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Magnetic anisotropy in Ni2MnGa
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We study here, within the density-functional theory, the magnetic anisotropy energy~MAE! in Ni2MnGa
which is a prototype of a magnetic shape-memory alloy. We calculate the MAE, which is a key property for the
magnetic shape-memory effect, for tetragonal structure with different ratios of thec and a lattice constants,
reproducing the experimental easy axes both in compression and elongation of the structure. Good agreement
between the theory and the experiments in the actual values of the MAE is also found when the nonstoichi-
ometry of the experimental samples is modeled with a simple rigid band approximation. In addition, we
estimate the magnetostriction coefficient, confirming the difference between the ordinary magnetostriction and
the magnetic shape-memory effect. Equally important, we study the microscopic origin of the MAE in
Ni2MnGa with the spin density and the orbital moment anisotropy and extend the analysis of the orbital
moment anisotropy to the ternary compounds. These results show that the largest contribution to the MAE
comes from Ni, in spite of the larger magnetic moment in the Mn sites.
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I. INTRODUCTION

Novel materials which can function as sensors as wel
actuators are attaining increasing interest from a technol
cal point of view. In this context, magnetic shape-memo
~MSM! alloys1 are promising. The magnetic control offe
fast response compared to the temperature-driven con
tional shape-memory alloys,2 and in addition, strains are
larger than in the ordinary magnetostrictive materials.3 In
fact, unusually large strains up to 6% under a magnetic fi
have been observed in recently developed Ni-Mn-Ga all
close to the stoichiometric composition Ni2MnGa.4 The
MSM effect, which differs from the ordinary magnetostri
tion also by its mechanism, is driven by the magnetic anis
ropy energy~MAE!. The purpose of this paper is to study th
MAE and its origins in the prototype MSM alloy Ni2MnGa
with first-principles calculations.

The MSM effect is based on the magnetic-field-induc
redistribution of twin variants in the martensitic phas5

When Ni2MnGa alloy is cooled down, it undergoes a stru
tural transformation from a cubic~austenitic phase! to a te-
tragonal structure~martensitic phase!. In the cubic structure
there are three crystallographically equivalent directions
the tetragonal deformation. Therefore, the martensitic ph
consists of regions which have different deformation dir
tions. These regions are called twin variants and they
separated by well-defined boundaries. Naturally, the lo
crystallographic structure determines the easy axis of m
netization, so that different variants have a different glo
direction for the easy axes i.e., the local magnetic mome
in the different variants have different directions in the a
sence of an external magnetic field. Now, when an exte
magnetic field is applied to the sample, the local magnet
0163-1829/2002/65~13!/134422~7!/$20.00 65 1344
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tions try to align with the external field. For fields belo
saturation and with a large enough MAE, it will be energe
cally favorable to redistribute the twin variants: instead
rotating the magnetizations with respect to their local crys
structure, the twin boundaries move and the easy axes a
with the field. On the whole, this movement leads to t
large shape changes observed in the MSM alloys. Altho
the MSM mechanism differs from ordinary magnetostrictio
the magnetostriction coefficient remains still a basic prope
in the MSM materials. The crucial magnetic parameter
however, the MAE.

Apart from a large MAE, the MSM effect requires o
course the occurrence of both ferromagnetism and a mar
sitic phase transformation. The martensitic transformation
Ni2MnGa involves tetragonal distortions from the cubicL21
structure shown in Fig. 1. Both phases are ferromagn

FIG. 1. TheL21 structure.
©2002 The American Physical Society22-1
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with the magnetic moment mainly on the Mn sites. The
have been studied experimentally with x-ray and neut
diffraction6,7 and with theoretical calculations.8 While mag-
netization curve measurements9–12 showed that the martens
tic phase of Ni2MnGa has uniaxial magnetic anisotropy, th
microscopic origins of the MAE in this alloy have not bee
studied. Our purpose is to investigate the role of the cons
ent atoms for the MAE and to sketch the composition dep
dence of the MAE around the Ni2MnGa stoichiometry.

The two main sources of the MAE are the spin-orbit co
pling and the magnetic dipole-dipole interactions. T
dipole-dipole induced anisotropy depends on the shape o
sample and in many cases it is small compared to the s
orbit coupling.13 The spin-orbit interactionHso5jL•S,
which has a relativistic origin, couples the spins to the u
derlying crystal lattice, giving rise to an anisotropy.

As a ground-state property, the MAE can be calcula
via the density-functional theory. However, the smallness
the MAE makes the calculation difficult. In transition meta
the spin-orbit coupling strengthj is typically about 50 meV
and the MAE, as a fourth-order effect in the cubic symme
is therefore of order ofmeV. Calculations within the density
functional theory have produced relatively good values
Co and Fe,14 but for Ni even the correct easy axis is n
reproduced. In surfaces and in systems with a lower sym
try the MAE is a second-order effect, making the calcu
tions more tractable.15–17 Up to now, calculations have bee
performed mostly for monoatomic or binary compounds.
present here calculations for a ternary compound.

A deeper understanding of the physics behind the m
netic anisotropy is brought about by the connection betw
the MAE and the anisotropy in the orbital magnetic mome
In the absence of the spin-orbit coupling the orbital mom
is largely quenched by the crystal field. The spin-orbit co
pling induces some orbital moment, which in tetragon
structures can be further enhanced due to a lowered sym
try. Due to spin-orbit coupling, there is orbital moment a
isotropy ~OMA! which was shown to be proportional to th
MAE in the cases with a single atom in the unit cell, assu
ing that the majority band is completely filled and spin-fl
terms are neglected.18 As the spin-flip terms and contribu
tions from the other spin subband can be important, this
lation was generalized, showing that in addition to the orb
moments, the MAE contains contributions also from a m
netic dipole term.19 However, little research has been do
on the interpretation of this relation for compounds with se
eral atoms. The connection between the MAE and the O
has been formulated for these cases in Ref. 20 and
present here the analysis for a ternary compound.

The calculations in this work are done using the fu
potential linearized augmented plane-wave~FLAPW!
method21 and the main aspects of the scheme are descr
in Sec. II. Since the MSM effect takes place in the tetrago
structure, we calculate the MAE for different tetragonal g
ometries in Sec. III A. We also discuss the composition
pendence of the MAE in terms of a simple rigid band mo
and determine the magnetostriction coefficient from the c
culated MAE. Furthermore, we investigate the microsco
origins of the MAE in Sec. III B with the spin density an
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the OMA, where we extend the analysis of the relations
between the MAE and the OMA to the tetragonal distortio
of this ternary alloy. Finally, we draw the conclusions in Se
IV.

II. COMPUTATIONAL DETAILS

A. Method

The calculations are done within the density-function
theory using the FLAPW method as implemented in Ref.
The generalized gradient approximation23~GGA! is used for
the exchange and correlation potentials. The spin-orbit c
pling is treated within the second-order variational method24

The plane-wave cut-off for the scalar relativistic basis fun
tions isRMTKmax59, leading to;350 plane waves with the
smallest muffin-tin radiusRMT52.2 a.u. In the second varia
tional step states up to 3.5 Ry are included in the basis. S
the spin-orbit coupling is a local effect, it is included on
within the muffin-tin spheres. The sphere radii used are 2
2.3, and 2.2 a.u. for Ga, Mn, and Ni, respectively. Only t
spherical part of the potential is used when calculating
spin-orbit matrix elements. The effects of increasing t
sphere radii or the energy cutoff for the second variatio
step were checked, neither of them changing the results

The MAE can be calculated as a difference in the to
energy between the different magnetization directions. T
requires subtraction of two large numbers in order to obt
one small number, and the total energy calculations m
therefore be converged extremely well. However, the f
that the spin-orbit coupling is a small effect can be used
simplify the calculation of the MAE. According to the forc
theorem25,26 the energy differenceDE associated with the
MAE can be calculated as a difference in the band energ

DE5(
i

e[110]2(
i

e[001] . ~1!

The eigenvaluesei are determined in the second variation
step, the subscripts@110# and @001# refer to the magnetiza
tion direction, and the summation is over bands andk points.
The calculations are simplified considerably since only o
self-consistent scalar relativistic calculation is needed. T
convergence of the self-consistent calculation is also no
crucial as when determining the MAE from total energie
The validity of the force theorem is checked in the ne
subsection.

The presence of spin-orbit coupling together with sp
polarization leads to a lowering of symmetry. Only the sy
metry operations of the scalar relativistic system which lea
the spin quantization axis invariant remain when the sp
orbit coupling is included. In the tetragonal structure with t
@001# magnetization the symmetry is not lowered, but wh
the magnetization is rotated to the@110# direction only 8
symmetry operations from 16 remain. First, the scalar re
tivistic potential is calculated with the full~not lowered by
spin-orbit coupling! symmetry. Second, the scalar relativist
wave functions and the spin-orbit Hamiltonian are calcula
in a k mesh in the first Brillouin zone, which is obtaine
using only the 8 symmetry operations which are common
2-2
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MAGNETIC ANISOTROPY IN Ni2MnGa PHYSICAL REVIEW B 65 134422
both spin quantization axes. In this way only one set of s
lar relativistic wave functions is needed.

B. Brillouin zone integrations

Within the force theorem, the MAE is determined sole
from band energies. Therefore, the Brillouin zone integrat
is the dominant source of errors. As the MAE is a sm
quantity and sensitive to the exact structure of the Fe
surface, a very dense mesh ofk points is needed. Differen
integration schemes have been used in the literature in o
to reduce the number ofk points. A possibility is to use som
broadening technique, such as Gaussian27 or Fermi28 broad-
ening, to smooth out the discontinuities at the Fermi lev
The problem is that the size of the appropriate broadenin
not known in advance: small broadening does not impr
the convergence, while too large broadening will affect
results because these methods do averages over the F
surface. Another technique for the Brillouin zone integ
tions is provided by interpolation methods such as the lin
tetrahedron method29 and its modified version.30 The tetrahe-
dron method is free of adjustable parameters and it sho
converge to the correct result in the limit of infinitely densek
mesh. However, the problem in the tetrahedron metho
that band crossings are not taken into account; i.e., the or
ing of bands can be incorrect and errors arise when the b
crossings occur near the Fermi level. In this section we
the convergence of some integration methods in the calc
tion of the MAE.

We use the tetragonal structure corresponding to the
perimental one (c/a50.94). The self-consistent scalar rel
tivistic calculation is done using the modified tetrahedr
method with 8000k points in the full Brillouin zone. The
eigenvalue sums of Eq.~1! are then calculated with differen
k meshes and integration methods. All the subsequent M
values are given with respect to a formula unit. As shown
Fig. 2, the Fermi broadening improves the convergence
the corresponding MAE’s when increasing the width of t
broadening. However, the results also change and the M
which is obtained with large broadening is not necessa
correct. Although the results with a small broadening ag
with those of the tetrahedron method, the convergenc
slower. Since the convergence behavior is not improved fr
that of the tetrahedron method, there is no benefit using
Fermi broadening method. We have therefore used the te
hedron method with 33000k points, which gives a good
convergence, in all the following calculations.

Some total energy calculations are also performed
check the validity of the force theorem. As also shown
Fig. 2, the difference between the values obtained with
force theorem and with the total energies is small so that
use of the force theorem is justified.

III. RESULTS AND DISCUSSION

A. MAE and magnetostriction

The MAE is calculated for different tetragonal structur
while keeping the volume fixed to the theoretical volume
the cubic structure.8 The calculated MAE as a function of th
13442
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tetragonal distortion is shown in Fig. 3. The values of t
MAE in tetragonal structures are about two orders of m
nitude larger than in the cubic structure, as is expected du
a lower symmetry. Within the scope of this work the MAE
the cubic structure is considered to be zero. In the tetrago
structures~see Fig. 3! the @001# axis changes from easy t
hard whenc/a goes through 1. These calculations reprodu
the experimental easy axis both forc/a,1 ~Refs. 9–11! and
for c/a.1 ~Ref. 31!, but the theoretical value is about 2.5
3.5 times higher compared with the experimental valu
50-74meV for c/a50.94.

There are at least two important differences in the exp
ments and in the theory which can explain the discrepanc
the value of MAE. First, the measurements are done at ro
temperature, while our calculations refer to zero temperat
The overall temperature dependence of MAE is complex
it includes effects from electronic states, magnons, a

FIG. 2. The MAE as a function of the inverse of the number
k points. Some corresponding numbers ofk points,nk , in the full
Brillouin zone are also shown in the figure. (s) tetrahedron
method; Fermi broadening of (h) 27meV, (L)68 meV, and
(n)136 meV; (.) self-consistent. Lines are only guides for th
eyes.

FIG. 3. The MAE as a function of the tetragonal distortion. T
solid line is a fit to the linear part of the curve,c/a.0.96.
2-3
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ENKOVAARA, AYUELA, NORDSTRÖM, AND NIEMINEN PHYSICAL REVIEW B 65 134422
phonons. The electronic contribution can be obtained fr
the calculations with the Fermi broadening, Sec. II B, wh
suggest that in Ni2MnGa the MAE increases with decreasin
temperature, althought one should remember that the t
peratures in Fig. 2 are very high. This trend is in agreem
with the case of tetragonal Ni,15 while for Ni2MnGa experi-
mental results have not been reported.

Another difference between the theory and the experim
is that the experiments are done with nonstoichiometric co
positions. From the several effects of nonstoichiometry
consider here the change in the average number of val
electrons within a simple rigid band approximation. The
genvalues from a calculation with a stoichiometric compo
tion are used, but the summation in Eq.~1! is done with a
varying band filling. The number of valence electrons is v
ied, and the Fermi level is determined in accordance with
new number of electrons. The results for the experime
structure are shown in Fig. 4 along with some experimen
values for the MAE.

Already this simple approximation for the nonstoichiom
etry brings the theoretical MAE in good agreement with t
experiment and reproduces correctly the experimental tr
about the composition dependence of the MAE. The rem
ing discrepancies between calculated and experimental
ues of MAE could originate either from deficiencies of t
used approximations such as the GGA or from experime
conditions such as the finite temperature, mentioned ea
and other alloying effects.

Next, the MAE is used to calculate the magnetostrict
coefficient of the cubicL21 structure. According to the linea
magnetoelastic theory the MAE depends linearly on the
tragonal strain. The total energy can be written as a sum
magnetoelastic and elastic energy32:

Etot52aBe1Ce2, ~2!

wheree is the tetragonal distortion,e52/3(c/a21), a51
for magnetization parallel to tetragonal@001# axis, anda5
21/2 for magnetization perpendicular to that axis,B is the
magnetoelastic coupling constant andC is related to elastic

FIG. 4. The MAE as a function of the number of valence ele
trons per formula unit,nv , for c/a50.94. Experimental values
(h) Ref. 9, (L) Ref. 11,(¹) Ref. 12, and (n) Ref. 10.
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constantC8, C53V0C8/2, whereV0 is the volume of the
unit cell. The magnetostriction coefficientl001 is defined as
the strain that minimizes the total energy of Eq.~2!:

l00152
B

2C
. ~3!

The linear variation of the MAE with the small distor
tions, Fig. 3, allows us to calculate the magnetostriction
efficient of the cubicL21 structure together with Eq.~3!. The
B constant is determined from the linear part of the MAE
c/a plot and the elastic constantC8 for the C coefficient is
obtained either from calculations or experiments. The th
retical value forC8 is 4.7 GPa~Ref. 33! while the experi-
mental values vary from 4.5 GPa~Ref. 34! to 22 GPa~Ref.
35! According to the value used forC8, the magnetostriction
coefficient varies then from;250031026 to ;2100
31026. The calculated magnetostriction coefficient has
same order of magnitude as the experimental one whic
between;225031026 and;213031026 ~Refs. 1 and 9!
depending on the temperature and the composition. A di
comparison of theoretical and experimental magnetostric
is complicated because of the several sources for the di
ences: temperature, composition, the elastic constants, o
coefficientB. The calculations reproduce, however, the c
rect order of magnitude.

Because the number of the data points is not enoug
describe the linear behavior of the MAE aroundc/a50.94,
Eq. ~3! cannot be applied directly for the martensitic pha
However, some estimation of the magnetostriction coe
cient in the martensitic phase can be done. The elastic c
stant C8 of the tetragonal structure is 13.5 GPa,33 and the
slope of the MAE vsc/a curve nearc/a50.94 is around 3
times larger than near the cubic structure; see Fig. 3. Th
fore the magnetostriction for thec/a50.94 variant should be
of the same order of magnitude as for theL21 structure.
These findings confirm that the ordinary magnetostriction
a minor effect in the MSM shape change of 6%.

B. Microscopic origin of the MAE

Some qualitative information about the contribution
different atoms to the MAE can be obtained from the sp
density. Because the total energy is a functional of the s
density, it is natural to assume that the spatial variation in
difference of spin density with different spin quantizatio
axes gives information about the spatial contributions to
MAE. The spin density~the component parallel to the quan
tization axis! is calculated from the spin-orbit-perturbe
wave functions and the resulting difference in the spin d
sity between the@110# and@001# magnetization directions is
shown in Fig. 5. It is interesting to note that for Ni th
difference is positive and is mainly due todz2 orbitals, while
for Mn the difference is negative and has mainlydxy charac-
ter. The directionality of the characters shows that the m
netic coupling is mainly between the atoms of the same s
cies. The most important fact in Fig. 5 is that the spin dens

-

2-4
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difference for Ni is around an order of magnitude larger th
for Mn. This suggests that the largest contribution to
MAE comes from Ni.

More information about the importance of the constitue
atoms for the MAE can be obtained from the orbital m
ments. Both the OMA and the MAE originate from the spi
orbit coupling so that a large OMA is indicative of a larg
MAE in many cases. The orbital moments, which a
;0.025mB within the Ni spheres and;0.016mB within the
Mn spheres, are calculated using the spin-orbit-pertur
wave functions. The resulting total and atomic-sphe
decomposed OMA’s are shown in Fig. 6 as a function of
distortion. It is seen that the OMA within the Ni sphere
about 2 times larger than in the Mn sphere. The shape of
curve is similar to the MAE as seen in Fig. 3, suggesting t
the two quantities are related also in Ni2MnGa. In other
words, the atomic-sphere-decomposed OMA reinforces
argument that Ni has a larger contribution to the MAE th
Mn, in accordance with the spin density.

The above considerations about the relationship betw
the MAE and the OMA can be put in a more quantitati
form using arguments from second-order perturbation the
In the cases with a single atom per unit cell the MAEDE
and the OMADm can be written as19

DE52j2@a↑↑1a↓↓2a↑↓2a↓↑# ~4!

FIG. 5. Difference in spin density in (110̄) plane. Solid lines
denote positive values with 1023 e/Å3 spacing between contours
dashed lines negative values with 1024 e/Å3 spacing.

FIG. 6. The OMA as a function of the tetragonal distortion. (s)
total, (h) Ni, and (L) Mn.
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Dm524j@a↑↑2a↓↓#. ~5!

The as1s2 indicate the terms coming from the couplings b
tween different spins. When spin flips are neglected and
majority band is assumed to be completely filled (a↓↓5a↑↓

5a↓↑50) these equations reduce to the linear relations
between the MAE and the OMA as shown earlier in Ref. 1
The above expressions can be further generalized to the
with several atoms in the unit cell20:

DE52(
q

jq
2@aq

↑↑1aq
↓↓2aq

↑↓2aq
↓↑# ~6!

and

Dm524(
q

jq@aq
↑↑2aq

↓↓#. ~7!

The relationship between the MAE and the OMA as given
Eqs.~6! and~7! is not necessarily linear even when spin fli
and other spin sub bands are neglected because the spin
coupling parametersjq are different for different atoms.

Under the assumption that only the Ni and Mn contribu
to the MAE and that spin flips and other spin subbands
be neglected, Eq.~6! can be written as

DE5
jNi

4
DmNi1

jMn

4
DmMn . ~8!

Some estimates for thejq can be obtained from an atomi
program which givesjNi>121 meV andjMn>60 meV. If
these values are used in Eq.~8!, the resulting MAE’s are
larger than in Fig. 3. However, it is expected that in t
crystalline alloy thejq are reduced from their atomic value
A relatively good fit between the MAE calculated from E
~8! and the MAE calculated within the force theorem is o
tained by usingjNi560 meV andjMn530 meV as seen in
Fig. 7. Together with the atomic-sphere-decomposed O
~see Fig. 6! this suggests that Ni contributes to the MAE
times more than Mn. Although these fitted values forjq may
be an underestimation due to the neglect of the other s

FIG. 7. MAE calculated with (s) force theorem, with (h) Eq.
~8!.
2-5
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sub-band in Eq.~6!, the importance of the Ni for the MAE is
well established. This observation is quite surprising beca
the largest contribution for the magnetic moment comes fr
Mn. Altogether, it is seen that different magnetic propert
originate from different atoms.

IV. CONCLUSIONS

The purpose of this research was to study the magn
properties of Ni2MnGa, which is an example of a magnet
shape-memory alloy. We assume that the relevant quan
for the MSM effect is the magnetic anisotropy energy. T
MAE is studied with density-functional calculations to o
tain insight into its distortion dependence and origins. He
the MAE is found to vary linearly with small tetragonal dis
tortions. Clearly, our calculations reproduce the experime
easy axis, which changes from@001# to @110# when changing
the tetragonality fromc/a,1 to c/a.1. In addition, the
magnetostriction coefficient of the cubicL21 structure is de-
termined to be in good agreement with the experiments.
magnetostriction in the martensitic phase is estimated
have the same order of magnitude as in theL21, corroborat-
ing the result that ordinary magnetostriction is a minor eff
in the MSM phenomenon.

Although the theoretical MAE is close to the experimen
values, we believe that a better fit can be obtained when
composition dependence is taken into account. We have
complished that with a simple rigid band model, whic
shows that the MAE decreases about 50% with a sm
change in the composition, consistent with the experime
trend.

Microscopic origins of the MAE are studied first with th
difference in the spin density for the two magnetization
rections. This shows the orbital characters of the magn
coupling and that the coupling is mainly between atoms
same species. The main finding of the current study is s
also in the spin density: Ni is more important for the MA
than Mn, and the role of Ga is negligible. More quantitati
l.

.

lo

J.

J.
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information about the importance of the constituent ato
for the MAE is obtained from the OMA. Detailed analysis
the relationship between the MAE and the OMA allows us
express the contribution of an atom to the MAE in terms
its OMA. The calculated OMA’s show that the MAE resul
from Ni and Mn, and that about 80% of the MAE com
from Ni. Interesting in this result is that the situation is o
posite for the magnetic moment, with;80% of the magnetic
moment coming from Mn.

The results presented show that the calculation of
MAE is feasible also in ternary compounds. Furthermore,
have shown how the OMA can be used in analyzing
importance of the constituent atoms. Our calculated M
clarifies the origin of MAE expressions which could be us
as input for higher level models, such as micromagne
models. In view of these model calculations, more fir
principles calculations could be performed: for example,
calculation of angular variation of the MAE or the OMA i
orthorhombic structures would be interesting. On the ot
hand, as the MAE is important for the MSM effect, the
calculations suggest further ideas how the Ni-Mn-Ga allo
should be optimized in order to maximize the MAE. We no
that Ni has the largest contribution to the MAE, but on t
other hand the MAE is sensitive to the band filling.
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