
nd

PHYSICAL REVIEW E SEPTEMBER 2000VOLUME 62, NUMBER 3
Unified description of nondiffracting X and Y waves
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A unified spectral and temporal representation is introduced for nondiffracting waves. We consider a set of
elementary broadbandX waves that spans the commonly considered nondiffracting wave solutions. These basis
X waves have a simple spectral representation that leads to expressions in closed algebraic form or, alterna-
tively, in terms of hypergeometric functions. The span of theX waves is also closed with respect to all spatial
and temporal derivatives and, consequently, they can be used to compose different types of waves with
complex spectral and spatial properties. The unified description of Bessel-based nondiffracting waves is further
extended to include singular Neumann and Hankel waves, orY waves. We also discuss connections between
the different known nondiffracting wave solutions, and their relations to the present unified approach.

PACS number~s!: 43.20.1g, 42.25.Bs, 46.40.Cd, 62.30.1d
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I. INTRODUCTION

Nondiffracting waves have attracted intense attention
ter Durninet al. @1# first reported the generation of an optic
diffraction-free beam, also referred to as a Bessel beam
1987. Although the monochromatic solution had origina
been presented by Stratton@2#—as early as 1941—the poly
chromatic waves remained relatively ignored until Lu a
Greenleaf@3# first introduced nondiffracting acoustic pulse
and subsequently presented a theoretical derivation of n
diffracting X waves@4#.

Several different approaches to nondiffracting waves h
been proposed. Lu and Greenleaf themselves also sugg
another scheme in which one transforms an ordinary w
solution in an (n21)-dimensional space into a nondiffrac
ing solution in ann-dimensional space; when applied
wavelet solutions, it was called a wavelet transform@5#. We
have discussed nondiffracting waves using the angular s
trum of plane waves, and analyzed new solutions obtaine
temporal derivatives of the fundamentalX wave @6,7#. A
temporal, instead of spectral, approach to nondiffract
waves was suggested by Stepanishen and Sun@8,9#. Re-
cently, we re-derived nondiffracting waves using their Fo
rier representation to generalizeX waves into anisotropic
wave propagation@10#.

In the present paper, we obtain a general expression
nondiffracting waves using their Fourier transforms. Th
leads to the spectral representation of nondiffracting wav
which is here subsequently converted into a temporal re
sentation. We derive an algebraic expression for an imp
tant subclass of broadbandX waves and show that this sub
class of wave solutions is closed with respect to all tempo
and spatial derivatives. This simplifies in an essential w
the description of derivative-based mixed-wave modes, s
as the bowtie@11# and array waves@12#.

We define nondiffracting waves as such solutions of
wave equation that propagate uniformly—invariant
shape—along a given direction with a fixed velocityv,
called the velocity of propagation. Mathematically, the wa
is expressed asf(x,y,z;t)5 f (x,y,z2vt). This leads to
PRE 621063-651X/2000/62~3!/4261~15!/$15.00
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polychromatic generalizations of Bessel beams. We also
cuss ‘‘extended’’ nondiffracting waves that are based on
Neumann or Hankel—instead of Bessel—beams@13,14#.
Noting that the cross section of the Hankel waves resem
the capital letterY, we suggest for them the name ‘‘Y
waves.’’ We also analyze the spectral and azimuthal deg
of freedom exhibited by nondiffracting waves.

We explicitly consider an important subclass of nond
fracting waves that we refer to asX waves. These are wave
with a spectrum of the formvme2av. We have already pre
sented these solutions and analyzed their properties usin
angular-spectrum representation@6,7#. Here we represen
them in closed algebraic form. The original definition
nondiffractingX waves@4# is more general and contains e
sentially all nondiffracting waves. TheX-shaped form of the
wave is, however, most pronounced for this subclass of w
solutions, and we refer to the more general class of soluti
merely as nondiffracting waves.

Finally, we consider different known nondiffracting wav
solutions and discuss connections between the notation
this field. This is to assist further studies on the subject a
to help clarify the significance of and interrelations betwe
the many contributions.

II. PHYSICS OF NONDIFFRACTING WAVES

Nondiffracting waves provide propagating beams a
pulses that feature good spatial localization—of the orde
wavelength—without diffractive effects that would dive
similarly localized Gaussian waves. Physically, diffracti
spreading of waves is avoided provided that the wave pro
gates invariant in shape, which is the mathematical prem
for the unified formulation of the present paper for nond
fracting waves. Since nondiffracting waves are suppose
propagate in free homogeneous media they may be c
structed as linear combinations of plane waves. The co
tion of uniform propagation requires that all plane-wa
components share a common phase velocity in the direc
of propagation. Consequently, they remain in phase and
wave possesses an invariant form.
4261 ©2000 The American Physical Society
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For monochromatic nondiffracting beams, the cross s
tion of the wave is invariant in the axial direction, thez axis,
while it features a peaked amplitude maximum in the (x,y)
plane. The peak itself can be made as narrow as the w
length without spreading effects. On the other hand, the
quirement of uniform propagation unavoidably leads to
transverse component of the energy flux that is neede
support the main peak of the wave. It is observed in~an
infinite number of! relatively strong side lobes and the wa
energy decreases only in proportion tor 21 far from the axis
of propagation. Nevertheless, even finite-aperture appr
mations of nondiffracting beams show a wavelength-w
focal line of arbitrary length in the axial direction, and e
ergy concentration along this focal line.

The energy propagation within nondiffracting waves
manifestly seen in pulselikeX waves; they consist of conica
wavefronts that carry the wave energy. The fronts exten
fixed angle~defined by the velocity of the pulse! with the
axis of propagation, and the propagating pulse is observe
the crossing of the wavefronts. Thus, the energy of the p
does not propagate along the axis of propagation, but is
vided by the conical wavefronts that carry energy from
outer regions of the aperture. The characteristic structur
nondiffracting waves is revealed in the ‘‘fundamentalX
wave’’ that is illustrated in Fig. 1 and further discussed
Sec. VII.

III. UNIFIED FORMULATION

A nondiffracting wave is defined as a solution to the s
lar wave equation that propagates uniformly along thez axis
with the velocity of propagationv. Such a wave may be
expressed asf(x,y,z;t)5 f (x,y,z2vt), and its Fourier rep-
resentation is@15#

f̃~kx ,ky ,kz ;v!5
1

~2p!2E f~x,y,z;t !

3e2 i (kxx1kyy1kzz2vt)drdt. ~1!

Changing the variables of integration intoh5z2vt and u
5z leads to

f̃~kx ,ky ,kz ;v!5d~kz2v/v !
A2p

v
f̃ ~kx ,ky ,v/v !, ~2!

where f̃ is the Fourier transform off, either of which may be
taken arbitrary. However, the Fourier representation of
wave itself proves proportional tod(kz2v/v), which is a
sufficient condition for the wave to propagate uniform
along thez axis. The wave is also required to satisfy t
wave equation, which holds assuming thatkx

21ky
25k'

2

5v2/c22kz
2 , wherec is the speed of light~or sound! in the

medium andk' is the radial wave number. This is satisfie
by construction provided that we choose the representat

kx5v~sinz!~cosb!/c,

ky5v~sinz!~sinb!/c, ~3!

kz5v~cosz!/c.
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Due to the nondiffraction condition,kz5v/v, we deduce
that v5c/cosz>c ~since v.0 and thus 0<z<p/2). The
radial wave number assumes the form

k'5v~sinz!/c ~4!

andb in Eq. ~3! is the azimuthal angle in the (kx ,ky) plane.
Above, z50 corresponds to a plane wave, whilez5p/2
would imply a wave independent ofz, which formally has an
infinite velocity of propagation alongz. The parameterz is
called the axicon angle of the wave, see Ref.@16#, and its
value is determined by the velocity of propagation@17#. Be-
low, we find that the axicon angle defines a cone of pro
gation that is characteristic to all nondiffracting waves ha
ing equal velocities.

Consequently, the Fourier transform of an arbitrary no
diffracting wave is of the form

FIG. 1. ~Color! FundamentalX waveF0,0. ~a! Cone of propa-
gation characteristic to all nondiffracting waves. The direction
propagation is along thez axis. The focal spot and the wave patte
appear to propagate with superluminal velocity.~b! The (x,z) cut of
the same wave. Small arrows represent the energy flow that c
cides with the propagation of the wavefronts while the large arr
indicates the propagation of the entire wave. The focal spo
formed as the superposition of wavefronts. Since the wave is s
metric about thez axis, the wavefronts are conical in three dime
sions. For then50 wave, the energy flux has no azimuthal com
ponent and the wavefronts cross on thez axis. For higher azimutha
orders, the flux also possesses an azimuthal component an
wavefronts no longer cross in a single center, which causes
higher-order waves to be so-called ‘‘dark pulse’’ waves.
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f̃~k,v!5 f ~v,b!d„k'2v~sinz!/c…d„kz2v~cosz!/c….
~5!

The latter delta function, containingkz , arises from the non-
diffraction condition, while both delta functions together e
sure that the wave equation be satisfied.

We point out that the above expression@Eq. ~5!#, is essen-
tially identical to that presented by Donnellyet al. @see Ref.
@18#, Eq. ~11!#:

Cg~k,v!5J~k,g!d~kz2gk/A12g2!d~v2ck/A12g2!,
~6!

wherek is the radial wave number andgP(21,1) is a free
parameter. According to this representation, the velocity
propagation isv5v/kz5c/g whenceg5 cosz in our nota-
tion.

A. Spectral approach

Sinceb is limited into the finite interval@0,2p#, we may
expressf (v,b) as the Fourier series

f ~v,b!5 (
n52`

`

f n~v!einb. ~7!

This shows that any nondiffracting wave is a superposit
of components with well-defined azimuthal properties, i
azimuthal ordern. Below we show that the azimuthal depe
dence in real space also shares the same functional
einw. Considering a wave for fixedn, we obtain

F̃n~k,v!5ein(b2p/2)f n~v!
2p

k'

d„k'2v~sinz!/c…

3d„kz2v~cosz!/c…. ~8!

The arbitrary functionf n(v) is called the spectrum of th
nondiffracting wave. The factor 2p/k' arises from the mea
sure of integration in cylindrical coordinates@19#. We em-
phasize that all nondiffracting waves~with a common veloc-
ity and direction of propagation! in free space can be
expressed as a sum of waves of this form. This shows
the originalX waves@4# are the most general nondiffractin
waves, except for being limited to positive frequencies on
The inverse Fourier transform leads to

Fn~r ,t !5E
2`

`

f n~v!FJn
~r ,w,z,t;v!dv, ~9!

which is a spectral generalization of Bessel beams of
form

FJn
~r ,w,z,t;v!5~21!* neinwJunu„vr ~sinz!/c…

3ei [(cosz)z/c2t]v, ~10!

where we introduce the notation

~21!* n5H 1, n>0

~21!n, n,0.
~11!
-

f

n
.,

rm
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.

e

Although the indexn in the Bessel function may also assum
negative values, the absolute value is chosen for convenie
as it will prove simpler below.

Since v5c/cosz is the velocity of propagation of the
wave, all nondiffracting waves are composed of Bes
beams having different frequencies but the same velocity
propagation. Each Bessel wave has the radial wave num
k'5v(sinz)/c and the axial wave numberkz5v(cosz)/c in
accordance with Eq.~3!. The general expression for a non
diffracting wave is given by summing over the azimuth
degrees of freedomn. The function f n(v) represents the
temporal spectrum of the nondiffracting wave of azimuth
ordern and it is also sometimes called the transfer funct
of the system@4#. We point out that general Fourier theor
does not constrain the spectrumf n(v) to positive frequen-
cies. If we require, however, that the nondiffracting wave
represented as the real part of a complex analytic funct
the spectral functionf n(v) must be limited to positive fre-
quencies only. This will be the case for all nondiffractin
wave solutions considered in this paper, apart from
impulse-response waves that also contain negative freq
cies.

Here we want to compare this result with the origin
definition of nondiffractingX waves by Lu and Greenleaf in
Ref. @4#, where the expression forX waves is written in the
form

FXn
5einwE

0

`

T~k!Jn~kr sinz!eik(z cosz2ct)dk. ~12!

Changing the variable of integration intov5ck leads to the
result given in Eqs.~9! and~10!. The only difference is that
the interval of integration is no longer limited to positiv
values, and the index of the Bessel order may also ass
negative~integer! values. Although the negative Bessel o
ders hardly offer anything new for individual wave mode
they do prove necessary in the construction of waves w
more complicated azimuthal shapes. Apart from a few te
nical aspects, the original nondiffractingX waves are the
most general nondiffracting waves.

B. Impulse approach

Equation~9! represents a nondiffracting wave in terms
its spectral decomposition. Expressing the spectrumf n(v) as
a Fourier transform of the impulse functionFn(t),

f n~v!5
1

A2p
E

2`

`

Fn~ t8!eivt8dt8, ~13!

the nondiffracting wave may be represented as

Fn~r ,t !5E
2`

`

Fn~ t8!CJn
~r ,w,z,t;t8!dt8. ~14!

Above, the impulse-response waveCJn
is
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CJn
~r ,w,z,t;t8!5

1

A2p
E

2`

`

FJn
~r ,w,z,t;v!eivt8dv

5
einw

A2p
2 Re

~Ab22h21 ih! unu

bunuAb22h2
~15!

for evenn and

CJn
~r ,w,z,t;t8!5

~21!* neinw

A2p
2i Im

~Ab22h21 ih! unu

bunuAb22h2

~16!

for odd n, where h5t82@ t2(cosz)z/c# and b5r (sinz)/c.
We also define complex analytic impulse-response wa
ĈJn

, which only contain positive frequencies. They are giv
as

ĈJn
~r ,w,z,t;t8!5

1

A2p
E

0

`

FJn
~r ,w,z,t;v!eivt8dv

5
~21!* neinw

A2p

~Ab22h21 ih! unu

bunuAb22h2
,

~17!

and they automatically yield complex analytic nondiffracti
waves when inserted into Eq.~14!. Note that the complex
analytic property is also achieved by using an analytic
pulse functionFn(t), in which case the impulse-respon
wave may either be taken as in Eqs.~15,16! or as in Eq.~17!,
see Ref.@8#.

IV. X WAVES

We now turn to consider nondiffracting waves of a sp
cific form. Consider a wave defined by the Fourier repres
tation

F̃n,m~k,v!5ein(b2p/2)H~v!vme2av
2p

k'

3d„k'2v~sinz!/c…d„kz2v~cosz!/c…, ~18!

where H(v) is the Heaviside step function that limits th
interval of integration to positive frequencies. We also int
duce an attenuation factora which will imply a time and
length scale, see below. The wave has two degrees of
dom: an azimuthal order of the wave,nPZ, and a spectra
order,mPZ, with m>0. Being limited to positive frequen
cies only, the wave has a complex analytic form, and
spectrum is given byf n(v)5vme2av while the correspond-
ing impulse function isFn(t)5(2p)21/2m!(a1 i t )2m21,
see Eq.~13!.

Waves given by Eq.~18! are single-mode waves wit
uniquely defined spectral and azimuthal properties. The t
X wave refers to all linear combinations of waves of th
type. This class of nondiffracting waves has the followi
two properties:~i! all azimuthal degrees of freedom allowe
for nondiffracting waves are covered by summing over
index n, and ~ii ! the spectra of the waves are limited to
s

-

-
-

-

e-

s

m

e

specific form, namely,~polynomial of v)3e2av that are
obtained by linear combinations over differentm. The most
frequently considered waves are of this form.

The single-mode wave is now expressed in the form

Fn,m~r ,t !5~21!* neinwE
0

`

vmJunu~bv!e2tvdv, ~19!

wheret5a2 i @(cosz)z/c2t# andb5r (sinz)/c. This can be
integrated analytically and the result may be expressed
terms of associated Legendre functionsPm

n @see Ref.@20#,
Eq. 6.621~1!#:

Fn,m~r ,t !5~21!* neinw
G~m1unu11!

~At21b2!m11
Pm

2unuS t

At21b2D .

~20!

Note that it is necessary that the upper index for the ass
ated Legendre function be negative in this expression s
Pm

n (z)[0 for n.m. This is the original reason for the intro
duction of positive Bessel index and the factor (21)* n in
Eq. ~10!. The parameterm is not limited to integer values
only but the wave simplifies essentially for~positive! integer
m.

Transforming to the variablesM5t21b2 and Q
5t/At21b2, the associated Legendre functions can be
pressed algebraically~see the Appendix for details!, and the
wave solution is represented as

Fn,m~r ,t !5~21!* neinw
G~m1unu11!

~AM !m11 SA12Q

11QD unu

3 (
k50

m

~21!k
~m1k!!/ ~m2k!!

~ unu1k!!

~12Q!k

2kk!
.

~21!

Although this expression may appear complicated at fi
sight, it is easy to evaluate numerically. Furthermore, it si
plifies considerably for certain special cases, see Table I.
X waves can also be expressed in terms of generalized
pergeometric functions, see Table II. We emphasize that
square roots in Eq.~21! must be taken according to the ma

TABLE I. Algebraic expressions forX waves in some specia
cases. Here,Pm is a Legendre polynomial andG is the gamma
function. The main-branch complex square root functions are to
used in these expressions.

n5m50 F0,0~r ,t !5
1

At21b2

n50 F0,m~r ,t !5
G~m11!

~t21b2!(m11)/2
PmS t

At21b2D
m50 Fn,0~r ,t !5~21!* neinw

bunu

At21b2~At21b21t! unu

m5unu Funu,n~r ,t !5~21!* neinw
~2unu!!

unu!2 unu

bunu

~t21b2! unu11/2
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TABLE II. Alternative new representations forX waves using associated Legendre functions and ge
alized hypergeometric functions. The algebraic expressions require thatm assume an integer value while th
hypergeometric representations are valid for any realm>0.

Fn,m~r ,t !5~21!* neinw
G~m1unu11!

~At21b2!m11
Pm

2unuS t

At21b2D
5~21!* neinw

S b

2t D unu

G~ unu1m11!

tm11G~ unu11!
2F1S unu1m11

2
,
unu1m12

2
;unu11;2

b2

t2D
5~21!* neinw

S b

2D unu

G~ unu1m11!

A~t21b2! unu1m11G~ unu11!
2F1S unu1m11

2
,
2m1unu

2
;unu11;

b2

t21b2D
5~21!* neinw

S b

2t D unu

G~ unu1m11!

tm11G~ unu11!
S 11

b2

t2D 1/22m21

2F1S unu2m

2
,
unu2m21

2
;unu11;2

b2

t2D .
e
on
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t
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r-
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branch with the complex plane cut along the negative r
axis. We point out that the associated Legendre functi
Pm

2unu(x) are well defined also forn.m. However, the func-
tion is singular forx521, but this value of the argument i
never achieved for the main branch of the square roo
Eq. ~20!.

A. Normalized time and length scales

Due to the existence of the attenuation factora, the X
waves can be represented in normalized coordinates.
general expression for anX wave is given in Eq.~19!:

Fn,m~r ,t !5~21!* neinwE
0

`

vmJunu„vr ~sinz!/c…

3e2$a2 i @~cosz!z/c2t#%vdv. ~22!

Changing the variable of integration tow5av yields

Fn,m~r ,t !5
~21!* n

am11
einwE

0

`

wmJunu„wr~sinz!/~ca!…

3e2$12 i [(cosz)z/c2t]/a%wdw. ~23!

Now we introduce normalized coordinatesr̂ 5r /(ca), ẑ

5z/(ca) and t̂5t/a, whereupon the wave in the new coo
dinates is represented as

Fn,m~r ,t !5
~21!* n

am11
einwE

0

`

wmJunu~wr̂ sinz!

3e2[12 i ( ẑ cosz2 t̂ )]wdw. ~24!

In this set of coordinates,X waves propagate with the no
malized velocityv̂51/cosz. We use these scaled coordinat
in all the figures.
al
s

in

he

B. Extended nondiffracting wave solutions

The description of nondiffracting waves employed th
far starts from their Fourier representation. This method
limited to wave solutions that propagate in an infinite fr
space. If the space is somehow limited, or we allow for e
ternal forces, the waves do not fulfill the Fourier space c
dition given by Eq.~3!. An example is provided by spira
waves@13# that have a divergence along thez axis. Some-
times this divergence is of purely mathematical nature w
no physical interpretation~Neumann waves, see below!, at
other times it may be taken as a source or a sink for the w
motion ~Hankel waves! @21#. Originally, the spiral nondif-
fracting waves were taken to be monochromatic, but th
can also be generalized to broadband waves.

Since the Neumann functions satisfy exactly the same
ferential equation as the Bessel functions~apart from the
boundary conditions!, we may in Eq.~10! replace the Besse
functions with Neumann functions of the same order, or w
any linear combinations of them. This leads to Neuma
beams

FYn
~r ,w,z,t;v!5einw~21!* nYunu„vr ~sinz!/c…

3ei [(cosz)z/c2t]v, ~25!

which represent nondiffracting waves in the volume of spa
from which the axis of propagation has been excluded.
may also provide a spectral generalization for Neuma
beams

Fn
Y5E

2`

`

f n~v!FYn
~r ,w,z,t;v!dv, ~26!

such that we obtain the NeumannX waves for f (v)
5vme2av with m>n @see Ref.@20#, Eq. 6.621~2!#
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TABLE III. Derivatives of Bessel beams andX waves.

FJn
Fn,m

]

]x

v sinz

2c
(FJn21

2FJn11
)

sinz

2c
(Fn21,m112Fn11,m11)

]

]y

iv sinz

2c
(FJn21

1FJn11
)

i sinz

2c
(Fn21,m111Fn11,m11)

]

]r

v sinz

2c
(eiwFJn21

2e2iwFJn11
)

sinz

2c
(eiwFn21,m112e2 iwFn11,m11)

]

]w
inFJn

inFn,m

]

]z

iv cosz

c
FJn

i cosz

c
Fn,m11

]

]t
2 ivFJn

2 iFn,m11
in

n

fre

v
rg
x
a

ht
i.e

t
’’

c
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m
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fly
Fn,m
Y ~r ,t !5~21!* neinwE

0

`

vmYunu~bv!e2tvdv

52~21!* neinw
2

p

G~m1unu11!

~At21b2!m11

3Qm
2unuS t

At21b2D . ~27!

The associated Legendre functions of the second k
Qm

n (x), diverge forx51 and the wave is undefined forb
5r 50, i.e., along the axis of propagation. This integral co
verges~at v→0) only for m>n while the opposite circum-
stance would lead to a non-integrable singularity at zero
quency.

Both the Bessel-type waves and the Neumann-type wa
represent ‘‘standing wave’’ solutions that propagate ene
towards thez axis and away from it with equal energy flu
~to be compared with the sine and cosine waves that
superpositions of waves propagating to the left and rig!.
We may also consider their complex superpositions,
Hankel-type waves that propagate energy either towards
z axis or away from it. They represent ‘‘source’’ and ‘‘sink
fields whose energy is not conserved but is created~or anni-
hilated! on the axis of propagation. Using the Hankel fun
tions Hn

(1,2)(x)5Jn(x)6 iYn(x) @22#, we obtain spiral non-
diffracting beams~Hankel beams!

FHn

(1,2)~r ,w,z,t;v!5einw~21!* nH unu
(1,2)

„vr ~sinz!/c…

3ei [(cosz)z/c2t]v. ~28!

Nondiffracting Hankel waves are similarly obtained by su
ming Bessel- and Neumann-basedX waves

Fn,m
H(1,2)

5Fn,m6 iFn,m
Y . ~29!

Note that the cross section of the Hankel waves only c
tains a half-cone. Therefore, we introduce for them the na
Y wave ~see Fig. 7 below and the discussion in Sec. VII!.
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V. DERIVATIVES OF NONDIFFRACTING WAVES

The Fourier formulation readily yields all temporal an
spatial derivatives of nondiffracting waves. Using the Fo
rier representation@Eq. ~8!# and the fact thatkx5k'cosb
5@(v sinz)/(2c)#(eib1e2ib), we find

F F]Fn

]x G5 ikxF̃n5
sinz

2c
~vF̃n212vF̃n11!. ~30!

Similarly, the partial derivative with respect toy is given by

F F]Fn

]y G5 ikyF̃n5
i sinz

2c
~vF̃n211vF̃n11!. ~31!

The necessity of introducing nondiffracting waves for neg
tive Bessel orders becomes obvious with spatial derivativ
positive Bessel orders do not span all the spatial degree
freedom and, especially, they do not cover the derivat
waves. The last two derivatives, i.e., the spatialz derivative
and the temporalt derivative, are readily obtained from th
Fourier representation, and are given by

F F]Fn

]z G5 i
cosz

c
vF̃n ~32!

and

F F]Fn

]t G52 ivF̃n . ~33!

Since Bessel beams are monochromatic nondiffrac
waves and theX waves have the simplevme2av spectrum,
their derivatives are readily obtained from the previous
pressions, and they are given in Table III. In Table III, w
have also included the derivatives with respect to cylindri
coordinates. We conclude that all derivatives of the Bes
beams and theX waves can be expressed in terms of Bes
beams andX waves, respectively. Therefore, both subclas
of nondiffracting waves are closed with respect to all deriv
tives.

As already emphasized by Lu@11,12#, the derivatives of
nondiffracting waves can be used to generate new wave
lutions with specified azimuthal properties. We shall brie
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consider bowtie and array wave techniques, both of wh
employ spatial derivatives. In the bowtie waves the ene
propagates primarily near the (y,z) plane, leading to a rela
tively narrow wave in thex direction, while the array wave
have several focal spots in the shape of an array, instead
single focal center. Both techniques start with single-mo
waves~usuallyn50) and, via partial differentiation, lead t
new solutions. They are defined as follows:

Fn
B(q)5

]q

]yq
Fn , ~34!

Fn
A(q)5

]2q

]xq]yq
Fn ,

where the superscriptsB andA refer to the bowtie and arra
type waves, respectively;q is the order of the bowtie or arra
wave, andn is the azimuthal order of the nondiffractin
wave used to generate the new waves.

From here on, we limit our discussion to the bowtie a
array waves generated by Bessel beams andX waves. Recall-
ing that the derivatives of these only differ owing to the fa
that each derivative introduces a factor ofv for the Bessel
beams and raises the spectral indexm by 1 for theX waves,
we choose to consider onlyX waves explicitly in what fol-
lows.

Consider anX wave of ordersn and m. It generates a
family of bowtie waves

F̃n,m
B(q)5~ iky!qF̃n,m5 i qS v sinz

2ic D q

~eib2e2 ib!qF̃n,m

5S i sinz

2c D q

(
p50

q S q

pD F̃n2q12p,m1q , ~35!

whence

Fn,m
B(q)5S i sinz

2c D q

(
p50

q S q

pDFn2q12p,m1q . ~36!

Similarly, we obtain bowtie waves generated by Bes
beams:

FJn

B(q)5S iv sinz

2c D q

(
p50

q S q

pDFJn2q12p
. ~37!

Array waves generated by anX wave are in turn given by

F̃n,m
A(q)5~ ikx!

q~ iky!qF̃n,m

5 i qS sinz

2c D 2q

(
p50

q S q

pD ~21!pF̃n22q14p,m12q ,

~38!

whence
h
y

f a
e

t

l

Fn,m
A(q)5 i qS sinz

2c D 2q

(
p50

q S q

pD ~21!pFn22q14p,m12q

~39!

and

FJn

A(q)5 i qS v sinz

2c D 2q

(
p50

q S q

pD ~21!pFJn22q14p
. ~40!

Since the analytical solutions are known both forFJn
and

Fn,m , all the bowtie and array waves are also obtained
closed form. This again emphasizes the completeness o
classes of Bessel beams andX waves.

VI. RESULTS ON NONDIFFRACTING WAVES

Several nondiffracting wave solutions and methods
their generation have been reported after the original in
duction of the Bessel beam@1#. In this section, we discus
how the different solutions are related to our unified desc
tion of the nondiffracting waves presented above, and ap
cations of the unified formalism.~See Table IV.!

A. Variety of different approaches

The Fourier representation of nondiffracting wave
which has also been employed by Donnellyet al. in Ref.
@18#, naturally leads to the polychromatic generalizations
Bessel beams and, thus, to all ordinary nondiffracting wa
@23#. This procedure is essentially identical to the angu
spectrum representation@6#, since the latter is chosen to b
limited to ordinary nondiffracting waves@24#. Piestun and
Shamir also employed a Fourier-based method to de
‘‘generalized propagation-invariant wave fields’’@25#, which
in the special case of uniform propagation reduce into mo
chromatic nondiffracting waves, i.e., Bessel beams. Ho
ever, Fourier-based methods are not the only way to de
nondiffracting wave solutions. A cylindrical representatio
of the wave equation was originally employed by Lu a
Greenleaf@4# and it leads, together with a suitable ansatz,
the general expression for Bessel-based nondiffrac
waves.

There is also a mathematically interesting algorithm
converting an (n21)-dimensional ordinary wave solutio
into an n-dimensional nondiffracting wave solution@5,7#.
This is possible since the degrees of freedom of the form
solution coincide with those of the latter. Therefore, there
a one-to-one mapping between ordinary two-dimensio
~2D! waves and nondiffracting 3D waves. In the Fourier re
resentation, this is apparent since the 2D wave satisfiekx

2

1ky
25v2/c2 whereas the 3D wave obeyskx

21ky
25v2/c2

2kz
25(1/c221/v2)v2. Applied to the two-dimensiona

wavelet solution, this yields a three-dimensional nondiffra
ing wave that corresponds to theX waveF0,2. The impulse-
response approach@8,9# is readily obtained from the mono
chromatic Bessel beams via temporal Fourier transformat

However, it was noticed already by Stratton@2# that the
cylindrical wave equation is satisfied by all circular cylind
functions, that is, also by Neumann and Hankel functio
but not along the axis of propagation. It was pointed out
Chávez-Cerdaet al. @13# that the monochromatic Besse
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TABLE IV. Different nondiffracting wave solutions.

Authors Spectrum Comments Refs.

Chávez-Cerda and co-workers monochr. Hankel waves, Sommerfeld radiation condition, and
interference of nondiffracting waves

@13,55# @14#

Donnelly, Power, Templemen, and Whalen ve2av Simulation results @18#

Durnin, Miceli, Jr., and Eberly monochr. The originalJ0 beam @1#

Erdélyi et al. monochr. Microlithography, Fabry-Perot interferometer @32#

Fagerholm and co-workers vme2av Angular spectrum representation, 2D & 3D nondiffracting
waves

@6,7#

Hsu, Margetan, and Thompson monochr. Planar ultrasonic transducer @27#

Koike, Yamada, and Nakamura monochr., pulse Conical ultrasonic transducer @26#

Laycock and Webster monochr. Optical and microwave applications @28#

Lu and Greenleaf sin(v0t)e
2t2/t0

2 The originalX wave @3#

Lu and Greenleaf positive X waves @4,43#
Lu, Xu, and Greenleaf v2e2av Wavelet transform @5#

Lu general Bowtie and array waves @11,12#
Lu monochr. Design of nondiffracting waves @35#

Piestun and Shamir monochr. Generalized propagation-invariant waves @25#

Ruschin and Leizer monochr. Evanescent Bessel waves @53#

Saari and So˜najalg Gaussian OpticalX waves @31#

Stepanishen and Sun general Impulse-response approach @8,9#
Stratton monochr. Theoretical origin of Bessel waves @2#
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beam itself should not be considered as an elementary s
tion, but rather as the superposition of two counterpropa
ing Hankel waves. This is due to the fact that the Bes
beams and their polychromatic generalizations do not sa
the Sommerfeld radiation condition and, corresponding
they involve an energy flux emanating from infinity@14#.
Physically, a finite aperture will automatically exclude th
effect but, nevertheless, the Hankel-type solutions reap
locally with conical transducers@26# that generate only the
‘‘approaching part’’ of the cone of propagation~see Figs. 1
and 8!. The approaching part of the cone first locally corr
sponds to the Hankel solutionH (2) and subsequently trans
forms into the Bessel-type solution. Finally, the wave
sumes the form of the HankelH (1) solution which spreads
outward from the axis of propagation. A planar transdu
with a finite aperture@27,28# may be used to produce both
Bessel-shaped wave that eventually transforms into the H
kel waveH (1), and a second Hankel wave that first obta
the form of a Bessel wave and only then diverts as a fi
Hankel wave. In the original experiment of Durninet al. @1#,
the Bessel wave was formed, while both holograms~diffrac-
tive elements! @29# and axicons@30# have both been em
ployed to form nondiffracting waves of the Hankel type.

Although mathematically the spectrum of nondiffractin
waves may be chosen arbitrarily, the physical systems
volved may set limitations on the spectrum. As pointed
by Saari and So˜najalg @31#, a nearly Gaussian spectru
f (v)5Av exp@2a2(v2v0)

2/2# should be chosen for optica
nondiffracting waves generated by laser devices. This p
ticular form is, in a sense, even more suitable than an o
nary Gaussian spectrum since it tends to zero continuous
low frequencies. Furthermore, the spectrum is limited
positive frequencies only, resulting in a complex analy
signal. Then50 order wave itself is then given by
lu-
t-

el
fy
,

ar

-

-

r

n-
s
t

n-
t

r-
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o

Fn~r ,t !}A11 i
czcosz2t

v0a2
e2[ r 2 sin2 z1(z cosz2ct)2]/(2c2a2)

3J0F S 11 i
czcosz2t

v0a2 D rv0~sinz!/cG
3eiv0[z(cosz)/c2t] , ~41!

which is approximate but sufficiently accurate for any pu
bandwidth achievable in optics.

B. Applications of the unified theory

In this paper, we have presented a systematic study
nondiffracting wave solutions, with an emphasis on differe
spatial and dynamic degrees of freedom compatible with
nondiffraction requirement. By now, a large variety of app
cations has been proposed for nondiffracting waves and
particular, for the zero-order Bessel beam as it offers a lo
focal line, that makes it useful in lithography@32# and imag-
ing applications of wavelength accuracy@33#. Nonetheless,
higher-order Bessel beams and beams of more complic
spatial structures have also attracted increasing atten
Since they lack the circular symmetry of theJ0 Bessel beam,
two-dimensional acoustic array transducers have been
ployed in their excitation@34#. Up to the discretization accu
racy, such transducers may be optimized to excite arbitr
nondiffracting beams@35#. In optical systems, complicate
nondiffracting beams are obtained from~Gaussian! laser
beams with diffractive elements@36# or by using the polar-
ization properties of light@37#. In particular, diffractive ele-
ments may be employed to produce complicated wave
terns and, for instance, rotating helical waves by superpo
Bessel beams having different velocities of propagation@38#.
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Recently, an interesting application for high-order ‘‘dark
beams has been suggested in confining cold atoms int
optical atom guide formed by the dark center of the be
@39#. Millimeter-wave diffractive elements may also prov
useful in the generation of radio-frequency nondiffracti
beams@40#.

Nondiffracting waves also encompass periodic beam
rays @41#, which, in our approach, resemble array beams
infinite order. Beam arrays consist of a two-dimensional
tice of ‘‘beams’’ and they contain only a finite number
plane-wave components. Formally, they may be expresse
a sum of Bessel beams but they are more conveniently
lyzed as convolutions of Bessel beams~usually of rather low
order! and distributions of lattice points. Beam arrays a
suggested to be useful for free-space optical interconn
@42#.

As demonstrated in the first experiment@43#, nondiffract-
ing pulses have potential in dynamic imaging applicatio
The time dependence of nondiffracting pulses also requ
dynamic apertures that can be controlled both spatially
temporally. In acoustic applications, this may be realized
ther with circular-symmetric annular transducers@44# ~for
the n50 pulses!, or with real two-dimensional transduce
arrays@45# that allow more complicated spatial structures.
truly dynamic transducer allows us to choose the spec
contents of the waves freely, leading to a large variety
different forms of acoustic bullets@8,9#. While dynamic
multielement antenna arrays could also be used to s
radio-frequency nondiffracting pulses@46#, optical X waves
@47# are obtained as nondiffracting beams with very sh
lifetime between the ignition and extinction of the beam.
addition to imaging applications, electromagneticX waves
have recently been suggested, e.g., for radio communica
@48#.

VII. PHYSICAL PROPERTIES OF NONDIFFRACTING
WAVES

Heretofore, we have considered the purely mathemat
construction of nondiffracting waves. Now we turn to d
scribe the physical properties of the various specific non
fracting wave solutions presented above.

Prior to considering more complicated nondiffractin
wave solutions, we briefly discuss the fundamentalX wave
F0,0, that illustrates the general conical shape character
to all nondiffracting waves. The wave equation together w
the nondiffraction condition fixes the ratio of the radial a
axial wave vectors according tok'5(v/c)sinz and kz
5(v/c)cosz. Since the wave equation under considerat
is isotropic and nondispersive, the velocity of the ene
flow is necessarily equal to the phase velocityc.

Figure 1 represents the fundamentalX wave and the en-
ergy flow within the wave. Although the structure of the sp
itself differs for more complicated waves, the asympto
conical shape remains common to all broadband waves.

A. Impulse-response waves

Impulse-response waves@Eq. ~14!# are nondiffracting
waves that correspond to a unit impulse in the time dom
The actual physical waves are obtained as a convolutio
the impulse functions and the impulse response waves,
an
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the mere impulse-response waves may be interpreted a
limiting case of a broadband nondiffracting wave having
very low attenuation at high frequencies. As such, th
should be considered archetypes of nondiffractive wa
rather than their physical realizations.

In Fig. 2, we illustrate four impulse-response waves; tho
of ordersn50, 1, 2, and 6. The impulse waves illustrate t
X-wave nature of all the nondiffracting waves: the energy
the wave is concentrated on the cone of propagation wh
axis coincides with the propagation direction. The open
angle of this cone is defined by the axicon angle param
and it is 90°2z ~see Fig. 2!. The cross section of the con
with the (x,z) plane has the shape of the letterX. The
impulse-response waves also have the special property
the wave is strictly bound to the outside of the cones, i.e.,
r sinz.uzucosz, while the volume inside the cones is free
wave motion. The energy of the wave is concentrated i
the vicinity of the cones where the amplitudes of t
impulse-response waves diverge. This divergence is, h
ever, integrable and it vanishes in the convolution with t
impulse function of the physical wave.

B. X waves

The set ofX waves has many physically and mathema
cally appealing properties that justify their treatment as o
of the most important special cases of nondiffracting wav
In this connection we want to emphasize that there actu
is an infinite number of sets ofX waves: the defining expres
sion, given by Eq.~18!, depends on two parameters. Th
axicon angle is the angle between thekz axis in the Fourier
space and the direction of the actual wave vectors~cf. Ref.
@6#, Fig. 2!. This parameter is used to define the scaling ofkz
with frequency; hence, it defines the velocity of propagat

FIG. 2. ~Color! Impulse-response waves for ordersn50, 1, 2,
and 6. The waves of orders 0, 2, and 6 are purely real while
wave of order 1 is purely imaginary. The amplitudes of the wav
diverge forr sinz5uzucosz. The cone of propagation is obtained b
rotating the wave about thez axis. The two disjoint insides of the
cone contain no wave motion, which is bound to the outside of
cone.
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v5v/kz5c/cosz. The other parameter is the attenuati
factor a that damps the high-frequency components. ThX
waves defined through different choices for these parame
are, however, mutually reducible to each other. Therefo
we consider only one set ofX waves, with fixed but arbitrary
values for these parameters. We assume the values o
parameters to bezP(0,p/2) andaP(0,̀ ).

The existence of the attenuation factora is quite useful in
defining an effective frequency scale since high frequen
are damped according to exp@2av#, whence the ‘‘frequency
unit’’ is 1/a. Single-modeX wavesFn,m also have an effec
tive frequency. Although the spectrum ofX waves has a
nonvanishing value for all positive frequencies, it reaches
maximal value atvmax5m/a. The fundamentalX waveFn,0
displays a spectral maximum at zero frequency, which
hardly physical in optics. The spectral maximum of high
modes may be varied using different values for the atten
tion factora and also the spectral order,m. The effect of the
spectral orderm can be seen in Fig. 3. Since the dominati
frequencies for the higher spectral modes are also higher
X waves become increasingly localized for increasingm.
This is due to the fact that the spatial Fourier componentskz
and k') scale with frequency and, thus, also obtain lar
values. This allows for better spatial localization. In this
spect, the fundamental modeFn,0 proves somewhat compli
cated. Since the Fourier representation of theX waves@Eq.
~18!# also contains the factor 1/k' , the Fourier transform of
the wave diverges for small frequencies. This makes the

FIG. 3. Above: Waist (z50) of X waves for the ordersm50,
m51, m52, and m510. The azimuthal order isn50 and the
axicon angle isz545° for all. Below: Approaching forms (z
510) of these waves. TheX waves become increasingly localize
for large m since the spectrum of the wave,vme2av, becomes
concentrated for high frequencies. The zero-order wave (m50) is
strongly delocalized which is due to the diverging spectrum for z
frequency@the 1/k' factor in Eq.~18!#. Oscillations of the higher
spectral modes can also be observed. The graphs display the
parts of the waves. Each wave has been scaled individually.
rs
e,

the

s

ts

is
r
a-

he

e
-

n-

damental mode least localized@49#, as can be seen in Fig. 3
The increasing spectral order also causes the waves t
increasingly oscillatory near the axis of propagation.

Also, the azimuthal order of the wave affects the deg
of localization of the wave. Since the Bessel beams of ord
unu>1 exhibit a zero on thez axis, the correspondingX
waves also display a zero on thez axis. Hence, the maxima
of the waves are located at some finite distance from the
of propagation. The larger the azimuthal orderunu, the farther
the maximum is from the axis of propagation. Although t
ordern has no effect on how fast the wave decays for largr,
the halfwidth of the wave increases for high azimuthal
ders, see Fig. 4. The azimuthal order also delocalizes
wave in the direction of propagation. Although the wa
remains outside the cone of propagation, it no longer is c
centrated in the vicinity of the cone. The wave also becom
oscillatory outside the cone~see Fig. 5!.

C. Mixed-wave modes

According to Eqs.~7! and ~9!, the most general expres
sion for nondiffracting waves may be written as

F~r ,t !5 (
n52`

` E
2`

`

f n~v!FJn
~r ,w,z,t;v!dv, ~42!

where the wave is divided into components of different a
muthal orders. In the general case, the spectra of the m
are mutually independent. We point out that the spec

o

eal

FIG. 4. Above: Waist (z50) for X waves of the azimutha
ordersn50, n51, n52, andn510. The spectral order ism50
and the axicon angle isz545° for all. Below: Approaching forms
(z510) of these same waves. While the increasing spectral ordm
leads to more localized waves, the growing azimuthal ordern, in
turn, makes them less localized. For high azimuthal orders, thX
wave also concentrates to the outside of the cone of energy pr
gation. The radius of the cone atz510 is R510. The wave forn
51 has odd parity with respect tox, owing to the factoreinw.
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functions f n also serve as weight functions for the differe
modes, although these weights are sometimes frequency
pendent. If the spectra are the same for each mode, u
constant factors, they may be referred to as the weight
each mode. In this case, the wave is represented as

F̃5 (
n52`

`

cnE
2`

`

f ~v!FJn
~r ,w,z,t;v!dv, ~43!

where the spectrum of the whole wave is merelyf (v) while
the ~complex! weights cn define the contribution of eac
mode. Usually, the weights tend to zero for high indices,
this does not always hold@50#. Often, most of the weights
are zero, either for a practical reason~a finite, instead of an
infinite sum!, or a theoretical reason~only a finite number of
terms appears in the derivative waves!.

The simplest example of a mixed-wave mode is obtain
as the superposition of two waves withn252n1. Since,
apart from the factor (21)* neinw, the wave is independen
of the sign of the azimuthal order, the resultant wave has
azimuthal form given by sin(nw) or cos(nw). This transforms
the ‘‘rotating’’ einw-shaped wave into a ‘‘nonrotating’’ sin
or cos-shaped wave@51#. However, the ‘‘rotating’’ wave is
not actually rotating since the physical wave still propaga
uniformly according tof(x,y,z2vt). More complicated
mixed-wave modes are obtained from spatial derivatives~see
Table III!, and from different techniques based on deriv
tives, like the bowtie waves@11# and array waves@12#. Al-
though the grid and layered array beams may technically
obtained by summing an infinite number of different Bes
beams, they are actually merely superpositions of two or f
plane waves. There also exist methods to directly des
nondiffracting waves where the weights of the differe

FIG. 5. ~Color! X waves of different azimuthal orders,n. For
higher orders, the wave is no longer localized near the cone
propagation but spreads outside the cone. Although the wave
cays for larger, the waist of the central pulse is strongly broaden
~see also Fig. 4!.
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modes are optimized to form a wave of designed shape@35#.
See Fig. 6 for the bowtie and array waves.

Although mixed-wave modes naturally appear for deriv
tives of nondiffracting waves, they are usually studied
more practical reasons. For single-mode waves, the en
flow is effectively radially symmetric and the transducer a
rangement, optical or acoustic, needs to be circular. Thus
central pulse requires a large free medium for undistor
propagation. Mixed-wave modes, especially the bow
waves, may be used to reduce the spatial volume neede
the wave propagation.

D. Extended nondiffracting waves

There are essentially two kinds of extended nondiffract
waves:~i! The Neumann solutions that are radial standin
wave solutions, thus resembling the Bessel solutions,

of
e-

FIG. 6. ~Color! FundamentalX wave, bowtie wave (q510), and
array wave (q510). The rotationally invariantX wave F0,0 has a
circular waist and an annular approaching form~cf. Fig. 1 for the
geometry!. For the bowtie waves, the energy essentially propaga
along they axis making the wave narrower in thex direction. The
array wave is formed from wave components propagating alony
56x leading to a grid-shaped waist for the wave. Each wave
been individually scaled. The increasing localization of the bow
and array waves, in comparison to the fundamentalX wave, is due
to their higher spectral order. Note that each derivative increase
spectral order by one; thus, the spectral order of aq510 bowtie
wave is 10 while that of the array wave is 20.
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with a divergence on the axis of propagation and~ii ! the
Hankel solutions that describe an energy flux with a rad
component. The energy may be carried either away from
axis of propagation~first Hankel wave! or towards the axis
~second Hankel wave!. Correspondingly, the Hankel wave
assume an energy source on the axis of propagation and
they do not satisfy the free-space wave equation on the a

The energy propagation is most conveniently analyzed
the far-field regime from the axis of propagation. Using
asymptotic expansion for the Hankel functions we find t
the wave away from thez axis ~for large r ) is given by

FHn

(1,2)~r ,w,z,t;v!5
A2einw~21!* n

Apvr sinz/c
e6 i [vr (sin z)/c2np/22p/4]

3ei [(cosz)z/c2t]v. ~44!

Therefore, the first Hankel waveFHn

(1) carries energy away

from the axis of propagation. Hence, we call it a ‘‘sour
field,’’ while the second Hankel waveFHn

(2) transports energy

in the opposite direction, which justifies the name ‘‘sin
field.’’ In analogy with the motivation for the name ‘‘X
wave,’’ we wish to introduce the term ‘‘Y wave’’ for the
second Hankel waveFHn

(2) whose cross section in the (x,z)

plane resembles the letterY ~see Fig. 7!. Figure 8 illustrates
the fundamentalX wave, and the corresponding NeumannX
wave and the two HankelY waves. In addition to their radia
energy flux, the Hankel waves of higher azimuthal ord
also feature an azimuthal energy flux that makes them r
tional wave solutions. Due to the rotational shape of
higher azimuthal orders, these fields are also called sp
waves@13#.

Although the singular behavior of the extended wave
lutions emphasizes their mathematical nature, we argue
they are conceptually useful. Neumann-type solutions ar
for instance, in fluid dynamics when a bar is placed on
axis of propagation. If the bar is rigid enough to reflect
waves supported by the fluid, the field described by the s
lar wave equation should vanish on the surface of the
This can in general be satisfied by taking an appropriate
ear combination of Bessel- and Neumann-type soluti
~with real coefficients!. This leads to a nondiffracting wav

FIG. 7. ~Color! FundamentalY waveF0,0
H(2)

. The cross section o
this wave resembles the capital letter Y since it contains only
half of the cone of propagation, and a divergence on the axis.
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without the central peak. On the other hand, only the z
Bessel order nondiffracting wave has the central peak w
the other Bessel orders produce ‘‘dark pulses’’@7# whose
field amplitude vanishes on the beam or pulse center.

The Hankel-type solutions arise in physical experime
where the wave is generated by a planar or a conical a
ture. For further discussion on Hankel waves, see R
@13,14#. Only the second Hankel wave needs to be emit
since it carries energy towards the axis of propagation. Si
no physical sink exists on the axis, the energy is later
carried away from it. This ‘‘generates’’ the outward prop
gating component of the ordinary Bessel beam and can
the singularity of a true Hankel wave. Note that the result
wave is no longer a nondiffracting wave since the Han
wave transforms into a Bessel wave. The central beam, h
ever, remains unchanged and can thus be considered no
fracting.

VIII. DISCUSSION

We have suggested a simple unified approach to non
fracting waves using the Fourier representation for uniform
propagating solutions of the wave equation. This natura
leads to the spectral generalization of Bessel beams. W
Bessel beams are monochromatic nondiffracting waves, t
spectral Fourier transforms are waves that correspond
unit impulse in the time domain. Thus, we obtain both
spectral and a temporal representation for nondiffract
waves.

We have also explicitly studied a specific subclass
broadband nondiffracting waves referred to asX waves.
Their spectrum is limited to a given functional form~poly-

e

FIG. 8. ~Color! ~a! FundamentalX wave F0,0, ~b! extended

NeumannX waveF0,0
Y , ~c! extended Hankel waveF0,0

H(1)
~inverted

Y wave!, and ~d! extended Hankel waveF0,0
H(2)

~fundamentalY
wave!. The Neumann wave diverges along the axis of propaga
and, especially, in the focal center of the wave. The ordin
Bessel-based wave and the extended Neumann wave contain
parts of the cone of propagation owing to the fact that both wa
correspond to monochromatic standing-wave solutions. The Ha

waveF0,0
H(1)

in ~c! contains only the outward propagating half-co

that diverges in the focal center. Similarly, the Hankel waveF0,0
H(2)

in ~d! only contains the inward propagating half-cone.
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nomial inv)3e2av. This set of nondiffracting waves can b
expressed algebraically, and it has been shown to be cl
with respect to all spatial and temporal derivatives. This
cilitates the description of new nondiffracting wave solutio
using, for instance, bowtie and array wave techniques.
have also considered extended nondiffracting waves ba
on the Neumann or Hankel—instead of Bessel—functio
leading to the new class ofY waves. They offer a practica
tool for the analysis and design of nondiffracting wave fie
and the construction of appropriate antenna structures t
applied in the actual physical generation of limite
diffraction waves.

Finally, we have discussed and demonstrated several
diffracting wave solutions and their physical propertie
While rigorously nondiffracting waves only exist as pure
mathematical entities, they can be approximately realize
obtain useful wave modes with large depth of field. We ha
discussed such properties of the wave solutions that are
evant for the design of the appropriate nondiffracting wav

An increasing number of novel and important applicatio
has been suggested for nondiffracting or limited-diffracti
waves, ranging from optical microlithography@32# to par-
ticle acceleration@52#. Nondiffracting waves have also bee
applied in medical real-time imaging@33# while new poten-
tial can be foreseen within optical guidance and rang
techniques@28#. The present paper aims at simplifying th
mathematical description of nondiffracting waves bo
within acoustics and optics.
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APPENDIX: ALGEBRAIC REPRESENTATION OF X
WAVES

Since the argumentQ5t/At21b2 in Eq. ~20! satisfies
uQu<1, we may express the Legendre functions in terms
generalized hyperbolic functions as@cf. Ref. @20#, Eq. 8.704#

Pn
m~Q!5

1

G~12m! S 11Q

12QD m/2

3 2F1S 2n,n11;12m;
12Q

2 D , ~A1!

whence

Pm
2unu~Q!5

1

unu! S 12Q

11QD unu/2

3 2F1S 2m,m11;unu11;
12Q

2 D . ~A2!

From here on we omit the absolute value signs fromunu for
convenience, but they must be inserted if negativen’s are
considered. Since either of the first two parameters in2F1 is
a negative integer, the series expression for the hypergeo
ric function is finite, and it is therefore only a polynomial i
(12Q). The hypergeometric function is defined as

2F1~a1 ,a2 ;b;z!5(
k0

`
~a1!k~a2!k

~b!k

zk

k!
, ~A3!

where (q)k is the Pochhammer symbol defined as

~q!051,

~q!k5q~q11!~q12!•••~q1k21!5
~q1k21!!

~q21!!
.

~A4!

The above expression@Eq. ~A3!# is valid as long as the fac
torials are well defined. Hence,
2F1~2m,m11;n11;z!5 (
k50

`
~2m!~2m11! . . . ~2m1k21!~m11!~m12! . . . ~m1k!

~n11!~n12!•••~n1k!

zk

k!

5 (
k50

`

~21!k
~m!~m21!•••~m2k11!~m11!~m12!•••~m1k!

~n11!~n12!•••~n1k!

zk

k!
. ~A5!
. If
The sum terminates once the numerator vanishes, which
its the summation into the rangek<m. Therefore, the hyper
geometric function may be expressed as

2F1~2m,m11;n11;z!5 (
k50

m

~21!k
~m1k!!/ ~m2k!!

~n1k!!/n!

zk

k!
.

~A6!

If we further choose the variableM5t21b2 the wave solu-
tions, Eq.~20!, can be expressed as
-
Fn,m5~21!* neinw

G~m1unu11!

~AM !m11 S 12Q

11QD unu/2

3 (
k50

m

~21!k
~m1k!!/ ~m2k!!

~ unu1k!!

~12Q!k

2kk!
.

~A7!

This expression simplifies greatly for some special cases
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in the summation we write (12Q)/2512(11Q)/2, and
use the binomial theorem, the sum is

(
k50

m

~21!k
~m1k!!/ ~m2k!!

~ unu1k!!

~12Q!k

2kk!

5(
j 50

m

~21! jF(
k5 j

m

~21!k
~m1k!!/ ~m2k!!

~ unu1k!!k!

3
k!

j ! ~k2 j ! !G S 11Q

2 D j

. ~A8!

By setting k85k2 j and M5m2 j , the coefficients are
found to equal

~21! j

j ! (
k850

M

~21!k8
~m1k81 j !!/ ~M2k8!!

~ unu1k81 j !!k8!
. ~A9!

If now m5unu and j Þm, the above expression vanish
since

~21! j

j ! M ! (
k850

M
M !

~M2k8!!k8!
~21!k85

~21! j

j ! M !
~121!M50.

~A10!

For j 5m, i.e., M50, the coefficient is simply (21)m/m!.
Hence, form5unu we have
tt

ct

ct

n

m

a

pt.

-
co

so
(
k50

m

~21!k
~m1k!!/ ~m2k!!

~ unu1k!!

~12Q!k

2kk!
5

1

m! S 11Q

2 D m

,

~A11!

and the wave may be represented as

F unu,n5~21!* neinw
G~2unu11!

~AM ! unu11 S 12Q

11QD unu/2 1

unu! S 11Q

2 D unu

5~21!* neinw
~2unu!!

unu!2 unu

bunu

~t21b2! unu11/2
. ~A12!

On the other hand, form50, we obtain from Eq.~A7!

Fn,05~21!* neinw
1

AM
S 12Q

11QD unu/2

5~21!* neinw
1

At21b2

bunu

~At21b21t! unu
. ~A13!

Finally, for m5n50 this expression reduces to

F0,05
1

At21b2
, ~A14!

for the fundamentalX wave.
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