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Degree of polarization for optical near fields
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We investigate an extension to the concept of degree of polarization that applies to arbitrary electromagnetic
fields, i.e., fields whose wave fronts are not necessarily planar. The approach makes use of generalized spectral
Stokes parameters that appear as coefficients, when the full 333 spectral coherence matrix is expanded in
terms of the Gell-Mann matrices. By defining the degree of polarization in terms of these parameters in a
manner analogous to the conventional planar-field case, we are led to a formula that consists of scalar invari-
ants of the spectral coherence matrix only. We show that attractive physical insight is gained by expressing the
three-dimensional degree of polarization explicitly with the help of the correlations between the three orthogo-
nal spectral components of the electric field. Furthermore, we discuss the fundamental differences in charac-
terizing the polarization state of a field by employing either the two- or the three-dimensional coherence-matrix
formalism. The extension of the concept of the degree of polarization to include electromagnetic fields having
structures of arbitrary form is expected to be particularly useful, for example, in near-field optics.
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I. INTRODUCTION

The degree of polarization is an important quantity
electromagnetic fields, as it characterizes the correlations
prevail between the orthogonal components of the elec
field. Conventionally, the polarization state of a fluctuati
electromagnetic field is described in terms of the 232 co-
herence matrix or the related four Stokes parameters@1–3#.
The two-dimensional~2D! formalism applies, however, onl
to fields having planar wave fronts, such as well-collima
and uniform optical beams or radiated wide-angle far fiel
which can locally be considered as planar. Such fields ca
described by two orthogonal electric field components,
an arbitrary field is generally composed of three compone

In this paper, we focus on the generalization of the c
cept of the degree of polarization to include also fields w
wave fronts of arbitrary form. Such a generalization is u
ful, for example, for investigations of optical near field
which are characterized by evanescent waves. The prob
at hand has already been studied in the seventies and
eighties, seemingly independently, by Samson and
workers@4–6# for low-frequency fields relevant to geophy
ical investigations and by Barakat@7,8# for optical fields. In
Ref. @4# Samson approaches the problem by investiga
different expansions of the full 333 spectral coherence ma
trix. For one such expansion, he interprets the expan
coefficients as the nine spectral Stokes parameters and
fines the degree of polarization in a manner analogous to
two-dimensional case. Much of the same has also been
formed by Barakat in Ref.@7#. In congruence, the authors o
Refs.@5,6,8# formulate the degree of polarization in terms
scalar invariants, which are traces of different powers of
spectral coherence matrix and its determinant. These inv
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ants appear as coefficients in the characteristic equatio
the coherence matrix. Based on such a treatment, Barak
a matter of fact, proposes in Ref.@8# two measures for the
degree of polarization, of which one is the same as that s
gested by Samson. More recently, polarization of arbitr
electromagnetic fields has been examined by Brosseau@1,9#
in terms of polarization entropy, and by Carozzi et al.@10# in
terms of the generalized spectral-density Stokes parame
As the authors in Refs.@1,6,9# have explicitly noted, the 3
33 coherence matrix cannot, in general, be decomposed
the sum of matrices describing fully polarized and fully u
polarized field as in the two-dimensional case. This f
makes it more difficult to obtain simple physical insight in
the proposed formulas for the degree of polarization of a
trary fields. In this work, we point out some fundamen
differences between the two- and three-dimensio
coherence-matrix formalisms and give physical intuition in
the formulation of the 3D degree of polarization.

We have arranged the paper as follows. In Sec. II,
construction of the degree of polarization for planar wa
fields in terms of the 232 coherence matrix and the Stoke
parameters is recalled to facilitate the subsequent treatm
of the degree of polarization of arbitrary wave fields. In S
III we formulate the 3D degree of polarization and compa
the features of the 2D and 3D formalisms. Finally, in Sec.
we summarize the main conclusions of the work.

II. DEGREE OF POLARIZATION FOR PLANAR FIELDS

In this section, we examine a planar electromagnetic fi
propagating in thez direction with the electric field oscillat-
ing in thexy plane. We consider a single frequency comp
nent E(r ,v) of a statistically stationary field and write th
corresponding coherence-matrix elements in the spa
frequency domain~the spectral-density tensor! as~Sec. 4.7.2
of Ref. @2#!
©2002 The American Physical Society15-1
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f i j ~r ,v!5^Ei* ~r ,v!Ej~r ,v!&, i , j 5x,y. ~1!

Here the angle brackets denote averaging, at a pointr over
an ensemble of field realizations of frequencyv, and the
superscript * stands for complex conjugation. The 232 co-
herence matrix will be denoted by the symbolF2, with the
subscript 2 indicating that we are dealing with the tw
dimensional formalism. Furthermore, we will implicitly as
sume (r ,v) dependency for the coherence matrix, and e
phasize that we consider spectral quantities.

The 232 coherence matrix is a non-negative definite a
Hermitian matrix that entirely specifies the state of polari
tion of the planar field. It can be uniquely decomposed int
sum of two matrices, one corresponding to fully polariz
light and the other to fully unpolarized light. The degree
polarization can then be expressed as the ratio of the in
sity ~or trace! of the polarized part to the total intensity of th
field @1–3#. The resulting expression for the degree of pol
ization of the two-dimensional field,P2, has the well-known
form

P2
2512

4 det~F2!

tr2~F2!
52F tr~F2

2!

tr2~F2!
2

1

2G . ~2!

This quantity is bounded to the interval 0<P2<1, with the
valuesP250 andP251 corresponding to a completely un
polarized and polarized field, respectively. It is invariant u
der unitary transformations, since trace and determinant
scalar invariants under such operations. Due to Hermitic
the coherence matrix can always be diagonalized by a
tary transformation, and we could readily express the deg
of polarization in terms of the eigenvalues of the matrix. T
Hermiticity and non-negative definite character of the m
trix, respectively, imply that the eigenvalues are real a
non-negative.

For this work, particularly relevant is the presentation
the degree of polarization in terms of the four Stokes para
eters. The 2D Stokes parametersSj , ( j 50, . . . ,3) aremea-
surable quantities that appear as the expansion coeffic
when the coherence matrix is expanded in terms of th
32 unit matrix s0 and the three Pauli matrices, or gene
tors of the SU~2! symmetry group,s j ( j 51, . . . ,3),i.e.,

F25
1

2 (
j 50

3

Sjs j , ~3!

where

s05S 1 0

0 1D , s15S 1 0

0 21D , s25S 0 1

1 0D ,

s35S 0 i

2 i 0D . ~4!

This allows us to write the coherence matrix as

F25
1

2 S S01S1 S21 iS3

S22 iS3 S02S1
D . ~5!
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Moreover, since tr(s is j )52d i j , one obtains,

Sj5tr~s jF2!, or

S05fxx1fyy ,

S15fxx2fyy ,

S25fxy1fyx ,

S35 i ~fyx2fxy!.

~6!

We see that the first Stokes parameterS0 is proportional to
the spectral density of the field. The parameterS1 describes
the excess in spectral density of thex component over that o
they component of the field. The parameterS2 represents the
excess of145° linearly polarized component over245°
linearly polarized component, andS3 the excess in spectra
density of right-hand circularly polarized field compone
over left-hand circularly polarized one@3#. Substituting the
coherence matrix of Eq.~5! into Eq.~2!, the degree of polar-
ization takes the form

P25
~S1

21S2
21S3

2!1/2

S0
. ~7!

When the field is fully polarized, the polarization state can
geometrically represented as a point (S1 ,S2 ,S3) on a sphere
of radiusS0, the so-called Poincare´ sphere. The equator o
the sphere~in the S1S2 plane! corresponds to linearly polar
ized light, and the north and south poles to right-hand a
left-hand circularly polarized light, respectively. Furthe
more, in the origin of the Poincare´ sphere the field is fully
unpolarized and in every other inner point partially pola
ized.

Sometimes it is useful to normalize the off-diagonal e
ments of the coherence matrix by defining

fxy

~fxx!
1/2~fyy!

1/2
[mxy5umxyueibxy, myx5mxy* . ~8!

The quantityumxyu is bounded between 0 and 1 and gives
measure for the degree of correlation between the two
thogonal components of the electric field. While the value
the 2D degree of polarization does not depend on the or
tation of the orthogonal 2D coordinate system in the pla
perpendicular to the wave’s propagation direction, the deg
of correlation does. One can show thatumxyu<P2, i.e., the
maximum value of the degree of correlation is equal to
degree of polarization of the wave. The equality holds in
coordinate system in which the intensities in thex and y
directions are equal (fxx5fyy). This situation can always
be achieved by a suitable rotation of the coordinate sys
@3#.

III. DEGREE OF POLARIZATION FOR ARBITRARY
ELECTROMAGNETIC FIELDS

We now focus on the problem of how the treatment of t
planar~two-dimensional! fields could be extended to includ
arbitrary electromagnetic fields. We proceed analogously
the 2D case, and expand the 333 spectral coherence matrix
5-2
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f i j ~r ,v!5^Ei* ~r ,v!Ej~r ,v!&, i , j 5x,y,z, ~9!

in the form @1#

F35
1

3 (
j 50

8

L jl j , ~10!

where the subscript 3 refers to the 3D formalism. In Eq.~10!,
l0 is the 333 unit matrix and the matricesl j , ( j
51, . . . ,8) are theGell-Mann matrices or the eight gener
tors of the SU~3! symmetry group. The basis matrices a
Hermitian, trace orthogonal, and linearly independent. Th
are explicitly written as@11#

l05S 1 0 0

0 1 0

0 0 1
D , l15S 0 1 0

1 0 0

0 0 0
D ,

l25S 0 2 i 0

i 0 0

0 0 0
D ,

l35S 1 0 0

0 21 0

0 0 0
D , l45S 0 0 1

0 0 0

1 0 0
D ,

l55S 0 0 2 i

0 0 0

i 0 0
D , ~11!

l65S 0 0 0

0 0 1

0 1 0
D , l75S 0 0 0

0 0 2 i

0 i 0
D ,

l85
1

A3 S 1 0 0

0 1 0

0 0 22
D .

For the basis matrices, the following trace-orthogona
equation holds:
01661
y

y

tr~l il j !5H 3 wheni 5 j 50

2d i j otherwise.
~12!

On multiplying both sides of Eq.~10! by lk , and taking the
trace, we may express the expansion coefficients, or the
spectral Stokes parametersLk in the form

L05tr~F3!,

Lk5
3

2
tr~lkF3!, when k>1, ~13!

or explicitly as,

L05fxx1fyy1fzz, L55 3
2 i ~fxz2fzx!,

L15
3

2
~fxy1fyx!, L65 3

2 ~fyz1fzy!,

L25
3

2
i ~fxy2fyx!, L75 3

2 i ~fyz2fzy!,

L35
3

2
~fxx2fyy!, L85

A3

2
~fxx1fyy22fzz!.

L45
3

2
~fxz1fzx!,

~14!

As in the 2D formalism, the first Stokes parameter is prop
tional to the total spectral density of the field. Moreover, w
may interpret the parametersL1 and L2 as playing a role
analogous to parametersS2 andS3 in the 2D formalism. The
same interpretation also holds for the pairs (L4 ,L5) and
(L6 ,L7), but in thexz andyz planes, respectively. The pa
rameterL3 is obviously analogous toS1, andL8 represents
the sum of the excesses in spectral density in thex and y
directions over that in thez-direction. Furthermore, in anal
ogy with the 3D Poincare´ sphere, it is possible to characte
ize the polarization state of a 3D electromagnetic field
terms of a sphere in the eight-dimensional Stokes-param
space. However, owing to large number of dimensions, s
a construction would not provide much geometrical intuiti
on the subject.

In terms of the Stokes parameters, the 333 coherence
matrix takes the form
F35
1

3S L01L31
1

A3
L8 L12 iL2 L42 iL5

L11 iL2 L02L31
1

A3
L8 L62 iL7

L41 iL5 L61 iL7 L02
2

A3
L8

D . ~15!
5-3
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It should be noted that we could have chosen some o
complete set of matrices for the basis, and then identified
expansion coefficients as the Stokes parameters. For
ample, Roman@12# chooses a set of matrices satisfying t
Kemmer algebra. However, the choice of the Gell-Mann m
trices conveniently leads to the first spectral Stokes par
eter being proportional to the total spectral density of
field, as well as to the other parameters having phys
meanings analogous to those of the 2D Stokes parame
As in the 2D formalism, we can also define the degree
correlationum i j u (0<um i j u<1) between any two of the thre
orthogonal electric field components as

f i j

~f i i !
1/2~f j j !

1/2
[m i j 5um i j ueib i j ,

m j i 5m i j* , i , j 5x,y,z. ~16!

Owing to the fact that the 333 coherence matrix canno
in general, be decomposed into the sum of a fully polariz
and fully unpolarized part@1,6,9#, other definitions for the
degree of polarization of 3D fields must be sought for. Let
now investigate the possibility of expressing the 3D deg
of polarizationP3 in the form

P3
25

1

3

(
j 51

8

L j
2

L0
2

. ~17!

This form is analogous to Eq.~7!, and it has previously bee
put forward by Samson@4# and Barakat@7#, although, in
those works a different coefficient appears in front of t
expression owing to the slightly different basis matrices.
substituting the Stokes parameters of Eq.~14! into Eq. ~17!,
the 3D degree of polarization can be expressed in term
the coherence matrixF3 as

P3
25

3

2 F tr~F3
2!

tr2~F3!
2

1

3G . ~18!

We see that Eq.~18! is invariant under unitary transforma
tions, and consequently, the value of the degree of polar
tion is independent of the orientation of the orthogonal co
dinate system. Furthermore, due to the Hermiticity, we m
diagonalize the coherence matrix and write

tr~F3
2!

tr2~F3!
5

a1
21a2

21a3
2

~a11a21a3!2
, ~19!

where (a1 ,a2 ,a3) are the eigenvalues of the coherence m
trix. On expanding the denominator, and noting that all
eigenvalues are non-negative, we see that tr(F3

2)/tr2(F3)
<1. Moreover, by applying the Cauchy-Schwarz inequa
we see that tr(F3

2)/tr2(F3)>1/3. It then follows that

0<P3<1, ~20!

as is required for a measure of the degree of polarizatio
01661
er
e
x-

-
-

e
al
rs.
f

d

s
e

n

of

a-
r-
y

-
e

We next reduce the formula for the 3D degree of pol
ization to correspond to the case of planar fields. For
ample, by settingEz50, we consider a field that oscillates i
thexy plane. We thus obtainfxz5fzx5fyz5fzy5fzz50,
and consequently from Eq.~14! that L45L55L65L750
andL85A3/2L0. The coherence matrixF3 then reduces to

F35
1

3 S 3

2
L01L3 L12 iL2 0

L11 iL2
3

2
L02L3 0

0 0 0

D . ~21!

Comparing the expressions forL j , ( j 50, . . . ,3) with the
Stokes parameters of the 2D fields, Eq.~6!, we find that the
232 matrix in the upper left corner ofF3 is exactly the
same as the matrix of Eq.~5!. Let us denote that matrix by
F28 . We may now rewrite Eq.~18! for a field characterized
by the coherence matrix of Eq.~21! as

P3→2
2 512

3 det~F28!

tr2~F28!
. ~22!

Now a fundamental difference between the 2D and 3D f
malisms emerges. The values for the degree of polariza
of a 2D field calculated in terms of the 2D and 3D forma
isms are not, in general, equal which is indicated by
factor 3 in Eq.~22! instead of the factor 4 that is present
Eq. ~2!. Writing the factor 3 det(F28)/tr

2(F28) in terms of the
eigenvalues ofF28 , which are non-negative, and noting th
their geometric mean value is smaller than or equal to
arithmetic mean value, we find that

1

2
<P3→2<1. ~23!

Thus, a planar field cannot be fully unpolarized in the 3
formalism. This is as expected, since in such a field the
cillations are restricted to a single plane, and conseque
when treated as three-dimensional the field must have a
zero degree of polarization. Since the degree of polariza
retains its value under a rotation of the coordinate syst
Eq. ~23! is valid for any 2D field.

The most intuitive understanding of the differences b
tween the 2D and 3D formalisms is, perhaps, obtained
considering Fig. 1. In the upper row an unpolarized 2D fie
i.e., a field for which the spectral density in thex and y
directions is the same (fxx5fyy), and for which no corre-
lation exists between the two electric field compone
(umxyu50), is passed through a polarizer. The 2D formalis
gives the valuesP250 andP251 for the field before and
after the polarizer, respectively. Let us now consider
fields in a similar way. Assume a fully unpolarized 3D fie
~lower row in Fig. 1!, which is polarized by two devices eac
cutting off one of the orthogonal field components. For
fully unpolarized 3D field the spectral density in all thre
orthogonal directions is the same (f115f225f33) and no
5-4



po
t
sm

o-

ec-
be-
the
in
rd
al-
ar-

2D,

the

the
two
,
nce
cks
sis
ui-
and
q.

he
tio

DEGREE OF POLARIZATION FOR OPTICAL NEAR FIELDS PHYSICAL REVIEW E66, 016615 ~2002!
correlations exist between any of the electric field com
nents (umxyu5umxzu5umyzu50). For this field, which canno
be described in terms of the 2D formalism, the 3D formali
gives the value ofP350. When thex component of the field

FIG. 1. A geometric illustration of the differences between t
2D and 3D coherence-matrix formalisms in treating the polariza
state of an electromagnetic field.
er
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en
on
th
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is cut off by the first device the field becomes partially p
larized. Indeed, nowfxx50, fyy5fzz with umyzu50, and
consequentlyP351/2. The second device then cuts off thez
component and the field becomes fully polarized (P351),
since the oscillations now take place only in a single dir
tion. We may conclude that the fundamental difference
tween the 2D and 3D formalism is due to the fact that in
latter, the third direction is included albeit the intensity
this direction may be zero. In the 2D formalism the thi
direction is not even considered, and therefore, that form
ism cannot be applied to characterize polarization of an
bitrary field.

Let us consider the 3D counterpart of the statement in
P2>umxyu @see the discussion below Eq.~8!#. Samson has
investigated the subject by extending the analysis from
real coordinate space to the complex unitary space@6#. He
showed that in the unitary space, the maximum value of
degree of correlation between the field components in
orthogonal~complex! directions is, unlike in the 2D case
greater than the 3D degree of polarization. However, si
the analysis is performed in the unitary space, the result la
a direct physical explanation. Here we perform the analy
in the real coordinate space, which allows a physically int
tive connection to be made between the field correlations
the 3D degree of polarization. We proceed by applying E
~16!, and rewrite Eq.~18! in the form

n

12P3
253

~12umxyu2!fxxfyy1~12umxzu2!fxxfzz1~12umyzu2!fyyfzz

~fxx1fyy1fzz!
2

, ~24!

or as

12P3
253S 12

umxyu2fxxfyy1umxzu2fxxfzz1umyzu2fyyfzz

fxxfyy1fxxfzz1fyyfzz
D Y S fxx

2 1fyy
2 1fzz

2

fxxfyy1fxxfzz1fyyfzz
12D . ~25!
f
The

is
vail-
s in
ith

sity
Then, by noting that for any set of three real numb
(a,b,c)

~a2b!21~a2c!21~b2c!2>0

⇔a21b21c2>ab1ac1bc,
~26!

we find that

P3
2>

umxyu2fxxfyy1umxzu2fxxfzz1umyzu2fyyfzz

fxxfyy1fxxfzz1fyyfzz
.

~27!

Equation~27! has a simple physical interpretation. It stat
that the square of the 3D degree of polarization repres
the upper limit of the average of the squared correlati
weighted by the corresponding spectral densities. In fact,
is intuitively reasonable, since the degree of polarization
determined by the correlations between the three orthog
electric field components and their intensities. The value
s

ts
s
is
is
al
f

the right-hand side of Eq.~27! depends on the orientation o
the coordinate system, but the left-hand side does not.
right-hand side reaches the value ofP3

2 if the coordinate
system is oriented in such a way thatfxx5fyy5fzz. In this
case, the equality sign holds, and we obtain

P3
25

umxyu21umxzu21umyzu2

3
, ~28!

indicating that the square of the 3D degree of polarization
equal to the pure average of the squared correlations pre
ing between the three orthogonal electric field component
this specific coordinate system. This result agrees well w
intuitive physical meaning of the degree of polarization.

On the other hand, in the special case when the inten
in one direction is zero, say in thez direction, Eq.~24! re-
duces to
5-5
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SETÄLÄ , SHEVCHENKO, KAIVOLA, AND FRIBERG PHYSICAL REVIEW E66, 016615 ~2002!
12P3
253~12umxyu2!

fxxfyy

~fxx1fyy!
2

. ~29!

Sincefxxfyy /(fxx1fyy)
2<1/4, we obtain

P3
2>

1

4
1

3

4
umxyu2. ~30!

This is consistent with Eq.~23!, which states that the 3D
degree of polarization of a planar field cannot be lower th
P351/2. As previously, the equality holds whenfxx5fyy ,
and we see that for a planar field the 3D degree of polar
tion is directly related to the correlation that exists betwe
the two nonzero electric field components.

We have enclosed in the Appendix a proof that there
ways exist three mutually orthogonal directions for whi
the spectral intensities are equal. In this system, the squa
the degree of polarization is equal to the pure average of
squared correlations, as stated by Eq.~28!. Based on these
arguments, we propose that Eq.~27! together with Eq.~28!
justifies Eq.~18!, or alternatively Eq.~17!, to be considered a
sensible measure for the 3D degree of polarization, as
relate the degree of polarization to the correlations that e
between the three electric field components of an arbitr
field.

IV. CONCLUSION

We have formulated an extension to the concept of deg
of polarization that is applicable for arbitrary electroma
netic fields. Our formula for the 3D degree of polarization
consistent with the results that have been put forward in
literature already some time ago. However, our way of f
mulating the concept in a manner that is analogous to tha
the well-established 2D coherence-matrix formalism brin
along a different physical insight into the subject matter.
demonstrated that the dimensionality~2D vs 3D! is a crucial
issue for the quantitative value and interpretation of the
sults. We also showed how the 3D degree of polarizat
may be interpreted as a quantity that characterizes the c
lations between all three orthogonal electric field comp
nents. The presented form for the 3D degree of polariza
is expected to be a useful tool in assessing the partial po
ization of non-planar electromagnetic fields such as opt
near fields. Reference@13# provides an example of the use
this formalism to analyze the degree of polarization of th
mal near fields under the influence of resonant surf
waves.
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APPENDIX

We show that for every coherence matrix, we can rot
the coordinate system in such a way that the diagonal
ments become equal. Let us perform two successive rotat
of which the first is chosen to be about thez-axis counter-
clockwise through an anglea, and the second about th
y8-axis counterclockwise through an angleb. The corre-
sponding rotation matrices and the elements of the cohere
matrix after each rotation are listed as follows:

S Ex8

Ey8

Ez8
D 5S cosa sina 0

2sina cosa 0

0 0 1
D S Ex

Ey

Ez

D , ~A1!

fxx8 5cos2afxx1sin2afyy11/2 sin 2a~fxy1fyx!,

fyy8 5sin2afxx1cos2afyy21/2 sin 2a~fxy1fyx!,

fzz8 5fzz,

fxy8 51/2 sin 2a~fyy2fxx!1cos2afxy2sin2afyx ,

fxz8 5cosafxz1sinafyz ,

fyz8 52sinafxz1cosafyz ,

f i j8 5f j i8* , iÞ j , ~A2!

S Ex9

Ey9

Ez9
D 5S cosb 0 2sinb

0 1 0

sinb 0 cosb
D S Ex8

Ey8

Ez8
D , ~A3!

fxx9 5cos2bfxx8 1sin2bfzz8 21/2sin 2b~fxz8 1fzx8 !,

fyy9 5fyy8 ,

fzz9 5sin2bfxx8 1cos2bfzz8 11/2sin 2b~fxz8 1fzx8 !,

fxy9 5cosbfxy8 2sinbfzy8 ,

fxz9 51/2sin 2b~fxx8 2fzz8 !1cos2bfxz8 2sin2bfzx8 ,

fyz9 5sinbfyx8 1cosbfyz8 ,

f i j9 5f j i9* , iÞ j . ~A4!

We proceed by requiring that in the final coordinate s
tem fxx9 5fyy9 5fzz9 . On applying Eq.~A4!, the condition
fxx9 5fzz9 gives

tan 2b5
fxx8 2fzz8

fxz8 1fzx8
. ~A5!

If the angleb is as in Eq.~A5!, we obtain from Eq.~A4! that
fxx9 5fzz9 5(fxx8 1fzz8 )/2. Furthermore, since the eleme
fyy8 does not change under theb rotation, we have

fyy8 5
fxx8 1fzz8

2
, ~A6!
5-6
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TABLE I. Rotations that lead to equal diagonal elements for the coherence matrix (fxx5fyy5fzz), and
the sufficient conditions for the rotation angles to be real. The chosen rotations are determined solely
relative values of the diagonal elements. Every coherence matrix belongs at least to one of these ca

Rotations~angle, axis! Conditions for the anglesa andb to be real

1 (a,z) and (b,y8) fxx<tr(F3)/3 andfyy>tr(F3)/3, fxxÞfyy

2 (a,z) and (b,y8) fxx>tr(F3)/3 andfyy<tr(F3)/3, fxxÞfyy

3 (a,x) and (b,z8) fyy<tr(F3)/3 andfzz>tr(F3)/3, fyyÞfzz

4 (a,x) and (b,z8) fyy>tr(F3)/3 andfzz<tr(F3)/3, fyyÞfzz
l

rs

q.

ld

ec-

ex-

se
u-
e

and
be
nce

ne

r

which fixes the anglea. By substituting the primed diagona
elements from Eq.~A2! into Eq. ~A6! we are led to the
condition

cos 2a~fyy2fxx!2sin 2a~fxy1fyx!5
2fzz2fxx2fyy

3
,

~A7!

for a. Equivalently, Eq.~A7! may be expressed in the form

sin~2a1w!5
2fzz2fxx2fyy

3A~fxy1fyx!
21~fyy2fxx!

2
, ~A8!

where

tanw5
fxx2fyy

fxy1fyx
, ~A9!

and where the quadrant ofw is chosen such that2fxy
2fyx and cosw, as well asfyy2fxx and sinw, have the
same sign. It is of interest to note that both anglesa andb
can be expressed solely in terms of the Stokes paramete
Eq. ~14!.

Since the coherence matrix is Hermitian, the anglew is
always real as is seen from Eq.~A9!. Therefore, the condi-
tion for a to be real, which according to Eqs.~A5! and~A2!
implies that alsob is real, is that the right-hand side of E
~A8! is bounded between -1 and 1. This is trueat leastwhen
l

-
5

01661
of

21<
2fzz2fxx2fyy

3ufyy2fxxu
<1. ~A10!

This equation is satisfied, iffxx<tr(F3)/3, and fyy
>tr(F3)/3 or if fxx>tr(F3)/3 andfyy<tr(F3)/3. For both
cases we also require thatfyy andfxx are not both equal to
tr(F3)/3. In other words, if the spectral intensity of the fie
in the x direction is smaller than or equal to, and in they
direction greater than or equal to one third of the total sp
tral intensity, or vice versa, the anglesa andb are both real.

When the above conditions for the anglesa andb are not
met, we choose a different pair of rotation axes. For
ample, we first rotate about thex-axis counterclockwise
through an anglea, and then about thez8-axis counterclock-
wise through an angleb. The angles associated with the
rotations are obtained simply by performing a cyclic perm
tation for the labels of the coordinate axes, i.e., we replacx
with y, y with z, andz with x, in Eqs.~A5!, ~A8!, and~A9!.
We then have that the anglesa andb for this pair of rota-
tions are real at least when fyy<tr(F3)/3 and fzz
>tr(F3)/3, or when fyy>tr(F3)/3 and fzz<tr(F3)/3.
Again, bothfyy andfzz cannot be equal to tr(F3)/3 at the
same time. In Table I, we have summarized the rotations
the corresponding conditions for the rotation angles to
real. We see that the diagonal elements of every cohere
matrix, except the one withfxx5fyy5fzz for which no
rotations are needed, fulfill the conditions at least in o
category. For example, iffxx.tr(F3)/3 andfzz.tr(F3)/3,
then necessarilyfyy,tr(F3)/3, and we may apply eithe
rotation 2 or 3 of Table I.
.
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