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Recently, the physics of ballistic phonon propagation in anisotropic crystals has been studied
with new phonon-imaging methods. In this paper we consider nondiffracting waves that can
propagate in anisotropic crystals and analyze their properties that emerge specifically due
to the anisotropy. We further present a detailed generation and detection scheme for the
experimental verification of the wave modes considered.
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I. INTRODUCTION

Ballistic propagation of phonons in crystals, governed
by the (piezo-)elastic equations of motion, has lately
been extensively investigated with the help of methods
of imaging acoustic phonon propagation in solids [1].
The underlying anisotropic crystal has a strong influ-
ence on the propagation of lattice vibrations, associated
both with the heat flux and with the acoustic (sound)
waves. The formation of wave fronts due to phonon fo-
cusing clearly differs from that in isotropic media, lead-
ing to effects like caustics and internal diffraction. These
may be understood in terms of the slowness- and group-
velocity surfaces characteristic to each individual crystal;
see, e.g., Refs. [2].
Here we consider nondiffracting waves (NDWs), i.e.,

propagation-invariant waves — originally discovered in
optics by Durnin et al. in 1987 [3] — that propagate in
crystalline solids [4]. They are not simply wave fronts
emanating from abrupt heat pulses, but, instead, they
feature a unique phase velocity along their propagation
direction. Consequently, their different wave components
remain in phase and the entire shape of the wave pat-
tern remains invariant under propagation. Nondiffract-
ing waves may be of two different kinds, either (i) con-
tinuous Bessel-beam like waves with unique temporal fre-
quency, ω; or (ii) pulsed propagating waves, i.e., the so-
called X waves [5, 6].
While isotropic nondiffracting waves are adequately

described with closed-form expressions, their anisotropic
counterparts only have integral representations. Here
we also derive an approximate asymptotic representation
for anisotropic NDWs that allows a physical interpreta-
tion in terms of energy propagation associated with the
waves. Although the developed theory is only valid in re-
gions away from the axis of propagation, the generation
of NDWs is naturally described using this scheme.
These results are then applied in two different con-

texts: Firstly, (i) We discuss effects specially related to

the anisotropy. The intensities of the nondiffracting wave
fields along different radial directions are shown to de-
pend on the curvature of the slowness curve while caus-
tics [7] and internal diffraction [8] effects are due to its
local nonconvexity. We also demonstrate that the walk-
off effect may under certain conditions prohibit the prop-
agation of nondiffracting waves since the group velocity
of the individual wave components may sometimes point
in the opposite direction relative to that of beam propa-
gation.
Secondly, (ii) We use the asymptotic representation to

design a transducer arrangement on a piezoelectric crys-
tal that can be used to generate a nondiffracting wave
field within the crystal. Aperture optimization is also
discussed, based on the propagation directions of the in-
dividual wave components. We anticipate that this ex-
perimental setup would serve to verify the theoretical
results.

II. ANISOTROPIC NONDIFFRACTING WAVES

Both low-frequency acoustic waves and high-frequency
heat-flow phonons obey the elastic equations of motion,
characterized by the stiffness tensor of the crystal. These
equations are nondispersive in the long-wavelength limit,
where the wavelength λ is much larger than the average
interatomic separation. For the general theory of elastic-
ity and piezoelectricity, see, for instance, Refs. [1, 9, 10].
Plane waves in elastic piezoelectric media,

u(r; t) = Uei(k·r−ωt), (1)

obey the Christoffel (eigenvalue) equation

3∑
l,m,n=1

c̃klmnklknUm = ρω2Uk, (2)

for each k = 1, 2, 3. Here c̃klmn is the tensor of piezoelec-
trically stiffened elastic moduli, cf. Ref. [10].



2

In elastic solids (and piezoelectric crystals), there ex-
ist in general three propagating plane-wave modes along
each spatial direction. These modes have orthogonal po-
larizations U (i.e., directions of displacement) and they
often propagate with different phase velocities. These
plane-wave modes are characterized with their slowness
vectors, s = k/ω that point in the direction of the wave
vector and have the magnitude of inverse phase velocity.
The slownesses of the three plane-wave modes trace three
closed slowness surfaces when the direction of the wave
vector spans over all spatial directions.
A wave field u(r; t) in an infinite homogeneous medium

is nondiffracting provided that it propagates uniformly,
i.e., invariant in shape along, say, the z-coordinate,

u(r; t) = u(x, y, z − vt). (3)

The velocity of propagation v is a free parameter that
may be chosen independently of the phase (or group)
velocity in the medium or of the direction of propaga-
tion [11]. The vector field u may comprise, in addition
to the mechanical displacements Ui, several other com-
ponents, such as electrostatic (magnetostatic) potential
(in the quasi-static approximation), and electromagnetic
field components (in the ultra-high frequency range).
The spatio-temporal Fourier transform of a nondiffract-
ing wave, Eq. (3), proves to be proportional to δ(kz−ω/v)
which is both a sufficient and a necessary condition for
the existence of nondiffracting waves [4, 12].

A Integral representation of NDWs

Nondiffracting waves are superpositions of plane waves
that all satisfy the common condition kz = ω/v. Hence
all the wave components remain in phase while propa-
gating along z without any alteration in the wave pat-
tern. This condition is satisfied if all the wave compo-
nents have the same common (phase) slowness along z,
namely sz = 1/v (note that the orientation of the crys-
tal axes may be arbitrary and the z axis only refers to
the desired direction of nondiffracting wave propagation).
Therefore, nondiffracting modes are characterized by the
intersection of the slowness surfaces with the sz = 1/v-
plane, see Fig. 1. The intersection contains at most three
slowness curves, each of which may be used to construct
a separate class of nondiffracting waves. Note that these
slowness curves need not be symmetric with respect to
the sz axis since they do not lie in a plane passing through
the origin.
The general form of nondiffracting waves is obtained

as the superposition of propagating plane waves [13] that
obey the nondiffraction condition, Eq. (3),

u =
∫ ∫

A(ω, θ)U(θ)eiω[s(θ)·r−t]dθdω. (4)

Here the θ-integral extends over one or more slowness
curves in the sz = 1/v-cut plane, and the ω integration
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FIG. 1: Three nondiffracting wave modes in quartz. (a)
Three slowness surfaces cut off at sz = 70 · 10−6 s/m,
corresponding to the phase velocity v = 14286 m/s. (b)
Slowness curves on the (sx, sy)-plane. (c) Longitudinal
(L), (d) fast transverse (FT), and (e) slow transverse
(ST) beam modes. All beams are fundamental modes
with the angular frequency ω = 109 s−1. Areas illus-
trated are 200 µm×200 µm and the color shading denotes
the time-averaged kinetic energy.

covers different frequency components. The arbitrary
function A(ω, θ) represents the weight of each plane-wave
component. We choose θ as the arc-length parametriza-
tion of the slowness curve(s) (see Section III); all other
contributions are included in the weight function A(ω, θ).
The polarization is only defined up to a complex constant
factor by the Christoffel Eq. (2), and it should be cho-
sen continuous along the given slowness curve, i.e., the
integration path.
Provided that the weight function is assumed sepa-

rable: A(ω, θ) = f(ω)β(θ), there are two ways to con-
siderably simplify the wave expression: If the spectral
part f(ω) can be integrated analytically, the frequency
integral is performed first. In particular, X-wave-type
spectra f(ω) = ωme−αω yield∫ ∞

0

ωme−αωeiω(s(θ)·r−t)dω =
m!

{α− i[s(θ) · r − t]}m+1
,

(5)
while the entire pulse is given by

u =
∫

m!β(θ)U(θ)
{α− i[s(θ) · r − t]}m+1

dθ. (6)

If the spectral integral cannot be evaluated analytically,
the pulse can be obtained by first numerically finding the
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FIG. 2: (Top) Longitudinal (L) and slow transverse (ST)
pulse mode in quartz. (Bottom) Their approaching cross
sections (back planes in top, z > vt). Both pulses corre-
spond to the slowness cuts in Fig. 1. White arrows denote
the propagation of the pulse pattern. The cross sections
are directly obtained from the radial-velocity curves in
Fig. 4.

monochromatic beam

v(r, t;ω) =
∫

β(θ)U(θ)eiω[sx(θ)x+sy(θ)y+szz−t]dθ (7)

that can further be integrated over ω in order to obtain
the anisotropic pulse

u =
∫

f(ω)v(r, t;ω)dω. (8)

If the constant-frequency wave is evaluated for a reference
frequency ω′, all the other frequencies may be obtained
simply by scaling

v(r, t;ω) = v
( ω

ω′ r,
ω

ω′ t;ω
′
)

(9)

and the nondiffracting pulses can be represented as

u =
∫

f(ω)v
( ω

ω′ r,
ω

ω′ t;ω
′
)
dω. (10)

The structure of the resulting wave is determined by the
shape function β(θ), and each frequency component has
the same spatial shape, only scaled by the frequency.
The entire information on the governing wave equation

is contained in the plane-wave solutions and the non-
diffraction property is guaranteed by confining onto the
sz = 1/v-cut plane of the slowness surfaces. The remain-
ing freedom is contained in the weight function A(ω, θ).
We refer to the special case of β(θ) ≡ 1 as the fundamen-
tal mode. For illustrations of fundamental beam modes,
see Fig. (1) and for those of the corresponding pulses,
Fig. (2).

B Asymptotic form of the wave field

Although the integrals in Eq. (4) are readily evaluated
numerically once the slowness curves are known, the com-
putational results offer little direct physical insight into
the nature of the nondiffracting waves. Therefore, we
rather derive an asymptotic evaluation of the integrand
of Eq. (7). Using cylindrical coordinates, r = (r⊥, ϕ, z),
the nondiffracting beam assumes the form

v(r, t;ω) = eiω[szz−t]

∫
β(θ)U(θ)eir⊥ωr̂⊥·s(θ)dθ, (11)

where r̂⊥ = î cosϕ+ ĵ cosϕ is the radial unit vector. For
large enough r⊥ω, the exponential term in the integral in
Eq. (11) oscillates rapidly, and the integral tends to zero
(assuming that β(θ)U(θ) is sufficiently smooth). Note
that β and U never compensate these oscillations since
they are independent of both frequency and spatial coor-
dinates. In the asymptotic evaluation of the integral, we
look for the leading terms that decay comparatively slow-
est for large r. The solution is derived in the Appendix;
it allows for the following interpretation:
The main contribution to the integral for a fixed spa-

tial direction ϕ arises from those points on the slowness
curve where the normal of the curve is collinear with the
chosen direction. This is, in fact, reminiscent of the gen-
eral property in anisotropic wave motion: the direction
of energy propagation is along the normal of the slow-
ness surface, and the dominant contribution is due to
those components that transport energy in the direction
of observation.
The asymptotic contributions to the wave are ex-

pressed as

v(r, t;ω)

≈
∑

k:nk||r⊥

√
2π

ωr⊥κ(θk)
β(θk)U(θk) e±iπ/4eiω[s(θk)·r−t],

(12)

where the summation is taken over the points specified
above and κ(θ) = |s′′(θ)| is the curvature of the slowness
curve. The ± refers to the sign of r⊥ ·s′′⊥(θk) in the expo-
nential term. It is negative for waves emanating from the
axis while it has a positive value for waves propagating
towards the axis. Each term in the wave expression is a
plane wave arriving to the beam axis from the direction ϕ
and, together, they constitute a generalized conical wave.
It may, however, have a complicated folded form as will
be discussed below in Section III.
The above expression, Eq. (12), is valid for all di-

rections where the denominator does not vanish, which
would cause the expression to diverge. Although such
divergences only occur in the asymptotic expression (the
original integral never diverges), they imply the existence
of a caustic associated with a flat point in the slowness
surface, see Subsection III B below. The approximation
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FIG. 3: Convergence of the asymptotic approximation
along y. (a) The slowness curve of the longitudinal (L)
wave, (b) numerical integral (dashed line) and asymp-
totic (solid line) solutions for uz, (c) slowness curve for
the slow transverse (ST) wave, and (d) integral (dashed
line) and asymptotic (solid line) solutions for ux. Waves
represent the fundamental mode with β(θ) ≡ 1. The
dominant wave components are denoted with the outer
normals to the slowness curves.

converges rapidly for a slowly varying shape function
β(θ) (especially for the fundamental mode), see Fig. 3.
However, in the case that either β or the polarization
changes rapidly along the slowness curve, convergence is
only achieved for large r.
The asymptotic form for the nondiffracting pulse is

obtained from Eq. (8) together with the asymptotic non-
diffracting beam, Eq. (12) above. Choosing an X wave
spectrum f(ω) = ωme−αω and using the integration re-
sult [14]

∫ ∞

0

ωm

√
ω
e−αωdω =

Γ
(
m+ 1

2

)
αm+1/2

, (13)

the wave assumes the analytic form

um(r, t) ≈
∑

k

√
2π

r⊥κ(θk)
β(θk)U(θk)e±iπ/4

× Γ
(
m+ 1

2

)
{α− i[s(θk) · r − t]}m+1/2

.

(14)

Although indicative, this result should not be taken liter-
ally under the actual physical circumstances: The asymp-
totic form, Eq. (12), converges for large ωr⊥ and, thus,

the low-frequency spectrum in the frequency domain
(near zero) is invalid for arbitrary r⊥. However, for large
values of m the dominant frequencies are high and the
approximation is fair for r in the pulse cone and beyond.
Nonetheless, asymptotics of the transverse wave pattern
may be explained with the use of this approximation.

III. EFFECTS DUE TO ANISOTROPY

Nondiffracting waves in isotropic media feature a char-
acteristic cone of propagation [6, 12] that asymptoti-
cally describes the wave propagation. For nondiffracting
beams, the cone forms surfaces of equal phase and energy
flows along the normal to the cone. Furthermore, the en-
ergy of the propagating waves is equally distributed on
the cone of constant |β(θ)|. As for nondiffracting pulses,
the cone forms the actual propagating wave fronts. Note
that, in practice, both the phase and the energy intensity
depend on the shape function β(θ) but not on the under-
lying physics which in isotropic media gives no ’preferred’
directions of energy propagation.
In this Section, we use the asymptotic wave solution

to generalize the cone of propagation to anisotropic non-
diffracting waves, and to derive the ’natural’ energy dis-
tribution thereon.

A Anisotropic wave fronts

The maximal amplitude of individual wave compo-
nents occurs at the minimum of the denominator in
Eq. (14). The radial vectors pointing to the maxima are
given by

R⊥ =
t− szz

s⊥ · n⊥
n⊥ =

t− z/v

s⊥ · n⊥
n⊥ (15)

for fixed z and t. Here, the s⊥ are radial slowness vectors
and n⊥ are the (radial) normals to the slowness curve.
The cross-sectional shape of the nondiffracting pulse is
obtained by allowing the slowness to vary along the as-
sociated slowness curve, see Fig. 4.
For constant z, the field maxima first approach the axis

of propagation and, once having crossed it, they continue
their propagation outwards toward infinity. The radial
velocity of the field maxima is given by

V⊥ =
dR⊥
dt

=
n⊥

s⊥ · n⊥
(16)

and it satisfies the group-velocity-like relation V⊥ · s⊥ =
1. Note that the scalar product is only taken for the
radial components of the vectors. The radial velocity of
the field is not the radial component of group velocity
since the latter obeys Vg · s = Vg⊥ · s⊥ + Vzsz = 1 and
since, in general, Vzsz �= 0 the radial part of the inner
product cannot equal unity for the group velocity.
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FIG. 4: Three slowness curves and the corresponding
radial-velocity curves for quartz. Only the ST mode fea-
tures nonconvex slowness and, consequently, its velocity
curve exhibits folds associated with wave-front caustics.
The radial-velocity curves readily provide the drifting
cross sections (z < vt); the approaching cross sections
in Fig. 2 are obtained after inversion (x → −x, y → −y).

The beam amplitude of the asymptotic expression,
Eq. (12), depends on the following two factors: (i) the
curvature, κ, of the slowness curve, and (ii) the shape
function, β. The former is purely characteristic to the
medium and the direction and velocity of propagation
(which together serve to define the slowness curve) while
the latter describes the excitation of the wave in the
Fourier domain. For isotropic wave motion, curvature is
constant and the amplitude depends solely on the shape
function.

B Caustics and internal diffraction

The wave amplitude is proportional to |β(θ)|/√κ(θ)
and, hence, a small curvature of the slowness (i.e., large
radius of curvature) implies an elevated level of wave am-
plitude. This is called phonon focusing. If, however, the
slowness curve is flat, i.e., its curvature vanishes, the
asymptotic expansion based on the stationary-phase ap-
proximation no longer holds. This is due to the fact
that all the wave components in the vicinity of the zero-
curvature point propagate into the same direction, caus-
ing an increase in the field amplitude, or a caustic.
Another consequence of vanishing curvature is the ap-

pearance of internal diffraction. At a caustic point,
the number of contributing wave components changes
abruptly. Normally, the curvature of the slowness is neg-
ative (meaning that the scalar product between the slow-
ness vector and its second derivative is negative). At the
caustic points, however, the curvature changes sign; this
is observed in two ways: (i) the slowness curve is no
longer convex; and (ii) the radial-velocity curve develops
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FIG. 5: Caustics of the slow transverse mode in quartz.
The zero-curvature points on the slowness surface (lhs)
imply caustics which are observed as folds in the velocity
curve (rhs). Thick lines denote areas of positive curvature
and capital letters indicate the individual caustics.
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FIG. 6: Internal diffraction causes an interference pat-
tern between several wave modes that propagate along
the same radial direction. For the case illustrated here,
the interference period of approximately 0.19 mm is due
to the difference between the waves s1,3 and s4,6 which,
together, carry most of the wave energy along y. The in-
terfering wave vectors are ky,1,3 = 246 mm−1 and ky,2,4 =
280 mm−1 for the angular frequency ω = 109 s−1.

folds, implying that several wave modes propagate along
the same radial direction, see Fig. 5.
Internal diffraction is sometimes observed as a clear in-

terference pattern of the participating wave components,
see Fig. 6. This is due to the fact that, for a single-
frequency beam, there are from 1 to 6 plane waves with
different wave numbers and amplitudes that propagate
along the same direction. For a pulse, this leads to a
folded cone, and if the cone is thick enough, the different
folds may overlap, leading to mutual interference. This
effect has been observed for normal wave fronts in crys-
tals, see Ref. [1].

C Energy propagation

Apart from the factor r−1/2
⊥ , the asymptotic expres-

sion, Eq. (12), consists of plane waves whose directions
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of energy transport are given by the corresponding group-
velocity vectors, V. In isotropic materials, the group ve-
locity is always collinear with the wave-front propagation,
while in nondispersive materials the group velocity along
the wave-front propagation direction equals the phase ve-
locity. Now the latter holds but the group velocity may
also contain a transverse component with respect to the
wave front. In the asymptotic region of nondiffracting
waves, the group velocity has no azimuthal component
since it is normal to the slowness curve. Hence, the en-
ergy flow in the asymptotic range only has a radial (r)
and an axial (z) component.
The nondiffracting-wave ’cone’, which constitutes the

pulse itself, is essentially formed by plane waves, although
different ones in the different directions. The energy flow
associated with these plane waves does not necessarily
propagate along positive z, see Fig. 7. If the pulse is to
be generated at z = 0 and it should propagate along pos-
itive z, all the group velocities must also posses a positive
component along z. This is readily fulfilled for the lon-
gitudinal mode in Fig. 7 but not for the slow transverse
mode.

IV. ACOUSTIC GENERATION OF NDWS

In this Section, we consider a method for the experi-
mental generation of NDWs into elastic crystals. Within
optics, there are several methods for producing non-
diffracting waves. Durnin et al. used a circular slit fol-
lowed by a Fourier-transforming lens [3]. Axicons [15]
have also been used to produce Bessel beams, first by
Bunkin et al. [16] (already before Durnin’s work), and
later by Scott and McArdle [17], and others. Possibly
the most adjustable method for generating NDWs is the
use of computer-generated holograms, i.e., diffractive ele-
ments [18]. We propose a similar arrangement, consisting
of a piezoelectric transducer fabricated on the top surface
of a bulk crystal.

A Transducer arrangement

We consider the design of a piezoelectric transducer
operating in the asymptotic region of a nondiffracting
beam. Taken a beam that has no regions of internal
diffraction, i.e., its radial-velocity curve has no folds and
there is only one wave mode along each direction that
moves towards the axis. For simplicity, we take this radial
direction as the positive x axis.
Thus, the plane wave has sz = 1/v, V⊥x < 0, and

V⊥y = 0. Both sx and sy are obtained uniquely from the
asymptotic field solution. The field on the substrate sur-
face exhibits a periodicity determined by the wave vector
(kx,0, ky,0) = (ωsx, ωsy) and, therefore, the transducer
must also have the same period. However, the realiza-
tion of a continuous-profile transducer that is described

0 1

L

ST

FIG. 7: Nondiffracting pulses of L and ST modes in the
meridional (y, z) plane. Wave energy in anisotropic crys-
tals does not propagate perpendicular to the wave fronts.
While in the L mode (top) the group velocities of both
wave components have positive velocity along z, this does
not hold for the ST mode (bottom). Although the wave
pattern in the latter propagates along positive z, part of
the wave energy is transported into the opposite direc-
tion. Hence, the wave may not be launched from a trans-
ducer placed at z = 0. In the ST mode, there are actually
six modes present, the same as indicated in Fig. 3. Here
the negative Vz component is denoted with bold arrows.

by one single wave vector is practically impossible and
the structure designed for the transducer must in prac-
tise be quantized into individual electrodes. This leads
to interdigital-type transducers (IDTs) [19, 20].
Since the transducer displays the spatial period corre-

sponding to (kx,0, ky,0), the excited elastic wave has an
equal periodicity. Therefore, the wave contains Fourier
components for kx,m = mωsx and ky,m = mωsx where
m assumes integer values. The field is then represented
as

u(x, z) =
∞∑

m=−∞

4∑
n=1

Am,nUm,ne
i(kx,mx+ky,my+kz,m,nz).

(17)
Here, m enumerates the different Fourier modes, while n
refers to the four different wave modes: L, FT, ST, and
EM (an evanescent electromagnetic mode, see Ref. [21]),
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each of which may have a different kz,m,n. Here Am,n

are the complex-valued weights of each wave mode and
Um,n are their polarization vectors. This representation
is analogous to the optical Rayleigh expansion [22] that
is widely used in the analysis of diffractive gratings. We
point out here that for a fixed kx, there exist actually
eight different modes. Four of these are discarded since
they either propagate energy along positive z or they
grow exponentially along negative z (the beam generated
into the bulk is taken to propagate along −z), see Fig. 8.
A straightforward and very useful algorithm for finding
these modes has been published by Peach in Ref. [21].
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FIG. 8: Structure of the slowness surface in quartz and a
schematic transducer layout for generating a continuous-
wave nondiffracting beam. Complex sz values as a func-
tion of sx for sy = 0. Here Re(sz) are shown with solid
lines and Im(sz) with dashed lines. Thick lines propagate
(or evanesce) along positive z and thin lines along nega-
tive z. All generated modes are encircled and the entire
beam is here taken to propagate along the direction of
negative z.

Although the field expansion in Eq. (17) contains an
infinite number of modes, the field is to be designed such
that, ideally, only a minimul number of modes with real
sz are actually generated. The most likely ’extra modes’
to appear are those with m = 0 and m = −1. The
former always has three propagating modes but it is quite
easily avoided by requiring that the average potential and
the net charge on the surface remain zero. The latter
has the same length for the surface wave vector as the
desired mode and it has, subsequently, often a real kz.
If a transducer layout exhibits inversion symmetry, the
m = ±1 modes are generated with equal weight, although
the underlying anisotropy may still modify their relative
amplitudes.
In the simplest of transducer schemes, a time-

oscillating electric potential pattern is produced on a free

surface of a piezoelectric crystal using (infinitely) thin
metal electrodes. In this case, all three stress compo-
nents along the surface normal must vanish for all the
Fourier modes separately. There are four wave modes
available (L, FT, ST and EM), and the condition of van-
ishing stresses can always be fulfilled by a suitable com-
bination of them. Hence the field is expressed as

u(x, z) =
∞∑

m=−∞
Ãm

4∑
n=1

wm,nUm,ne
i(kx,mx+ky,my+kz,m,nz)

(18)
where wm,n are weights such that the surface stresses of∑4

n=1 wm,nUm,ne
i(kx,mx+ky,my) vanish for each m. This

combined mode may have an arbitrary amplitude but it
requires a specific electric potential and charge distribu-
tion on the substrate surface. The transducer must be
designed to provide these. Note that this scheme ignores
all elastic properties of the transducer elements and it as-
sumes a mechanically free interface between the crystal
substrate and air. Transducers with electrodes of finite
thickness can be analyzed numerically and the essential
difference is that the resultant combination of L, FT,
ST, and EM modes changes. This has been achieved,
for instance, by Koskela et al. for surface-acoustic wave
transducers, see Ref. [23].
We note that the generation of surface-acoustic waves

(SAWs) using IDTs is well understood and they have
a very important role in RF filter technologies. In
SAW filters, however, the desired wave modes are always
evanescent and the excitation of bulk-acoustic waves
(BAWs) only leads to unwanted energy losses. IDTs
have also been used for BAW excitation (see, for instance,
Refs. [24, 25], and the brief discussion in the Appendix F
of Ref. [26]), but they have not yet found important com-
mercial applications. In the language of SAW technology,
the transducers considered in this subsection are called
leaky-SAW (LSAW) transducers that ’leak’ wave energy
into the bulk of the crystal. The difference is that, in-
stead of minimizing this leakage, these transducers are
optimized for the generation of certain bulk modes.

B Aperture optimization

Although, ideally, nondiffracting waves have an infi-
nite beam length, the aperture size limits it to a fi-
nite value. In an isotropic medium, the wave emanat-
ing from the edge of a circular aperture, at the distance
R from the beam axis, moves to the beam axis at the
angle ζ, called the cone angle of the beam. It crosses
the axis at Z = R cot ζ. A similar effect takes place
in anisotropic media, except that there exists no uni-
form cone angle in this case. All directions have differ-
ent plane waves (or several plane waves in the regions
of internal diffraction) that carry energy at the different
angles. Hence, each direction has an individual ’radius’
of aperture R(ϕ) = Z tan ζ(ϕ), where ϕ is the azimuthal
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FIG. 9: (a) Sketch of a transducer for exciting an L-mode
nondiffracting beam in quartz. Here white denotes the
grounded electrodes, gray the driving electrodes, and the
black areas are free substrate surface. Bondings of the
electrodes must be supplied separately. (b) The entire
radiation pattern of the transducer as observable on the
opposite crystal surface. (c) Nondiffracting L-mode (in
the centre) and spurious modes generated at the (y = 0)-
plane of the transducer. Each mode propagates in the
direction specified by the associated group velocity.

angle on the crystal surface and ζ(ϕ) = arctan(Vr/Vz) is
the group-velocity angle for the plane wave entering from
that direction.
In Fig. 9 there is illustrated a transducer that is de-

signed to produce an L-mode beam in quartz. The in-
terdigital transducer unavoidably produces one extra L-
mode, two FT-modes, and two ST-modes. Therefore,
the aperture is designed such that these do not overlap
the intended nondiffracting beam in the center of the op-
posing crystal surface where the waves can be detected.
The aperture is parametric in the sense that this may be
scaled arbitrarily depending in the thickness of the quartz
substrate. Note that it is independent of frequency that
only affects the scaling of the transducer structure within.
Propagation of the generated field modes is here con-
sidered within the limits of geometrical optics and all
diffraction effects are discarded.

C Detection of NDWs

The generation of a nondiffracting wave into a crys-
talline solid is the first part of the experimental research,
while the detection of the wave is the second task. One
way of detecting NDWs is the use of interferometric scan-
ning on the back face of the crystal [28, 29]. This allows
the detection of the surface-normal oscillation with an
xy-resolution ≈ 1 µm and amplitude threshold ≈ 0.1 nm.

V. CONCLUSIONS

We have considered nondiffracting wave propagation in
anisotropic crystals and analyzed the physical properties
of nondiffracting waves based on their asymptotic repre-
sentation. This has lead to a straightforward interpreta-
tion in terms of plane waves that have well-defined wave
vectors and group velocities. The asymptotic represen-
tation also reveals phonon focusing, caustic, and internal
diffraction effects that occur in anisotropic materials.
We have also considered the excitation of nondiffract-

ing waves using an interdigital-type transducer that may
be designed using the asymptotic properties of the spe-
cific beam form. Although similar devices (computer-
generated holograms) have been widely used in optics,
the presence of anisotropy and several acoustic modes
lead to a much more complicated situation, and numeri-
cal modeling is required for the optimization of the local
transducer structure.
Experimental research on anisotropic elastic wave

propagation has recently benefitted from new imaging
methods. The generation and detection of nondiffract-
ing wave modes is a new challenge for experimental re-
search; we hope that our results will stimulate further
experiments.
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APPENDIX: OSCILLATORY INTEGRAL

Consider an integral on a closed curve, parameterized
by θ, and given as [30]

I =
∫

f(θ)eiαφ(θ)dθ, (19)
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where φ is real. The contribution of a small interval
[θ0 − ε, θ0 + ε] of the integral path, centered at θ0 is

Iθ0,ε ≈ f(θ0)eiαφ(θ0)

∫ ε

−ε

eiα[ξφ′(θ0)+ξ2φ′′(θ0)/2]dξ. (20)

Since the integral is dominated by ξ = 0, it is highly
oscillatory, except for φ′ = 0. If φ′ = 0, the value of the
integral is approximately

∫ ε

−ε

eiαξ2φ′′/2dξ ≈
∫ ∞

−∞
eiαξ2φ′′/2dξ = e±iπ/4

√
2π

α|φ′′| ,
(21)

where ± refers to the sign of φ′′(θ0). We have changed
the integration variable to ξ =

√
π

α|φ′′| t. The integration

limits have been extended from [−ε, ε] to [−∞,∞] since
for sufficiently large r, the main contribution arises from
an infinitesimal interval around the origin. If φ′ �= 0,
the oscillating integrand averages to zero. Therefore, the
total contribution of each φ′′ �= 0 is

I ≈
√

2π
α|φ′′(θ0)|f(θ0)e

iαφ(θ0)e±iπ/4. (22)

This result is valid for a large enough parameter α. It
should be noted that a rapidly changing f(θ) or a low
absolute value of |φ′′(θ)| requires a very large value of α.
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