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Abstract

We study the meandering instability during growth of an isolated nanostructure, a crystalline cone, consisting of

concentric circular steps. The onset of the instability is studied analytically within the framework of the standard

Burton–Cabrera–Frank model, which is applied to describe step flow growth in circular geometry. We derive the

correction to the most unstable wavelength and show that in general it depends on the curvature in a complicated way.

Only in the asymptotic limit where the curvature approaches zero the results are shown to reduce to the rectangular

case. The results obtained here are of importance in estimating growth regimes for stable nanostructures against step

meandering. � 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Film growth by molecular beam epitaxy (MBE)
is essentially based on the possibility to control
growth on a submonolayer level. Usually one aims
at surfaces as smooth as possible with atomisti-
cally sharp structures consisting of step edges or
nanoscale islands. Growth of these structures in
MBE is affected not only by stochastic but also by
deterministic instabilities such as step meandering
and bunching. Since the advent of modern film

growth techniques these surface instabilities have
been of theoretical and practical interest [1,2].
To obtain nanostructures in MBE with desired

quality one of the fundamental concerns is the
stability of step edges. Instabilities lead to non-
uniform layers so it is advantageous to suppress
them during growth. In step flow growth the basic
mechanism and properties of the meandering in-
stability were explained by Bales and Zangwill (BZ)
[3] on the basis of the classic Burton–Cabrera–
Frank (BCF) model [4] and the Mullins-Sekerka
instability [5]. The case of circular nanostructures
has so far received much less attention although
it is an example for a layered nanostructure
[6]. Decay of mesoscopic circular stepped struc-
tures can be described in some special cases of
stable step flow with good accuracy using the BCF
model [1,6]. Also, recently the decay and bunching
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of a circular crystalline cone in the stable growth
regime has been studied in detail using a similar
approach [7]. However, to our knowledge there
has been no study of the meandering instability in
the spirit of BZ during growth of circular nano-
structures even though its importance was noted
already a decade ago [3]. It is thus of interest to
know under which conditions circular step edges
are stable against meandering. In this report we
present our study of the morphological instability
of curved step edges. Our viewpoint is based on the
BCF model and we generalize the BZ results to the
case of a circular geometry. We perform a linear
stability analysis and calculate the corrections to
the results for the straight steps. As expected, our
results reduce to the BZ case in the limit of an
infinite step radius.

2. Step flow growth in circular geometry

We study a model of circular steps which are
placed concentrically on top of each other. The
steps can absorb and emit atoms which diffuse on
terraces between the steps. The terrace j is boun-
ded by the steps at rj and rjþ1. Assuming the flux of
adatoms onto and evaporation from the terraces,
the adatom concentration cj on the terrace j obeys
the well-known form of the BCF equation [3,4].

ocj
ot

¼ Dsr2cj � cj=s þ F ; ð1Þ

where Ds is the diffusion coefficient of an adatom
on a flat terrace; s, the time scale for evaporation;
and F, the deposition flux. Assuming that the
adatom concentration relaxes much faster than the
step edge moves we can assume that the terrace is
in a quasi-stationary state corresponding to ocj=
ot ¼ 0. Mass transport through the bulk of the
material is ignored.
The model is now fully specified with the choice

of the boundary conditions and the requirement of
the mass conservation at the step edges. The mass
conservation implies that the edge velocity is given
by [3]

Vj ¼ Vjþ þ Vj� ¼ XDs
ocj
or Rj

����
 

� ocj�1
or

����
Rj

!
; ð2Þ

where X is the atomic area; Vj�; Vjþ, the contri-
butions to the step edge velocity due to surface
currents from the upper and lower terrace, re-
spectively; and Rj, the radius of the jth step edge.
We assume that the velocities Vj� are related to the
deviations of the adatom concentration from the
equilibrium value [8]

Vj� ¼ Xk� cj
�

� ceqj
�
; ð3Þ

where ceqj ¼ ceq0 exp½~CCjðRjÞ
 is the equilibrium
adatom concentration at the edge, ~CC ¼ Xc=ðkBT Þ;
c, the free energy/(unit length); ceq0 , the equilibrium
adatom concentration at the straight step; and
jðRjÞ, the local curvature of the step in the circular
geometry [9]. The attachment coefficients k�; kþ
associated with the upper and lower terraces, re-
spectively, can be related to the Ehrlich–Schwoebel
barrier [10] at the step edge [11]. From Eqs. (2) and
(3) we obtain the mixed boundary conditions at
the step edge

Ds
ocj
or

����
Rj

¼ kþ cjjRj

h
� ceqj

i
;

� Ds
ocj
or

����
Rjþ1

¼ k� cjjRjþ1

h
� ceqjþ1

i
:

ð4Þ

Defining a new field uj ¼ ci � sF Eq. (1) becomes
the Helmholtz equation in the stationary limit
[3,4]:

r2uj �
1

x2s
uj ¼ 0; ð5Þ

where xs ¼ ðDssÞ1=2 is the diffusion length. The
solution of Eq. (5) for the perfectly circular step
is given by u0j ðrÞ ¼ a0j I0ðr=xsÞ þ b0jK0ðr=xsÞ, where
I0ðxÞ and K0ðxÞ are the zeroth order modified
Bessel functions [12] and a0j and b

0
j are coefficients

determined by the boundary conditions. In the
linear stability analysis a small perturbation is
added to the step edge and the equations are
solved to first order in the perturbation amplitude.
We set ~rrjðhÞ ¼ Rj þ � exp½inh þ xt
 þ c:c:; where �
is a small parameter, x a growth rate, jnjP 1 is an
integer (due to periodicity), and c.c. denotes the
complex conjugate. The solution to Eq. (5) in the
first order in � gives ujðr; hÞ ¼ u0j ðrÞþ �½An

j Inðr=xsÞþ
Bn
jKnðr=xsÞ
 expðinh þ xtÞ, where KnðxÞ and InðxÞ
are the modified Bessel functions of integer order
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n, and the coefficients An
j and B

n
j are determined by

the boundary conditions. When the solution is
found, the growth rate x can be deduced using Eq.
(2) and Vj ¼ V 0j þ x~rrjðhÞ. If x > 0, the step edge is
linearly unstable.
For simplicity we have not included the step

permeability [13] to the model which would be
important e.g. in the case of a decaying cone [14].
The step permeability would enhance the down-
ward mass currents and possibly make the steps
more stable against meandering. The generaliza-
tion of this work to permeable steps is straight-
forward.

3. Morphological instability of a circular step

Qualitatively, the growth of stepped structures
is unstable against step meandering when the flux
of adatoms from the upper terrace is reduced, e.g.
due to the Ehrlich–Schwoebel barrier [10]. This is
basically the origin of the morphological instabil-
ity on vicinal surfaces (the BZ case) [3,5]. How-
ever, in the case of a circular step, the stabilizing
effect of the step curvature is expected to be more
pronounced than in the rectangular geometry.
Therefore, we expect the possible instability to be
weaker than in the rectangular case since the line
tension tends to smooth the steps. Here we con-
sider the cases kþ ! 1, k� ¼ 0 (one-sided model),
and kþ 6¼ k� non-zero and finite (asymmetric
model).

3.1. One-sided model

In the one-sided model kþ ! 1 corresponds to
instantaneous attachment from the lower terrace
and k� ¼ 0 implies an infinite Ehrlich–Schwoebel
barrier. In this limit the velocity of the step with
radius R is given by V ¼ Vþ ¼ DXðou=orÞ and the
stability function becomes

xðnÞ
XDF

¼ ns
q

�
� 1
	
b1n þ b2n þ b3n

an
þ cn

ns
q2

ð1� n2Þ;

ð6Þ
where ns ¼ ~CC=ðxssDF Þ is the capillary length, DF ¼
F � ceq0 s, and q ¼ R=xs. The coefficients are given

by an ¼ ½bI 0nI 0nKn � IncK 0
nK 0
n 
½bI1I1K0 þ I0cK1K1 
, b1n ¼ ½bI 0nI 0nKn �

IncK 0
nK 0
n 
½I 01cK1K1 � bI1I1K 0

1
, b2n ¼ ½I 0ncK 0
nK 0
n � bI 0nI 0nK 0

n
½I1cK1K1 � bI1I1K1
,
b3n ¼ ½InK 0

n � I 0nKn
½bI 01I 01cK1K1 � bI1I1cK 0
1K
0
1 
, and cn ¼ ½bI 0nI 0nKn �

IncK 0
nK 0
n 
½bI 0nI 0nKn � IncK 0

nK 0
n 
, where In � InðqÞ, bInIn � Inðqþ

l=xsÞ,Kn � KnðqÞ,cKnKn � Knðq þ l=xsÞ, l is the terrace
width, and the prime indicates the derivative with
respect to the scaled variable q. By using the as-
ymptotic formulae of the modified Bessel functions
for n,R large with n=R � q ¼ const: [12] the growth
rate (6) can be shown to reduce to the result of BZ
[3] in the limit R ! 1.
The stability function is plotted in Fig. 1 and it

approaches a limiting form when the radius of the
step increases (curvature decreases). As can be seen
from the figure, there exists a limiting value Rc
for the radius such that steps with R < Rc are
always stable. For radii R > Rc there exists a crit-
ical value of the wave vector qc such that for q > qc
the edge is stable. The critical wave vector depends
on curvature and with increasing curvature qc de-
creases, i.e. the critical wavelength where the in-
stability sets in is shifted to larger wavelengths.
In the limit of large n;R we obtain the cor-

rection term to the results of BZ of the order of
1=R as

Fig. 1. The growth rate xðqÞ as a function of the wave vector
q ¼ n=R with a moderate value of the terrace width l in the case
of one-sided model. The stable regime corresponds to x < 0.
The radius of the step R increases in the direction of the arrow.

The curves indicate that structures smaller than a critical size Rc
are stable against step meandering.
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xðnÞ
XDF

¼ xBZðqÞ þ
xs
2R

Rq; ð7Þ

where xBZ is the rectangular result (Eq. (13) in
Ref. [13]),

Rq ¼ � tanhð~llÞð2þ l2q2Þ

þ ðl2q2 þ K�2
q Þ tanh2 ðKq

~llÞ tanhð~llÞ

þ ðxslq2K�2
q þ K�1

q tanhðKq
~llÞðl2q2 þ K�2

q Þ

þ tanhð~llÞ � 2nsÞ
1

coshðKq
~llÞ coshð~llÞ

þ 2ns

þ nsx
2
s l
2q4 � nsxsq

2ðl2q2 þ K�2
q Þ tanh2 ðKq

~llÞ;

Kq ¼ ð1þ ðxsqÞ2Þ1=2, and ~ll ¼ l=xs. Using the equa-
tion above we can determine analytically the cor-
rections to the critical wave vector defined as
xðqcÞ ¼ 0. The results are for l � xs:

xsqc �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ns
þ xs
2R

1
ns
� 2


 �r
; xsqc � 1;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4
3
ð1� 2nsÞ � 2xs

R

q
; xsqc � 1;

8><>: ð8Þ

and for l � xs (and l2q2c � 1):

xsqc �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lxs
2ns

� 1� l
R

s
: ð9Þ

Omitting the 1=R terms we obtain the BZ re-
sults for the rectangular geometry [3]. From these
equations we can determine also Rc in the case
qc ¼ 0 which corresponds to a maximally unstable
case in the large R limit. The expressions are
Rc ¼ 3xs=ð2� 4nsÞ, when xsqc � 1 (for l � xs),
and Rc ¼ lðlxs=2ns � 1Þ�1 for l � xs.
In Fig. 2 the curves for the critical wave vector

qc against the capillary length ns are shown for
l � xs, xsqc � 1. The corrected result follows the
numerically plotted curve whereas the BZ result
deviates considerably. For ns large enough the
edge is always stable and qc approaches zero. The
inset of Fig. 2 shows the case l � xs which behaves
in a similar way.

3.2. Asymmetric model

When the kinetic coefficients at the step edge
from the lower and upper terrace are both finite

and non-zero, the velocity of the jth step edge is
given by Vj ¼ DsX½ðouj=orÞ � ðouj�1=orÞ
 r¼~rrjðhÞ

�� and
the growth rate becomes

xðn; jÞ
XDF

¼ aj

cj

"
� aj�1

cj�1

#
I 000 ðqjÞ þ

bj

cj

"
�

bj�1

cj�1

#
K 00
0 ðqjÞ

þ Aj
n

Dj
n

"
�Aj�1

n

Dj�1
n

#
I 0nðqjÞ

þ Bj
n

Dj
n

"
�Bj�1

n

Dj�1
n

#
K 0

nðqjÞ; ð10Þ

where aj, bj, and cj are the coefficients related
to unperturbed steps, and Aj

n, B
j
n, and D

j
n are ob-

tained from the expansion linear in �. Define ~dd� ¼
d�=xs ¼ ðDs=k�Þ=xs,Kj

n;� ¼ KnðqjÞ � ~dd�K 0
nðqjÞ and

Ij
n;� ¼ InðqjÞ � ~dd�I 0nðqjÞ. Then the coefficients are
given by

aj ¼ ns=qj

�
� 1
�
Kjþ1
0;� � ns=qjþ1

�
� 1
�
Kj
0;þ;

bj ¼ � ns=qið � 1ÞIjþ1
0;� þ ns=qiþ1

�
� 1
�
Ij
0;þ;

cj ¼ Ij
0;þK

jþ1
0;� �Ijþ1

0;�K
j
0;þ;

Fig. 2. The critical wave vector qc as a function of the capillary
length ns in the case of the one-sided model. The circles are Eq.
(6), the upper solid line is the BZ result [3], and the lower solid

line is Eq. (8) for l � xs. The inset shows the case l � xs, with
the lower solid line given by Eq. (9). The approximations follow

the numerically plotted curve, whereas the BZ results deviate

for larger values of ns.

308 M. Rusanen et al. / Surface Science 507–510 (2002) 305–310



Aj
n ¼ aj Ijþ1

1;�K
j
n;þ

h
�Ij

1;þK
jþ1
n;�

i
þ bj Kj

1;þK
jþ1
n;�

h
�Kjþ1

1;�K
j
n;þ

i
� ns n

2
�

� 1
�
Kj

n;þ=q
2
jþ1

h
�Kjþ1

n;�=q
2
j

i
;

Bj
n ¼ �aj Ijþ1

1;�I
j
n;þ

h
�Ij

1;þI
jþ1
n;�

i
� bj Kj

1;þI
jþ1
n;�

h
�Kjþ1

1;�I
j
n;þ

i
þ ns n

2
�

� 1
�
Ij

n;þ=q
2
jþ1

h
�Ijþ1

n;�=q
2
j

i
;

Dj
n ¼ �Ijþ1

n;�K
j
n;þ þIj

n;þK
jþ1
n;� :

The resulting expression for the growth rate xðqÞ
is rather complicated and we have not found any
essentially simpler form which would be accurate
enough for all curvatures. However, the essential
qualitative features can be extracted from the
special cases, and the behavior is similar to the one-
sided case. The numerically plotted values of x
indicate that as k� approaches kþ the growth rate
x6 0 at all values of q. This is shown in Fig. 3.

We can thus conclude that the one-sided model is
the most unstable.
So far, we have only considered the case of in-

phase step growth. The stability of growth depends
also on the phase of the neighboring steps, and the
above analysis can be extended to the more general
situation with an arbitrary phase between adjacent
steps. However, the general results give only little
additional insight and only the numerical results
are shown in the inset of Fig. 3. Increasing the
phase difference between the two adjacent steps
makes the steps more stable as in the case of
rectangular geometry [15].

4. Discussion and conclusions

In this work we have generalized the meander-
ing instability to structures made of concentric
islands. We have shown that in the case of circular
cones growth instability due to terrace diffusion
can arise as in the case of rectangular geometry.
However, the instability is suppressed by the cur-
vature and structures with smaller sizes than a
critical size are stable. The critical size depends on
the microscopic parameters of the system. We
present here also the asymptotic analytical results
for small curvatures. In the limit R ! 1 the
growth rate approaches the expression found by
BZ [3]. The more general case where attachment
from the upper and lower terraces to the step are
both finite and non-zero behaves qualitatively
similarly to the one-sided model.
The results presented here extend the results of

the BZ model for rectangular geometry and they
are of interest in modeling e.g. the behavior of
isolated crystalline cones. Results given here can
be used to check whether the simplified model
which assumes the perfectly circular step edges in a
decaying cone is valid. If the meandering insta-
bility is expected to be present, it can play a sig-
nificant role in the evolution of nanostructures.
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