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Abstract
We consider periodically propagating pulses, devoid of diffractive
spreading. They may feature arbitrary velocities of propagation but their
spectral characteristics vary according to whether they are luminal,
subluminal or superluminal. The wave modes introduced are closely related
to the X waves and the focus wave modes, but they allow a
frequency-dependent cone angle and are not limited to the speed of light.

Keywords: Non-diffracting waves, Bessel beams, X waves, superluminal
propagation, localized waves

1. Introduction

Recently, localized wave propagation has attracted much
attention, and several propagation-invariant wave modes have
been presented, such as focus wave modes [1,2], X waves [3,4]
and subsonic nondiffracting waves (NDW) [5]. Here we
introduce a systematic approach to all periodically evolving
pulsed wave modes whose core propagates at an arbitrary
velocity 0 < v < ∞. The spectral characteristics of the wave
modes vary according to whether the velocity of propagation
equals, exceeds, or is below the speed of light.

The propagating localized waves presented here share
many properties of the X waves and the focus wave modes.
Lateral localization is due to radial energy propagation which
focuses on the axis; the characteristic r−1 decay in energy
density owes to this effect. The periodicity of the wave modes
also leads to a ‘carrier wave’ whose velocity is c2/v. Hence
the latter is superluminal for pulses propagating with v < c,
and subluminal for v > c. In particular, for v = c the carrier
wave propagates in the opposite direction, in analogy with the
focus wave modes.

Requirements for the periodic propagation of the wave
pulse are independent of the scalar or vector nature of the field.
Essentially, the field decomposition is based on Bessel beams
whose axial and radial wavenumbers scale with frequency.
The vector description of the electromagnetic field is directly
obtained by substitution of vector Bessel beams. Depending
on the choice of the individual beam polarizations, different
modes are obtained for the propagating pulses.

Although the detailed modulation of optical pulses in
the inverse-frequency timescale is complicated, approximately
propagation-invariant waves have been produced and

observed [6]. The periodically evolving wave modes presented
here allow for improved control over the velocity of pulse
propagation. Moreover, they also provide new insight into the
properties of classical superluminal electromagnetic waves [7].

We first consider the mathematical prerequisites for the
discussion of periodically propagating wave fields and show
how the different known wave modes, e.g. NDW and self-
imaging fields, are related to the present formulation. We then
briefly concentrate on monochromatic waves and subsequently
focus on separately analysing the different velocity ranges. We
also develop explicit integral expressions for all the single-
mode waves which feature harmonic (sinusoidal) evolution
under propagation.

2. Periodic wave modes

In this section, we discuss solutions of the scalar wave equation
which ‘retain’ their spatial shape under propagation, i.e. which
do not spread, or if they do, they will spontaneously return to
their original form. We call these waves rotationally periodic
waves (RPW); their mathematical definition is given below.

Consider an arbitrary field � which propagates along
z, and express it in terms of spatial cylindrical coordinates,
(r, ϕ, z), and time, t . We require the field to be periodic in the
following sense:

�(r, ϕ + γ, z + ξ ; t + τ) = �(r, ϕ + γ, z + vτ ; t + τ)

= �(r, ϕ, z; t). (1)

Furthermore, the field� is also periodic in the azimuthal angle
ϕ:

�(r, ϕ + 2π, z; t) = �(r, ϕ, z; t). (2)
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The first condition may be interpreted as follows: after a
certain period of time τ , the field has propagated the distance
ξ = vτ along z, and it has simultaneously rotated through
the angle γ . We refer to v as the velocity of propagation. We
point out that no assumptions have been introduced concerning
the behaviour of the field between the instants t and t + τ ;
i.e. it is not assumed to rotate uniformly but it may rather
evolve in an arbitrarily complicated manner. Similar wave
solutions have also been studied by Piestun and Shamir in [8],
but we take a more general starting point and we shall obtain
the monochromatic waves as a special case.

These two periodicity requirements lead to the RPW
dispersion relation (see the appendix for a detailed derivation):

kz,ln = ω

v
+

2πl − nγ

ξ
≡ ω

v
+ µ, (3)

where l and n are arbitrary integers.
The field is also required to satisfy the scalar wave equation

∇2� = 1

c2

∂2

∂t2
�. (4)

In the Fourier space, the wave equation reduces simply to
k2
x + k2

y + k2
z = k2

⊥ + k2
z = ω2/c2, where the phase velocity

of isotropic wave motion is denoted by c—to be distinguished
from the propagation velocity, v. It immediately follows that
for a given ω and kz, the radial wavenumber k⊥ is uniquely
determined and it is given by

k⊥,ln =
(
ω2

c2
− k2

z,ln

)1/2

. (5)

Note that the radial wavenumber only has an absolute value
for waves which are defined on the axis of propagation1.
Combining the conditions for the axial and radial wavenumbers
and performing the inverse Fourier transform leads to

�(r, ϕ, z; t) =
∑
l,n

exp{i[nϕ + (2πl − γ n)z/ξ ]}

×
∫
aln(ω)Jn(rk⊥,ln) exp[iω(z/v − t)] dω, (6)

which is the general expression for rotationally periodic
solutions to the scalar wave equation. Here the aln are arbitrary
functions of frequency ω. Each integral is evaluated over
those frequencies for which the radial wavenumber possesses
a positive real value.

The integral is a ‘wave’ that depends only on r and z− vt

and, therefore, it propagates with the velocity v. The actual
solution is a sum of such waves, modulated by exponentials
that fulfil the periodicity requirements.

Finally, we want to emphasize the differences between
the periodicities arising from the l and n degrees of freedom.
The different n define the azimuthal dependence of the wave
for fixed z and t . Furthermore, it is also guaranteed that this
azimuthal shape is repeated after the pitch ξ and the period τ ,
only rotated through the angle γ . The mode l = 0 represents
uniform evolution of the wave while higher modes will change
the shape of the wave within the period.

1 Hankel-based waves would also feature a radial direction but they contain
a source along z. For Hankel waves, see, e.g., [4, 9].

Table 1. Classification of different RPW. If n is bound to zero, the
rotational parameter γ plays no role. Therefore, it is omitted from
the rotationally invariant waves.

Wave type γ n l

General RPWs free free free
Uniformly propagating waves free free l = 0
Nondiffracting waves γ = 0 free l = 0
Self-imaging waves γ = 0 free free
Rotationally invariant waves — n = 0 free

3. Special propagation symmetries

Several special cases of RPWs are of intrinsic interest in their
own right. Hence we briefly describe some of them. Different
subclasses are summarized in table 1.

3.1. Uniformly propagating waves

General RPWs may display complicated behaviour within each
period. Therefore, we first consider the case of uniformly
propagating waves which have trajectories of constant value
under propagation. That is, we require that the periodicity
condition holds for all

ξ = vτ

γ = ντ
τ ∈ R, (7)

i.e. that the constant-value trajectories are given by (r cos(ϕ +
ντ), r sin(ϕ + ντ), z + vτ) for all r , ϕ, and z. We shall,
however, obtain uniformly propagating waves by considering
the case l = 0 of the general RPWs. This can be deduced
from equation (A.4), which in this case is independent of θ
and, consequently, we may take l = 0. On the other hand, if
the spatial period ξ is small, the higher components l �= 0 can
only exist for very high frequencies. Hence, if the frequency
band is bounded from above, the higher components are never
excited which results in uniformly propagating waves.

3.2. Nondiffracting waves

NDW are a widely studied class of wave solutions. They
are defined as wave fields which propagate uniformly without
rotation: �(r, ϕ, z, t) = �(r, ϕ, z− vt). Clearly, they form a
subclass of uniformly rotating waves, with a vanishing rotation
angle, γ = 0.

NDW are also often called ‘X waves’ due to their conical
form [3], and those NDW with fixed n �= 0 are referred to
as ‘rotating X waves’, cf equation (12) in [3]. However,
their rotation is of static nature and it is not involved in the
propagation dynamics of the wave. This is due to the fact that
γ = 0.

3.3. Self-imaging waves

Self-imaging waves are nonrotating periodic waves which
reproduce themselves with the period τ at z+vτ , i.e.�(r, ϕ, z+
vτ, t + τ) = �(r, ϕ, z, t). They have γ = 0 but they may
feature different l and n components.
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Figure 1. Permitted values of kz for a given ω. The circle represents the dispersion relation k2
⊥ + k2

z = ω2/c2 which must be fulfilled by all
the Fourier components of the wave. The fundamental mode (n = l = 0) is always possible, provided that |v| � c. The different l modes
share the frequency spacing of 2π/ξ and, consequently, the higher modes can only exist if the frequency is high enough. In (a), only the
fundamental mode satisfies the dispersion relation, while in (b) several higher modes are allowed. Both graphs are for the case with v > c
and n = 0.

3.4. Rotationally invariant waves

Rotationally invariant waves are wave fields which have no
azimuthal dependence. This leads directly to the condition
n = 0. On the other hand, while n = 0, the wave becomes
independent of the γ parameter which may thus be set equal to
zero. However, rotationally invariant waves may evolve during
propagation, i.e. their cross section is not required to remain
constant and, therefore, different l modes are permitted which
serves to make them a subclass of the self-imaging waves.

4. Monochromatic fields

We have found that the general expression for any RPW is
given by a temporal inverse Fourier transform of∑

l

∑
n

aln(ω) exp{i[nϕ + (2πl − γ n)z/ξ ]}Jn(rk⊥,ln). (8)

Setting all aln proportional to δ(ω − ω0) (with a common ω0

for all n and l), the monochromatic solution may be expressed
in the form

�(r, ϕ, z; t) =
∑
l

∑
n

aln exp{i[nϕ + (2πl − nγ )z/ξ ]}

×Jn(rk⊥,ln) exp[iω(z/v − t)], (9)

where the subscript 0 has been omitted from the ω. Originally,
both l and n were allowed to have any integer value. Here,
however, the summation is much more limited. Since the
kz spacings of the different l and n modes are 2π/ξ and
γ /ξ , respectively, only a finite number of modes can satisfy
the dispersion relation |kz| � ω/c, see figure 1. From the
requirement that the radial wavenumber must be real and
positive, we find that for a fixed frequency ω > 0 only such
modes are permitted which fulfil the condition

−v + c

vc
ω � µ � v − c

vc
ω. (10)

This limitation also holds for polychromatic fields: when
integrating over frequency, the Fourier weight of a given
frequency must vanish for those l and n modes which are

not permitted at that frequency. In particular, for v � c the
fundamental µ = 0 mode is not permitted since the upper
bound is negative. For v = c, modes are available in the range

−2

c
ω � µ � 0. (11)

Note that each term in equation (9) has the form of a Bessel
beam

�(r, ϕ, z; t) = exp{i[nϕ + (2πl − nγ )z/ξ ]}
×Jn(rk⊥,ln) exp[iω(z/v − t)] (12)

= exp(inϕ)Jn(rk⊥,ln) exp{iω[(µ/ω + 1/v)z − t]}, (13)

which features the axial wavenumber kz = ω/v+µ, as required
by equation (3). We emphasize that the Bessel beam depends
on l and γ only through the parameter µ which may be
eliminated by further redefining the velocity of propagation as
v′ = (µ/ω + 1/v)−1. Individual Bessel beams thus have only
two independent parameters, the velocity v′ and the azimuthal
order n. Since k⊥ is real and positive,

|kz| = (
ω2/c2 − k2

⊥
)1/2 � |ω/c|, (14)

the (axial) phase velocityv = ω/kz is necessarily superluminal
for each Bessel beam2, independently of the parameters v and
µ. It is only their superpositions (see equation (9)), or spectral
generalizations (see below for single-mode waves) whose
velocity of propagation is directly defined by the parameter
v.

This ambiguity is a consequence of the definition given for
the rotational periodicity of a wave field: we have required that
the wave pattern is repeated after the time interval τ and spatial
spacing ξ , which together define the velocity of propagation
v = ξ/τ :

�(z + ξ, t + τ) = φ(z, t) (15)

for all z and t . However, provided that the wave also satisfies

�(z + ξ, t + τ/2) = φ(z, t), (16)

2 Bessel beams are conventionally defined within the concept of NDW, which
always exhibit superluminal velocities of propagation.
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we may argue that the velocity of propagation is actually
v′ = 2ξ/τ , which is equally consistent. Therefore, the final
velocity of propagation must be verified for each wave solution
separately.

5. Single-mode waves

We have shown that all RPW can be decomposed into partial
waves with fixed l and n. In this section, we derive the general
mathematical expressions for single-mode waves. All single-
mode waves are expressed in the general form

�ln(r, ϕ, z; t)
= exp(inϕ)

∫
a(ω)Jn(rk⊥) exp[i(kzz − ωt)] dω, (17)

where the kz and k⊥ are given by equations (3) and (5),
respectively. (We omit the subscripts ln here since they are
fixed for single-mode waves.) However, the nature of such
waves essentially depends on the velocity of propagation of
the wave. One has to be careful in imposing the limits of
integration since not all frequencies can support waves for a
given µ. The dispersion relation requires that |kz| � |ω|/c or,
equivalently, that k⊥ be real. This leads to different frequency
bands of superluminal, subluminal and luminal waves, and we
derive expressions for each of these distinct cases separately.

The frequency band is further limited by the requirement
of causality. Suppose that a pulse is generated on a planar
aperture at z = 0 and that it is to propagate in the direction
of positive z. For isotropic wave motion, the group velocity
of each plane-wave component points in the same (opposite)
direction with the wavevector for positive (negative) frequency.
Therefore, for ω > 0 the causality of pulse propagation
requires kz > 0, and vice versa.

5.1. Superluminal single-mode wave

We now turn to consider a single-mode wave for fixed l and
n (and µ) for a superluminal propagation velocity v > c. We
omit the case v < −c which has exactly the same physical
properties, apart from the direction of propagation, which is
opposite.

Provided that µ = 0, kz is always less than |ω|/c and we
may choose the limits of integration freely. This is, however,
a special case which imposes that 2πl = γ n and it can thus
be satisfied only if γ is a rational multiple of π . Although
mathematically highly unlikely, this would often correspond to
the experimental situation. On the other hand, the final solution
becomes independent of both γ and l, actually resulting in a
NDW with the index n (see section 3.2). Clearly, it will also
satisfy the periodicity conditions specified by the values of γ ,
l, and n. The wave is then given by

�(r, ϕ, z; t) = exp(inϕ)
∫ ∞

−∞
a(ω)Jn

[
r|ω|

(
v2 − c2

v2c2

)1/2
]

× exp[iω(z/v − t)] dω, (18)

with a(ω) an arbitrary (integrable) function.
For µ �= 0, the nature of the superluminal wave mode

changes essentially. The frequency band becomes restricted
since, obviously, at low frequencies one cannot satisfy |kz| ≈

Table 2. Frequency and wavenumber characteristics for
superluminal single-mode waves.

Superluminal single-mode wave (µ �= 0)

Frequency band ω � −|µ| vc

v + c
and

ω � |µ| vc

v − c
;

w < −1 and w > 1

Frequency ω = µv2c

v2 − c2

(
w +

c

v

)
Axial wavenumber kz = ω

v
+ µ

= µvc

v2 − c2
w +

µv2

v2 − c2

Radial wavenumber k⊥ =
√
ω2

c2
− k2

z

=
(

µ2v2

v2 − c2

)1/2 √
w2 − 1

|µ| < |ω|/c → 0. Change to a dimensionless variable of
integration w via the transformation

ω = µv2c

v2 − c2

(
w +

c

v

)
(19)

yields

�(r, ϕ, z; t) = exp(inϕ) exp

[
iµ

v2

v2 − c2

(
z − c2

v
t

)]

×
[ ∫ −1

−∞
+

∫ ∞

1

]
a(w)Jn

(
rC

√
w2 − 1

)

× exp

[
i
µv2c

v2 − c2
(z/v − t)w

]
dw, (20)

which serves to reveal the intrinsic structure of the
superluminal wave modes (C = [µ2v2/(v2 − c2)]1/2, for the
values of ω, kz and k⊥, see table 2). First of all, the integration
range is divided into two disjoint parts, one containing negative
frequencies (up to −|µ|vc/(v + c)) and the other containing
positive frequencies (starting from |µ|vc/(v − c)). Secondly,
the wave mode contains a propagating pulse core, described
by the integral which is further modulated by a plane wave.
Moreover, the modulating wave has the velocity V = c2/v

and the characteristic frequency $ = µvc2/(v2 − c2) which
only depends on the velocity of propagation v and the mode
parameter µ. The superluminality of the pulse is thus
compensated by the correspondingly slower phase.

Finally, we point out that in the case of negative µ the
direction of integration is reversed since nowω ∝ −w. This is
seen in the exponential terms whereµ still has a negative value,
while C only depends on the absolute value of µ. A complex
analytic expression for the pulse (that limited to ω > 0) is
thus obtained in the integration range w � 1 for µ > 0 (and
w � −1 for µ < 0), see figure 2.

5.2. Subluminal single-mode wave

We now turn to consider subluminal single-mode waves which
satisfy 0 < v < c. No fundamental (µ = 0) mode exists
for subluminal waves since |kz| = |ω|/v � |ω|/c cannot
be satisfied for v < c (this is why the NDW are always
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Figure 2. Scalar wavenumber (k), and the axial (kz) and radial (k⊥)
wavenumbers as functions of the dimensionless variable w (for
µ > 0). The dashed line shows the direction of wave propagation,
measured in angles from the z axis. For high |ω|, the angle
approaches the limit θ∞ = arccos(c/v). Within the noncausal
region, the wave has a negative energy flux along z. The
complex-analytic region is given by ω � 0 while the anti-analytic
region is defined by ω � 0.

superluminal). For µ �= 0, the wave expression is obtained
by a change of the frequency variable as

ω = µv2c

c2 − v2

(
w − c

v

)
, (21)

and it is given by

�(r, ϕ, z; t) = exp(inϕ) exp

[
−iµ

v2

c2 − v2

(
z − c2

v
t

)]

×
∫ 1

−1
a(w)Jn

(
rD

√
1 − w2

)

× exp

[
i
µv2c

c2 − v2
(z/v − t)w

]
dw (22)

with D = [µ2v2/(c2 − v2)]1/2, see table 3. Therefore,
subluminal waves are necessarily of limited bandwidth.
Similarly to the superluminal case, the wave is composed of
a propagating pulse and a phase, but here the velocity of the
pulse is subluminal and that of the phase is superluminal. A
subluminal wave is always anti-analytic (ω < 0) for µ > 0
by necessity, and complex analytic (ω > 0) for µ < 0, see
figure 3.

5.3. Luminal single-mode waves

Finally, consider the case of luminal waves with v = c. (We
denote both velocities here with c.) The fundamental mode
µ = 0 reduces to a pulse plane wave since k⊥ ≡ 0. Forµ �= 0,

ω = −µc

2
(w + 1), (23)

yields

�(r, ϕ, z; t) = exp(inϕ) exp
[
−i

µ

2
(z + ct)

]
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Figure 3. Scalar wavenumber (k), and the axial (kz) and radial (k⊥)
wavenumbers as functions of the dimensionless variable w (for
µ > 0). No limiting cone angle exists for the subluminal waves.

Table 3. Frequency and wavenumber characteristics for subluminal
single-mode waves.

Subluminal single-mode wave (µ �= 0)

Frequency band −µ vc

c − v
� ω � −µ vc

c + v
, µ > 0

−µ vc

c + v
� ω � −µ vc

c − v
, µ < 0

−1 � w � 1

Frequency ω = µv2c

c2 − v2

(
w − c

v

)
Axial wavenumber kz = ω

v
+ µ

= µvc

c2 − v2
w − µv2

c2 − v2

Radial wavenumber k⊥ =
√
ω2

c2
− k2

z

=
(

µ2v2

c2 − v2

)1/2 √
1 − w2

×
∫ ∞

0
a(w)Jn

(
r|µ|√w

)
exp

[
−i

µ

2
(z − ct)w

]
dw,

(24)

see table 4. Again, the wave consists of a propagating pulse and
a modulating plane wave, both of which feature propagation
at the speed of light. However, the modulation wave now
propagates in the opposite direction in comparison to the pulse
propagation. Similarly to subluminal waves, the luminal waves
are anti-analytic for µ > 0 and analytic (ω > 0) for µ < 0,
see figure 4.

6. Extension to vector fields

Thus far, we have only considered the wave equation through
its dispersion relation k2 = ω2/c2 which is satisfied by
all isotropic and dispersionless wave fields in homogeneous
media. Diffraction-free scalar wave fields considered in this
paper are composed of Bessel beams which explicitly satisfy
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Figure 4. Scalar wavenumber (k), and the axial (kz) and radial (k⊥)
wavenumbers as functions of the dimensionless variable w (for
µ > 0). The limiting cone angle for luminal waves is zero, i.e. the
high-frequency wave components propagate along z.

Table 4. Frequency and wavenumber characteristics for luminal
single-mode waves.

Luminal single-mode wave (µ �= 0)

Frequency band ω � −µc
2
, µ > 0

ω � |µ| c
2
, µ < 0;

w � 0

Frequency ω = −µc

2
(w + 1)

Axial wavenumber kz = ω

c
+ µ

= µ

2
(1 − w)

Radial wavenumber k⊥ =
√
ω2

c2
− k2

z

= |µ|√w

the following relation, see equation (6):

�J (r, ϕ, z, t;ω) = exp(inϕ)Jn(k⊥r) exp[i(kzz − ωt)]. (25)

Corresponding vector-valued fields are obtained by replacing
the scalar Bessel beams with their vectorized counterparts (see,
e.g., [10, 11]). Using the plane-wave representation of Bessel
beams, we find

�J (r, ϕ, z, t;ω) = (−i)n

2π

∫ 2π

0
exp(inβ)

× exp[i(xk⊥ cosβ + yk⊥ sin β + zkz − ωt)] dβ. (26)

Vector beams are obtained simply by inserting a (unit)
polarization vector E(β) which satisfies Maxwell’s equations
together with the above wavevector. In isotropic media, this
is simply achieved by requiring that E(β) ⊥ k(β) where β is
the azimuthal angle in the Fourier space, see figure 5. For a
generalization to the case of anisotropic media, see [12].

kx

ky

kz
β k

E

Figure 5. Wavevector representation of Bessel beams. The electric
polarization E is orthonormal to the corresponding wavevector k.
Here β is the azimuthal angle in the (kx, ky) plane.

7. Physical wave propagation

Mathematically, no constraints were imposed on the shape
of the propagating wave field. The requirement of periodic
propagation, with or without rotation, leads to the axial
dispersion relation for each mode, given by equation (3).
However, the resultant fields, especially for single-mode
waves, feature clear wavefront structure, see figure 6. This
is due to the single-valued dependence of both the axial and
radial wavenumbers on frequency since, consequently, each
frequency has a dominant direction of energy propagation,
given by the group velocity.

A superluminal wave, figure 6(a), features the closest
resemblance with the ordinary nondiffracting X wave. The
emerging central spot of the wave is constructed, at each instant
of time, by the conically approaching wavefront which has
been launched well before the formation of the current focal
spot. The spatial dimensions of the pulse are determined by
the radial wavenumber C

√
w2 − 1 and the axial wavenumber

[µvc/(v2 − c2)]w, see equation (20). The precise form of the
pulse is given by the spectral function a(w). The modulating
plane wave has $ = µvc2/(v2 − c2), Kz = µv2/(v2 − c2),
and V = c2/v.

The wavefronts for a luminal field, figure 6(b), appear
somewhat similar to those in superluminal waves and they are
launched before the formation of the current spot but always
appear equally far from the future one, causing it to move
exactly with the speed of light. The dimension of the pulse owe
to the radial and the axial wavenumbers, |µ|√w and (µ/2)w,
respectively. The modulating plane wave has characteristic
parameters given by $ = µc/2, Kz = −µ/2 and V = −c.
Note that in this particular case, the plane wave propagates in
the opposite sense with respect to the pulse itself.

For subluminal waves, figure 6(c), the conical wavefronts
precede the present focus of the wave, making the apparent
pulse propagation slower than light. Note that the wavefront
exhibits no prominent propagation angle but is nearly circular.
The characteristic dimensions of the pulse are given by radial
wavenumber, D

√
1 − w2, and by the axial wavenumber,

µvc/(c2 − v2)w, see equation (22). The plane wave features
$ = −µvc2/(c2 −v2), Kz = −µv2/(c2 −v2) and V = c2/v.
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(b)

x
z
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z
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Figure 6. (a) Superluminal single-mode field for v = 2c, (b) luminal field, and (c) subluminal field for v = c/2. The black arrows indicate
the direction of energy propagation for wavefronts while the white arrows denote the propagation of the pulse centre. The length of the
white arrow is proportional to the velocity of propagation, v, while the radius of the wavefront is proportional to the speed of light. (Black
arrows are not to scale.)

8. Discussion

Diffraction-free and propagation-invariant wave fields have
attracted intensive attention during the past decade. In
this paper, we have presented a systematic formulation for
periodically evolving localized pulses which may propagate at
arbitrary speeds, in contrast to conventional X waves and focus
wave modes.

Similar monochromatic wave fields have been widely
studied, and the novel pulsed fields provide propagating
counterparts to the NDW (Bessel beams), and the self-
imaging and rotating fields. We have briefly considered the
monochromatic solutions and then separately discussed single-
mode waves for different velocity ranges. General integral
expressions are obtained for all the modes. Finally, we
have presented illustrations of the three simplest wave fields
which demonstrate the characteristic properties of periodically
evolving pulses.

We expect that the present theory of propagating wave
fields will provide new insight and tools and thus contribute to
the research of electromagnetic pulses.
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Appendix. Dispersion relation for rotationally
periodic waves

Consider an arbitrary field which propagates along z and
express it using spatial cylindrical coordinates and time. We
require the field to satisfy the periodicity conditions given by
equations (1) and (2). The Hankel–Fourier transform of such
a wave is given by

�̃(k⊥,m, kz;ω) = 1

2π

∫
�(r, ϕ, z; t) exp(−imϕ)Jm(k⊥r)

× exp[−i(kzz − ωt)]r dr dϕ dz dt. (A.1)

We change the variables of integration according to

z = ξη + (ξ/2π)θ

t = (τ/2π)θ

ϕ = (γ /2π)θ + α

(A.2)

and obtain

�̃(k⊥,m, kz;ω)
= vτ 2

(2π)2

∫
�(r, γ /2π θ + α, ξη + ξθ/2π; τθ/2π)

× exp[−im(γ θ/2π + α)]Jm(k⊥r)
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× exp{−i[kx(ξη + ξθ/2π)z − ω(τθ/2π)]}r dr dα dη dθ,

(A.3)

where we employ cylindrical coordinates kx = k⊥ cosβ and
ky = k⊥ sin β in the Fourier space.

Now�has the period of 2π for bothα and θ and, therefore,
we may write

�(r, α, η, θ) =
∞∑

l=−∞

∞∑
n=−∞

aln(r, η) exp[i(nα + lθ)]. (A.4)

Substitution into equation (A.3) yields

�̃(k⊥,m, kz;ω) =
∞∑

l=−∞
ãlm(k⊥, kzξ)

×δ
[
kz −

(
ω

v
+

2πl −mγ

ξ

)]
. (A.5)

Since aln(r, η) are arbitrary functions, their Fourier transforms,
ãlm are also arbitrary functions of k⊥ and kzξ . As the delta-
function fixes kz for a given ω, l, and n, we conclude that the
integral may also be considered an arbitrary function of k⊥ and
ω.

Now we demand that the ordinary scalar wave equation
be obeyed. In the Fourier space, it reduces to k2

x + k2
y + k2

z =
k2
⊥ + k2

z = ω2/c2 where the phase velocity for isotropic wave
motion is denoted by c, in contrast to the propagation velocity
v. It immediately follows that k⊥ is uniquely determined for
given ω and kz; that is, for given ω, l and n. The Fourier
representation may thus be expressed as

�̃(k⊥,m, kz;ω) =
∑
l

alm(ω)δ

[
kz −

(
ω

v
+

2πl −mγ

ξ

)]

×δ
[
k⊥ −

(
ω2

c2
− k2

z

)1/2
]
. (A.6)

The field itself may now be represented in the form

�(r, ϕ, z; t) =
∞∑

n=−∞

∞∑
l=−∞

∫ ∞

−∞
aln(ω)

× exp(inϕ)Jn(k⊥,lnr) exp[i(kz,lnz − ωt)] dω (A.7)

where the factor k⊥/2π has been incorporated into the aln(ω).
The axial wavenumber equals

kz,ln = ω

v
+

2πl − nγ

ξ
, (A.8)

while the radial wavenumber is

k⊥,ln =
(
ω2

c2
− k2

z,ln

)1/2

. (A.9)

In equation (A.7), it is required that the aln(ω) vanish for
imaginary3 k⊥. The wave may also be represented as

�(r, ϕ, z; t) =
∑
l

∑
n

exp[i(nϕ + (2πl − γ n)z/ξ)]

×
∫ ∞

−∞
aln(ω)Jn(rk⊥,ln) exp[iω(z/v − t)] dω. (A.10)

The integral is a ‘wave’ that only depends on r and z − vt ;
therefore, it propagates with the velocity v. The actual solution
is a sum of such waves, modulated by exponential terms that
satisfy the periodicity requirements.
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