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Abstract

Magnetic shape memory (MSM) alloys are novel smart materials which ex-
hibit magnetic field induced strains of up to 10 %. As such they have
potential for many technological applications. Also, the strong magneto-
structural couplings of the MSM effect make the phenomenon very interest-
ing from a scientific point of view. In this thesis, materials and properties
related to the MSM effect are studied with atomistic simulations. Main
interest is in the known MSM alloy Ni-Mn-Ga around the Ni2MnGa stoi-
chiometry.

One pre-requisite for the MSM effect is the existence of a structural transfor-
mation in a magnetic material, and therefore some candidate materials are
investigated from this perpective. Here, Ni2MnAl is found to have potential
for further studies. The magnetic moment is seen to originate mainly from
Mn in the Mn-containing alloys and the existence of different structural
phases is ascribed to a band Jahn-Teller effect in the Ni band. This picture
is confirmed by comparisons between theoretical and experimental neutron
diffraction results. In Ni2MnGa the structural phase transformations are
found to be driven by vibrational entropy at finite temperatures.

The magnetic key property in the MSM effect is the magnetic anisotropy en-
ergy which is studied in Ni2MnGa. The tetragonal structure with c/a = 0.94
is magnetically uniaxial characterized by the first anisotropy constant, but
in the presence of several twin variants only the second anisotropy constant
may be observed in the measurements. Analysis of the microscopic origins
of the magnetic anisotropy shows that Ni has the largest contribution to the
magnetic anisotropy energy. Investigations of other structures show that in
Ni2MnGa the shortest crystal axis is always the easy axis of magnetization.
From other magnetic properties, the Curie temperatures of Ni2MnGa and
Ni2MnAl are estimated on the basis of total energy calculations of spin spi-
rals. Ni is found to have an important effect also on the Curie temperatures
despite its smaller magnetic moment when compared to Mn.

Non-stoichiometric compositions of Ni-Mn-Ga are studied within the rigid
band approximation and with supercell calculations. In some cases the rigid
band approximation describes the correct trends, but more insight into the
alloying effects can be obtained from the supercell calculations. The most
important result of these investigations is that in Mn-rich compositions
the extra Mn atoms couple antiferromagnetically to the neighbouring Mn

i



atoms. This result implies a decrease of the total magnetic moment with
Mn-doping. Also, all the experimentally observed martensite phases are
explained theoretically when the extra Mn is explicitly included.

ii



Preface

I had my first touch with the magnetic shape memory alloys already during
my first summer assignment in the Laboratory of Physics, so when start-
ing this thesis project in 1999 I already had some idea about the subject.
However, I did not know about all the interesting physics connected with
these intriguing materials. I have learned a lot during the course where the
supervision of Dr. Andrés Ayuela has been crucial. He has helped and en-
couraged me in many things also outside the field of physics. He has always
had time for student and working (and especially traveling) with him has
never been boring. I consider myself lucky as I have had the opportunity
to work in a very competitive theoretical group and I am grateful to profes-
sor Risto Nieminen for that. He has allowed the student to concentrate on
research without need to worry about financial issues. As theoretician it is
important to be in touch also with the real world and I want to thank all the
people in the MSM-project for interesting discussions. Dr. Lars Nordström
guided me in the calculations of magnetic anisotropy and non-collinear mag-
netism and provided also his programs for my use. The working atmosphere
in the Laboratory of Physics has been excellent and I want to thank the
whole personnel for their contribution to that. Especially I want to thank
Dr. Erkki Hellén who shared the room with me for almost six years.
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1 Introduction

The development of active materials is attaining increasing interest in the
the materials science community [1]. These are materials which respond
intrinsically to external impulses, for example in the form of shape changes.
Magnetic shape memory (MSM) alloys [2] are a novel class of these kind of
materials which can function both as actuators and as sensors. The MSM
alloys show shape changes of several percent upon application of an external
magnetic field. This effect has potential for many technological applications,
for example in robotics and active noise control.

The structural properties, such as the equilibrium crystal structures and
elastic constants, are important for all materials. Some materials may
undergo structural phase transformations and show superelastic stress re-
sponses and shape memory effects. On the other hand, magnetic materials
are characterized by spontaneous magnetic moments whose ordering can
affect for example the electrical conductivity. Usually, the magnetic mo-
ments respond to the external magnetic fields without significant structural
changes. The interesting feature in the MSM effect is the strong coupling
between structural and magnetic degrees of freedom. As such, magnetic
shape memory alloys provide a fascinating playground for basic research
with interesting physical problems without losing their solid link to the
applications.

Developments in computer technology have allowed the investigations of re-
alistic systems with fully ab initio approach, i.e. simulations starting from
the basic quantum mechanics with only the atomic numbers of the con-
stituent elements as the input parameters. These kind of simulations can
offer information which is difficult to obtain experimentally, for example
about the effects of the underlying electronic structure on the material prop-
erties. The calculations can be also helpful in suggesting new experiments.
Because of their predictive power a certain subclass of given candidate ma-
terials or compositions can be outlined theoretically without the need for
time consuming and expensive experiments.

In this thesis atomic scale ab initio simulations are used to study mate-
rials and properties related to the magnetic shape memory effect. The
present view of the mechanism of the MSM effect is presented in the end
of this Section. The research is focused mainly on the known MSM alloy
Ni-Mn-Ga, and some of its experimentally known properties are reviewed
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in Sec. 2. The computational framework used in this thesis is outlined in
Sec. 3. The investigations include a wide range of structural, thermal and
magnetic properties in stoichiometric compounds as well as in some non-
stoichiometric compounds as presented in Sec. 4. Finally, the conclusions
are given in Sec. 5.

1.1 Magnetic shape memory effect

The phenomenon of magnetostriction where an external magnetic field can
change the dimensions of the sample was observed already in 1842 by Joule.
In normal ferromagnets such as Fe or Ni the strains associated with the
magnetostriction are of the order of 10−4% while materials with exception-
ally large magnetostriction, for example Tb-Dy-Fe alloys (Terfenol-D), show
strains of the order of 0.1% [3]. In contrast, MSM materials can show mag-
netic field induced strains of 10% [4]. Not only are the strains in the MSM
effect two orders of magnitude larger, but also the mechanism is different
from ordinary magnetostriction. While ordinary magnetostriction is ob-
served in structurally homogeneous samples, the MSM effect requires a spe-
cial microstructure. This microstructure is provided by a martensitic trans-
formation. The martensitic transformation [5, 6] is a displacive,diffusion
free structural transformation from a higher symmetry structure (austen-
ite) to a lower symmetry structure (martensite) upon cooling. For example,
in Ni2MnGa the high symmetry phase is cubic while the lower symmetry
phase can be tetragonal or orthorhombic. In order to minimize the total
shape change (and the macroscopic strain energy) over the whole sample,
some microstructure develops in the martensitic phase. A common way to
create this kind of microstructure is twinning: because there are usually
several crystallographically equivalent ways to deform the high symmetry
structure, the deformation may take different directions in different regions
of the sample. These structural domains have well defined boundaries and
they are called twin variants. A schematic example of the twinning is seen
in Fig. 1.

Twin boundaries are often mobile which is exploited in the temperature
driven shape memory effect [7]. Due to the easy movement of the twin
boundaries the sample can be deformed easily in the martensitic phase.
When the material is heated back to the austenitic phase the sample will
revert to its original shape, i.e. it will “remember” the shape it had before
cooling. Even though strains in the temperature-driven shape memory effect
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Martensitic transformation Twinned microstructure

Variant II

Variant I

Figure 1: Schematic illustration of the martensitic transformation and twin-
ning in two dimensions.

can be several percent, the heating and especially the cooling are relatively
slow processes. Therefore a way to drive the shape change with a faster
response would be desirable for many applications. This can be achieved
by taking the magnetic degrees of freedom into play.

Magnetic materials such as ferromagnets, antiferromagnets and ferrimag-
nets are characterized by spontaneous magnetic moments. Also, in the
absence of an external magnetic field their magnetization has a certain
preferable direction with respect to the crystal lattice, the so-called easy
direction. In a twinned microstructure the lattice orientations of the twin
variants are different and therefore the magnetization directions also differ,
as shown in Fig. 2a. When an external magnetic field is applied, the mag-
netic moments try to align with the field. If the energy needed to rotate
the magnetization away from the easy direction, the magnetic anisotropy
energy, is high enough, it may be energetically favourable to move the twin
boundaries instead. The fraction of twins where the easy axis is in the di-
rection of the field will grow at the expense of the other twin variants. This
process results in large shape changes as shown schematically in Fig. 2b.

Based on the above discussion the basic requirements for the appearance of
the MSM effect can be summarized:

• The material should be (ferro)magnetic and exhibit martensitic trans-
formation.

• The magnetic anisotropy energy should be higher than the energy
needed to move the twin boundaries.
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a) b)

Figure 2: a) Magnetic moments without the external field. b) Redistribution
of the variants in an applied field.

From the point of view of practical applications the material should be in
the martensitic phase at room temperature. The strength of the required
external field depends on the local magnetic moment of the material, so the
magnetic moment should be high.

At the moment, the MSM effect has been observed in Fe-Pd [8], Co-Ni-Ga
[9], La-Sr-CuO4 [10] and Ni-Mn-Ga [2, 4, 11] alloys. La-Sr-CuO4 is inter-
esting as it is not a ferromagnet but an antiferromagnet, confirming that
the magnetic anisotropy is more important than the macroscopic magnetic
moment. For practical applications the most promising material is Ni-Mn-
Ga. As most of the work in this thesis concerns Ni-Mn-Ga some of its
experimentally known properties are reviewed next.
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2 Experimental studies of Ni-Mn-Ga

Numerous studies of Ni-Mn-Ga alloys have appeared in recent years. Here,
a brief summary of the experimental results is given, concentrating on the
properties which will be discussed from the theoretical point of view later
on.

At the martensitic phase transformation, energy is released or absorbed,
and this can be measured by differential scanning calorimetry (DSC). Also,
the response to the external magnetic field changes at the transition, al-
lowing the phase transformations to be observed in magnetic susceptibility
measurements. These methods allow detection of the occurrence of the
transformation and determination of the corresponding temperatures. The
advantage of the magnetic susceptibility is that the Curie temperature is
also observed clearly as the susceptibility changes abruptly in the ferromag-
netic to paramagnetic transition. On the other hand, DSC measurements
allow the energetics of the transition to be studied. Some examples of these
measurement are shown in Fig. 3.

T

M

As

s

C
a)

b)

Figure 3: Examples of a) magnetic susceptibility and b) differential
calorimetry, showing the martensitic and austenitic transformation temper-
atures Ms and As and the Curie temperature TC . Courtesy of O. Heczko.
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The martensitic transformation temperatures span over a wide range, from
160 K to 620 K [12–16] and they vary strongly with composition as a ∼1%
change in the composition can alter the transformation temperature by 50
degrees. In addition to the austenite-martensite transformation, up to two
intermartensitic transformations can be observed. The Curie temperature is
less sensitive to the composition and it is between 320 K and 380 K [16–18].

The crystal structures of the different phases can be studied with X-ray and
neutron diffraction. The high temperature austenitic phase has the cubic
L21 structure which is shown in Fig. 4, with a lattice constant aL21 = 11.01
a.u. [17, 19]. This structure has the f.c.c. Bravais lattice with a four atom
basis. As the constituent atoms have similar atomic numbers it can be
difficult to distinguish them from the X-ray data. In this case the structure
can be interpreted as a b.c.c. structure with a lattice constant half from
that of the f.c.c. lattice.

Ni Mn Ga

Figure 4: Cubic L21 structure with atomic positions of the stoichiometric
composition.

Three different martensite structures are observed. Two of them have a
basic tetragonal symmetry and one has an orthorhombic symmetry. In the
first tetragonal structure the ratio of the c and the a lattice constants is
c/a ∼ 0.94 [17]. In addition, there is a shuffling of the atomic planes. The
(11̄0) planes show a modulation in the [110] direction with a period of 5
atomic planes and the structure can be designated as 5M [13, 20]. The other
tetragonal structure has the deformation c/a & 1.2 and it can be denoted as
non-modulated (NM) because there is no modulation of the atomic planes
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[13, 21, 22]. The orthorhombic structure has the lattice constant ratios b/a =
0.94 and c/a = 0.89 and it is designated as 7M since it has a 7 layer
modulation similar to the other tetragonal structure [4, 13, 23, 24]. The
volume remains approximately constant during all the transformations.

The first martensite which appears on cooling depends on the composition,
but the stability of the structures i.e. the order in which they appear on
cooling seems to be always the same. This is shown schematically in Fig. 5a.
The NM structure is the most stable before the 7M structure [13, 21, 25].
If the 5M structure is to be observed it is transformed directly from the
austenite. There is also an empirical correlation between the austenite-
martensite transformation temperatures and the first martensite structure
as shown in Fig. 5b [15, 26]. The alloys transforming directly to the NM
structure typically have transformation temperatures which can be higher
than the Curie point [27, 28] and the 7M phase appears first only in a narrow
temperature range [4, 26, 29].

a)

T

5M

7M

NM
b)

NM

7M

5M

Ms

Figure 5: a) The stability of the martensitic phases. b) Relation between
the first martensite structure and the transformation temperature Ms.

The lattice constant ratios give the maximum strain which is available from
the twin rearrangement. This limit is 6% in the 5M structure, 10% in the
7M structure, and over 20% in the NM structure. Up to now, the maximum
strain has been realized as magnetic-field-induced both in the 5M [11, 30]
and in the 7M structures [4]. In the NM structure the MSM effect has not
been observed.
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As neutrons possess a magnetic moment, neutron diffraction provides infor-
mation also about the local magnetic moments. The total magnetic moment
in the stoichiometric composition is found to be 4.1 µB per formula unit and
it originates mainly from Mn [17, 19, 31]. Another experimental method for
the determination of the saturation magnetization is the vibrating sample
magnetometer (VSM). VSM measurements do not reveal individual atomic
magnetic moments, but on the other hand it is possible to obtain the mag-
netic anisotropy energy. With VSM one measures the magnetization as a
function of the external field, as shown in Fig. 6. By applying this field in
different directions with respect to the crystal axis the magnetic anisotropy
energy can be determined as the area between the two magnetization curves.
The magnetic anisotropy energy and the easy axis depend on the particu-
lar martensite. In the 5M the [001] direction (the short c-axis) is the easy
axis and the magnetic anisotropy energy is around 2.0× 105 J/m3 at room
temperature [30, 32, 33]. In the non-modulated tetragonal structure [001]
is the hard direction and there is an easy plane with an anisotropy energy
of 3.0 × 105 J/m3 [21, 34]. In the orthorhombic 7M structure there are
three inequivalent directions. The shortest axis has the lowest energy, the
longest axis the highest energy and the energy of the intermediate axis is
in-between. The largest energy difference is about 2.2× 105 J/m3 [4, 34].

a) b)

Figure 6: Magnetization as a function of the external magnetic field with
different field directions in a) the NM (T in the figure) structure and b) the
7M structure. Courtesy of L. Straka.

In the following sections the above discussed properties are studied from a
theoretical point of view, in some cases also for other materials than Ni-
Mn-Ga. It will be seen that the calculations can predict and explain with
simple arguments much of the experimentally observed behaviour.
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3 The many-body problem

The determination of the properties of solid state systems from basic quan-
tum mechanics is desirable. The wave function Ψ contains all the infor-
mation about the system. In principle, it can be obtained by solving the
Schrödinger equation

HΨ = EΨ, (1)

where H is the Hamiltonian operator and E is the total energy of the N-
particle system. However, the wave function depends on the coordinates
and the spins of all the particles so that Ψ is a function of 4N variables. As
the number of particles in condensed matter systems is of the order of 1023,
an exact solution of Eq. (1) is not possible. Therefore some approximations
have to be introduced in order to solve the many-body problem.

First, the Born-Oppenheimer approximation decouples the nuclear and elec-
tronic degrees of freedom. The nuclei are several orders of magnitude heavier
than the electrons, so electrons respond quickly to the motions of the nu-
clei. Therefore the nuclei can be considered as an external potential for the
electronic subsystem and the electronic part is solved as a function of the
nuclear positions. Even though the Schrödinger equation is solved only for
the electrons, the number of particles is still too large in most cases and one
has to introduce further approximations.

There are basically two different approaches to the problem. In the first
one, some approximate wave function is constructed, as for example in the
Hartree and the Hartree-Fock approximations. These methods express the
full many-body wave function Ψ(r1, r2, ..., rn) in terms of single-particle
wave functions ψ(r1), ψ(r2), ..., ψ(rn). In the Hartree approximation [35] a
product of the single-particle wave functions is used which leads to N single-
particle equations. However, this many-body wave function does not obey
the Pauli exclusion principle which makes the theoretical foundation of the
Hartree approximation unsound. The Hartree-Fock approach [36, 37] fulfills
the Pauli exclusion principle by expressing the many-body wave function
as a Slater determinant of the single-particle wave functions. However, the
ensuing equations are much more difficult to solve than the corresponding
Hartree equations, while important physics is still missing from the Hartree-
Fock approximation. Wave functions beyond the Hartree-Fock approxima-
tion can be constructed for example as a series of Slater determinants but
the computational burden increases very rapidly so that only very small
systems can be studied.

9



An alternative approach to the many-body problem was initiated by Thomas
[38] and Fermi [39] who formulated the problem in terms of the electron den-
sity instead of the wave function. Since the density is a function of three
space coordinates only, the number of degrees of freedom is reduced drasti-
cally. The ideas of the Thomas-Fermi approximation are elaborated in the
density-functional theory which is discussed next.

3.1 Density-functional theory

The density-functional theory provides an exact formulation of the many-
body problem in terms of the particle density. It is based on two theorems
by Hohenberg and Kohn [40]:

• For a given external potential, the ground state energy is a unique
functional of the electron density.

• The minimum of the energy functional is obtained with the ground
state density.

These theorems imply that all the ground state properties can be calculated
on the basis of the density alone.

When studying magnetic properties it is convenient to work both with the
electron density and the magnetization density. The density matrix ρ is
defined as

ρ(r) = [n(r)1 + m(r) · σ]/2, (2)

where n(r) is the electron density, 1 is a 2x2 identity matrix, m(r) is
the magnetization density and σ is a vector of the Pauli spin matrices.
Following the arguments of Hohenberg and Kohn it can be shown that the
ground state energy is a functional of the density matrix [41]. The energy
functional can be separated as

E[ρ(r)] = T [ρ(r)] +W [ρ(r)] + U [ρ(r)], (3)

where T is the kinetic energy of the many-electron system, W is the electron-
electron interaction energy and U is the interaction energy due to an ex-
ternal potential vext(r) and a magnetic field bext(r). If the form of the
functional were known, its minimization with respect to the density matrix
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would give the ground state energy as well as the ground state density and
magnetization.

As an alternative to direct minimization, the problem can be mapped into
an equivalent set of single particle equations [42]. First, the functional
F = T +W is divided into

F [ρ(r)] = T0[n(r)] + EC [n(r)] + Exc[ρ(r)], (4)

where T0 is the kinetic energy of non-interacting electrons with the density
n(r) and magnetization m(r), and EC is the classical Coulomb energy of
the electrons. The last term Exc contains all the remaining many-body
effects and is called the exchange-correlation energy. The idea is that T0

and EC , which are known exactly, give the largest contributions to F , while
the unknown part Exc should be smaller.

Next, one introduces single-particle spinors ψi

ψi =

(
φ↑i
φ↓i

)
, (5)

where φ↑ and φ↓ are the spin-up and the spin-down components of the
spinor. With the help of these spinors the energy functional Eq. (3) can be
written as

E =
∑

i

〈ψi|T̂0|ψi〉+

∫∫
n(r)n(r′)

|r − r′|
drdr′ + Exc[ρ(r)]

+

∫
(vext(r)n(r) + bext(r) ·m(r))dr,

(6)

where T̂0 is the kinetic energy operator. The density and magnetization of
the interacting electrons are obtained from the two component spinors

n(r) =
∑

i

〈ψi|ψi〉

m(r) =
∑

i

〈ψi|σ|ψi〉.
(7)

The summations are over the occupied states so that the integration of the
charge density produces the correct number of electrons Ne in the system,∫
n(r)dr = Ne. Variational minimization of the energy functional of Eq. (6)

results in
(T̂0 + V eff )ψi = eiψi (8)
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with an effective potential matrix

V eff (r) =

(∫
n(r′)

|r − r′|
dr′ + vext(r)

)
1 + bext(r) · σ +

δExc[ρ(r)]

δρ(r)
. (9)

The complicated many-body problem is therefore mapped into an equivalent
set of single-particle equations which are easy to solve as soon as the effective
potential is known.

Because the effective potential depends on the density matrix, the equa-
tions have to be solved in an iterative way. One constructs first a guess
for the density matrix. After solving ψi from the single particle equation
Eq. (8), a new density matrix and an effective potential are constructed
from Eqs. (7) and (9). The procedure is continued until self-consistency is
reached, i.e. the input and output densities are the same.

The functional derivative of the exchange-correlation energy, the exchange-
correlation potential, can be separated into electric and magnetic parts as

δExc[ρ(r)]

δρ(r)
= vxc(r)1 + bxc(r) · σ, (10)

where the scalar part vxc results from the functional derivation with respect
to density and the vector part bxc from the derivation with respect to the
magnetization. The whole effective potential matrix can be now separated
for electric and magnetic parts,

V eff = veff1 + beff · σ. (11)

Relativistic effects can be included by using the relativistic kinetic energy
operator of the Dirac equation

α · p̂ + β (12)

in the single particle equation Eq. (8) (For the definitions of α and β see for
example Ref. [43]). Usually, a fully relativistic treatment is not necessary
and it is enough to include the leading order terms in v/c . These terms
can be divided into the so-called scalar relativistic corrections [44] and into
the spin-orbit coupling [45]

ξ(r)l · σ = −1

r

dveff

dr
l · σ, (13)
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where l is the orbital angular momentum. By omitting the scalar relativistic
corrections, the Kohn-Sham equation Eq. (8) can be finally written as((

−∇2/2 + veff

)
1 + beff · σ + ξ(r)l · σ

)
ψi = eiψi. (14)

Some notes can be made about the structure of Eq. (14). In a non-magnetic
case the effective potential is a scalar times the identity matrix and Eq. (14)
reduces to a scalar equation. Also, in the case where the spin-orbit coupling
can be neglected and there is a global spin quantization axis, the Hamil-
tonian in Eq. (14) diagonalises in spin. The spinors have a pure spin up
or down character and one can solve two scalar equations with a spin-
dependent scalar potential. However, in a general case when the spin-orbit
coupling is included or in the absence of a global spin quantization axis the
full matrix equation has to be solved. In this case the spin is not a good
quantum number, and the spinors will have a mixed spin-up and down
characters.

3.1.1 Approximations for the exchange-correlation functional

Up to now, the mapping of the many-body problem into a set of single
particle equations has been exact. However, the exchange-correlation energy
has to be approximated in some way. A common description is provided by
the local spin density approximation (LSDA) [41]. The basic assumption is
that locally the electron gas can be considered as homogeneous so that the
exchange-correlation energy can be written as

Exc =

∫
n(r)exc(n(r),m(r))dr, (15)

where exc(n,m) is the exchange-correlation energy density of the homoge-
neous electron gas with density n and magnetization magnitude m. As the
magnetization dependence of the exchange-correlation energy is through
the magnitude of the magnetization, the magnetic part of the exchange-
correlation potential is collinear with the magnetization density i.e. bxc ×
m = 0.

Although the LSDA was formulated for slowly varying densities it works
well in many cases where this assumption should in fact not be valid. For
example, calculated lattice constants and magnetic moments in solid-state
systems are within few percent of the experimental values. One well-known
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shortcoming of the LSDA is its incorrect description of the ground state
structure of Fe. There, an improvement is provided by the generalized gra-
dient approximation (GGA) [46, 47]. It takes into account also the gradients
of the density and the magnetization as

Exc =

∫
f(n(r),m(r),∇n(r),∇m(r))dr. (16)

While the LSDA has a tendency for overbinding, the GGA usually over-
corrects the LSDA by underbinding. There are, however, problems where
neither LSDA or GGA give the correct results. These include the band
gaps in the semiconductors and insulators, and ground states of systems
with strong electron-electron correlations. Also, in the calculation of mag-
netic anisotropy of fcc Ni both approximations result in the wrong easy
axis.

3.2 Computational methods

3.2.1 Brillouin zone integrations

The translational invariance of a crystal leads to the Bloch theorem: each
electronic state can be characterized by a wave vector k in the first Brillouin
zone [48],

ψk(r) = eik·ruk(r). (17)

In order to obtain the kinetic energy, the charge density and the magneti-
zation density, summations such as in Eq. (7) have to be carried over the
Brillouin zone. For an infinite periodic crystal this requires in principle an
infinite number of k-points. In practice one can of course use only finite
numbers of k-points and different schemes have been developed in order to
obtain accurate results with a minimum number of points.

Taking into account the symmetry of the crystal it is possible to construct
a set of special k-points in the Brillouin zone and calculate the integrals
as weighted summations [49]. In the case of insulators and semiconductors
the energy bands are continuous as there are no states at the Fermi-level
and the direct summation gives accurate results with a small number of
k-points. In metals the occupied energy bands are discontinuous at the
Fermi level, and the direct summation converges slowly with the number
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of k-points. A better convergence is obtained with broadening methods
[50, 51] or with the tetrahedron method [52, 53]. The broadening methods
treat the discontinous bands by averaging over the Fermi-level, while the
tetrahedron method uses an interpolation which allows the integrals to be
evaluted analytically.

3.2.2 Full-potential linearized augmented plane wave method

The Kohn-Sham equations provide a convenient formalism for the solution
of the many-body problem. Still, some specific numerical method is needed
in order to solve the equations. One possibility is to solve the differential
equations directly on a numerical mesh [54]. Here, another approach is
used where a set of basis functions is used in reformulating the differential
equations into matrix equations.

In principle, any function can be presented as a linear combination of a
complete set of functions. The Kohn-Sham orbitals are expanded as

ψ =
∑

cGφG, (18)

where we drop out the index i. With the help of the basis functions φG

the Kohn-Sham equations can be formulated as a generalized eigenvalue
problem

Hc = eSc, (19)

where HG,G′ = 〈φG|H|φG′〉 is the Hamiltonian matrix, SG,G′ = 〈φG|φG′〉 is
the overlap matrix, and c is vector of the expansion coefficients cG. The ob-
jective is to choose basis functions which are the most efficient in terms of re-
quired accuracy and computation time. Regarding accuracy one of the best
methods is the full-potential linearized augmented plane wave (FLAPW)
method [55–57] which is discussed next.

Plane waves, ei(G+k)·r where G is a reciprocal lattice vector, are solutions to
the Kohn-Sham equations in a constant potential and they are also of the
Bloch form Eq. (17). Plane waves are analytically simple and the computa-
tions can be made efficient with the help of fast Fourier transforms so that
they would form a convenient basis. However, the effective potential con-
tains a strong Coulomb potential, which makes the wave functions strongly
varying near the nuclei. Hence, a large number of plane waves should be
used in order to describe the Kohn-Sham orbitals correctly.
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In the linearized augmented plane wave method the problem of strong
Coulomb potential is treated by dividing the space into two regions: atom
centered spheres S and the interstitial region I, as shown in Fig. 7. In

Interstitial

Sphere 2

Sphere 1

Figure 7: Division of the space into atomic spheres and into interstitial
region.

the interstitial region the potential is smooth, and the plane waves can be
used as a basis, while in the strong potential within the atomic spheres
atomic-like orbitals are used. The basis functions can be written as

φk(G) =


1√
Ω
ei(G+k)·r r ∈ I∑

lm

[Almul(r) +Blmu̇l(r)]Ylm(r) r ∈ S. (20)

The functions ul(r) are solutions to the Schrödinger equation in the spherical
potential within the atomic spheres. As such, they are energy dependent
and they provide a good description of the Kohn-Sham orbitals only at
the eigenenergies. Thus, a different energy parameter should be used for
each state. It is possible to use ul(r) which are calculated at fixed energies
el by adding the energy derivative u̇l(r) to the basis i.e. linearising ul(r)
around el. The linearized form provides a good basis for the bands in the
relatively broad energy region around el. However, if there are states with
the same orbital quantum number l but belonging to different bands (having
a different principal quantum number, for instance semi-core and valence
states), the linearization can result in large errors and neither of the states
is described correctly. In these cases, local orbitals can be added to the
basis. The local orbitals are confined to the atomic spheres and they are of
the form

φlo = [Almul(r, el) +Blmu̇l(r, el)(r) + Clmul(r, e
′
l)]Ylm(r), (21)
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By choosing the other energy parameter e′l from the semi-core energy region
both semi-core and valence states are well described.

At the sphere boundary the basis functions of Eq. (20) and their derivatives
are made continuous. Because of the matching condition the coefficients
Alm and Blm depend on the reciprocal vector G and the basis functions
transform like normal plane waves.

The potential, the charge and the magnetization density are expanded dif-
ferently in the interstitial regions and in the atomic spheres, similarly to the
Kohn-Sham orbitals. The potential, for example, is given by

veff (r) =


∑
S

vSΦS r ∈ I∑
ν

vν(r)Kν(r) r ∈ S.
(22)

Here, symmetry-adapted basis functions are used which are the stars ΦS in
the interstitial region and the lattice harmonics Kν in the atomic spheres.
An excellent review of the details of the FLAPW method is given in [57].

Two different FLAPW implementations are used in this work. From these,
the WIEN97 package [58] has been the main workhorse. Since only collinear
magnetizations can be treated in this implementation, another code imple-
menting the full density matrix formulation [59] is used for the problems
where the vector magnetization density is needed.

The FLAPW method is relatively complex and the computer programs
which implement the method are non-trivial. Therefore, programming er-
rors are not unusual. Even though a semi-commercial program package
WIEN97 has been used, a substantial amount of time during this work has
been spent in testing and debugging of the computer codes.
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4 Results

4.1 Candidates for MSM alloys

The MSM effect requires the existence of a martensitic transformation in
a magnetic material. Following this aspect, some alloys are suggested as
candidates in Publication I. The choice of candidate materials is guided
by the known properties of the existing MSM alloy Ni2MnGa. The studied
materials are similar Heusler alloys of type X2YZ shown in Table 4.1 where
three groups of materials are separated. The X and Y components are
chosen from the transition metals and Z is from the third or the fourth
group of the periodic table. In the first group in Table 4.1 the X element is
different from Ni2MnGa and the second group varies the Z component. In
the third group both X and Y are varied.

As a first step, the magnetic moments and the theoretical lattice constants
for the assumed L21 austenite structure are calculated. The theoretical re-
sults are in agreement with the experiments in the cases where experimental
data exist, as shown in Table 4.1. For the alloys containing Mn most of the
magnetic moment originates from Mn. The magnetic moment originating
from Ni is relatively small and the Z element shows a tiny antiferromagnetic
contribution in all cases. The highest magnetic moment is in Fe2CoGa which
makes it a good candidate at this stage.

Even though the martensitic phases appear at finite temperatures, the
martensitic structures should appear at least as local minima in the to-
tal energy surface at zero temperature. Therefore, the possibility of the
martensitic transformations can be studied by calculating the total energy
for various structures. Based on the experimental results for Ni-Mn-Ga the
chosen structures are volume-conserving tetragonal and orthorhombic de-
formations of the cubic L21 structure. The shuffling of the atomic planes is
not included here.

None of the studied materials show energy minima with orthorhombic struc-
tures, but there are some minima with tetragonal deformations. The total
energies as a function of the tetragonal distortion are shown in Fig. 8 where
the tetragonality is measured as the ratio of the c and a lattice constants.
The compounds Ni2MnAl, Ni2MnGa, Ni2CoGa, and Fe2CoGa posses tetrag-
onal minima. The cubic structures in Ni2CoGa and Fe2CoGa are unstable
with large energy differences between the tetragonal minima. Therefore,
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Table 1: Studied materials, their cubic lattice constants a and the magnetic
moments per formula unit µtotal and per atom µi. Experimental values are
shown in parenthesis.

X2YZ a (a.u.) µtotal (µB) µi(µB)
Co2MnGa 10.82 4.08 0.76 (Co)

(10.90a) (4.05a) 2.72 (Mn)
-0.07 (Ga)

Ni2MnAl 10.95 4.03 0.38 (Ni)
(11.01a) ( 4.19b) 3.30 (Mn)

-0.06 (Al)
Ni2MnGa 10.98 4.09 0.37 (Ni)

(11.01a) (4.17) 3.36 (Mn)
-0.04 (Ga)

Ni2MnSn 11.45 4.08 0.24 (Ni)
(11.44a) (4.05) 3.53 (Mn)

-0.03 (Sn)
Ni2CoGa 10.81 1.78 0.16 (Ni)

1.55 (Co)
-0.02 (Ga)

Fe2CoGa 10.92 6.05 2.20 (Fe)
1.83 (Co)
-0.07 (Ga)

a Ref. [19]
b Ref. [60]

these materials cannot be suggested as realistic candidates. In Ni2MnAl the
energy of the tetragonal structure is 0.6 mRy higher than for the cubic struc-
ture. Hence, the martensitic structure cannot appear as a low-temperature
phase, but as the energy difference is small it is possible that a change in
composition can alter the situation.

In the case of Ni2MnGa there is a global energy minimum at tetragonal
structure with c/a ∼ 1.25, implying that it is the most stable structure at
low temperatures. At the time of Publication I this structure was observed
experimentally in a few cases with an applied stress [13, 61]. However,
later experiments [21, 22, 28] have confirmed our theoretical prediction: even

19



0.8 1.0 1.2 1.4 1.6
c/a

−0.04

−0.02

0.00

0.02

0.04

E
(R

y)

Ni CoGa

Fe CoGa

Ni MnAl

Ni MnGa

Ni MnSn

Co MnGa

2

2 2

2
2

2

Figure 8: Total energies as a function of the tetragonal distortion for various
alloys.

without external stress the tetragonal structure with c/a ∼ 1.25 appears at
low temperatures.

4.2 Stabilization of tetragonal phases

Based on some later experiments [31] and developments in the computa-
tional methods, the tetragonal deformations in Ni2MnGa are studied with
a higher accuracy in Publication II. As seen in Fig. 9, an energy mini-
mum, albeit small, appears at c/a = 0.94. Therefore the modulation of the
atomic planes which was earlier blaimed for the absence of this minimum is
not necessary for its occurrence.

Based on the results of Publications I and II the appearance of the tetrag-
onal structures can be ascribed to a band Jahn-Teller effect in the Ni spin
down bands. In Ni2Mn(Al,Ga,Sn) the density of states near the Fermi-level
originates mainly from the spin down deg -electrons of Ni. In the tetragonal
symmetry these doubly degenerate states are split into dz2- and dx2+y2-
states. With a certain tetragonal distortion the splitting of the bands can
cross the Fermi-level lowering the band energy. If the deg -states in the cu-
bic structure are close enough to the Fermi-level the reduction of the band
energy can decrease the total energy. This explanation is linked with the dif-
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Figure 9: Total energy of Ni2MnGa as a function of the tetragonal distor-
tion.

ferent behaviour in Ni2MnAl, Ni2MnGa, and Ni2MnSn, where the deg -states
are at different positions with respect to the Fermi-level.

The band Jahn-Teller effect results also in the redistribution of magneti-
zation in the cubic to tetragonal transformation, which has been studied
experimentally with polarized neutron scattering [31]. The theoretical re-
sults obtained in Publication II are shown in Fig. 10. The redistribution
of the magnetization densities near Ni sites is similar in the theory and ex-
periments which confirms the band Jahn-Teller picture. The experiments
had reported that redistribution is caused by an increase in the number of
the dz2-electrons. However, the experimental interpretation of the orbital
characters of the split Ni states is based on a priori assumptions. There-
fore, the theoretical calculations offer a refined interpretation without any
extra assumptions. The magnetization difference which is elongated in the
z-direction near Ni points to a change in the occupation between the dz2-
and dx2+y2-orbitals. The positive value of the redistribution implies a de-
crease in the number of the minority dz2-electrons and an increase in the
occupied dx2+y2 states. This behaviour is seen also in the density of states
and it is opposite to the earlier experimental interpretation.

4.2.1 Elastic constants

Elastic constants are basic material parameters which describe how the
material responds to external stresses. In the linear theory of elasticity the
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Figure 10: Redistribution of magnetization which occurs due to the trans-
formation from the cubic structure to the tetragonal structure with c/a < 1.
The plot shows the section parallel to [110] passing through the origin. The
contours intervals are at 0.125 µB Å−3; negative contours are shown as
dashed lines. The dot-dashed lines show the zero contour level.

elastic constants relate the energy density U and the strain tensor ej as

U =
1

2

6∑
i,j=1

Cijeiej, (23)

where Cij are the elastic constants and the Voigt notation for the indices is
used [48, 62]. The elastic constants can therefore be determined by calcu-
lating the total energy as a function of different strains. Next, some strains
which are convenient for the evaluation of the elastic constants are given.

In the cubic symmetry there are only three independent elastic constants,
and the following deformations characterize completely the elastic properties
of a cubic crystal. A volume-conserving tetragonal deformation can be
written in matrix form asx′1x′2

x′3

 =

1 + δ 0 0
0 1 + δ 0
0 0 1

(1+δ)2

x1

x2

x3

 . (24)

The energy density U depends on this distortion as

U = 6C ′δ2 +O(δ3), (25)
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where we have defined the tetragonal elastic constant C ′. Similarly, a
volume-conserving orthorhombic deformation is given byx′1x′2

x′3

 =

1 δ 0
δ 1 0
0 0 1

1−δ2

x1

x2

x3

 (26)

and the energy density becomes

U = 2Gδ2 +O(δ4) (27)

with the shear constant G. Furthermore, the bulk modulus B is related to
the uniform deformation as

U =
1

2
Bδ2, (28)

where δ is the relative change in the volume δ = ∆V/V .

The cubic elastic constants which appear in Eq. (23) are C11, C12 and C44,
and they can be determined from the relations G = C44, C

′ = (C11 − C12) /2
and B = (C11 + 2C12)/3. In other symmetries there are more independent
elastic constants and C ′,G and B are combinations of them. In the tetrag-
onal symmetry, for instance, there are 6 elastic constants.

The elastic constants B, C ′ and G of Ni2MnGa obtained from the calculated
total energies are presented in Table 2. The bulk modulus B varies slightly
in the different structures while the other constants show stronger variation.
The small value of C ′ in the cubic structure indicates softness of the lattice.
Also, it can be noted that the elastic anisotropy factor G/C ′ (G/C ′ = 1 for
an elastically isotropic material) is large in all cases, especially in the cubic
structure.

4.2.2 Finite temperature effects on stability

As the density-functional theory is a ground state theory, all the previous
quantities obtained directly from the calculations refer to zero temperature.
However, based on the calculated results, it is possible to estimate some
finite temperature properties. Here, the theoretical elastic constants are
used in order to determine the effects of lattice vibrations in the stability
of the martensitic phases in Ni2MnGa at elevated temperatures.
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Table 2: Elastic constants of Ni2MnGa in the different phases. Experimental
values are in parentheses.

B (GPa) C’ (GPa) G (GPa)
Cubic 156 4.2 (4.5a) 120
c/a=0.94 158 12 (7.6b) 133
c/a=1.27 161 30 66
a Ref. [63]
b Ref. [64]

At a finite temperature T the equilibrium phase is determined by the min-
imum of the free energy

F (T ) = U(T )− TS(T ), (29)

where U and S are the internal energy and entropy. In an ideal defect-free
system one can separate three kind of contributions in the free energy: the
electronic excitations, the lattice vibrations and the magnetic excitations.
Here, the main focus is in the lattice vibrations but the electronic contribu-
tion is also included since it is directly available from the calculations.

The electronic contribution is calculated by weighting the one electron eigen-
values with the Fermi-Dirac distribution

Fele =
∑

i

fiei − kB

∑
i

[fi ln(fi) + (1− fi) ln(1− fi)], (30)

where the first term gives the internal energy and the second term the
electronic entropy [48]. Summations are over the occupied states in the first

Brillouin zone, kB is the Boltzmann constant and fi =
(
e(ei−eF )/kBT + 1

)−1

is the Fermi-Dirac distribution function.

In the quantum theory of a harmonic crystal the lattice vibrations are quan-
tized as phonons having energies

eph = (1/2 + n)ω, (31)

where the occupation number n can have integer values from zero to infinity
[48]. In a crystal with N unit cells and p atoms per cell there are 3pN
degrees of freedom for the lattice vibrations and the phonon frequencies
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can be characterized with 3p branches each having N values within the
Brillouin zone ω = ωs(q). Three of these branches are acoustic having a
zero frequency at q = 0 and the remaining 3(p-1) branches are optic. The
partition function for the phonons is

Z =
∑
q,s

∑
n

e−β(1/2+n)ωs(q), (32)

where the first summation is over the Brillouin zone and the different
branches s, and the second summation is over all the possible occupation
numbers. The vibrational free energy is obtained from the partition function
as F = −kBT ln(Z) which gives

Fvib =
∑
q,s

ωs(q)/2 + kBT
∑
q,s

ln
(
1− eβωs(q)

)
. (33)

The first term is the zero-point energy i.e. due to the uncertainty principle
there are lattice vibrations even at zero temperature. The calculation of
the vibrational energy from Eq. (33) is straightforward after the phonon
dispersion ωs(q) is known. Even though the phonon dispersion curves can
be calculated from first-principles [65] the computational task is demanding.
Therefore the real phonon dispersion is approached here by the Debye model
[66].

In the Debye approximation the continuum limit is taken, where the dis-
persion of ω is linear in q

ω(q) = cq, (34)

with the speed of sound c. The linear dispersion Eq. (34) corresponds to the
acoustic branches and difference between them can be included by observing
that there are three independent sound velocities. The optical branches are
neglected. The discrete nature of the actual lattice limits the maximum
q, which can be taken into account by a cut-off frequency ω3

D = 6π2c3m/V .
Here, V is the volume of the unit cell and cm is the mean sound velocity.
Furthermore, by introducing the Debye temperature θD = ωD/kB the free
energy of Eq. (33) is evaluated as

Fvib = −kbT [D(θD/T ) + 3 ln
(
1− e

−θD
T

)
− 9θD

8T
], (35)

where D(x) is the Debye function. At this stage the only unknown quantity
is the mean sound velocity cm, which is related to the elastic constants and
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can be determined from them [67]. Therefore, it is possible to estimate the
vibrational free energy within the Debye model in an ab initio manner by
using Eq. (35) together with the calculated elastic constants.

In Publication III the above procedure is used in order to calculate the free
energy F = Fele + Fvib for the cubic structure and for the two theoretical
tetragonal structures. The Debye temperatures are determined from the
elastic constants B, C ′ and G. The obtained free energies are shown in
Fig. 11 as a function of the temperature.
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Figure 11: Free energy as a function of the temperature. Solid line: cubic;
dashed line: c/a = 1.27; dotted line: c/a = 0.94.

At low temperatures the structure with c/a = 1.27 has the lowest free
energy, while the cubic structure is the most stable at high temperatures,
in accordance with the experiments. The transition temperature 200 K is
in agreement with the experimental values which range from 200 K to over
600 K [15]. As the most important contribution to the free energy comes
from the vibrational entropy, it can be concluded that the transition from
the cubic structure to the tetragonal structure with c/a = 1.27 is driven
by the vibrational entropy. The tetragonal structure with c/a = 0.94 is
not stable at any temperature within the model. However, this structure
has lower free energy than the structure with c/a = 1.27 above 350 K.
Experimentally, there is strong temperature variation in the elastic constant
C ′ of the cubic structure which is associated with a softening of some phonon
branches [14, 68]. The phonon softening is beyond the linear dispersion
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of the Debye model, but if its effects would be included, the tetragonal
structure with c/a = 0.94 could be stabilized in some temperature range.

4.3 Magnetic anisotropy energy

As described in Sec. 1.1 the magnetic anisotropy energy (MAE) is the driv-
ing force in the MSM effect and it is therefore one of the most impor-
tant material properties of Ni2MnGa. As the MSM effect takes place in
the martensitic phase the magnetic anisotropy energy is calculated in both
tetragonal structures and in the orthorhombic structure of Ni2MnGa. The
two basic origins of the magnetic anisotropy energy are the magnetic dipole-
dipole interaction which is affected by the sample shape and the relativistic
spin-orbit coupling (Eq. (13)). Generally, the dipole-dipole energy is small
in bulk systems and most of the anisotropy is due to the spin-orbit term.

As the spin-orbit coupling is small in transition metals its effect can be
calculated in a perturbative way. According to the so-called force theorem
[69, 70] the energy changes caused by small perturbations can be calculated
as a difference in the eigenvalue sums,

∆E =
∑

i

ei −
∑

i

e′i (36)

where ei are the eigenvalues with the non-perturbed Hamiltonian, e′i the
perturbed eigenvalues, and the summation is over the occupied electronic
states and the Brillouin zone. The important point is that e′i are calcu-
lated non-self-consistently in a single iteration step starting from the non-
perturbed density. In the presence of magnetization the spin-orbit coupling
can lower the symmetry of the system as described in the Appendix. Within
the force theorem the self-consistent calculation can be done with the full
symmetry allowed by the crystal, and only the perturbed eigenvalues have
to be calculated in the larger irreducible Brillouin zone. Also, the MAE is a
small quantity (typically ∼1 µeV in cubic transition metals and ∼100 µeV
in lower symmetry) so that the subtraction of band energies of the order of
1 eV is numerically more stable than the subtraction of total energies of the
order of 1000 eV.

Because of the smallness of the magnetic anisotropy energy, the Brillouin
zone integrations have to be done carefully with a large number of k-points.
The actual integration method is also important. Because the magnetic
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anisotropy is sensitive to the band structure near the Fermi-level only small
broadening widths can be used when averaging over the Fermi-energy. On
the other hand, the tetrahedron method does not have extra parameters.
Since its convergence is at least as good as with broadening schemes, it
should be the method of choice in the context of MAE.

The tetragonal phases of Ni2MnGa are assumed to be magnetically uniax-
ial. In such a case the symmetry forces the total energy to depend on the
magnetization direction as [71]

E = K1 sin2(θ) +K2 sin4(θ) + ..., (37)

where K1 and K2 are the first and second anisotropy constants and θ is the
angle between the magnetization and the z-axis. The magnetic anisotropy
energy is defined as the energy difference E(π/2) − E(0) = K1 +K2. The
second-order term K1 is typically larger than the fourth-order term K2. In
Publication III the angular dependence of the total energy is calculated in
the tetragonal structure with c/a = 0.94. The results presented in Fig. 12
show that the c-axis is the easy axis and the MAE is 180 µeV1. A fit to
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Figure 12: Total energy as a function of the magnetization direction θ. Solid
line is a fit to Eq. (37).

Eq. (37) gives the anisotropy constants K1 = 179 µeV and K2 = 1 µeV,
so that the angular dependence of the energy is characterized completely

1The energy units are generally Ry throughout this thesis. However MAE is given in
eV as it is used traditionally in other works
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by K1. Therefore this tetragonal structure can be considered as an ideal
uniaxial system.

However, there can be several twins in the martensitic phase which may
complicate the interpretation of the experiments. The effect of twinning is
estimated by calculating the average over two twins whose easy axes are
perpendicular to each other

Eave = K1 sin2(θ) +K2 sin4(θ)

+K1 sin2(θ + π/2) +K2 sin4(θ + π/2)

= K1 +K2(1− 2 sin2(θ) + 2 sin4(θ)).

(38)

According to the above equation the angular contribution of K1 may aver-
age out and only the K2 contribution is measured when several twins are
present. The K2 constant appears in both the second order and the fourth
order terms but with opposite signs. The puzzling experiments in Ref. [72]
report values of K1 = −1.3 µeV and K2 = 1.1 µeV which according to our
interpretation points clearly to an average over different twins.

Next, the ordinary magnetostriction of Ni2MnGa is estimated. According
to the linear magnetoelastic theory the total energy can be written as a sum
of magnetoelastic and elastic energy [73]

Etot = −αBε+ Cε2, (39)

where ε is the tetragonal distortion, ε = 2/3(c/a−1), α = 1 for the magneti-
zation parallel to tetragonal [001] axis and α = −1/2 for the magnetization
perpendicular to that axis. B is the magnetoelastic coupling constant which
is related to the magnetic anisotropy energy and C is related to the elastic
constant C ′, C = 3V0C

′/2 where V0 is the volume of the unit cell. The
magnetostriction coefficient λ001 is defined as the strain that minimizes the
total energy of Eq. (39):

λ001 = − B

2C
. (40)

Calculations of the magnetic anisotropy energy as a function of tetragonal
distortion in Publication IV show that with small distortions the variation
of MAE is linear and the linear magnetoelastic theory is valid. The magne-
tostriction coefficient is estimated to be of the order of 10−2 %. This is such
a small value that ordinary magnetostriction is a minor effect compared to
the actual MSM effect of the order of 10 %.

29



In Publication IV the microscopic origins of the magnetic anisotropy en-
ergy are analyzed in terms of the orbital moment anisotropy. The or-
bital magnetic moment is also due to the spin-orbit coupling and there
is a close relationship between the orbital moment anisotropy and the mag-
netic anisotropy energy [74–76]. Within second order perturbation theory
the magnetic anisotropy energy can be written as

∆Eaniso =
ξNi

4
∆µNi +

ξMn

4
∆µMn, (41)

where ξq and ∆µq are the spin-orbit coupling strength and the orbital mo-
ment anisotropy, respectively. The role of the constituent atoms in the over-
all magnetic anisotropy energy can be analyzed with the help of Eq. (41).
The calculated orbital moment anisotropies and magnetic anisotropy ener-
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Figure 13: a) Orbital moment anisotropies as a function of the tetragonal
distortion. © total, � Ni, and ♦ Mn. b) Magnetic anisotropy energy
calculated with © force theorem; with � Eq. (41).

gies are shown in Fig. 13. The MAE which is calculated from Eq. (41) with
spin-orbit coupling strengths ξNi = 60 meV and ξMn = 30 meV fits well to
the one obtained from the eigenvalues. The results show that in Ni2MnGa
the most important component with respect to the magnetic anisotropy en-
ergy is Ni in contrast to the magnetic moment which is given mainly by
Mn.

The magnetic anisotropy energy is studied also in the tetragonal structure
with c/a = 1.27 and in the orthorhombic structure. In this tetragonal
structure the c-axis is the hard axis and there is an easy plane with 300 µeV
lower energy. There are three inequivalent crystal axes in the orthorhombic
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structure, and the total energy is calculated when the magnetization is
aligned with these axes. It appears that the MAE depends on the lengths
of the orthorhombic crystal axes. The shortest axis is the easy axis, while
the longest axis is the hard axis, the third one being between these two
both in length and energy. The energy difference between the easy and the
hard axis is 150 µeV, and between the easy and the “mid-easy” axis the
MAE is 110 µeV. This finding, that in Ni2MnGa the easy magnetization
direction is always along the shortest crystal axis, has been later confirmed
experimentally [4, 21, 34].

4.4 Estimation of the Curie temperature

A ferromagnetic material loses its long range magnetic order and becomes
paramagnetic at the Curie temperature. This temperature is therefore one
of the key parameters determining the operation range of the MSM effect.
From a more fundamental point of view the Curie temperature is a ba-
sic property for the theoretical understanding of a ferromagnetic material.
The decrease of macroscopic magnetization with increasing temperature is
caused by longitudinal and transverse fluctuations of magnetic moments. It
is assumed that transverse excitations of magnetization are the dominant
origin for the Curie temperature in transition metals because large local
magnetic moments are shown to exist above the Curie point [77, 78]. These
transverse excitations are quantized as magnons.

In Publication V the magnon related properties of Ni2MnGa and Ni2MnAl
are studied with total-energy calculations of spin spirals. The spin spiral is
a magnetic configuration where the magnetization direction varies with a
well-defined period. The period is determined by the wave vector q as

M(rn) = mn

 cos(q · rn + φn) sin(θn)
sin(q · rn + φn) sin(θn)

cos(θn)

 , (42)

where polar coordinates are used and mn is the magnetic moment of atom
n with a phase φn at the position rn. A more general definition of the spin
spiral is given by

M(r + R) = D(q ·R)M(r), (43)

where R is a lattice translation and D is a rotation around the z-axis. This
definition allows the magnetization to vary freely within the unit cell. An
example of a spin spiral in the L21 structure is shown in Fig. 14.
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a) b)

Figure 14: Spiral magnetic configuration where θ = π
2
, φ = 0 and q =

(2
3

2
3

0)2π
a

in the L21 structure. a) Full view, b) top view.

As a spin spiral is inherently a non-collinear magnetic configuration the full
density matrix formulation of the density-functional theory has to be used
(see Sec. 3). The spiral magnetic configuration breaks the translational
symmetry of the crystal so at first sight it seems that one should use large
supercells. However, as shown in the Appendix, the chemical unit cell can
be used by defining generalized translations which consist of translations in
real space and rotations in spin space.

The total energy as a function of the spiral vector q is shown in Fig. 15
for the high symmetry directions [001], [111] and [110]. It is seen that the
energies are very similar both in Ni2MnGa and in Ni2MnAl. For small
values of q the energy grows quadratically, but the dispersion flattens for
larger q especially in the [110] direction.

A spin spiral describes a spatially rotating magnetization and it can be
therefore correlated with a frozen magnon. The magnon energy is obtained
from the total energy of the planar (θ = π/2) spiral as [79, 80]

ωq =
4µB

M
E(q), (44)

where M is the magnetic moment per unit cell. In the long wavelength limit
where the magnon dispersion is quadratic, the spin stiffness constant D can
be defined as

ωq = Dq2. (45)

The theoretical spin stiffness obtained from the total energies shown in
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Figure 15: Total energy as a function of the spiral vector q in the units of
2π/a. © Ni2MnAl, � Ni2MnGa.

Fig. 15 is D = 77 mRy a.u.2 and it is in good agreement with the experi-
mental value of 79 mRy a.u.2 measured in Ni-Mn-Ga films [81].

The Curie temperature can be estimated from the calculated energy disper-
sions in Fig. 15. In contrast to the phonons, magnons can be considered
as non-interacting bosons only at low temperatures. Therefore some extra
assumptions have to be made when determining the Curie temperature.
Within the random phase approximation the Curie temperature TC is given
by [82, 83]

1

kBTC

=
6µB

M

V

(2π)3

∫
d3q

1

ωq

, (46)

where V is the unit cell volume, and the integration is over the Brillouin
zone. The determination of TC from Eq. (46) requires knowledge of the
magnon spectra in the whole Brillouin zone. We have simplified the problem
by working in the spirit of the Debye approximation for the phonons. The
Brillouin zone is replaced with a sphere and the dispersion is considered
quadratic up to some radius qc and constant thereafter (see Fig. 15). With
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these approximations the Curie temperature is given by

1

kBTC

=
V

Mπ2

(
3qc
D

+
q3
d − q3

c

ωc

)
, (47)

where qd = (6π2/V )1/3 and ωc is the constant energy. Using the calculated
spin stiffness and ωc=5 mRy when q > 0.7qD, we obtain the Curie temper-
ature 480 K. This value is in good agreement with the experimental one
380 K. As the energy dispersions in Fig. 15 are similar for Ni2MnGa and
Ni2MnAl this estimate of Curie temperature applies for both materials.

More insight into the energy dispersion and to the Curie temperature is
obtained by studying the behaviour of magnetization with the spiral vector
q. The analysis shows that the magnetic moment of Mn remains practically
constant while the Ni moment varies considerably. It is found that a large
magnetization near the Ni sites is correlated with a decrease in the energy.
This suggests that the Curie temperature could be increased by reducing
the magnetic moment at the Ni site, for example by alloying with non-
magnetic elements such as Cu. More details about this issue can be found
in Publication V.

4.5 Alloying effects

Up to now, all results have been obtained for ideal stoichiometric com-
pounds. The previous calculations give information about the role of the
constituent atoms in determining the material properties. However, the
conclusions do not necessarily apply for all the effects when alloying with
these constituents. Thus, calculations of non-stoichiometric compositions
are needed. Here, two different methods are used to study these alloying
effects.

4.5.1 Rigid band approximation

The rigid band approximation is the simplest approach for estimating alloy-
ing effects. It can be shown [84] that when hybridization between the states
with different angular momentum character (s,p,d-orbitals) is neglected and
the potential is spherically symmetric the Hamiltonian can be separated into
two contributions. One part is the structure factor which depends only on
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the geometry of the crystal lattice, and the other term is the potential func-
tion which depends on the potential within the atomic spheres. If the po-
tential function is assumed to be constant, the band structure depends only
on the crystal structure. Within this picture, the elements in the 3d-series
differ only on the number of electrons which determines the Fermi-level.
This canonical band model is at the heart of the rigid band approximation.
The band structure is calculated for the stoichiometric compound, while the
non-stoichiometry is designated through the number of valence electrons by
adjusting the Fermi-level.

The variation of the magnetic moments with band filling is shown in Fig. 16a.
The magnetic moment of Mn remains constant for a wide range of electron
concentrations because there are only few Mn states near the Fermi-level.
In contrast, there are several Ni states around the Fermi-level and the Ni
moment shows a linear variation of the magnetic moment with the band fill-
ing. However, according to experiments reported in Publication VI the total
magnetic moment decreases when the electron concentration is lower than
the stoichiometric one. Also, the decrease of the magnetic moment is too
small to explain the experimental trend with larger electron concentrations.
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Figure 16: a) Magnetic moments of Mn � and Ni © and b) tetragonality
as a function of the number of valence electrons nv. The stoichiometric
composition corresponds to nv = 30.

In Publication III the rigid band approximation is used to study the effect of
alloying for the appearance of tetragonal energy minima. The optimum c/a
ratios as well as the energy differences between minima vary with electron
concentration. The variation of the equilibrium c/a ratio with electron con-
centration in the phase with c/a ∼ 1.2 is shown in Fig. 16b. The optimum
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c/a ratio increases first with band filling and, after reaching a maximum, it
starts to decrease. Similar behaviour is also seen in the experiments [26].
The energy at the minimum with c/a ∼ 0.94 decreases when decreasing
electron concentration, but this minimum disappears when the band filling
is larger than at the stoichiometry. This behaviour can be explained also by
the band Jahn-Teller picture presented earlier. However, the structure with
c/a ∼ 0.94 is seen experimentally also with higher electron concentrations.
Therefore, it is clear that the rigid band approximation will have problems
describing the stability of the phases.

The magnetic anisotropy energy is also studied as a function of the band
filling in Publication IV. The calculated results for the c/a = 0.94 structure
are shown in Fig. 17 together with some experimental values. The experi-
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Figure 17: The MAE for c/a = 0.94 as a function of the number of valence
electrons nv. Experimental values from � Ref. [32], ♦ Ref. [30], 4 Ref. [85].

mental trend of decreasing MAE with increasing electron concentration is
reproduced by the rigid band approximation. However, as the experimen-
tal values refer to room temperature, it is probable that the rigid band
approximation actually underestimates the magnetic anisotropy energies.

4.5.2 Supercell approach

The results presented above show that, while in certain cases the rigid band
approximation seems to work well, there are cases where it completely fails.
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In Publication VI we have gone beyond the rigid band approximation and
studied the alloying effects with supercell calculations of Ni2Mn1.25Ga0.75.

Experimentally, compositions close to Ni2Mn1.25Ga0.75 have good MSM prop-
erties as large strains are obtained around room temperature. This compo-
sition is obtained by replacing one Ga atom by an Mn atom in the 16-atom
supercell, as shown in Fig. 18. The main difference in the supercell ap-

+

Mn Ga Ni Extra Mn+
Figure 18: L21 supercell of Ni2Mn1.25Ga0.75.

proach to the actual experimental composition is that in the supercell the
extra Mn atoms are perfectly ordered while in the real material they can be
distributed randomly in the Ga sites.

The most important result obtained from the calculations is that the mag-
netic moments of the extra Mn favor anti-ferromagnetic alignment with
respect to the neighbouring Mn atoms. The magnetic moment of Mn is ap-
proximately a constant 3.5 µB regardless of the direction of the moment or
electron concentration. Hence, the antiferromagnetic ordering of the extra
Mn means that every additional Mn reduces the total moment by 3.5 µB.
Hence, the magnetic moment of Ni2Mn1+xGa1−x can be described with a
simple model as µtotal = 2µNi + (1 − |x|)3.5µB where the Ni moment µNi

is varied around the stoichiometric value 0.3 µB with the electron concen-
tration according to the rigid band results. As seen in Fig. 19 the model
describes well the experimental variation of the magnetization. From this
agreement it can be concluded that the Mn atoms substituted at the Ga
sites are antiferromagnetically coupled to the Mn atoms at Mn sites.

The extra Mn has also important consequences for the appearance of the
martensitic phases. With the antiferromagnetic alignment, the structure
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Figure 19: Saturation magnetization vs the average number of valence elec-
trons per atom (e/a). The dashed line is a linear fit to the experimental
data and the solid line is the theoretical prediction assuming a 50 % Ni
content.

with c/a = 0.94 is stabilized and it has 5 meV lower energy per formula unit
than the cubic structure. In addition, an energy minimum appears for the
orthorhombic structure with lattice constant ratios c/a ∼ 0.93 and b/a ∼
0.97. The energy of the orthorhombic structure is between the energies of
the two tetragonal minima, so that the theoretical order of phases agrees
with the experimental findings discussed in Fig. 5b of Sec. 2.

When the magnetic anisotropy energy is calculated with the extra Mn one
obtains a value of 150 µeV for the ferromagnetic configuration and 100 µeV
for the antiferromagnetic configuration. The corresponding rigid band value
is about 50 µeV as extracted from Fig. 17. From these three values the an-
tiferromagnetic one compares well with the low temperature experimental
value of 90 µeV [34]. It can be seen that the magnetic and structural order-
ing is important also for the quantitative value of the magnetic anisotropy
energy.
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5 Conclusions

In this thesis, atomic-scale simulations for magnetic shape memory alloys
are presented. The calculations are done within the density-functional the-
ory with the state-of-the-art FLAPW-method. The main focus is on the
Ni-Mn-Ga alloy which has already shown magnetic-field-induced strains of
up to 10 %. Also some other materials suggested as MSM candidates are
studied.

From the suggested candidate materials only Ni2MnAl is found to have po-
tential for the magnetic shape memory effect, but further work is needed
in order to see the actual usability of this alloy. The appearance of en-
ergy minima at zero temperature as well as the different behaviour between
the alloys in tetragonal deformations is ascribed to the band Jahn-Teller
effect. Comparison of theoretical and experimental results with respect to
the magnetization redistribution at the martensitic transformation confirms
this picture. The calculated elastic constants are used to study the effect of
lattice vibrations in the stability of the tetragonal phases of Ni2MnGa. It is
seen that the transition from the cubic structure to the tetragonal structure
with c/a ∼ 1.27 is driven mainly by the vibrational entropy.

The calculations of the magnetic anisotropy energy of Ni2MnGa show that
the tetragonal structure with c/a ∼ 0.94 is magnetically uniaxial and char-
acterized completely by the first anisotropy constant. We estimate the ef-
fect of twinning for the magnetic anisotropy: When several twins are present
only the second anisotropy constant may appear in the experimental results.
Also, the effect of constituent atoms to the magnetic anisotropy energy is
analyzed in terms of orbital moment anisotropy. The most important con-
stituent concerning the magnetic anisotropy is found to be Ni. The studies
of magnetic anisotropy energy in the orthorhombic and in the other tetrag-
onal structure imply that in Ni2MnGa the shortest crystal axis is always
the easy magnetization axis.

The Curie temperatures of Ni2MnGa and Ni2MnAl are estimated on the
basis of total energy calculations of spin spirals. The Curie temperature is
found to be similar in both materials. From the behaviour of magnetic mo-
ments, it is seen that Ni is important in determining the Curie temperature
despite its smaller magnetic moment compared to Mn. The results suggest
also that a large value of the magnetic moment at the Ni sites is correlated
with a low Curie temperature.
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At this step, some conclusions about the role of constituent atoms in stoi-
chiometric Ni2MnGa can be given. The magnetic moment originates mainly
from Mn, but regarding the other properties investigated here Ni is more
important. This is related to the fact that most of the electronic states near
the Fermi-level are due to Ni. The Mn-states are at lower energies making
Mn more inert as seen for example in the more localized character of the
magnetic moment of Mn.

The alloying effects are studied with two different approaches. The sim-
ple rigid band approximation works well in many cases, reproducing the
experimental trends, but it fails severely when predicting the appearance
of phases at different compositions and the variation of magnetization with
electron concentration. The calculations with explicit Mn-rich compositions
give a more refined picture about the alloying effects. The most important
consequence is that the additional Mn atoms couple antiferromagnetically
to the neighbouring Mn atoms which explains the experimental composition
dependence of the magnetization.

During this work many ideas for further studies have emerged. Some impor-
tant problems are the calculation of the actual phonon spectra which would
allow more accurate determination of the phase equilibra at finite temper-
atures. The studies taking into account the modulation of the tetragonal
structures are already in progress as well as calculations about the twin
boundary. The alloying effects should be studied in more detail. Because
the supercell approach allows investigations of only few particular compo-
sitions and assumes ordering of dopant atoms, methods including disorder,
like the coherent potential approximation, could provide additional infor-
mation. Theoretical studies should be extended from the atomic scale also
to the mesoscopic and macroscopic regimes, where the atomic scale results
could be used as input. Some investigations about the twin boundary mo-
tion along this line have already been initiated.
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Appendix: Symmetry and magnetism

The symmetry operations of a non-magnetic crystal are rotations and trans-
lations in space, and are classified according to the ordinary space groups.
However, in a magnetic crystal there are also spin degrees of freedom which
are not taken into account in the space groups. A convenient description
of the symmetry properties of the magnetic crystal is given by the spin-
space groups [86–88] which allow separate transformation of spin and space
variables.

The spin rotations and space rotations are designated with αs and αr, re-
spectively. Designating the space translations with t the operations of the
spin-space group can be defined as

{αs|αr|t}ψ(r) = U(αs)ψ(α−1
r r − α−1

r t), (48)

where U is the spin rotation matrix.

The symmetry operations of system are those operations which commute
with the Hamiltonian of Eq. (14). In a non-magnetic case the Hamiltonian
is a scalar times an identity matrix so that arbitrary spin rotations are sym-
metry operations. On the other hand, in magnetic materials the presence
of a spontaneous magnetic moment restricts the possible symmetry opera-
tions. In a normal ferromagnet there is a global spin quantization axis and
the allowed spin rotations are restricted to the rotations about the quan-
tization axis. When the spin-orbit interaction is neglected, the spin space
and the real space are not coupled and the magnetic moment does not affect
the allowed space transformations. However, when the spin-orbit coupling
is included, the spin and space parts cannot be transformed separately. The
presence of magnetic moment can constrain the possible space transforma-
tions because the condition αs = αr has to be fulfilled. For example, in the
cubic symmetry only 16 space group operations from the 48 remain when
there is a magnetization in the [001] direction.

Here, it must be noted that the magnetization is an axial vector. This means
that the magnetization is invariant under spatial inversion, but changes its
sign for reflections about the plane containing the magnetization. Time-
inversion reverses also the magnetization direction and therefore the above
reflections are symmetry operations when combined with the time inversion.
In reciprocal space, time inversion is equivalent to spatial inversion, so that

41



real space and k space have different symmetry properties when the crystal
does not have inversion symmetry.

A special case where the spin-space groups are extremely useful in the cal-
culations is the spin spiral [89]. It was defined in Eq. (43) as

M(r + R) = D(q ·R)M(r). (49)

As such, the spin spiral is not translationally invariant. However, it is
possible to define generalized translations {q ·R|e|R} which leave the spiral
invariant. These generalized translations form a group which is isomorphic
to the group of ordinary translations. This leads into a generalized Bloch
theorem, so that the single particle states can be characterized with a k-
point in the Brillouin zone and they can be written as

ψk(r) = eik·r
(
e−iq·r/2uk(r)
e+iq·r/2dk(r)

)
. (50)

The functions uk(r) and dk(r) are invariant with respect to lattice transla-
tions having the same role as for normal Bloch functions. With the help of
the spin-space groups the chemical unit cell can be used in the calculations
of spin spirals and no large supercells are needed.

Generally, the spin spiral can lower the symmetry of the system. The al-
lowed symmetry operations can be divided into two groups. The first group
contains space rotations which leave the spiral wave vector invariant

αrq = q (51)

together with arbitrary spin rotations about the z-axis. The symmetry
operations in the second group are space rotations which invert the wave
vector

αrq = −q (52)

together with spin rotations by an angle π about an axis perpendicular to
the z-axis [87, 90]. In practice, the spin rotations are not necessarily im-
plemented and one can use only the operations of type I. However, if the
crystal structure is invariant under space inversion the existence of opera-
tors of type II possess symmetry constraints. For example, the magnetic
moments in the planar spirals where M = (Mx,My, 0) have to fulfill the
condition

(Mx(r),My(r, 0) = (Mx(−r),−My(−r, 0) (53)

at two points related by inversion.
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