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1 Introduction

Nanophotonics deals with the controlled manipulation of optical near fields and
their exploitation in investigations of nanometer-scale structures [1]. The near field
is characterized by the evanescent optical waves, which are strong only within the
distance of the wavelength of light from the surface of an emitting or scattering ob-
ject. The evanescent waves play an essential role in the design and characterization
of components for nanotechnology. For instance, in atom optics [2], they are used
to build atom mirrors and guides, and in scanning near-field optical microscopy
(SNOM) [3–7] they are utilized to study the optical properties of a sample with a
spatial resolution surpassing the classical diffraction limit.

The SNOM technique has grown and developed into a mature tool to acquire sub-
wavelength-scale optical information about nanostructures. The basic idea of SNOM
is to use a nanoprobe to detect the evanescent field in the immediate vicinity of the
sample. The most common probe type is a metal-coated, tapered optical fiber tip
with a nanoaperture at the apex. The aperture acts as a local scattering center trans-
forming some of the evanescent field components into propagating waves that can
be detected in the far zone. By scanning the nanoprobe over the sample surface,
the evanescent field distribution can be detected with a resolution limited mainly
by the size of the nanoprobe and the scanning distance. In practice, the resolution
achieved in a near-field measurement is on the order of a few tens of nanometers
providing an improvement by an order of magnitude to the best conventional far-
zone measurements. Optical near-field microscopy has become one of the standard
techniques among the scanning-probe microscopies. It has found applications in a
diversity of subfields of modern technology including, for example, characteriza-
tion of optoelectronical components, and high-density data storage [4, 5], mapping
of the optical properties of surfaces and thin films [8], nano- and single-molecule
spectroscopy, and investigations of various biological samples [9,10].

Several theoretical methods have been developed to model the optical near-field dis-
tribution in nano-scale structures [11]. For example, in the early near-field studies,
perturbative diffraction theory based on plane-wave expansions was used to model
the near fields above surfaces having periodic small-amplitude corrugations [12].
Multiple multipole (MMP) expansions, which in comparison with the plane-wave
methods are better suited to deal with localized geometries, have been employed
to calculate, for example, the field distribution inside a tapered metal-coated op-
tical fiber tip of a near-field microscope [11]. The finite-difference time-domain
(FDTD) method has been implemented for both two- and three dimensional SNOM
modelling [13]. Furthermore, the boundary-element method for both TE and TM
polarized light has been realized for investigations of the near-field distribution in
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a two-dimensional tip-sample geometry of SNOM [14]. In particular, the Green
tensor techniques, which are well suited to self-consistently treat the optical inter-
action in nano structures, such as the tip-sample interaction in SNOM, have become
a widely used method in near-field studies [11]. Present theoretical methods are able
to assess, for example, the influence of the polarization direction of light, scanning
height of the nano probe, and of the geometries and the dielectric contrast of the
materials to the measured near-field signal.

In theoretical near-field investigations the electromagnetic field is, as a rule, taken
to be deterministic, i.e., fully coherent and polarized. However, the recent studies of
the properties of partially coherent optical near fields have shown that the spectrum
of the near field may differ from the spectrum of the source and of the far field.
Also, the spatial correlation length in the near field may be much shorter than the
wavelength or it may extend over several tens of wavelengths even for a thermal
source, when resonant surface waves such as surface plasmon or phonon polaritons
are excited. These extraordinary phenomena were discovered only a couple of years
ago and they illustrate the potential of finding novel effects when the statistical na-
ture of the electromagnetic field is taken into account in the near-field investigations.
Coherence theory has so far mainly been applied to scattered or radiated far fields.
For these studies the results and methods are well established, but in many cases
they are not directly applicable to optical near fields, where the effects of evanes-
cent waves become appreciable or even dominant. As a matter of fact, until lately,
even such a fundamental quantity as the degree of polarization has not been defined
for the near fields.

This compendium to the thesis is organized as follows: In Sec. 2, in order to fa-
cilitate the subsequent presentation, some basic concepts for analyzing fluctuating
electromagnetic fields are provided. In Sec. 3, the electromagnetic field produced
by a point-dipole source is decomposed into its evanescent and propagating parts
[Paper I]. This subject is of fundamental importance for near-field optics, and it has
attracted considerable attention in the recent literature. Although Sec. 3 comprises
an exception to the general theme of the presentation in the sense that it deals with
fully deterministic fields, it provides insight into the nature of the evanescent field,
as well as introduces several concepts that are needed in the later sections.

Section 4, which constitutes the heart of the thesis, introduces a three-dimensional
formalism to treat the degree of polarization [Paper II], which, unlike the conven-
tional two-dimensional theory, is applicable to electromagnetic fields having arbi-
trary, planar or non-planar, wave structures. We also formulate the three-dimensional
degree of polarization in terms of the generalized Stokes parameters and discuss the
physical interpretation. Throughout the presentation the differences between the
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two- and three dimensional formalisms are emphasized. The new three-dimensional
formalism is applied to assess the partial polarization in near-fields produced by
thermally fluctuating half-space sources, particularly in cases where the near field
is strongly polarized owing to resonant surface plasmons or phonons [Paper III].
Besides near fields, the theory is also applied to study the partial polarization in
statistically homogeneous free electromagnetic fields, which are modelled as super-
positions of plane waves that are angularly uncorrelated, unpolarized (in the two-
dimensional sense), and isotropically distributed within a cone of angles [Paper IV].
For these fields we also analyze their spatial correlation properties.

Section 5 discusses the spatial correlation properties of electromagnetic fields pro-
duced by statistically homogeneous and isotropic sources [Paper V]. For any such
field in a low-loss medium the correlation properties are found to be determined
by the associated Green tensor, i.e., by the propagation properties in the medium,
and not by the source characteristics. The known behavior of black-body fields is
recovered, but the results apply to a wider class of sources, which are not neces-
sarily in thermal equilibrium. The behavior of correlations is explained within the
same plane-wave model for which the spatial correlations and partial polarization
are analyzed in Sec. 4.
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2 Basic Concepts

The basic quantities in the theory of electromagnetic fields, the current and charge
densities and the electric and magnetic fields, are never exactly deterministic, but
include some random fluctuations. In order to analyze the fluctuating electromag-
netic fields, it is necessary to employ tools provided by the optical coherence the-
ory [15–19]. In this section, a brief overview of the basic concepts of the second-
order electromagnetic coherence theory, both in the space-time and space-frequency
domain, will be given. The emphasis is on the spectral treatment, and in particular
on the topics that are employed in Papers II-V.

2.1 Complex analytic signal representation

Throughout our analysis, the random quantities are taken to be stationary with zero
mean. Stationarity reflects the fact that the character of the fluctuations does not
change with time, and the zero-mean is required to avoid possible singularities in
the spectral quantities. We denote the realization of a fluctuating vector quantity, at a
pointr and at timet, byF(r)(r, t). The vectorF(r)(r, t) is a real function of position
and time, as indicated by the superscript, and it may stand for either the electric
or magnetic field vector or for the current density. In the Fourier representation,
F(r)(r, t) takes the form

F(r)(r, t) =

∫ ∞

−∞
F̃(r, ω)e−iωtdω, (1)

whereω denotes the frequency. SinceF(r)(r, t) is real, the negative and positive
frequency components of the (generally complex) spectral amplitudes satisfy the
relationF̃(r,−ω) = F̃∗(r, ω). We see that no extra information is included in the
negative frequency components that would not already exist in the positive ones.
With this notion, one is led to introducing the complex vector

F(r, t) =

∫ ∞

0

F̃(r, ω)e−iωtdω, (2)

which is known as the complex analytic signal associated with vectorF(r)(r, t).
SinceF(r)(r, t) = 2Re[F(r, t)], we can write

F(r, t) =
1

2

[
F(r)(r, t) + iF(i)(r, t)

]
, (3)

where the real and imaginary parts constitute a Hilbert transform pair. We mention
that, strictly speaking, the Fourier presentation of Eq. (1) does not exist for station-
ary quantities, but its use can be justified by going beyond the ordinary function
theory [15].
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2.2 Maxwell’s equations

Each realization of the electromagnetic field, either real or the complex analytic
counterpart, satisfies the macroscopic Maxwell equations, which in SI units are
written as

∇ ·D(r, t) = ρ(r, t), (4)

∇ ·B(r, t) = 0, (5)

∇× E(r, t) = −∂B(r, t)

∂t
, (6)

∇×H(r, t) = j(r, t) +
∂D(r, t)

∂t
. (7)

HereE andH are the electric and magnetic fields, respectively, andD is the electric
displacement andB the magnetic induction. The quantitiesρ andj represent the
density of free charges and currents that may be present in the medium. The vectors
D andB take into account the response of the medium to the electromagnetic field.
They are connected to the polarization,P, and magnetization,M, induced in the
medium by an electromagnetic field through the relations,

D(r, t) = ε0E(r, t) + P(r, t), (8)

B(r, t) = µ0 [H(r, t) + M(r, t)] , (9)

where the quantitiesε0 andµ0 are the vacuum permittivity and permeability, respec-
tively. Maxwell’s equations completely describe the behavior of an electromagnetic
field in any medium. We, however, consider fields only in homogeneous, isotropic,
and linear media. In this case, the polarization and magnetization are obtained in
terms of the following constitutive relations [20],

P(r, t) =
ε0

2π

∫ t

−∞
χ(t− t′)E(r, t′)dt′, (10)

M(r, t) =
1

2π

∫ t

−∞
η(t− t′)H(r, t′)dt′, (11)

whereχ(t) andη(t) are scalar quantities known as the electric and magnetic sus-
ceptibilities, respectively. The convolution integrals of Eqs. (10) and (11) state that
the polarization and magnetization, at timet and in pointr, depend on the values
of the electric and magnetic fields at previous instants of timet′. Thus, they obey
causality.

2.3 Coherence theory in space-time domain

Correlation properties of electromagnetic fields at a pair of points(r1, t1) and(r2, t2)
in the space-time domain are described in terms of the coherence tensors, defined
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by [15,21]

Ejk(r1, r2, τ) = 〈E∗
j (r1, t)Ek(r2, t + τ)〉, (12)

Hjk(r1, r2, τ) = 〈H∗
j (r1, t)Hk(r2, t + τ)〉, (13)

Mjk(r1, r2, τ) = 〈E∗
j (r1, t)Hk(r2, t + τ)〉, (14)

Njk(r1, r2, τ) = 〈H∗
j (r1, t)Ek(r2, t + τ)〉. (15)

Here the subscripts(j, k) = (x, y, z) label Cartesian components of the complex
realizations,E(r, t) andH(r, t), associated with the electric and magnetic field vec-
tors, respectively. Furthermore, due to stationarity, the statistical properties of the
fields depend on time only through the difference,τ = t2 − t1. The angle brackets
in Eqs. (12)–(15) denote averaging over an ensemble of all field realizations. We
remark, that in every field found in nature, correlations die out rapidly in time. Such
fields are also ergoding, which implies that taking the ensemble average equals av-
eraging over time in a single realization.

The coherence tensors obey certain symmetry relations, which follow from their
definitions, and in particular we have

Ekj(r1, r2, τ) = E∗jk(r2, r1,−τ), (16)

Hkj(r1, r2, τ) = H∗
jk(r2, r1,−τ), (17)

Mkj(r1, r2, τ) = N ∗
jk(r2, r1,−τ). (18)

The propagation of the coherence tensors is governed by differential equations
which follow from the fact that the field realizations obey Maxwell’s equations.
This also states that the elements of the coherence tensors are not independent. The
coherence tensors also satisfy various non-negative definiteness conditions. More
details on these issues are available in Ref. [15].

2.4 Coherence theory in space-frequency domain

In some cases it is more appropriate to analyze the fluctuating fields in the space-
frequency domain rather than in the space-time domain. For example, we see from
the constitutive relations of Eqs. (10) and (11) that the response of the medium to
the electromagnetic field is difficult to analyze in the space-time domain.
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Cross-spectral density tensors

By taking the inverse transform of Eq. (2), and applying it to the electric and mag-
netic field vectors one obtains the cross-spectral tensors

〈Ẽ∗
j (r1, ω)Ẽk(r2, ω

′)〉 = W
(e)

jk (r1, r2, ω)δ(ω − ω′), (19)

〈H̃∗
j (r1, ω)H̃k(r2, ω

′)〉 = W
(h)

jk (r1, r2, ω)δ(ω − ω′), (20)

〈Ẽ∗
j (r1, ω)H̃k(r2, ω

′)〉 = W
(m)

jk (r1, r2, ω)δ(ω − ω′), (21)

〈H̃∗
j (r1, ω)Ẽk(r2, ω

′)〉 = W
(n)

jk (r1, r2, ω)δ(ω − ω′). (22)

The tensorsW (e)
jk andW

(h)
jk are, respectively, known as the electric and magnetic

cross-spectral density tensors, andW
(m)
jk andW

(n)
jk as the mixed cross-spectral den-

sity tensors. The Dirac delta function,δ(ω−ω′), is a consequence of the stationarity,
indicating that different frequency components of the field are uncorrelated. Thus,
in the stationary case, the correlation properties of the field may be analyzed by
focusing on a single frequency component of a polychromatic electromagnetic field
only.

Properties of cross-spectral density tensors

Each cross-spectral density tensor in Eqs. (19)–(22) and the corresponding coher-
ence tensor in Eqs. (12)–(15) form a Fourier transform pair. This is known as
the (generalized) Wiener-Khintchine theorem. For example, for the electric cross-
spectral density tensor and the corresponding coherence tensor this implies that,

W
(e)

jk (r1, r2, ω) =
1

2π

∫ ∞

−∞
Ejk(r1, r2, τ)eiωτdτ, (ω ≥ 0) (23)

Ejk(r1, r2, τ) =

∫ ∞

0

W
(e)

jk (r1, r2, ω)e−iωτdω. (24)

The integration in Eq. (24) extends from zero to infinity due to the fact thatE(r, t),
and consequently alsoW (e)

jk (r1, r2, ω), are complex analytic signals for which the
spectral components vanish for negative frequencies.

Similarly to the correlation tensors in the space-time domain, also the cross-spectral
density tensors satisfy certain symmetry relations. For example, the equation

W
(α)
kj (r1, r2, ω) =

[
W

(α)
jk (r2, r1, ω)

]∗
, α = (e, h), (25)

holds for both the electric and magnetic cross-spectral density tensors, and the equa-
tion

W
(m)
kj (r1, r2, ω) =

[
W

(n)
jk (r2, r1, ω)

]∗
, (26)
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for the mixed tensors. Also certain non-negative definiteness conditions apply for
the cross-spectral density tensors. In particular, for the electric cross-spectral den-
sity tensor the following holds

N∑
p,q=1

∑

j,k

a∗jpakqW
(e)
jk (rp, rq, ω) ≥ 0, (27)

whereajp andakq are arbitrary real or complex numbers. Other conditions of this
type satisfied by the cross-spectral density tensors, as well as differential equations
that govern their propagation, can be found in Ref. [15]. We note, however, that the
Maxwell’s equations limit the number of independent elements of the cross-spectral
density tensors.

The cross-spectral density tensors have a property that is often useful in their analy-
sis. Namely, they are correlation tensors that can be expressed as an average over an
ensemble of strictly monochromatic realizations all at the same frequencyω [22].
For the electric cross-spectral density tensor, the averaging is performed over an
ensemble{E(r, ω)e−iωt}, and it can be explicitly written as

W
(e)

jk (r1, r2, ω) = 〈E∗
j (r1, ω)Ek(r2, ω)〉. (28)

Similar expressions exist also for the other cross-spectral density tensors. We should
emphasize thatE(r, ω) is not the Fourier transform ofE(r, t).

Spectral coherence matrix

By settingr1 = r2 = r in Eq. (28), the spectral coherence matrix (electric spectral
density tensor) is obtained

φjk(r, ω) = W
(e)
jk (r, ω). (29)

The diagonal elementsφjj(r, ω) (j = x, y, z) are the spectral densities or, loosely
speaking, intensities associated with the field componentEj at the frequencyω.
Their sum, or the trace of the tensorφjk(r, ω), produces the total spectral density
of the field. In addition, the off-diagonal elements,φjk(r, ω), j 6= k, characterize
the correlations between the orthogonal components of the electric field at a given
point. Sometimes it is useful to normalize the off-diagonal elements of the coher-
ence matrix by defining

µjk(r, ω) =
φjk(r, ω)

[φjj(r, ω)]1/2 [φkk(r, ω)]1/2
, µkj(r, ω) = µ∗jk(r, ω). (30)

The absolute value|µjk(r, ω)| is bounded between 0 and 1 and gives a measure for
the degree of correlation between the two orthogonal components of the electric
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field. Furthermore, the spectral coherence matrix has certain mathematical prop-
erties that are in order to be mentioned here. Firstly, it follows from Eq. (25) that
the cross-spectral density tensor is Hermitian, i.e.φjk(r, ω) = φ∗kj(r, ω). Secondly,
Eq. (27) implies that it is also non-negative definite, i.e.

∑
jk ajakφjk(r, ω) ≥ 0.

The Hermiticity and non-negative definiteness state that the eigenvalues of the spec-
tral coherence matrix are real and non-negative. The spectral coherence matrix is
an object that contains all information about the polarization state of a fluctuat-
ing electromagnetic field in a point; the propagation properties are contained in the
cross-spectral density tensors.

2.5 Remark on notations

In this section the quantities are expressed in tensorial notation, i.e., by writing down
a single element of the tensor using two subscriptsj andk to specify the element.
This convention is standard in the coherence theory, and it is perhaps the notation
that the readers are most familiar with. However, in several central publications
related to the subject matter investigated in this thesis, dyadic notation is employed,
and therefore, it is frequently used here, too. For example, instead of writing

W
(e)

jk (r1, r2, ω) = 〈E∗
j (r1, ω)Ek(r2, ω)〉, (31)

we write ↔
W ee (r1, r2, ω) = 〈E∗(r1, ω)E(r2, ω)〉. (32)

When one calculates the scalar or vector product of a dyadic with a vector (or an-
other dyadic), either from the left or right, the operation is, respectively, directed to
the vector on the left or on the right in the dyadic.
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3 Evanescent and Propagating Part of the
Electromagnetic Field

The electromagnetic field emitted or scattered by an object always consists of both
evanescent and propagating waves. The evanescent waves are bound close to the
source, being significant only within a distance of wavelength from it, whereas the
propagating waves can be observed in the far zone. It is known that the evanescent
waves contain information about the sub-wavelength scale details of the source,
though the question of how the information is stored in the evanescent field is rather
complicated. Useful insight into the subject matter is gained by considering the
most elementary source of electromagnetic field, i.e., the point-dipole source, and
decomposing the associated free-space Green tensor into its evanescent and propa-
gating constituents; an issue that has thoroughly been discussed in the recent litera-
ture [23–34].

The decomposition of the scalar free-space Green function, and particularly the far-
zone contributions of its evanescent and propagating parts, was analyzed already in
the seventies [35,36]. It was demonstrated that in the far zone, the propagating field
in every direction falls off asr−1 with the distancer from the source, and that the
evanescent field falls off asr−3/2, except for two special directions where it decays
as r−1. These results indicate that the propagating field completely overwhelms
the evanescent field in the far zone, apart from the two particular directions which
are fixed by the angular-spectrum construction of the field. Expressions in terms of
Bessel and Lommel functions have been derived for both the evanescent and prop-
agating parts of the Green function [37].

Surprisingly, in view of the known results of the scalar investigations, a few years
ago a decomposition of the Green tensor, yielding comparable far-zone contribu-
tions of the evanescent and propagating electromagnetic fields emerged in the lit-
erature and was then extensively used in the analysis of scanning near-field optical
microscopy [38–47]. This result was criticized in several publications; by Wolf and
Foley using scalar theory [23], by us using electromagnetic theory [Paper I], and
then by several other authors [24–30], who all confuted the claims put forward in
Refs. [38–47]. In Paper I, we explicitly pointed out the mistakes of Refs. [38–47],
and provided the correct forms for both the evanescent and propagating parts of the
free-space Green tensor, which are valid throughout the space, and which are suit-
able for the numerical analysis of optical near fields. Also another decomposition
of the Green tensor was put forward by the same author [47–49], which likewise
leads to equal contributions of the evanescent and propagating fields in the far zone.
This result was pointed out to be incorrect in Ref. [34]. Discussion about the subject
matter has been active, and it continues to attract interest as evidenced by the recent
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investigations by Berry [31] and by Arnoldus and Foley [32,33].

In this section, as an introduction to the treatment of optical near fields, we derive an
angular-spectrum representation for the free-space Green tensor, which expresses
the point-dipole field in terms of the evanescent and propagating electromagnetic
plane waves. We also outline the decomposition of the field into its evanescent and
propagating parts, and briefly discuss their far-zone behavior. In the following, we
deal with fully deterministic fields, though the extension of the results to cover also
fluctuating fields is straightforward [15].

3.1 Dipole field

The field atr produced by a current dipole atr′ in vacuum is given by the expression

E(r, ω) = iµ0ω
↔
G (r− r′, ω) · j(r′, ω), (33)

where
↔
G(r− r′, ω) =

(
↔
U +

1

k2
0

∇r∇r

)
G(r− r′, ω) (34)

is the free-space Green tensor [50], which contains all information about the field

components created by the point source. Here
↔
U is the unit tensor, andG(r− r′, ω)

is the (scalar) free-space Green function, given by

G(r− r′, ω) =
eik0|r−r′|

4π|r− r′| , (35)

and representing the spherical wave expanding from the pointr′.

3.2 Plane-wave representation of the Green tensor

For simplicity we assume that the point source is in the origin and setr′ = 0. The
Weyl expansion is a half-space representation for the spherical wave that contains
both evanescent and propagating plane waves [15]. For the half-spacesz > 0 and
z < 0, this is written as

G(r, ω) =
ik0

8π2

∫ ∫ ∞

−∞

1

uz

eik0û±·rduxduy, (36)

whereû± = uxûx + uyûy ± uzûz, with the upper and lower signs referring to the
half-spacesz > 0 andz < 0, respectively. Furthermore,

{
uz = +

√
1− u2

x − u2
y, whenu2

x + u2
y ≤ 1

uz = +i
√

u2
x + u2

y − 1, whenu2
x + u2

y > 1,
(37)
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indicating that foru2
x + u2

y ≤ 1 the plane waves propagate in the direction specified
by û±, and foru2

x +u2
y > 1 their amplitudes decay exponentially with distance from

the planez = 0.

Inserting the scalar plane-wave expression of Eq. (36) into Eq. (34), one obtains

↔
G(r, ω) =

ik0

8π2

∫ ∫ ∞

−∞

1

uz

[↔
U −û±û±

]
eik0û±·rduxduy. (38)

This expression may be developed further by constructing two orthonormal right-
handed vector triads(û+, p̂+, ŝ) and(û−, p̂−, ŝ), using definitionŝs = û±×ûz/|û±×
ûz|, andp̂± = ŝ×û± (see Fig. 1). These definitions hold even though the vectorsû±
andp̂± are complex for the evanescent waves. The unit vectorsŝ andp̂± correspond

to thes- andp-polarization vectors of plane waves. Since
↔
U= ŝŝ + p̂±p̂± + û±û±,

Eq. (38) can be rewritten as

↔
G (r, ω) =

ik0

8π2

∫ ∫ ∞

−∞

1

uz

[ŝŝ + p̂±p̂±] eik0û±·rduxduy. (39)

This equation provides an intuitive expression for the free-space Green tensor that is
analogous to the Weyl expansion in the scalar case, Eq. (36). Substituting Eq. (39)
in the dipole-field expression, Eq. (33), we obtain an expression for the field in
terms of plane waves which are explicitly represented by theirs- andp-polarized
components. Formula (39) is particularly useful in constructing Green tensors for
more complicated geometries involving, for instance, multilayers [51].

z

z = 0

u +

p +
sp -u -

s

Figure 1: Illustration of the vector triads(û±, p̂±, ŝ) when the vectors
are real.
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3.3 Evanescent and propagating part of
the Green tensor

The tensor of Eq. (39) can be decomposed into a sum of two integrals

↔
G(r, ω) =

↔
GH (r, ω)+

↔
GE (r, ω), (40)

where
↔
GH (r, ω) =

ik0

8π2

∫ ∫

u2
x+u2

y≤1

1

uz

[ŝŝ + p̂±p̂±] eik0û±·rduxduy, (41)

and
↔
GE (r, ω) =

ik0

8π2

∫ ∫

u2
x+u2

y>1

1

uz

[ŝŝ + p̂±p̂±] eik0û±·rduxduy. (42)

The tensor
↔
GH(r, ω) contains all the propagating plane waves and is therefore called

the propagating or homogeneous part. Similarly, the tensor
↔
GE(r, ω) contains all the

exponentially decaying plane waves and is called the evanescent or inhomogeneous
part. For brevity, we consider only the evanescent part, but keep in mind that the

propagating part is obtained from the relation
↔
GH(z, ω) =

↔
G(z, ω)−↔

GE(z, ω). An
expression for the evanescent part of the Green tensor where one of the integrations
has been carried out, and which is valid at any distance from the source, is derived
in Paper I. It is explicitly written as

↔
GE(r, ω)=

k0

4π




IE
0 +

k2
0(x2−y2)

β3 LE
1−k2

0x2

β2 LE
2

k2
0xy

β2

[
2
β
LE

1−LE
2

]
±k0x

β
LE

3

k2
0xy

β2

[
2
β
LE

1−LE
2

]
IE
0 +

k2
0(y2−x2)

β3 LE
1−k2

0y2

β2 LE
2 ±k0y

β
LE

3

±k0x
β

LE
3 ±k0y

β
LE

3 LE
2


, (43)

where




LE
1 (r) = 1

α
[J1(β) + βIE

1 ],

LE
2 (r) = IE

0 + IE
2 ,

LE
3 (r) = 1

β
[J0(β)− αIE

0 + 2IE
1 − αIE

2 ],

(44)

and

IE
m(r) =

∫ ∞

0

vme−α(z)vJ0

[
β(x, y)

√
v2 + 1

]
dv. (45)

In these equationsJ0 and J1 are Bessel functions and the coordinate-dependent
parametersα(z) andβ(x, y) have the form

α(z) = k0|z|, (46)

β(x, y) = k0

√
x2 + y2. (47)
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It appears that there exists no closed-form expression for the evanescent (and prop-
agating) part, except for the direction of thez axis and in thez = 0 plane. Along
thez axis the evanescent part takes the form

↔
GE (z, ω) =

(
1

2|z| −
1

k2
0|z|3

)
↔
U +

(
1

2|z| +
3

k2
0|z|3

)
ûzûz, (48)

whereas in thez = 0 plane
↔
GE (r, ω) is obtained by inserting into Eq. (43) the

relations 



IE
0 (z = 0) = cos β

β
,

IE
1 (z = 0) = −J1(β)

β
,

IE
2 (z = 0) = − sin β

β2 − cos β
β3 .

(49)

and 



LE
1 (z = 0) = sin β

β
+ cos β

β2 ,

LE
2 (z = 0) = cos β

β
− sin β

β2 − cos β
β3 ,

LE
3 (z = 0) = −J2(β)

β
.

(50)

The results of Eqs. (48)–(50) indicate that in thez axis and in thez = 0 plane the
evanescent contribution falls off asr−1 in the far zone. Thus, in these two spe-
cial directions the evanescent and propagating contributions are comparable. In any
other direction the far-zone contribution of the evanescent field is obtained by in-
serting into Eq. (34) the asymptotic expression for the evanescent part of the scalar
spherical wave [15, 20, 35, 36]. Doing so, one finds that the evanescent part of the
free-space Green tensor decays asr−3/2. This implies that the propagating part,
which falls off asr−1, for r À λ, completely overwhelms the evanescent contribu-
tion in the far zone, except for the two special directions.

It is important to note that when writing the Weyl expression of Eq. (36), the whole
space is divided into two source-free half-spaces separated by the planez = 0. For
a point source this division is quite arbitrary and could equally well be made using
any other plane. Each choice of the dividing plane will, however, lead to different
mathematical values for the propagating and evanescent parts of the field in a given
point of space. In all cases the evanescent plane waves will decay exponentially in
the direction normal to the dividing plane and they will propagate in directions par-
allel to that plane. Since all the different choices of orientation of the dividing plane
must be considered as correct, the physical meaning of the decomposition of the
spherical-wave into its propagating and evanescent parts is somewhat vague. The
decomposition should be understood simply as a mathematical tool, which becomes
meaningful only when applied to a real physical situation in which the geometry of
the problem fixes the orientation of the dividing plane. In any case, one should re-
member that in a near-field measurement, the detected signal is always due to the
total field, rather than the evanescent field only.
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4 Polarization of Random Electromagnetic Fields

Theoretical means to analyze the partial polarization of planar quasimonochromatic
wave fields in terms of the2× 2 equal-time coherence-matrix or the Stokes param-
eters, was introduced by Wolf over 40 years ago [52]. He proved that for any planar
field, the2 × 2 coherence matrix can be uniquely decomposed into a sum of two
matrices, one corresponding to a fully unpolarized and the other to a fully polarized
field. This finding led to the introduction of the concept of degree of polarization
for 2D (two-dimensional) electromagnetic fields, defined as the ratio of the intensity
contained in the polarized part to that of the total field. He also pointed out that the
2D degree of polarization is a measure for the degree of correlation that exists be-
tween the two orthogonal field components. Furthermore, Wolf demonstrated that
the degree of polarization of a field can be measured by a simple experiment involv-
ing a compensator and a polarizer. Since then the degree of polarization has taken
its place as a central parameter in characterizing the polarization state of fluctuating
fields [15–19]. It has been extensively used in various polarization studies dealing
with planar fields, such as uniform, well-collimated optical beams [53] or radiated
wide-angle far fields [54,55], which locally behave as plane waves.

The original treatment of the partial polarization of the electromagnetic field is re-
stricted only to 2D quasi-monochromatic fields. Although the formalism can be
extended to include wide-bandwidth light by performing the analysis in the space-
frequency domain, little attention has been paid to the question whether the formal-
ism could be extended to cover arbitrary 3D (three-dimensional) fields, which may
have non-planar wave fronts. Such a theory would evidently be valuable in near-
field optics and in investigations of high numerical aperture imaging systems, for
example. The formulation of the 3D degree of polarization did, in fact, already at-
tract some interest in the seventies and early eighties in the works by Samsonet al.
on geophysics [56–58], and by Barakat on optical fields [59,60]. It seems that Sam-
son and Barakat were unaware of each other’s works, probably due to the fact their
investigations belong to rather different contexts. In Ref. [56] Samson approaches
the problem by investigating different expansions of the full3×3 spectral coherence
matrix. For one such expansion, he interprets the expansion coefficients as the nine
spectral Stokes parameters and defines the 3D degree of polarization in a manner
analogous to the 2D Stokes parameter expression. Much of the same was also per-
formed by Barakat in Ref. [59]. In congruence, the authors of Refs. [57,58,60] for-
mulate the 3D degree of polarization in terms of scalar invariants, which are traces
of different powers of the spectral coherence matrix and its determinant. These in-
variants appear as coefficients in the characteristic equation of the coherence matrix.
Based on such a treatment Barakat, as a matter of fact, proposes in Ref. [60] two
measures for the degree of polarization, of which one is the same as that suggested
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by Samson. More recently, the polarization of 3D electromagnetic fields has been
examined by Brosseau [19,61,62] in terms of polarization entropy, and by Carozzi
et al. [63] in terms of Stokes parameters, though the latter work concentrates on
fully polarized fields only. However, in any of these investigations no physical in-
terpretation for the 3D degree of polarization is provided. This is, perhaps, due to
the fact that, unlike in the 2D case, the3 × 3 coherence matrix cannot, in general,
be decomposed into the sum of matrices describing fully polarized and fully unpo-
larized fields. In Paper II, we demonstrate that the 3D degree of polarization is a
measure for the average degree of correlation that exists between the three orthog-
onal electric field components. This brings along a physical meaning for the 3D
degree of polarization that is analogous to the interpretation of the concept in 2D.
Moreover, in Paper II we point out an important difference between the 2D and 3D
descriptions; the value of the degree of polarization, in general, depends on the di-
mensionality of the treatment.

In this Chapter, we first recall the conventional 2D description of partial polariza-
tion, both the2 × 2 coherence-matrix treatment and the Stokes parametrization of
the field, and then review the new formalism based on the full3× 3 coherence ma-
trix that covers fields with arbitrary wave structures [Paper II]. Then as an example,
the 3D formalism is applied to analyze the degree of polarization in optical near
fields emitted by thermal half-space sources, particulary in cases where the near
field is strongly polarized due to resonant surface waves such as surface plasmon or
phonon polaritons [Paper III]. This work is the first study ever to assess the partial
polarization of optical near fields. The chapter ends with an analysis of the partial
polarization of statistically homogeneous free electromagnetic fields [Paper IV].

4.1 Degree of polarization for planar fields

We begin by outlining the conventional 2D theory for the degree of polarization.
More comprehensive overview with mathematical details can be found in Paper II,
or in many textbooks on coherence theory [15–19].

Coherence-matrix treatment

We consider a planar electromagnetic field propagating in thez direction with the
electric field oscillating in thexy plane (see Fig. 2). Since the electric field oscilla-
tion is restricted to a plane, it is adequate to describe the polarization statistics by the
2× 2 spectral coherence matrix,Φ2(r, ω), associated with thex andy components
of the field. In the matrix form,Φ2(r, ω) is written as

Φ2(r, ω) =

(
φxx(r, ω) φxy(r, ω)
φyx(r, ω) φyy(r, ω)

)
, (51)
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z
x

y

Figure 2: Illustration of a plane wave propagating in thez direction
with the electric field oscillating in thexy plane.

with the elements defined in Eq. (29). The coherence matrix in Eq. (51) can be
uniquely decomposed into a sum of two matrices, one corresponding to fully polar-
ized light and the other to fully unpolarized light. The degree of polarization of the
field can then be expressed as the ratio of the intensity of the polarized part to the
total intensity of the field. The resulting expression for the degree of polarization of
the two-dimensional field,P2(r, ω), has the form

P 2
2 (r, ω) = 1− 4 det [Φ2(r, ω)]

tr2 [Φ2(r, ω)]
= 2

{
tr [Φ2

2(r, ω)]

tr2 [Φ2(r, ω)]
− 1

2

}
. (52)

This quantity is bounded to the interval0 ≤ P2(r, ω) ≤ 1, with the valuesP2(r, ω) =
0 andP2(r, ω) = 1 corresponding to a completely unpolarized and polarized plane
wave, respectively. We see at once that the result is invariant under unitary transfor-
mations, and thus also under rotations, since trace and determinant are scalar invari-
ants under such operations. Due to Hermiticity, the coherence matrix can always be
diagonalized by a unitary transformation, and we can readily express the degree of
polarization in terms of the eigenvaluesA1(r, ω) andA2(r, ω) of the matrix

P2(r, ω) =

∣∣∣∣
A1(r, ω)− A2(r, ω)

A1(r, ω) + A2(r, ω)

∣∣∣∣ . (53)

Stokes-parameter representation

An alternative description of the 2D degree of polarization can be based on the
Stokes parameters. The 2D Stokes parametersSj(r, ω), (j = 0 . . . 3) are mea-
surable quantities that appear as expansion coefficients when the coherence matrix
is expanded in terms of the2 × 2 unit matrix σ0 and the three Pauli matrices, or
generators of the SU(2) symmetry group,σj (j = 1 . . . 3), i.e.,

Φ2(r, ω) =
1

2

3∑
j=0

Sj(r, ω)σj, (54)
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where 



S0(r, ω) = φxx(r, ω) + φyy(r, ω),

S1(r, ω) = φxx(r, ω)− φyy(r, ω),

S2(r, ω) = φxy(r, ω) + φyx(r, ω),

S3(r, ω) = i [φyx(r, ω)− φxy(r, ω)] .

(55)

We see that the first Stokes parameterS0(r, ω) is proportional to the spectral density
of the field. The parameterS1(r, ω) describes the excess in spectral density of thex
component over that of they component of the field. The parameterS2(r, ω) repre-
sents the excess of+45◦ linearly polarized component over−45◦ linearly polarized
component, andS3(r, ω) the excess in the spectral density of the right-hand circu-
larly polarized field component over the left-hand circularly polarized one [16,19].

In terms of the Stokes parameters the degree of polarization of Eq. (52) takes on
the form

P2(r, ω) =
[S2

1(r, ω) + S2
2(r, ω) + S2

3(r, ω)]
1/2

S0(r, ω)
. (56)

When the field is fully polarized, the polarization state can be geometrically repre-
sented as a point(S1(r, ω), S2(r, ω), S3(r, ω)) on a sphere of radiusS0(r, ω), the
so-called Poincaré sphere. This is illustrated in Fig. 3. The equator of the sphere
corresponds to linearly polarized light, and the north and south poles to right-hand
and left-hand circularly polarized light, respectively. In the origin of the Poincaré
sphere the field is fully unpolarized and in every other inner point partially polar-
ized.

S 1

S 2

S 3

O

S 0

Figure 3: The Poincaŕe sphere for representing the polarization state of
a planar field.
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Finally, we note that the 2D degree of polarization is closely related to the degree
of correlation, defined in Eq. (30). As was already pointed out, the value of the
2D degree of polarization does not depend on the orientation of the orthogonal two-
dimensional coordinate system in the plane perpendicular to the wave’s propagation
direction, but the degree of correlation does. One can show that

P2(r, ω) ≥ |µxy(r, ω)|, (57)

which states that the maximum value of the degree of correlation is equal to the
degree of polarization of the wave. The equality holds in a coordinate system in
which the intensities in thex andy directions are equal, i.e.,φxx(r, ω) = φyy(r, ω).
This situation can always be achieved by a suitable rotation of the coordinate sys-
tem [16,52].

4.2 Degree of polarization for non-planar fields

We now focus on the problem of how the treatment of the two-dimensional fields
could be extended to include arbitrary electromagnetic fields in which the oscilla-
tions take place in three dimensions (see Fig. 4). The following presentation with
more mathematical details can be found in Paper II.

z

x

y

Figure 4: Illustration of the field with oscillations taking place in three
dimensions.

Stokes-parameter representation

We proceed analogously to the 2D case, and expand the3 × 3 spectral coherence
matrix,

Φ3(r, ω) =




φxx(r, ω) φxy(r, ω) φxz(r, ω)
φyx(r, ω) φyy(r, ω) φyz(r, ω)
φzx(r, ω) φzy(r, ω) φzz(r, ω)


 , (58)
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with the elements given in Eq. (29), in the form [19,56]

Φ3(r, ω) =
1

3

8∑
j=0

Λj(r, ω)λj. (59)

In Eq. (59),λ0 is the3×3 unit matrix and the matricesλj, (j = 1 . . . 8) are the Gell-
Mann matrices [65] or the eight generators of the SU(3) symmetry group. The basis
matrices are Hermitian, trace orthogonal and linearly independent. The expansion
coefficientsΛk(r, ω) in Eq. (59) are explicitly written as,





Λ0(r, ω) = φxx(r, ω) + φyy(r, ω) + φzz(r, ω),

Λ1(r, ω) = 3
2
[φxy(r, ω) + φyx(r, ω)] ,

Λ2(r, ω) = 3
2
i [φxy(r, ω)− φyx(r, ω)] ,

Λ3(r, ω) = 3
2
[φxx(r, ω)− φyy(r, ω)] ,

Λ4(r, ω) = 3
2
[φxz(r, ω) + φzx(r, ω)] ,

Λ5(r, ω) = 3
2
i [φxz(r, ω)− φzx(r, ω)] ,

Λ6(r, ω) = 3
2
[φyz(r, ω) + φzy(r, ω)] ,

Λ7(r, ω) = 3
2
i [φyz(r, ω)− φzy(r, ω)] ,

Λ8(r, ω) =
√

3
2

[φxx(r, ω) + φyy(r, ω)− 2φzz(r, ω)] .

(60)

We see that the expansion coefficients are analogous to those of the 2D formalism,
and thus we call them the 3D (spectral) Stokes parameters. As in the 2D formalism,
the first Stokes parameter is proportional to the total spectral density of the field.
Moreover, we may interpret the parametersΛ1(r, ω) andΛ2(r, ω) as playing a role
analogous to the parametersS2(r, ω) andS3(r, ω) in the 2D formalism. The same
interpretation also holds for the pairs[Λ4(r, ω), Λ5(r, ω)] and [Λ6(r, ω), Λ7(r, ω)],
but in thexz and yz planes, respectively. The parameterΛ3(r, ω) is obviously
analogous toS1(r, ω), andΛ8(r, ω) represents the sum of the excess in spectral
density in thex andy directions over that in thez direction.

Three-dimensional degree of polarization

The 3D degree of polarization,P3(r, ω), can be expressed in terms of the 3D Stokes
parameters in the form

P 2
3 (r, ω) =

1

3

∑8
j=1 Λ2

j(r, ω)

Λ2
0(r, ω)

. (61)

This form is analogous to Eq. (56), and it has previously been put forward by Sam-
son [56] and Barakat [59]. On substituting the Stokes parameters of Eq. (60) into
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Eq. (61), the 3D degree of polarization can be expressed in terms of the3 × 3 co-
herence matrix as

P 2
3 (r, ω) =

3

2

{
tr [Φ2

3(r, ω)]

tr2 [Φ3(r, ω)]
− 1

3

}
. (62)

It is straightforward to verify that this quantity is bounded between0 ≤ P3(r, ω) ≤
1 [Paper II]. Moreover, we see that Eq. (62) is invariant under unitary transforma-
tions and, consequently, the value of the 3D degree of polarization is independent
of the orientation of the orthogonal coordinate system. Due to the Hermiticity, we
may diagonalize the coherence matrix and express the 3D degree of polarization in
the form

P 2
3 (r, ω) =

1
2

∑3
i,j=1 [Ai(r, ω)− Aj(r, ω)]2

[A1(r, ω) + A2(r, ω) + A3(r, ω)]2
, (63)

whereAi(r, ω), i = (1, 2, 3), are the (real and non-negative) eigenvalues of the co-
herence matrix.

The physical meaning of the expression for the 3D degree of polarization can be
established by considering its relation to the degrees of correlation between the or-
thogonal field components. One can show that the following inequality holds [Paper
II]

P 2
3 (r, ω) ≥

∑
ij |µij(r, ω)|2φii(r, ω)φjj(r, ω)∑

ij φii(r, ω)φjj(r, ω)
, (64)

where the summation is performed over the pairs(ij) = (xy, xz, yz). Equation
(64) states that the square of the 3D degree of polarization sets the upper limit to the
average of the squared correlations weighted by the corresponding spectral densities
(cf. Eq. (57)). We note that the value of the right-hand side of Eq. (64) depends on
the orientation of the coordinate system, but the left-hand side does not. The right-
hand side reaches the valueP 2

3 (r, ω) if the coordinate system is oriented in such
a way thatφxx(r, ω) = φyy(r, ω) = φzz(r, ω). Such an orientation can always be
found. In this case, the equality sign holds and we obtain

P 2
3 (r, ω) =

|µxy(r, ω)|2 + |µxz(r, ω)|2 + |µyz(r, ω)|2
3

, (65)

indicating that the square of the 3D degree of polarization is equal to the pure aver-
age of the squared correlations prevailing between the three orthogonal electric field
components in this specific coordinate system. This result is analogous to Eq. (57)
of the 2D case, and it agrees well with an intuitive physical picture of the degree of
polarization.

We remark that the expression of Eq. (61) suggests that in analogy with the three-
dimensional Poincaré sphere, it is, in principle, possible to characterize the polariza-
tion state of a 3D electromagnetic field in terms of a sphere in the eight-dimensional
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Stokes-parameter space. However, one should keep in mind that the coherence ma-
trix represents a solution to the Maxwell’s equations, although in a single point,
and therefore the Stokes parameters cannot, in general, be independent. Thus, for a
given field, only a portion of the sphere would be accessible. However, owing to the
large number of dimensions, the Poincaré sphere construction would not provide
much physical (or geometrical) intuition to the subject.

4.3 Differences between the 2D and 3D formalisms

It is straightforward to show that the two- and three-dimensional formalisms do not,
in general, produce the same value for the degree of polarization. For example, for
plane waves the 3D degree of polarization is always bounded in the interval [Paper
II]

1

2
≤ P3(r, ω) ≤ 1, (66)

where the lowest value,P3(r, ω) = 1/2, corresponds to a plane wave, which in the
2D sense is fully unpolarized. Thus, a planar field cannot be fully unpolarized in
the 3D formalism. This is as expected, since in such a field the oscillations are re-
stricted to a single plane, and consequently, when treated as three-dimensional the
field cannot have a zero degree of polarization. Furthermore, the range of values
0 ≤ P3(r, ω) < 1/2 is accessed only by 3D fields with weak correlations between
the field components. The lowest value,P3(r, ω) = 0, corresponds to the case
in which the intensities of the three orthogonal components are the same and no
correlations exist between any pairs of the electric field components. This is math-

ematically expressed asΦ3(r, ω) ∝ ↔
U .

The most intuitive understanding of the differences between the 2D and 3D for-
malisms is perhaps obtained by considering Fig. 5. In the upper part of the figure
an unpolarized 2D field, i.e., a field for which the spectral density in thex andy
directions is the same,φxx(r, ω) = φyy(r, ω), and for which no correlation exists be-
tween the two electric field components(|µxy(r, ω)| = 0), is passed through a polar-
izer. The 2D formalism gives the valuesP2(r, ω) = 0 andP2(r, ω) = 1 for the field
before and after the polarizer, respectively. Let us now consider 3D fields in a simi-
lar way. Assume a fully unpolarized 3D field (lower part in Fig. 5), which is then po-
larized by two devices each cutting off one of the orthogonal field components. For
a fully unpolarized 3D field, the spectral density in all three orthogonal directions is
the same,φxx(r, ω) = φyy(r, ω) = φzz(r, ω), and no correlations exist between any
of the electric field components, i.e.,|µxy(r, ω)| = |µxz(r, ω)| = |µyz(r, ω)| = 0.
For this field, which cannot be described in terms of the 2D formalism, the 3D for-
malism gives the value ofP3(r, ω) = 0 for the degree of polarization. When the
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Figure 5: An illustration of the differences between the 2D and 3D
coherence-matrix formalisms in treating the polarization state of an
electromagnetic field.

x component of the field is cut off by the first device, the field becomes partially
polarized. Indeed, nowφxx(r, ω) = 0, φyy(r, ω) = φzz(r, ω) with |µyz(r, ω)| = 0,
and consequentlyP3(r, ω) = 1/2. The second device then cuts off thez component
and the oscillations take place only in a single direction. Thus, the field becomes
fully polarized withP3(r, ω) = 1.

We end this section by noting that in Ref. [60] it is argued that the value of the
3D degree of polarization for plane waves equals the value obtained by the 2D for-
malism. The above discussion points out that this conclusion is mistaken. In fact,
the origin of the erroneous argument presented in Ref. [60] can be traced to an
algebraic slip when Eq. (4.5.c) is reduced to Eq. (4.7) in Ref. [60].

4.4 Partial polarization in near-fields of
thermal sources

The three-dimensional degree of polarization is a particularly useful tool for in-
vestigating the coherence properties of optical near fields. Recently, it has been
theoretically demonstrated that the spectral and spatial-coherence properties of near
fields emitted by thermal half-space sources contain interesting features. For ex-
ample, due to the evanescent waves, the near-field spatial correlation length may
be much shorter than the wavelength, or it may extend over several tens of wave-
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lengths, when resonant surface waves, such as surface plasmons or phonons, are
excited [66, 67]. Furthermore, the spectrum of the near field may differ from the
source and far-field values, and it may even be quasimonochromatic when the sur-
face waves are present [68]. Based on these results, it has been experimentally
demonstrated that by diffracting the phonon field by a grating, highly coherent, di-
rectional emission from a thermal source can be obtained [69]. Motivated by these
findings, we have assessed the influence of the evanescent waves and the resonant
surface waves on the partial polarization of the near fields of thermally fluctuating
half-space sources [Paper III].

t h e r m a l  h a l f - s p a c e  s o u r c e
x y

z

z = 0
v a c u u m

Figure 6: Illustration of the geometry used in analyzing the polarization
of the near field of a thermal half-space source. The current distribution
occupies the half spacez < 0 and the half-spacez > 0 is vacuum.

Coherence matrix of a thermal near field

We consider a thermal source occupying the half spacez < 0 and separated from
a vacuum by a sharp boundary at the planez = 0 (see Fig. 6). The source consists
of a homogeneous, isotropic and non-magnetic, lossy material, which is assumed
to be in local thermodynamic equilibrium. The thermal current fluctuations are
statistically stationary, homogeneous and isotropic, and they are explicitly described
by the fluctuation-dissipation theorem [66,68,70]

〈j∗m(r1, ω)jn(r2, ω
′)〉 =

ω

π
ε0ε

′′(ω)Θ(ω, T )δ(r1 − r2)δm,nδ(ω − ω′), (67)

whereε′′(ω) is the imaginary part of the dielectric constant of the material, and
Θ(ω, T ) is the thermal energy of a quantum oscillator at temperatureT . The elec-
tromagnetic field emitted by the source to the vacuum side can be calculated by
employing the Green tensor technique for the surface geometry [51, 70]. In short,
it consists of expressing the electromagnetic field produced by a point current as a
superposition of vectorial plane waves (cf. Eq. (39)), then propagating the plane
waves to the surface atz = 0, taking transmission into account in terms of the
Fresnel coefficients, and then propagating the waves to the observation point. The
calculation of the coherence-matrix elements in the geometry considered is outlined
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in detail in Paper III. In order to supplement the presentation of Paper III, we give
here the explicit forms of the coherence-matrix elements that were employed in the
numerical calculations:

Φij(r, ω) = 0, wheni 6= j (68)

Φxx(r, ω) = Φyy(r, ω)

= ζ(ω, T )

∫ ∞

0

|k‖|
|γ2|2Imγ2[

|ts|2 +
|tp|2|γ1|2(|γ2|2 + |k‖|2)

|ε|k4
0

]
e(−2zImγ1) dk‖, (69)

Φzz(r, ω) = 2ζ(ω, T )

∫ ∞

0

|k‖|
|γ2|2Imγ2[ |tp|2(|γ2|2 + |k‖|2)|k‖|2

|ε|k4
0

]
e(−2zImγ1) dk‖. (70)

Hereζ(ω, T ) = ω3µ2
0ε0ε

′′(ω)Θ(ω, T )/32π2, andk0 is the vacuum wave number.
Furthermore,k‖ is the wave vector parallel to the surface, andγ1 =

√
k2

0 − |k‖|2
andγ2 =

√
εk2

0 − |k‖|2 with Im γi > 0, (i = 1, 2), are the components of wave vec-
tors perpendicular to the surface in vacuum and in the source region, respectively.
Moreover,ts = 2γ2/(γ1 + γ2) andtp = 2γ2

√
ε/(εγ1 + γ2) are the (k‖-dependent)

Fresnel transmission coefficients fors- andp-polarized waves.

Surface polaritons

Resonant surface waves, e.g., surface-plasmon and surface-phonon polaritons are
mechanical collective excitations involving charges [71, 72]. Surface-plasmon po-
laritons are oscillations of the density of the free electrons in a metal, whereas the
surface-phonon polaritons are lattice vibrations, i.e., phonons in a polar material.
Since the polaritons are charge-density waves they generate an electromagnetic
field. The field decays exponentially in the direction perpendicular to the surface,
but propagates parallel to it. The propagation length may be several tens of wave-
lengths, depending on the dissipation in the medium. Thus, the surface waves can
mediate long-distance spatial correlations, and this is the physical origin of the spa-
tial correlation phenomena reported in Ref. [66, 67]. The surface waves can be
excited at the interface between the material and the vacuum provided that the per-
mittivity of the material satisfies the relation Re{ε(ω)} < −1 [71]. Onlyp-polarized
light can excite surface waves, a fact which is mathematically related to the pres-
ence of a pole in the corresponding Fresnel coefficient. The location of the pole
determines the dispersion relation for the surface polaritons at the material-vacuum
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interface [71],

k2
SW (ω) = k2

0

ε(ω)

ε(ω) + 1
. (71)

Moreover, the polariton waves are known to be highly polarized in the plane spanned
by their direction of propagation and the surface normal.
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Figure 7: Behavior of the degree of polarization as a function of
distancez from the surface for some materials atT = 300 K, (a)
0 < z < 4λ, (b) 10−3λ < z < 10−1λ.

Degree of polarization

We now apply the formalism for the 3D degree of polarization to analyze the near
field in the geometry of Fig. 6 for some particular materials. Figures 7(a) and 7(b)
illustrate the degree of polarization as a function of the distance from the surface
at wavelengthλ = 620 nm for gold and silver, atλ = 500 nm for lossy glass
and tungsten, atλ = 400 nm for gold, and at the wavelengthsλ = 11.36 µm and
λ = 9.1 µm for silicon carbide (SiC). The values of the dielectric constants of the
materials considered are listed in Paper III.

We first note that glass does not support surface plasmons or phonons and, conse-
quently, the degree of polarization in the near field for glass decays monotonically
within a wavelength and settles down to a constant value. This indicates that the
evanescent waves, which are strong only withinz < λ, have a clear effect on the
near-field polarization. At the wavelengthλ = 620 nm both gold and silver have
a plasmon resonance, and consequently, the near field is strongly polarized as is
seen in Fig. 7(a). The near-field degrees of polarization for both gold and silver
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have values as high as 0.80 and 0.88, respectively, at the distance ofz ≈ 0.2λ from
the surface. On the other hand, for gold at wavelengthλ = 400 nm, for which
Re{ε(ω)} = −1.1, the plasmon effect is greatly reduced. Similarly, in the case of
tungsten atλ = 500 nm, for which Re{ε(ω)} > −1 and no surface plasmons exist,
the peak in the near field is substantially smaller. Furthermore, as evidenced by the
curve for SiC at wavelength theλ = 11.36 µm, the surface phonons also strongly
polarize the near field. When the wavelength of light is off from the phonon reso-
nance (λ = 9.1 µm), the degree of polarization reduces significantly.

As regards the abrupt reduction of the degree of polarization immediately above the
surface in the very near field, we point out that very close to the surface the so-called
quasi-static field which depends on the distance as1/(k0z)3, starts to dominate over
the polariton or any other effects [67]. It can be analytically verified that at the
limit z → 0 the ratios of the coherence-matrix elements of Eqs. (68)–(70) are as
Φxx(r, ω) = Φyy(r, ω) = Φzz(r, ω)/2, which directly givesP3 = 1/4, regardless of
the material. This behavior is illustrated in Fig. 7(b). Furthermore, when the surface
polaritons strongly contribute to the field, one can show that the diagonal elements
of the coherence matrix are related asΦxx(r, ω) = Φyy(r, ω) = Φzz(r, ω)/2|ε(ω)|.
In Fig. 7(a), the approximative values for the degrees of polarization in the case of
strong polariton effects, are plotted as symbols+ and× for silver and gold, respec-
tively, and as∗ for SiC. As regards the far-zone values of the degrees of polarization
for the different materials (see Fig. 7(a)), we note that if the whole space would be
filled with a thermal material, the radiation in it would be isotropic. However, the
boundary surface breaks the isotropy and the way it is broken depends on the ma-
terials that constitute the boundary. Thus the far-zone degree of polarization must
be material dependent. A closely related topic is encountered in the next section,
where we examine the field inside statistically homogeneous and isotropic source
regions.

4.5 Partial polarization in homogeneous free fields

We next apply the formalism of the 3D degree of polarization to study the polar-
ization of free electromagnetic fields [Paper IV]. The field is assumed to consists of
a superposition of unpolarized (in the 2D sense) and angularly uncorrelated plane
waves, which are isotropically distributed within a cone of angles. The medium is
taken to be homogeneous, isotropic and non-dissipative. The polarization behav-
ior is analyzed as a function of the cone angle, and the important special case of
isotropic distribution within the full angle is discussed in some detail.
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Figure 8: Illustration of notations for treating partial polarization in a
homogeneous free field. The propagation direction of a plane wave,
represented by the azimuth (ϕ) and polar (θ) angles in a spherical polar
coordinate system, and denoted by the unit vectorû, is restricted to a
cone having the cone angleα. The unit vectorŝs andp̂, correspond to
thes andp polarizations, respectively.

Electric cross-spectral density tensor

The geometry and notations are illustrated in Fig. 8. The electric cross-spectral
density tensor for the field that we consider can be shown to have the form [Paper
IV]

↔
W (r1, r2, ω) = a0(ω)

∫

Ω

(
↔
U −ûû) exp(−ikû · r)dΩ, (72)

whereû is a unit vector specifying the propagation direction of a plane wave, and
the integration is performed over the solid angleΩ that covers all propagation di-
rections within the cone. Furthermore, since the plane waves are assumed to be
angularly uncorrelated, the cross-spectral density tensor depends only on the sepa-
ration of the two points of observation,r = r1 − r2, thus indicating that the field is
statistically homogeneous [74]. The assumption that the plane waves are unpolar-
ized is included in Eq. (72) through the fact that theirs- andp-polarized components
do not correlate, and that the spectral density,a0(ω), is the same for these two po-
larization directions. Furthermore,a0(ω) is independent of the wave’s propagation
direction within the cone, since the wave distribution is taken to be isotropic.

At this stage, we make an important remark to which we shall return in the next
section. Namely, when the isotropic distribution of the plane waves covers the full
solid angle, i.e.Ω = 4π, the cross-spectral density tensor of Eq. (72) takes on the
form [Paper IV]

↔
W (r, ω) =

4πa0(ω)

k
Im

[↔
G (r, ω)

]
. (73)
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Figure 9: Behavior of the 3D degree of polarizationP3(α) (solid line),
and the normalized coherence-matrix elementsφxx(α) (dashed line) and
φzz(α) (dotted line), as a function of the cone angleα.

Thus, the cross-spectral density tensor is proportional to the imaginary part of
the Green tensor of the system. By choosing the spectral coefficient4a0(ω) to
match with Planck’s law, Eq. (73) becomes identical with the cross-spectral tensor
of black-body radiation [75, 76]. Therefore, within the simple physical picture of
(in the 2D sense) unpolarized, angularly uncorrelated, and isotropically distributed
plane waves, the known results of black-body fields are recovered, without assum-
ing thermal equilibrium. We note that in Ref. [77] an analogous results was obtained
by considering a scalar field consisting of angularly uncorrelated and isotropically
distributed scalar plane waves. For this field the degree of coherence is proportional
to the imaginary part of the associated Green function, being explicitly given by a
sinc function.

Degree of polarization

The3×3 coherence matrix as a function of the cone angleα can be calculated from
Eq. (72) by first taking the limitr → 0 and then performing the angular integra-
tions. The resulting expression for the coherence matrix,Φ3(α, ω), is diagonal, as
expected for a field consisting of unpolarized and uncorrelated plane waves, with
the diagonal elements having the form

Φxx(α, ω) = Φyy(α, ω) =
πa0(ω)

12
[16− 15 cos(α)− cos(3α)] , (74)

and

Φzz(α, ω) =
πa0(ω)

6
[8− 9 cos(α) + cos(3α)] . (75)
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On substituting Eqs. (74) and (75) into Eq. (62), we find that

P3(α) =
1

4
(1 + cos α)| cos α|. (76)

The behavior of the degree of polarization and the normalized coherence-matrix
elements as a function of the cone angleα are shown in Fig. 9. Forα = 0, i.e., when
the electromagnetic field consists only of a single unpolarized plane wave, Eq. (62)
for the 3D degree of polarization givesP3 = 1/2. The conventional 2D formalism
would, of course, give a value ofP2 = 0 as was discussed in Sec. 4.2. When the
cone angleα is increased from zero, the intensities of the three field components
grow monotonically as more plane waves are included. The intensities of thex and
y components are, at first, greater than that of thez component, which, however,
with increasingα grows more rapidly. Since the three orthogonal field components
are mutually uncorrelated for all values ofα, the degree of polarization decreases
with an increasing value ofα until the electromagnetic field consists of plane waves
propagating in all directions in the half-spacez > 0, i.e., whenα = π/2. In
this situation, the intensities of thex, y andz components are the same and the
field is fully unpolarized. When the cone angle is increased further, the degree
of polarization increases again, since the energy of thez component exceeds the
energy of thex andy components. Finally, whenα = π, corresponding to the case
of unpolarized plane waves propagating into the full4π solid angle, the intensities
of the different components become equal again, and consequentlyP3 = 0. As
noted in connection with Eq. (73), the case of full solid angle corresponds to the
black-body field. Thus, the valueP3 = 0 is consistent with the common notion that
the black-body field is fully unpolarized.
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5 Electromagnetic Field Correlations
within Homogeneous and Isotropic Sources

Recent investigations show that the spatial correlations of scalar fields produced by
stationary, statistically homogeneous and isotropic sources in low-loss media have
a remarkable universal character [78, 79]. The spectral degree of coherence of any
such field in two or three dimensional space is proportional to the imaginary part
of the Green function of the system, indicating that the correlations are entirely
determined by the propagation properties in the medium, not by the source charac-
teristics. For such a field, the degree of coherence at two pointsr1 andr2 is in three
dimensions explicitly given by the sinc functionsin(k|r1−r2|)/(k|r1−r2|) [78,79],
which we later on make a reference to as the sinc law. In two dimensions the depen-
dence follows the zero-order Bessel functionJ0(k|r1 − r2|) [79]. The sinc law has
previously been found also for the low-frequency part of statistically homogeneous
planar Lambertian sources [75], and for the field within a completely incoherent
primary spherical source [80].

In Paper V, we investigate the spatial correlations in the electromagnetic fields pro-
duced by statistically homogeneous and isotropic current sources. We find that for
such fields, provided that the medium has vanishingly small absorption, the elec-
tric cross-spectral density tensor is proportional to the imaginary part of the Green
tensor of the system. Consequently, the normalized trace of the Green tensor, or
the field’s degree of coherence obeys the sinc law. This result restores the known
results of black-body fields [70, 76], but it is true for a wider class of sources, not
required to be in thermal equilibrium. Our results generalize the scalar results of
Refs. [78,79] to homogeneous and isotropic electromagnetic fields.

In the following, we outline the main steps of the calculation for expressing the
cross-spectral density tensor of the field in terms of the corresponding source ten-
sor. This result is then applied to statistically homogeneous and isotropic source
distributions and the degree of coherence and the degree of polarization of the field
produced by such a source is analyzed. We also provide a physical explanation
to the universal behavior of the correlations by making use of the electromagnetic
plane wave model discussed in Sec. 4.5.

5.1 Spatial correlations in the field produced by
a statistically homogeneous source

In a homogeneous, isotropic and linear medium, the monochromatic field and cur-
rent realizations (at the frequencyω) obey the inhomogeneous vector wave equa-
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tion,
∇×∇× E(r′, ω)− κ2E(r′, ω) = iωµj(r′, ω). (77)

Hereκ = k0n, with k0 being the free-space wave number, andn is the complex
refractive index of the medium, which is expressed asn =

√
εrµr in terms of the

relative permittivity,εr, and permeability,µr. Making use of Eq. (77), it is straight-
forward to prove that the spatial Fourier transforms of the field and of the current
density, defined by

Ẽ(k, ω) =

∫
d3r′ E(r′, ω)e−ik·r′ , (78)

j̃(k, ω) =

∫
d3R′ j(R′, ω)e−ik·R′ , (79)

are related as

Ẽ(k, ω) = − iη0

k0εr(k2 − κ2)

(
kk− κ2

↔
U

)
· j̃(k, ω), (80)

whereη0 =
√

µ0/ε0 is the vacuum impedance. Statistical homogeneity implies that
the different Fourier components of the (infinite) source are delta correlated, and
we find the following expression for the electric cross-spectral density tensor of the
field fluctuating in the low-loss medium [Paper V]

↔
Wee (r, ω)=

η2
0µr

ε′′r

(
↔
U +

1

κ2
∇r∇r

)
·
∫

d3R
↔
Wjj (R, ω) · Im

[↔
G(r−R, ω)

]
. (81)

In this equation the parameterε′′r denotes the imaginary part of the relative per-

mittivity, and
↔
G (r − R, ω) is the associated Green tensor, given in Eq. (34) for

κ = k0. The tensor
↔
Wjj (R, ω) is the cross-spectral density tensor of the source,

which, due to the homogeneity depends on the differenceR = R1 − R2 between

two source pointsR1 andR2. Furthermore,
↔
Wee (r, ω) depends only on the separa-

tion r = r1 − r2, indicating that the field generated by a statistically homogeneous
source is also statistically homogeneous.

5.2 Spatial correlations in the field produced by
a statistically homogeneous and isotropic source

The general expression for the cross-spectral density tensor of a source, which is
not only statistically homogeneous, but also isotropic, is of the form [81,82]

↔
Wjj (R, ω) = A(R, ω)

↔
U +B(R, ω)R̂R̂, (82)
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whereA(R,ω) andB(R, ω) are scalar functions, and̂R = R/R with R = |R|.
In fact, the functionsA(R, ω) andB(R, ω) are not entirely independent, but are
connected by a continuity equation. Equation (82) is symmetric and its form is in-
variant under rotation of the coordinate system.

By inserting Eq. (82) into Eq. (81) one finds that [Paper V]

↔
Wee (r, ω) =

4πη2
0µr

ε′′r
[CA(ω) + CB(ω)] Im

[↔
G(r, ω)

]
, (83)

where the spectral coefficients are

CA(ω) =

∫ ∞

0

dRR2A(R,ω)j0(κR), (84)

and

CB(ω) =

∫ ∞

0

dRR2B(R, ω)
j1(κR)

κR
, (85)

with jl(κω), l = 0, 1, being spherical Bessel functions of the first kind and of order
l.

Degree of coherence

Equation (83) shows that the spatial correlation properties of an electromagnetic
field generated by any statistically homogeneous and isotropic source distribution
within a low-loss medium are determined by the imaginary part of the Green ten-
sor of the system. In particular, the normalized trace of the electric cross-spectral
density tensor, often regarded as the electromagnetic field’s degree of spatial coher-
ence [75,83–85], assumes the form

µee(r, ω) =
tr

[ ↔
Wee (r, ω)

]

tr
[ ↔
Wee (0, ω)

] =
sin κr

κr
=

4π

κ
Im [G(r, ω)] , (86)

wherer = |r|, andG(r, ω) is the spherical wave given by Eq. (35) withk0 replaced
by κ. Equation (86) shows that the degree of coherence of the field does not depend
on the source characteristics, but on the propagation properties of the field in the
medium. This result generalizes the scalar results of Refs. [78, 79] to the case of
homogeneous and isotropic electromagnetic fields.

We noted in Sec. 4.5 that for a field consisting of a superposition of unpolarized, an-
gularly uncorrelated plane waves which are isotropically distributed within the full
solid angle, the electric cross-spectral density tensor is proportional to the imaginary
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part of the Green tensor (see Eq. (73)). Thus, the correlations in such a field also
obey the sinc law of Eq. (86). Furthermore, the fluctuation-dissipation theorem for
the source correlations, Eq. (67), is of the form of Eq. (82). Therefore, for the field
generated by a source for which the correlations obey the fluctuation-dissipation
theorem and which occupies the entire space, the correlations are characterized by
the sinc law. For the thermal half-space source considered in Sec. 4.4, the isotropy
is, however, broken due to the boundary surface, and consequently the sinc law is
not found.

Degree of polarization

To calculate the 3D degree of polarization for a field with spatial correlations pro-
portional to the imaginary part of the Green tensor, we take the limitr → 0 in
Eq. (83) and obtain for the coherence tensor

Φ3(ω) =
2κη2

0µr

3ε′′r
[CA(ω) + CB(ω)]

↔
U . (87)

This, when inserted into Eq. (62), yieldsP3(ω) = 0. Thus, the field within any
statistically homogeneous and isotropic current distribution is fully unpolarized. To
a good approximation, this result holds also for the field at points well inside a
large, but finite, source region. On the other hand, the far field produced by a large
statistically homogeneous and isotropic source domain is, in the 2D sense, fully
unpolarized in every direction [Paper V]. This corresponds to the valueP3(r, ω) =
1/2 in the 3D formalism. Therefore, the value of the 3D degree of polarization
increases fromP3(r, ω) = 0 to P3(r, ω) = 1/2 when the observation point moves
from inside the source to the far zone.

5.3 Comparison with a plane-wave model

Physical insight into the universal behavior of correlations in electromagnetic fields
can be obtained by considering the field inside an infinite, statistically homogeneous
and isotropic source domain as a superposition of plane waves. The arguments are
parallel to those presented in Ref. [77] for the scalar case, but go somewhat beyond
those because of the vectorial nature of the electromagnetic field.

Since the medium has a small but non-zero absorption, the field correlations ex-
tend effectively over a finite region in the neighborhood of a given source point.
Therefore, we may think of the whole infinite source as being divided into finite,
uniformly distributed, and mutually uncorrelated domains whose dimensions de-
pend on the correlation length. We refer to these domains as source correlation
regions. Each source correlation region produces an electromagnetic field, which
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at large distances behaves approximately as a plane wave. Thus, in any observation
region, the contributions from the (very) distant parts of the source can be viewed
as consisting of a superposition of isotropically distributed and angularly uncor-
related plane waves. For source regions containing statistically homogeneous and
isotropic current distributions, these plane waves are also fully unpolarized in the
2D sense [Paper V]. In Sec. 4.5 we found that for a field consisting of unpolar-
ized, angularly uncorrelated and isotropically distributed plane waves, the spatial
correlations are determined by the imaginary part of the Green tensor (Eq. (73)).
Hence, the plane-wave model and the calculations presented in this section show
that the field correlations in any observation region are determined by the distant
contributions. Although the local currents at every point also generate a near field,
with the associated correlation tensor having both real and imaginary parts [Paper
I], this contribution from a statistically homogeneous and isotropic current in an
infinite low-loss or non-absorbing medium is negligible as compared to the propa-
gating far-zone contributions. Thus, despite of the local current sources, the field at
any point behaves effectively as a free electromagnetic field.

When the losses are significant, the correlations do not show any universal behavior
as noted in Ref. [79]. This can be physically explained by using the plane-wave
model discussed above. In the presence of losses, the contribution to the field from
the distant source correlation regions weakens in relation to that from the nearby
regions. Consequently, the plane-wave model no longer describes the physical situ-
ation, and no universality is found.
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6 Summary and Conclusions

In this thesis, certain fundamental issues related to optical near-fields are studied.
The nature of the evanescent and propagating field components generated by a
point-dipole source are discussed. The concept of three-dimensional degree of po-
larization is introduced to cover electromagnetic fields having arbitrary planar or
non-planar wave structures. Its physical interpretation is presented, and the differ-
ences compared with the conventional two-dimensional theory are brought out. The
theory is applied to investigate the effects of evanescent waves and resonant surface
waves on the polarization state of the near fields generated by some thermal half-
space sources. The novel theory for the three-dimensional degree of polarization is
expected to be particularly useful for the polarization studies of random electromag-
netic fields having three orthogonal field components, such as optical near fields.

The thesis also includes a study of the partial polarization and spatial correlation
properties of homogeneous free electromagnetic fields. The fields are modelled as
an isotropic distribution of angularly uncorrelated and in the 2D-sense unpolarized
plane waves propagating within a solid angle. In the case of the full solid angle, the
spatial correlations are found to be determined by the imaginary part of the associ-
ated Green tensor, and the field is fully unpolarized in the three-dimensional sense.
These results are the same as for black-body fields, although no thermal equilibrium
was assumed. The same behavior is discovered for any electromagnetic field gen-
erated by a statistically homogeneous and isotropic current distribution fluctuating
within a medium having vanishingly small absorption. For the fields whose electric
cross-spectral density tensor is proportional to the imaginary part of the Green ten-
sor, the degree of coherence is of a universal form given by the sinc law.

In the thesis, we could only treat a restricted number of issues relevant to obtain-
ing a thorough understanding of the coherence properties of the optical near fields.
In fact, several interesting research subjects emerged during the work, such as the
question on how many of the generalized Stokes parameters needed to describe the
three-dimensional degree of polarization really are independent and what are their
explicit connections. How the three-dimensional degree of polarization, or the near-
field Stokes parameters, could be measured is an issue of particular importance in
near-field optics. Furthermore, it is known that the 2D degree of polarization is
related to the entropy of the field. What is the corresponding relation between the
entropy and the 3D degree of polarization is an open question. In addition, an in-
vestigation on the effects of dissipation on the spatial correlation of fields within
statistically homogeneous and isotropic source regions would be of genuine inter-
est.
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Abstracts of Publications I-V

I. In near-field optics the resolution and sensitivity of measurements depend on
the abundance of evanescent waves in relation to propagating waves. The
electromagnetic field propagator is related to the scalar spherical wave, for
which the Weyl expansion is a half-space representation containing both evan-
escent and homogeneous plane waves. Making use of these results we de-
compose the dyadic free-space Green function into its evanescent and homo-
geneous parts and show that some approaches put forward in the literature
are inconsistent with this formulation. We express the results in a form that is
suitable for numerical computation and illustrate the field decomposition for
a point-dipole in some typical cases.

III. We investigate an extension to the concept of degree of polarization that ap-
plies to arbitrary electromagnetic fields, i.e., fields whose wavefronts are not
necessarily planar. The approach makes use of generalized spectral Stokes
parameters that appear as coefficients, when the full3× 3 spectral coherence
matrix is expanded in terms of the Gell-Mann matrices. By defining the de-
gree of polarization in terms of these parameters in a manner analogous to
the conventional planar-field case, we are led to a formula that consists of
scalar invariants of the spectral coherence matrix only. We show that attrac-
tive physical insight is gained by expressing the three-dimensional degree of
polarization explicitly with the help of the correlations between the three or-
thogonal spectral components of the electric field. Furthermore, we discuss
the fundamental differences in characterizing the polarization state of a field
by employing either the two- or the three-dimensional coherence-matrix for-
malism. The extension of the concept of the degree of polarization to include
electromagnetic fields having structures of arbitrary form is expected to be
particularly useful, for example, in near-field optics.

III. We introduce the concept of degree of polarization for electromagnetic near
fields. The approach is based on the generalized Stokes parameters that ap-
pear as expansion coefficients of the3 × 3 coherence matrix in terms of the
Gell-Mann matrices. The formalism is applied to optical near fields of ther-
mally fluctuating half-space sources with particular interest in fields that are
strongly polarized owing to resonant surface plasmons or phonons. This novel
method is particularly useful when assessing the full vectorial characteristics
of random evanescent fields, e.g., for near-field spectroscopy and polarization
microscopy.
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IV. We consider stationary electromagnetic fields modelled as superposition of
unpolarized and angularly uncorrelated plane waves and show that in an iso-
tropic case the electric cross-spectral tensor is proportional to the imaginary
part of the Green tensor. This is as for black-body radiation but here the field
need not be in thermal equilibrium. We also evaluate the degree of polar-
ization for a homogeneous but non-isotropic field for which the plane waves
propagate within a cone of angles. The results are compared with the known
polarization properties of black-body radiation.

V. We investigate the structure of second-order correlations in electromagnetic
fields produced by statistically stationary, homogeneous and isotropic current
distributions. We show that the coherence properties of such fields within a
low-loss or non-dissipative medium do not depend on the source character-
istics, but are solely determined by the propagation properties, and that the
degree of coherence of the field is given by the sinc law. Our analysis repro-
duces the known results for blackbody fields, but it applies to a wider class of
sources, not necessarily in thermal equilibrium. We discuss the physics be-
hind the universal behavior of the correlations by comparing the results with
those obtained by an electromagnetic plane-wave model.
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