinen, J., Perttola, H. Seminar on Steel Structures: Design of Cold-Formed Steel Structures, 2000.
TKK-TER-16	Lu, W. Neural Network Model for Distortional Buckling Behaviour of Cold-Formed Steel Compression Members ,2000.
TKK-TER-17	Kaitila, O., Kesti, J., Mäkeläinen, P. Rosette-Joints and Steel Trusses, Research Report and Design Recommendations, 2001.
TKK-TER-18	Ma, Z. Fire Safety Design of Composite Slim Floor Structures, 2000.
TKK-TER-19	Kesti, J. Local and Distortional buckling of Perforated Steel Wall Studs, 2000.
TKK-TER-20	Malaska, M. Behaviour of a Semi-Continuous Beam-Column Connection for Composite Slim Floors, 2000.
TKK-TER-21	Tenhunen, O., Lehtinen, T., Lintula, K., Lehtovaara, J., Vuolio, A., Uuttu, S., Alinikula, T., Kesti, J., Viljanen, M., Söderlund, J., Halonen, L., Mäkeläinen, P. Metalli-lasirakenteet kaksoisjulkisivuissa, Esitutkimus, 2001.
TKK-TER-22	Vuolio, A. Kaksoisjulkisivujärjestelmien rakennetekniikka, 2001.
TKK-TER-23	Outinen, J., Kaitila, O., Mäkeläinen, P. High-Temperature Testing of Structural Steel and Modelling of Structures at High Temperatures, 2001.
TKK-TER-24	Kaitila, O. Finite Element Modelling of Cold-Formed Steel Members at High Temperatures, 2002.

ISBN 951-22-6287-8 ISSN 1456-4327