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Figure 2.3 The quality machine for a design center

Modern thinking is demanding indicators and established measurements of each process to evaluate
their adherence to process definition, performance and the effects of process improvement actions.

The Capability Maturity Model (CMM) “meter” is measuring the internal maturity of the entire software
process. In order to get the CMM “meter” to display as high maturity as possible (out of five maturity
levels), also some improvement in measurement practices is needed. Requirements for achieving
levels 4 and 5, concerning measurements, are therefore analysed in Section 4.1. It is expected that
high maturity that is indicated by the CMM “meter” should lead to lower fault density (F/KNCSS) and 
higher customer satisfaction.

TQM, Total Quality Management, provides tools for root-cause and statistical analyses and thus
relates closely to the utilisation of measurements. TQM is described in more detail in Section 4.4.

However, in order to get the "machine" (like in Figure 2.3) running we need to characterise
measurement activities in a more detailed level. The following framework (Figure 2.4) illustrates wider
modelling perspective we take in this thesis.

PLAN
             MEASUREMENTS

    DEFINE 
             MEASUREMENTS

PERFORM
             MEASUREMENTS

UTILISE
              MEASUREMENTS

Figure 2.4 Measurement model framework

Models for planning and definition of measurements are discussed in Chapter 6. A case example of 
an existing model to define and perform measurements is found in Section 2.3. Renewed models how
to perform and utilise measurements are presented in Chapter 7.

2.3. Existing quality measurement process 

2.3.1. Presenting a practical process example

The simplified model in Figure 2.3 does not specify exactly when and what is measured. In order to
keep the measurements running, some kind of measurement process, as shown in Figure 2.5, is a 
necessity. Here we present an example of an older process outline that has been in use for many 
years prior to the present study.
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Figure 2.5 Measurement process 

In Figure 2.5, Definition of Data and Results represents Measurement development activities for 
establishing measurement methods and tools. Development (either basic or further) starts from goals
stated by the management, from new needs to see the influence of improvement actions or from other 
ideas to change the metric system. Development leads to accepted, well-defined and documented
definitions for data and results.

The lower part illustrates the actual measurement practices for collecting, storing and exploiting data. 
The entity in Figure 2.5 presents a local adaptation of Ericsson’s PQT principles (see Appendix 3). It is 
composed of some components that are common also elsewhere in the industry. For example,
collection forms and databases are used at HP (Grady, 1987, 1992). It is generally applicable to big
industrial companies when a common “language” and a consistent method is important, for example,
due to geographically distributed organisation structure.

Input and Data collection 

According to our experience from use of the presented process model, standard Data Collection 
Forms help to ensure completeness and validity of data. Collection is Event-controlled i.e. all data shall
be reported as it becomes available at the time of the event (Figure 2.6).
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Figure 2.6 Data collection flow 
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In order to learn about good quality, those products that have been faultless, especially during all the
three phases (FT+ST+6MO), are identified and listed from the database. The reasons that lead to a 
faultless product are analysed. This is important in order to acknowledge the quality work of the 
designers involved.

3.2.2. Examples of process performance indicators 

There are a lot of activities that are repeatable. When improving their quality we should focus on
process quality issues. In the following, we describe a number of process-oriented measures at 
Ericsson world.

Quality seen after the end of the design process based on mean fault density

Let us assume that Function Test, the first extensive independent test phase, is in general thoroughly
done. Then the mean fault density measured can be used to characterise the quality of the previous
design process. Thus, the mean fault density for a given organisation can be defined as the total
number of faults found in Function Tests divided by the sum of the total volume of products which the 
organisation has been responsible for (i.e. developed and released during a certain period).  This is a
good indicator of the overall process performance.

Precision

The quality of the entire development process is characterised, among other factors, by delivery
precision, which can be defined as the percentage of delivery units ready on time. This measure can
be applied to any type of released software units.

Quality in Trouble Report and Correction handling 

Quality of Trouble Report and Correction handling process is measured with three distinct figures: 

Backlog of unanswered Trouble Reports,
Percentage of answered Trouble Reports within time limit (e.g. 90% within 2 weeks), and 
Percentage of faultless corrections.

Results, which have, during past years, not been systematically stored into measurement database,
but that are usually available in project and Test reports, are as follows: 

Test detection rate 

Useful quality metrics for the Test process is the Fault removal rate as Faults/man-hours or as
Faults/Testcase. An essential matter in traditional testing of software is to find faults. Testing never
guarantees that no faults are left. Final indication of Test detection rate can be seen afterwards by 
using a simple percentual capability metric:

  Faults detected in tests
Test detection rate = 100  --------------------------------------------------------------- (%)

All faults detected in both tests and operation

In the equation, "all faults" denotes the sum of faults detected in the Function Tests, System Tests and
during the first 6 months after external release.

Inspection detection rate 

Some projects have reported inspection data in Quality reports.  An example for a process
measurement concerning inspections is detection rate, which is defined as follows: 

    Faults found in inspections
Inspection detection rate = 100  -------------------------------------------------------- (%)

All faults
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In the equation, "all faults" denotes the sum of faults detected in the inspections, Basic Tests, Function
Tests, and System Tests and during the first 6 months after external release. In fact this metric
represents a kind of early detection rate similar to LORAL's early detection rate (see Section 3.1.3). 

Examples of other measurements regularly reported 

Table 3 contains five other measurements characterising software design.

Table 3.   Examples of measurements

Attribute Measurement
Quality costs in SW design Percentage of  quality man-hours / all design man-hours
Occurrence of  risky products Ratio of "stinker" modules based on statistical control limits
Occurrence of  top quality products Percentage of zero fault modules
Duration of projects Lead time in man-months
Productivity Volume in KNCSS / man-hours spent 

3.3. Case examples considering the presentation and usage of results

In the previous section we defined some indicators which have been used in practice. The intention in
this section is to give a few examples of how to learn about results derived up to now. This is
discussed below in the light of three case examples showing the way of graphical presentation and the
usage of measurement results in Quality reports (described in Appendix 4). 

3.3.1. CASE 1. Fault density in Function Test

In the Ericsson's quarterly Quality reports, created by the quality manager and distributed to the line
management, the following trend curve (Figure 3.1) has been presented.

Figure 3.1 Mean fault density7

The curve represents a “rolling average” (or "moving average" as it is also known in statistical quality
control (Montgomery, 1991)). After termination of each quarter, the mean fault density for the four
preceding and finished quarters is calculated and the curve is updated. The method is suitable when
only a small sample of statistic material is available during each particular quarter. Thus, the 
“expected” result for the on-going year is visible all the time. On the other hand, the curve “hides” the
short-term  statistical variations. The results are regularly analysed by the management. 

7 Note  the decreasing scale of Y-axis showing high quality to go upwards
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Until 1987, there were many years of positive quality improvement, but e.g. rapid expansion and
movement into new areas of software development caused quality to turn downwards. As a
conclusion, actions were taken, for example by implementing:

Yearly quality improvement programs,
Extended fault analyses,
Tool and method improvements,
Training  “just in time”, and
Planning of quality assurance activities (e.g. inspections).

This resulted in a slowly improving quality. In early 1990's the trend has continued, still with some
statistical variations. The quality during the past few years has proved to be quite constant. Thus it
indicates that the process has become mature enough and the organisation has succeeded to use the
process in a proper way.

3.3.2. CASE 2. Classification of modules by the number of faults

We can classify a sample of modules that passed their Function Test during a certain period  (in this 
case during 1992-1994, a bigger sample of material included in Figure 3.1) to know how many faults 
are detected. The graph in Figure 3.2 represents the pareto of modules by number of faults found in
Function Test.
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Figure 3.2 Pareto of modules

It clearly shows that 60 % of modules are of excellent quality (0 or 1 faults) and about one fourth has
high number of faults (> 3). There are 30 modules (out of 326 modules, i.e. less than 10%) in which
more than 10 faults were found. 

As an example of actions taken by the management, an initiative was taken to produce a list of low 
quality modules from the database in order to analyse in more detail whether the modules were really
bad or not. Correspondingly, a list of faultless modules was decided to be published because there is 
a good reason to use such information for rewarding purposes.

3.3.3. CASE 3. Fault density for first 6 months after delivery 

Figure 3.3 shows one of the most frequently used graphs of those defined in the original version of the
PQT Manual (Ericsson, 1992). Fault density for the first 6 months is a typical indicator of final quality.
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Figure 3.3 Example of a PQT graph - Mean fault density

The graph includes a collection of PLEX modules that passed their first 6 months after delivery to the
customer since 1993. It is most useful when a significant sample of statistical material per period is
available (e.g. several tens of modules per quarter).

The  square-marked line indicates the average fault density as faults per kPLEX statements (see the
scale on the right y-axis). This average, as presented here on quarterly basis, is also used to see the
fulfilment of improvement goals (e.g. ESSI goal mentioned in Section 1.2). The bars referring to the 
scale on the left y-axis indicate maximum and minimum fault density. (Two y-axes are needed
because the maximum values are usually greater than averages). The line between the two parts of
each quarterly bar visualises the 95% fractile (0,61 for 96 quarter 1). The upper part of the bar thus
represents the 5% of modules that have the highest fault densities.

It can be seen that the trend is decreasing even though there are quarterly variations. The modules
that represent the highest fault densities are easy to list from the database in order to investigate and
to take remedial actions.

3.4. Lessons learned at Ericsson in Finland 

Since the measurement tradition has been long, some early experience and impressions are available
on measurements (listed in Appendix 6). In connection with this study, some recent experience from 
management and quality people has been further surveyed. Positive experience from management
(Section 3.4.1) includes aspects from measurements in early 1990’s (Antman, 1993 and Hirvensalo,
1993). For improving the measurements, we performed a few expert interviews in order to know what
has gone well, and what difficulties and problems have been experienced. The main argument in
selecting interviewees was that they represented two major areas of software design, and that they 
had a close contact to measurements and quality. Two senior designers (Jauhiainen, 1996, Panula, 
1996) have especially supported the experience collection.

We used a questionnaire consisting of seven specific questions. The questions concerned information
distribution and awareness of existing measurements, strengths and weaknesses of measures,
confidence in measurement results, their usage at departments, and obstacles to using. The rest of
questions included suggestions for improving measurements and knowledge about driving factors and 
the dependencies influencing the results in a development organisation. Experience gained from
management and quality personnel is discussed in Section 3.4.2 because it contains aspects based
on numerous contacts with management and our own experience within quality management (e.g. as
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a member of R&D Division’s quality co-ordination network). The comments that were received from 
experts are discussed in Sections 3.4.3 and 3.4.4. Finally, we discuss the issue of obstacles 
separately in Section 3.4.5 in order to define improvement objectives. 

3.4.1. Positive experience from management and quality personnel 

Reviews of measurement results in management and expert groups raise new questions: “What, Why, 
How? What are the real causes behind?” etc. For example, the following concrete questions have 
arisen:  “Are the most faulty modules also fault-prone in the field?” and “Are the non-faulty modules in 
tests still faultless in the field?”. These types of questions can be considered as an indication of a 
desire to learn more. Sometimes the questions, as specified above, need a separate study. For this 
reason, the present study includes a deeper analysis of these two questions (see Sections 5.4.4 and 
5.4.5).

Perseverance in systematic data collection has made it possible to use statistical methods to learn 
more from results.  When the organisation has defined what data is a reasonable object for gathering 
then the collection activities are to be performed toughly and consistently in order to get good enough 
samples of statistical material.  Without toughness, year by year, project after project, the material is 
imperfect and less reliable for statistical analyses.   

Regular measurements have ensured that history is recorded in accordance with ISO9000. Quality 
records and maintained databases help to trace the quality and to see long-term trends. Measurement 
results have been considered as an important part of "Quality records” which are a repository required 
by the ISO9001 standard. Recorded history has helped to assure that the specified quality level has 
been achieved, the trends are known, and also the quality of those software modules that are re-used 
can be traced.  

We get some support for the benefit of measurement as we mentioned in Section 1.1:  “Decision-
making and design is based on facts instead of opinions”.  Measurement results have provided facts 
and hard figures, for example, in baselining and goal setting (e.g. fault density objective values). The 
department manager report (see Appendix 5) shows a way of using yearly objective values in 
connection with measured figures. In addition to this  “A4 pager”, the measurement system generates 
more detailed calculations for projects and organisational units and thus provides knowledge for 
analysing what has happened during software design.     

Management has been able to observe improved quality awareness due to measurements. When 
measurements are going on, or even when they are being planned or started, this has a positive effect 
on quality and result awareness. This has been experienced very early when the first measurements 
were started, but also later when new measurements have been launched.   

Measurements provide a better possibility to give feedback about the work. For example, 
measurement material has made it easier to identify top quality software modules, to reward good 
success in projects, and to encourage people to become even better in their design skills. 

3.4.2. Difficulties experienced by management and quality personnel 

First, the management thinks that the existing measurements have provided too narrow focus 
regarding the whole business within software product development. Prior to this study measurements 
have focused too much on observed fault density and PQT, not enough on customer and people 
satisfaction and process. Based on this experience we analyse customer satisfaction issues in Section 
3.7.

Second, the way of presenting the results to the management has become a problem. Measurement 
results have been presented with too many details on upper organisational level - this has caused 
some tiredness in Management Reviews. Ways of highlighting the results for upper managers should 
be improved. Management’s decision making problems have also appeared when upper level 
managers and lower level managers get together to discuss all measurement results within the R&D 
division. It has been difficult for upper level management reviews to make decisions based on results 
because analysed results from lower level organisation have been missing. This has also been a 
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scheduling problem. Root-cause analyses and conclusions from the influencing lower level 
organisations should be available before the corresponding upper level management meeting is held. 

Third, the lack of management understanding came up in interviews. The quality manager also 
experienced this problem. Misunderstanding of calculation rules for graphical representations has 
sometimes occurred. In principle, the rules have been available in measurement manual but not 
enough known or not read at all by the managers. This has taken place, for example, in management 
review meetings. 

As a fourth difficulty, quality people have experienced that data collection and report preparation 
requires time in order to get reliable results. When data has to be collected from different sources 
(time reporting, trouble report databases, and source libraries), partly manually, it takes time. 
Producing graphs and inserting them into Quality reports is time consuming. Thus, some improvement 
in data retrieval and visualisation is needed. 

Finally, quality people have often faced problems with incorrect or missing input data. Data is not 
correct in the database because it has been collected carelessly. In some cases it has become 
obvious that data collection instructions were not read and therefore the data on collection forms has 
been incorrect. Input data is sometimes missing or not delivered to “measurement operator” in time at 
the event when it becomes available.  

3.4.3. Positive experience from senior designers and experts 

Concerning information distribution and awareness of existing measurements the experts answered 
that project managers are quite well aware about how quality is measured today. Quality 
measurements have been specified in Quality Plans of projects. Project managers and designers 
have regularly filled in the collection sheets. Measurement results have been presented in Final 
reports and in Quality report of projects.  

Measurements are documented well enough. As there has been a Measurement Manual with 
consistent definitions of measures it was concluded that the documentation is good enough. The 
measurement practices have been covered in the Operational Binders of the departments. 
Measurements after completion of design are quite well in order. Design results are observed during 
Function Test, and Faults/kPLEX as a measure in Function Test is well known, accepted and used. 
Instructions and support have been available for collection. 

According to experience, Trouble Report/Correction handling works well, and makes it easier to collect 
measurement data. At Ericsson, all Trouble Reports containing detailed information of each accepted 
fault and their correction documents were registered by the designer directly into a company wide 
database during the past years. Trouble Report and Correction measurements by using a new 
automated collection tool on workstations work better than the tool on a mainframe. On a workstation, 
it is easier to fill-in a Trouble Report e.g. by using templates and copy and paste facilities.  

3.4.4. Difficulties experienced by senior designers and experts 

The first difficulty has been that measurements are not well understood on the line management level. 
Senior experts have experienced that the meaning of some metrics has proved to be unclear to their 
line managers. In spite of well-documented practices, the line managers do usually not have enough 
time to read measurement definitions.  

Second, the experts pointed out that measurement related training and information distribution is not 
enough available. The collected experience has shown that it is necessary to know more clearly the 
responsibilities of data collection, when and why to do it, what are the results used for, etc.  We can 
draw a conclusion that training and dissemination should be a continuous process considering both 
new and existing people.  

Next aspect, that has been experienced to be a major issue, is that not enough data is collected and 
used during design. For example, knowledge from inspections is not utilised. Minutes of inspection 
meetings would provide a lot of information about the phase of detection, the types of defects, the 
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rework effort, etc. Lack of a tool for planning and handling the inspection data has been one reason for 
this difficulty.  As a suggestion for improvement the development of such an inspection-planning tool 
has come up.  

Lack of  “driving metrics” during design is a reason for why the measurement results are not used that 
much on department levels.  A good  knowledge  of which parameters (or factors) drive towards good 
quality, which ones lead to bad quality is missing. Such software metrics relating to driving factors are 
not systematically collected. This is an important task because by using such metrics it would be 
possible to influence on final quality better.  

Certain measurement difficulties have often appeared in small fast projects. In smaller projects the 
standard design process is not always perfectly followed. For example, use of tollgate/milestones may 
differ from standard process, which is mainly intended for big projects. This is a typical issue in local 
design projects. Measurements (e.g. PQT) are based on the standard process and therefore the data 
provider should make some adaptations and interpretation in the data collection phase. 

As a question it was stated  “How good is designers’ confidence in measurement results“. So, we 
collected answers regarding data quality.  There are negative aspects that lessen confidence in 
reliability of measurement results in some cases. Sometimes it has been difficult to get correct data on 
planned and actual dates due to unexpected changes in project situation. Another difficulty has been 
to know exactly when the customer has put the product into operation.  

3.4.5. Obstacles of linking measurement results to the design process 

In order to develop utilisation it is reasonable to find out obstacles of utilising measurement results. 
When interviewing experts we therefore introduced one question in the questionnaire concerning 
utilisation: “What hinders of utilising do you see at your department”.  We derived five essential groups 
of issues based on received answers and on our own experience. Our intention is to take these 
collected views into account in Chapter 7 where a new utilisation model is created and utilisation 
process is improved. 

First, matters like low confidence in results and doubts about reliability of some collected data items 
have lead to a negative attitude in some cases. There is a doubt that the measurement does not really 
reflect our own performance or that it includes foreign drivers from other co-operating parties. There 
also appears to be a lack of trust whether the metrics used are expressing the behaviours of the 
processes well enough. 

Second, we face another attitude issue. Measurements are considered to be a mandatory activity, 
only initiated by the top management. For this reason, there is a lack of thinking like “the 
measurements are for us”. It is not seen as a help in improving one’s own organisation or one’s own 
work.

Third obstacle relates to understanding and awareness. Metrics are not understood well enough 
which makes it difficult to interpret results. Line management has not always been good in improving 
awareness about the meaning of different indicators. People are unaware about the purpose and 
benefits of each measurement within the organisation, because enough information is not spread (e.g. 
how the goals were met).  
    
Fourth, the experts felt that the lack of measurement data from early phases hinders the 
understanding of couplings between final quality and real driving factors. It is difficult to analyse 
correlation because the available data is incomplete. Some existing metrics are too coarse for project 
planning purposes and for derivation of planning constants. According to an earlier study (Rautakorpi, 
1993), several existing measured attributes (e.g. modification grade, man-hours, type of product) are 
inadequate predictors (regressors) for quality. As an obvious cause, the lack of instructions and rules 
that are derived from measured facts complicates the transfer of knowledge from theory to practice. 

Fifth, other obstacles regarding statistical significance, time allocation matters and access to the 
measurement system came up. Too small amount of quarterly statistical material on department level 
hinders from drawing any general conclusions. Due to time allocation problems, not enough time is 
allocated for analyses and to thinking about conclusions e.g. in teams. Finally, we draw a conclusion 
that one big obstacle is poor multi-user access to measurement system/database. If the users at 
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departments are not able to produce their own statistics for deeper analyses, it makes utilisation much 
more difficult. 

3.5. Needs for further development of measurements 

3.5.1. Early needs to add company specific new measurements 

Expectations from departments were collected by making interviews in autumn 1995 and inquiries in 
electronic mail in spring 1996 (Hirvensalo, Nygren, 1996). This summary also includes the answers to 
a paper form inquiry collected by the quality group.  Both department and quality managers 
participated in this investigation. Development suggestions were also received from some individual 
designers. People working with testing have also given very useful input. The needs identified on 
different organisational levels are presented in Tables 4, 5 and 6. 

Table 4.   Department level needs from PQT perspective 

Improvement area Development need 
Software metrics  High Level PLEX (HLPLEX) volume and modification grade measurements 

PQT measurements for C and C++ software 
Faults after end of the first 6 months in operation  
Faults tied to subsystem and function block level   
Trouble Report severity and consequences in service  
Requirement stability  
Process measurements, measurements for  “fast-track” activities  
Further development of department specific metrics 

Inspections Inspection man-hours and remarks per process stage 

Search of data from 
measurement database 

Subsystem name as a search parameter 
Measurements per subcontractor 

Connections to  other tools and 
databases

Delivery date retrieved from Product Information Management database 

Engineering and 
Installation support 

Delivery precision for correction packages  
Subproject specific measurements 
Ratio of released and inserted Approved Corrections (ACs) 
Quality of  Approved Corrections inserted to customer packages 
“In-Service Performance"  (e.g. number of restarts)  

High Level PLEX (HLPLEX) is a high-level design language by which the programmer specifies 
module functions. As HLPLEX was published after the introduction of the first measurement system, a 
need to add volume and modification grade measurements arose. Besides the wide use of PLEX 
language, some departments started software development in C and C++ languages. Therefore, new 
measure types became necessary. PQT measurements for C and C++ software needed an expansion 
in the measurement system to allow volume and modification grade measurements, and the 
corresponding output graphs. Faults after end of the first 6 months in operation reflect the expectation 
to get a longer measurement period, e.g. 7-12 months in operation, and even from 13th month until the 
end of the product life cycle. The motivation was that the existing 6-month period was experienced to 
be too short for covering a broad operation. Thus, the number of faults detected at the customer 
during 7-12 months might express the final quality better.   Trouble Report severity and consequences 
in service means that the faults should be classified by their effects on  “In-Service” Performance 
(ISP). The existing measurement data model did not allow any separate storing of faults having an 
effect on ISP, but all operational faults were stored in the same data field. It is necessary to count the 
Faults tied to subsystem and function block level because certain faults can not be related directly to 
an implementation module. The existing measurement system handles faults detected only in 
implementation modules, on which the majority of trouble reports are written. Requirement stability is 
an essential driving factor in many projects, and therefore needed. It is important background 
information in analyses to understand why the measurement results look the way they do.

The need for process measurements reflects expectations to get more detailed data collected from 
software engineering processes. Further development of department specific metrics is necessary, 



27

because the departments often use their own measures that might differ from standard measures 
depending on the application area and project specific goals. A need to improve the inspection 
process came up, e.g., in ESSI and therefore new measurements were a necessity.  At least, 
inspection man-hours and the number of detected defects (remarks) were needed to be included in 
the measurement system.  

Delivery date retrieved from Product Information Management database (PRIM) automatically, instead 
of asking it from the customer support organisation, has frequently been requested. Delivery date to 
the customer means the RFA date (see Section 2.1.1) when the modules are delivered to the first 
customer. Product Information Management database is a corporation wide repository of all official 
product, software implementation modules. We prepared a requirement specification in order to create 
a new mechanism between PRIM and the measurement system. Subsystem name as a search 
parameter is one development need for the database system. If the subsystem is marked in the fault 
information, then it is possible to use such a subsystem name as a search key in the generation of 
results from the measurement system. Quality of corrections can be measured for example by 
counting the fraction of rejected corrections. Measurements per subcontractor was needed because 
many projects in our case company are geographically and organisationally distributed. Often, one 
department has the main responsibility for a project; the other organisations act as subcontractors. 
Then it is useful to know the subcontractor’s quality figures.

The last improvement area in Table 4 concerns measurements in the Engineering and Installation 
support organisation that works in close co-operation with the customer. As fault corrections are 
delivered to the customer, the delivery precision of correction packages is important to be measured. 
“In-Service” Performance (ISP) measurements need continuous improvement to cover new systems 
and applications  (See also Section 3.6). For example, the numbers of large and small restarts are 
measures that can be used. 

Table 5.   Needs on upper organisational levels  

Improvement area Development need 
Reporting Results from each department presented in brief on the upper  level report 

Analysed measurement results from departments prior to upper level review 

Process measurements Measurements  per process and per design object 

Quality related man-hours retrievable from all departments  
Man-hours for quality activities identifiable  in  the new time reporting system  
Improved  method of reporting and visualisation of results 

Productivity  “Functional”  volume based productivity measurement 

Customer view Customer satisfaction 

Measurement database 
and reporting tools 

Transfer of the measurement  system from the mainframe to the PC and  WS 
environment  
Information System and InformationTechnology support for measurements 
Connections to and automated data retrieval from other tools 
Deletion of such collected data, which no longer is necessary 

The first improvement area in Table 5 is reporting. Two development needs are based on 
management’s expectations (in our case company).  Results from each department should be 
presented in brief on the upper organisational level report. Division manager also expressed a strong 
need to get analysed measurement results from departments prior to the division level (upper level) 
management review. The need for process measurements was kept active, for example, by the 
requirements coming e.g. from CMM and ISO9001. Therefore, we discuss these requirements further 
in Chapter 4. The need to measure per process and per design object includes at least the 
measurement of man-hours consumed, lead time and detected faults.  

Quality cost measurement worked fairly well in the existing local measurement system. However, 
when development environments, time reporting systems and applications started changing, also the 
quality cost faced new challenges. The improvement of quality cost measurement was also motivated 
by their increasing emphasis on  the latest ISO9000 standards. First of all, the development needs 
included retrieval of quality related man-hours from all departments and making the man-hours for 
quality activities easily identifiable in the new time reporting system (e.g. by using specific activity 
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codes). A need arose to get all departments involved, to ensure that everything works after 
introduction of the new time reporting system, and to improve the method of reporting and 
visualisation of results. 

Productivity measurement is an issue that the software community has discussed a lot during the past 
years. A need to define “functional” volume based productivity instead of  “implementation” volume 
based measurement came up also in our survey. Customer satisfaction here does not only mean the 
satisfaction of an external customer. So, the development organisation needs to measure, for 
example, the orderer’s satisfaction with  projects and products. We refer to Section 3.6  for the 
discussion of the satisfaction issue. Transfer of the measurement system from the mainframe to the 
PC and Workstation environments was based on the evolution of computer technology.  New systems 
provide better facilities for handling, fetching, and visualisation of data. Information System and 
Information Technology support for measurements was expected and connections to and automated 
data retrieval from other tools are needed to ease measurements. Deletion of such collected data, 
which no longer is necessary, for example, collection of faults for a period of the operation date +1 
month was a need on upper organisational level.

Table 6.   Corporate needs  (for renewing PQT)

Improvement area Development need 
New collection events Need to collect data from the prestudy phase (at Tollgate 1) 

Deviation metrics Collection of planned man-hours in addition to actual man-hours 

Inspections, unit test Defects detected during code inspections and unit test  

Quality Source of faults during the first 6 months after external release  

Data security Specific read and write privileges  

Search of data Project specific data retrieval 
Product groups (e.g. subsystem) with automated queries 

Tool improvements Need for porting the PQT measurement tool  to a new operation system environment  
Development of measurement  support tools for software written in new languages 
Improved connections to other tools (e.g. to software production tools) 

The first PQT system (see appendices 1 and 3) was based on a mainframe implementation and a 
limited set of data. After many years of wide use, we collected corporate specific needs for renewing 
PQT shown in Table 6. Based on feedback from PQT users we discuss both some new 
measurements and a few issues concerning tools.  

Collection of TG1 date, when the Feasibility phase is finished, enables the measurement of full Time-
to-Market.   Collection of planned man-hours in addition to actual man-hours (that were originally 
included in PQT) was based on a need to get measurement results on planning precision in effort 
dimension. Defects detected during code inspections and unit test were needed in order to create new  
measurement points earlier in the R&D process. On the other hand, we pointed out that it tells more 
about the process if the fault profile considering all phases is available for quality analyses in the 
measurement database.  Source of faults during the first 6 months after external release means that 
e.g. faults found by Ericsson and by the customer are clearly distinguishable. Data security was 
needed to assign read and write privileges, and  to create more strict access rules than in the old 
system.

The need for porting the PQT measurement tool to a new operation system environment included the 
idea to get the system ported to workstations.  Further Development, e.g. the measurement of volume 
and modification grade for High Level PLEX, Erlang and C++ software were necessary to define also 
in the PQT system. The need for further development of support tools, e.g. the measurement of 
volume and modification grade for High Level PLEX, Erlang and C++ software appeared. In Finland, 
an Ericsson R&D organisation that is responsible world-wide for certain switching system development 
operations expressed their need to use product groups (e.g. subsystem) in the automated queries.  
We included the search by product group in the requirement capturing of the new PQT system  (refer 
to Section 5.4.10 to see a case example of using it).    
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3.5.2. Needs and expectations for utilisation of measurement results  

There are several reasons and motives for better utilisation of measurement results. The aspects 
presented are based on collected expectations from the PP (Provisioning Process) manager   
(Lappalainen, 1996) and the Research & Development manager (Toivo, 1996) in Finland as follows: 

To increase the use of measured facts in practical decision making. 

To change attitude towards measurements to more active and to create a positive measurement 
     culture. 

To use results in order to compare different subsidiaries and the corporation. 

To increase the use of measurement results in different usage applications. 

To understand what the results tell about process and its stability. 

To make the message of graphical representations more understandable by using proper case 
    examples. 

To contribute to analyses and to conclusions drawing in order to learn to avoid faults and to get 
     better modules for the customer. 

To get utilisation ideas “marketed” better on all organisational levels. 

Surely, the expectations listed above are very challenging. Three first mentioned issues require strong 
management commitment and an active measurement team.  Fourth issue implies many examples of 
usage applications like, management and project planning (e.g. prediction, progress), performance 
assessments (e.g. goal vs. outcome), and the analysis of the real effect of improvement (e.g. is the 
trend positive). Fifth expectation, “understanding of what the results tell about the process”; can be 
approached by improving measurement processes, for example by enhancing pre-analyses and 
background information. More understandable graphical representations are partly dependent on tool 
improvements and models for use of results. The issues presented in this section will be used as one 
of the guiding inputs for measurement processes and models in Chapters 6 and 7. 

3.6. Relations to customer satisfaction 

Customer’s SW quality expectations, which are to an increasing extent expressed in requests for 
tenders, in supply and support contracts, etc., state mainly requirements for software maintenance 
and availability performance. The external customer is not that much interested in design quality 
metrics like, faults/KNCSS, but the frequency and severity of failures. Thus, measurement feedback 
from times between failures, effects of faults and correction times of the most critical faults should be 
considered better by product development, not only by maintenance personnel.

A minor fault may make the customer very dissatisfied - there are these types of experience at 
departments working at customer interface e.g. the Field Support Office  (Saarinen, 1996). On the 
other hand, there are software faults which, if removed, do not lead to improved reliability. Such a fault 
does not necessarily lessen the customer satisfaction even if Ericsson is not able to correct it quickly.  

So, measurements should be further developed to identify occurrence of such faults that really make 
the customer dissatisfied.  Proportion of the faults that the customer has set on the highest priority and 
that are most urgent to correct, compared to other faults, should also be indicated at product 
development departments.  

In order to know more about customer dissatisfaction reactions, a distinction should be made between 
customer generated fault reports and faults discovered internally at Ericsson. This need already came 
up in interviews considered in previous sections.  

The effects of faults should be classified. For example, the failures (e.g. restarts) caused by a fault 
should be classified by using the new Fault Analysis and Prevention (FAP) code VISCON (VISible 
CONsequences). The faults leading to severe failures, like hanging calls, major/minor restarts, or total 
stops of an exchange, should be analysed in order to get to know whether the fault was introduced in 
the design project and how could such faults have been avoided.  The fraction of this type of faults, 
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measured separately, would express the relationship between quality and customer satisfaction 
better.

It is most important from the customer satisfaction point of view to be able to improve In-Service 
Performance (ISP) and to find its closer links to development projects. Such driving factors that affect 
on ISP should be measured already during the project. Both preventive measures to achieve higher 
ISP and metrics of actual ISP in the field should be included in the future metrics.    

It is also reasonable to perform specific customer satisfaction measurements (CSM), not only on 
company level but also after each development project, and to compare the satisfaction results to 
quality delivered from product development units. This should be analysed by the organisations 
involved in the projects. 

Several customer-oriented external quality factors (e.g. reliability, maintainability and usability) are 
defined in quality models (e.g. ISO/IEC 9126). Customer satisfaction can also be based on evaluation 
of these types of quality factors (Kitchenham, 1996). Therefore, some relevant models are discussed 
in Section 6.2 as means of clarifying software drivers behind customer satisfaction. 

   
3.7. Conclusions on present measurements 

The existing measurements surveyed are focusing on results seen after the completion of the design 
phase. It is still important to continue these measurements in order to see long-term trends and the 
effect of improvement efforts.

Collected experience during the present study indicates that measurements, like fault density in 
Function Test, have been well defined, documented and accepted. Also some data items collected are 
no longer useful (e.g. faults found during the first month in operation, because the observation period 
was too short).  

Negative experience relates mainly to practical difficulties in getting data collected, in achieving 
correctness of the data, in understanding and presentation of measurement results, in motivation and 
ways of selling of the measurements in the organisation, as well as in confidence in measurement 
results.

Our interpretation of these problems is that the purpose of the existing measurements, like PQT, has 
not always been clear enough among people. That is why the existence and argumentation of the 
following two types of measurements have not been well realised.  First of all, the measurements 
assessing the performance of design operations and final quality of results are necessary. Second, 
the predictive measures that help to achieve the demanded performance and high quality of results 
are needed. In the next chapters, as a recommendation due to these problems, we also will point out 
the measurement customer concept - it might be different for these two types of measurement. 
Handing over the right measurement results to the right customer may lessen the confusion and 
misunderstandings. 

However, the lack of systematic data collection from earlier design phases was felt to be negative 
factor both by the interviewed experts and senior designers. This was also stated to be a very difficult 
obstacle, which prevents people from linking measurement results to the design process. This is a 
reason why the relationships between final quality and real driving factors remain unknown. 

The designers also experienced, as one remarkable obstacle for utilisation, that there is not enough 
time allocated for analyses. A lack of instructions and rules derived from measured facts was also 
found. So, this issue is one of the elements included in the utilisation model in Chapter 7.  

In order to improve confidence in the data, even to the data that is already widely used; it is all the 
time a question of training of attitudes and of refining measure definitions.  

One problem in utilisation of the present assessment type measures is the long feedback loop. The 
measurement results are not available during the ongoing project, but only during the next project.  

As a most important issue for development of measurements, there is a need to measure faults 
slipping-through, man-hours, requirement changes, and lead times per process/activity in more detail. 
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There is also a need to include major faults found in inspections, man-hours used for these quality 
assurance activities and using  this knowledge for analyses. 

In this chapter we have also presented how the quality as seen by the customer can be focused better 
by introducing quite simple changes in collection (e.g. classifications of faults). “Selling of metrics” is 
an important issue. Good hints are found e.g. in work performed at HP (Grady, 1987, 1992) (and this 
is a key element in developing a utilisation model and an organisational infrastructure of measurement 
activities).
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Chapter 4. 

General requirements for analysis and 
usage of measurement results 

In this chapter, we give a survey of general requirements to facilitate better usage of measurement 
results. The purpose of this survey is to analyse measurement related issues in the Capability Maturity 
Model (CMM), Quality System standards, Quality Award Criteria, and TQM in order to be able to 
improve measurements also from the process maturity perspective. The last section is Ericsson 
specific, discussing measurement aspects in the Ericsson Quality Manual. 

4.1. CMM 

The Software Engineering Institute (SEI) has developed CMM (Capability Maturity Model for Software, 
also called SW-CMM) at the Carnegie Mellon University in USA (Paulk, Curtis, 1993). An initial 
version was released, reviewed and used during 1991-92. Since then, new CMM versions have been 
published like, P-CMM for People aspects, SA-CMM for software acquisition matters, SE-CMM for 
considering systems engineering and IPD-CMM for integrated product development. The latest trend 
is to integrate multiple models to a CMMI.  At the end of writing, a public pilot version (CMMI, 2000) 
was available. The final version has been released in 2001. CMMI is also closer to international 
standard for software process assessment (ISO/IEC15504, 1998). 

CMM provides a consistent method to assess and evaluate the maturity of industrial SW processes, 
and provides a framework with five maturity levels. The levels define an ordinal scale for measuring 
process maturity and evaluating process performance in an organisation. 

The Ericsson CMM Assessment Process (ECAP) includes a complete set of guidelines and rules to 
perform CMM assessments within Ericsson. Yearly, trained assessors perform a total of 20-30 
assessments. Each design centre is assessed every 1.5-2 years to determine evolutionary 
improvement in maturity, if any. Ericsson in Finland was assessed first time in spring 1995. The 
maturity level on different departments varied, some achieved higher CMM level, some did not fulfil all 
stated requirements. For this reason, research & development division as a whole achieved level 1 
only. During late 90’s some Ericsson subsidiaries have achieved level 3. 

According to the basic CMM thinking, a mature software organisation shall measure modules and 
processes and use the results for continuous improvements. In this way, CMM issues closely relate to 
the theme of this study, and the demands on high maturity levels are discussed briefly below. We 
discuss what CMM actually requires from measurements, result analysis and utilisation. Improvement 
of process maturity and measurements are closely related as shown in Table 7 (Fenton, Pfleeger, 
1996, p. 89).  
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Table 7.   CMM maturity levels vs. typical measurements 

 Maturity level Characteristics Type of metrics to use 
5. Optimising Improvement fed back to the process Process plus feedback for changing the process 
4. Managed Measured Process Process plus feedback for control 
3. Defined Process defined and institutionalised Product
2. Repeatable Process dependent on individuals Project Management 
1. Initial Ad hoc Baseline 

Table 7 presents an early classical overview of measurements suggested by each level. What can 
and should have been measured on each level depends on visibility into the software process. 
However, the table does not show the cumulative nature of measurements i.e. each higher level also 
includes the lower level metrics. 

For Initial level 1, baseline metrics should be collected as a starting point for improvements of 
maturity. Level 2 measurements focus on project management because the focus in general is on 
projects. Regarding characteristics in Table 7, we can add that the process is not dependent on 
individual but also on projects. On this level, repeatable process activities are known and stabilised, 
especially for estimating, planning and monitoring progress of a software project (SPC, 1994).  Typical 
measures are software size, staff effort and costs. It is also possible to collect statistics on trouble 
reports. 

Level 3, defined process, has an extended visibility to intermediate activities, because those 
subactivities are defined and their inputs and outputs are known. The organisation’s standard 
processes are defined and institutionalised. All projects use an approved and tailored version of this 
standard software process. Measurements are mainly product-related; early product measures can be 
useful indicators of later product measures (e.g. used to predict quality of code).    

As CMM level 4 means “Managed” process it requires that detailed measures of the software process 
and product quality be collected. A key area for level 4 is Quantitative Process Management. Data 
analysis and utilisation requirement is expressed in the CMM document  CMU/SEI-93-TR-25 (Paulk, 
Weber, 1993, p. L4-1) as follows: “Quantitative Process Management involves establishing goals for 
the performance of the project’s defined software process... taking measurements of the process 
performance, analysing these measurements and making adjustments to maintain the process 
performance in acceptable limits. The organisation collects process performance data from the 
software projects and uses this data to characterise the process capability of the organisation’s 
standard software process. Process capability describes the range of expected results from following 
a software process”. 

The same CMM document stresses also that the quantitative process management helps to achieve 
control over modules and processes by narrowing the variation of their process performance to fall 
within acceptable limits. Because the process is measured and operates within measurable limits, 
CMM authors suppose that this improves predictability in process and product quality.  As a 
conclusion, measurements on level 4 are to be used to control the process.

Even more advanced utilisation is needed on level 5, “Optimising”, where the focus is on a continuous 
process improvement.  An important key process area is Defect Prevention: “Defect Prevention 
involves analysing defects that were encountered in the past and taking specific actions to prevent the 
occurrence of those types of defects in the future. The defects may have been identified on other 
projects as well as in earlier stages or tasks of the current project. Defect prevention activities are also 
one mechanism for spreading lessons learned between projects” (Paulk, Weber, 1993, p. L5-1). 
Furthermore, defect prevention on level 5 involves  trend analysis to track the types of defects 
encountered and to identify defects that are likely to recur. It also demands specific actions to prevent 
recurrence of defects. 

Thus, measurement results from activities at level 5 are used to improve the process, by removing 
something, adding process activities, and changing the process in response to measurement 
feedback. In other words, measurements are to be used to manage process change. It can be 
concluded here that a high maturity level of the process also involves a high maturity of 
measurements. 

The existing measurements at Ericsson mainly relate to CMM levels 2 and 3. Some new fault analysis 
methods are in use that support achievement of level 4 and 5 needs.  Concrete measurements by 
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level are discussed further in Chapter 6. The FAP (Fault Analysis and Prevention) process  
(Lahtivuori, 1994), which was introduced at Ericsson in Finland in 1994, has been one step towards 
higher maturity levels.  According to this process each fault report received is analysed by phase of 
detection, fault introduction, technical category, reason and visible consequences. 

4.2. Extracts from ISO9000 quality management and quality assurance 
standards 

4.2.1.

4.2.2.

General ISO 9001 standard  

ISO9001, a standard for quality systems (SFS-ISO9001, 1994), does not directly state any 
requirements for measurements. However, such requirements are given indirectly, for example,  
“Quality Policy” means that the organisation shall define guality goals. Naturally, these goals are to be 
followed up and this happens by going through measurement results. At Ericsson in Finland (see 
Section 2.3.1) such a forum has been the Management Review because ISO9001 standard clearly 
states that fulfilment of quality goals is to be reviewed (SFS-ISO9001, 1994, Sections 4.1.1 and 4.1.3, 
p. 10).

ISO9001 has also other relations to measurement and handling of results when it requires that the 
need to use statistical methods for establishing, controlling and verifying of process capability and
product characteristics shall be identified (SFS-ISO9001, 1994, Section 4.20 p. 26). These methods 
must be documented. Measurements and use of statistical techniques are motivated in the guidelines 
part of the ISO9000 standards: “Guidelines for Quality management and quality system elements” 
(SFS-ISO9004-1, 1994 Sections 18.3.4 and 20). Objective and accurate means of measuring quality 
achievements are recommended. Focus is also on human aspects to encourage personnel to improve 
quality and to provide recognition of good performance.  

Finally, this guide mentions that documented procedures should be established to select and apply 
statistical methods, for example, to product design, prediction, studies of process capability etc. 
Several examples for statistical methods are given like regression analysis and quality control charts. 
This guideline also refers to a separate ISO Handbook for further information about use of statistical 
methods (ISO, 1995).  

The new ISO 9001: 2000, emphasises quality measurements, analysis and improvement even more 
than the previous 1994 version of the standard. It focuses on measurements that are also relevant on 
higher CMM levels (e.g., usage of measurements to maintain and improve processes). 

Guidelines for software work  

For applying ISO9001 requirements and methods on software, a standard “Guidelines for application 
of ISO9001 to the development, supply and maintenance of software” (SFS-ISO9000-3, 1993, Section 
6.4), is available. Its Section 6.4  “Measurement” takes into account metrics for both software products 
and processes. The standard admits the lack of generally accepted measures for software quality. 
However, it recommends that, at a minimum, some metrics that represent reported field failures and/or 
defects from the customer’s viewpoint should be used. For product measures it recommends that 
quantitative measures should be used to manage the development process and for the following 
purposes: 

To report metric values on a regular basis, 
To identify current level of  performance, 
To take remedial actions if metric levels exceed the target levels, and 
To establish specific improvement goals. 

By process measurements the standard means quantitative measures of the quality of the 
development and delivery process. First, these metrics should reflect how well the development 
process is carried out in terms of milestones and in-process quality objectives being met on schedule. 
Second, the metrics should express how effective is the development process at reducing the 
probability that faults are introduced or that any faults go undetected. 
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For both types of metrics the standard stresses that levels are known and used for process control 
and improvement, not what specific metrics are used for. Furthermore, the metrics chosen for the 
process should have a direct impact on the quality of the delivered products. In this respect, the 
standard encourages finding correlation between process measures and product metrics and to utilise 
them in design (as is the intention also in this study). ISO9000-3 standard is not used widely within 
Ericsson group because similar issues are included in CMM assessments.  

After completion of the present research, ISO 9000-3 standard  has been further developed. ISO 
9000-3 was revised in 1997.  A new updated committee draft (CD) version to comply with ISO 
9001:2000 was made available in July, 2001.   

4.3. Quality Award criteria 

There are several Quality Awards in the world, including the following: 

Deming Price (Japan) 
Malcolm Baldrige National Quality Award (USA) 
European Quality Award 
National Quality Awards, for example, in Sweden and in Finland. 

A very good survey about their main elements is found in (Ollila, 1995). In the following we limit to a 
few main aspects of the Finnish Quality Award concerning requirements for measurement results and 
their utilisation. Each company is evaluated in 8 areas (SLY, 1996). Here the main concern is in the 
key areas that give the highest number of points, i.e., the following four areas: 
   

Customer orientation and Customer Satisfaction (250 points) 
Operational results (195 points) 
People development (175 points) 
Process Management (125 points). 

In the Finnish Quality Award, Customer means mainly the external customer on the market. Award 
criteria involve determination of methods for satisfaction by using measurements. Usually the 
measurements and investigations are performed by impartial consults. The company must be able to 
show customer satisfaction results as key figures to see development trends and improvements in 
comparison to competitors. The results are to be classified in a proper manner by product and service 
areas.   

Operational results are focusing e.g. on products, operations and economy. Product results clearly 
relate to quality characteristics, which are important in customer’s decision making. Examples of key 
figures to be presented are performance, number of faults, lead times and delivery precision. 
Development trends must be shown in relation to goals and benchmarking data. Both internal 
measurements and field measurements are needed. 

People development involves resource-planning, development of competence and satisfaction as well 
as the related evaluations and measurements. 
    
The Process Management section of the Award assesses at first the processes for development of 
products and services. The response should include how the design specifications are conducted from 
the customer needs and expectations, and how efficient processes are derived from design 
specifications. It is interesting that the award criteria also include measurement plans for processes. 
Furthermore, evaluation of process management activities involves that measurement results are 
utilised in maintaining process performance in order to make decisions on corrective actions.         

On the other side, there are key areas that give fewer points but are very measurement oriented. 
Such a key area is for example “Information and analysis” (75 points) concerning the whole 
organisation. Several examples of useful analyses are given like: 
    

Impacts of improved product quality on customer oriented key figures (e.g. customer satisfaction, 
      market-share) 

Influence of people satisfaction on personnel turnover 
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Time-based trends of central quality related key figures. 

It is important to take into account that a measurement system is at place for collecting relevant 
information and to support decision making. As a conclusion, it is common for all these areas within 
the Finnish Award that the evaluations not only expect to meet a number of measurements, but that 
the results are analysed and utilised as a basis for improvements.  

Ericsson in Finland is well on the way towards this - in 1996, the company received the Finnish 
Quality Award.  The score awarded was roughly 500 points out of 1000. This was one of the highest 
scores among those companies, which participated in the award competition during 1994-96. Below 
there are some strengths perceived by the jury:

Many kinds of practices for measurement of customer satisfaction exist. 
People satisfaction has been measured since 1993 and the results are used to carry out 

      improvements. 
CMM is used to assess and improve software design process. 
Management has committed “in black and white” to the ESSI program. 

      
The jury also perceived a few weaknesses: 

No improvement process exists for the measurement method of people satisfaction. 
Processes are not measured in a full coverage (scope). 
No measurement results are available regarding effectiveness of processes. 

                    
Our conclusion regarding assessment at Ericsson in Finland is that  two strengths and all the three 
weaknesses relate directly to measurements.  

   
4.4. TQM  

TQM is an old well-known management method expanding quality to cover all processes and 
operations in a company. During past years it has been common to apply TQM to improvements of 
software processes, as seen in the literature e.g. (Arthur, 1993). TQM has three basic principles: 
customer focus, continuous improvement, and everyone's involvement. Additional principles, for 
example at Ericsson, involve process orientation and decisions based on facts.  

TQM provides tools and aids to affect processes and products in order to improve quality. These tools 
help in root-cause- and statistical analyses and are known as 7 Management (7MT) and 7 Quality 
Control tools (7QC). The 7QC are the most interesting tools in the perspective of the present study 
and include the following: Pareto diagrams, Histograms, Bar charts, Scatter diagrams, Run charts, 
Stratification, and Frequency matrix. According to Goodman (Fenton et al., 1996), an important 
dimension for successful TQM program is measurement and control, i.e.; it is vital to prove that 
improvement occurs. This needs baselining, goal setting and demonstration through indicators and 
measurements in order to ensure that the goals have been met. TQM's focus on causal analyses 
using statistical tools and decisions based on facts needs continuously running utilisation of 
measurement and learning from experience. This is basically demanded if TQM is applied in a 
company.  

4.5. The Ericsson Quality Manual 

Ericsson Quality Manual (EQM) (Ericsson, 1995) specifies a requirement: “We use measurement 
information to control and improve our products and processes and to ensure that we meet the 
specified requirements and expectations of our customers (external and internal)”. One of Ericsson’s 
basic strategies for quality is “Decisions based on facts” (instead of opinion based decisions).  
Measurements and analysing the results provide knowledge for this decision making. In connection 
with Process Management the Quality Manual also states a recommendation that performance 
indicators and established measurements for each process should be used.  
Other important measurements, which this manual requires, relate to Customer satisfaction and costs 
of poor quality. Continuous improvement is one of the main quality policies - the work that is based 
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upon the PDCA (Deming’s circle with Plan-Do-Check-Act segments). In this circle, the measurements
act as an essential part of the “Check” segment to assess real effects of improvement actions and
effectiveness of solutions. The manual also specifies why the measurements should be related to
Planning and Control of design and development projects: “Data is collected for evaluation and
improvement of planning constants, such as volumes, resources, and time schedules”. This is
illustrated in Figure 4.1.
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Figure 4.1 Use of measurements for improvement of planning constants

The latest version, called Ericsson Operational Quality Manual (EOQM) (Ericsson, 2001), requires the
use of measurements as part of performance management and improvement.  Performance
measurements against   business success factors  imply the use of key indicators across a broad
range of perspectives. The new manual fits to ISO 9001:2000 principles requiring e.g. process
measurements.  These measurements include measuring and analysing the results at key stages of
processes as well as in-process measures helping to prevent problems.

4.6. Conclusions on requirement capturing 

We have found obvious requirements and arguments for the analysis and utilisation of measurement
results from CMM, ISO 9000, Quality Award Criteria, and Ericsson Quality Manual as well as from the
customer. From the measurement point of view, a look into those sources has brought a few important
issues to consider in development of new measures. Customer satisfaction and process
measurements are important requirements captured from all methods discussed. All of them demand
advanced measurements and their efficient utilisation.

For example, to fulfil needs for CMM level 3  we should introduce earlier measurement points for
product data in order to be able to predict quality of code.  Earlier product measurements (e.g. from 
similar projects) should be used for prediction of product quality produced in later projects. We should
improve the measurement process to include a systematic way of studying and deriving useful
planning constants.  Inclusion of process measurements should be considered if an organisation aims
at fulfilling level 4 requirements. It influences on the way of presentation of results because process
variations should be visualised, and used for the control of the process to keep the quality in 
acceptable limits. Level 5 also requires that measurement results are used for thorough analyses, e.g.,
in order to find reasons of faults and to identify cause-effect relationships. In our development of 
measurements in later sections it is necessary to include analysis and modelling activities in the
utilisation process, and to add a feedback loop to process management. As a conclusion we can state
that a high CMM maturity level of the software process also involves a high maturity of measurements.
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ISO9001 and its guideline for software work emphasises the importance of driving attributes that have 
a direct impact on the quality. Something important to be considered already in planning of the 
measurements is thus a survey of possible driving attributes (in Section 6.4.2 we therefore require 
some analysis to find the right driving attributes). It clearly stresses the use of preventive 
measurements in order to lessen the number of probable latent faults. ISO9000-3 includes a specific 
section for measurements and also gives hints for metrics regarding field failures. The standard 
guides to using the quantitative measures within the development and delivery process. As the 
standard encourages finding correlation, it gives us some support for our case studies in Section 5.4. 

TQM elements like continuous improvement, everyone's involvement and a set of analysis tools 
encourage organisational learning. TQM provides useful tools to consider for analysing e.g. root-
causes and presentation of results. According to TQM thinking, learning from experience and 
everyone’s involvement can be taken into account by arranging feedback meetings on all 
organisational levels. TQM is included in Ericsson Quality Manual that also emphasises the use of 
measurement results for improving the planning constants and the use of measurements as an 
instrument for improvement  (e.g. “Check” segment in the Deming’s circle). Finally, we conclude that 
Quality Award Criteria specifies both customer-oriented measurements and measurement plans for 
processes as well as the analysis of measurement results as a basis for improvement. 
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Chapter 5.

New opportunities to use the knowledge 
from the existing measurement databases 

In this chapter we survey a few past studies at first, mainly from Ericsson world, in order to see what 
correlation those studies have identified and what new chances they provide for further study in the 
present thesis.  As a next step, three other related studies are introduced that have been going on 
during the present study. We have included a section presenting sixteen data sets that were extracted 
from databases. It has been necessary to limit our presentation to a selected collection of relationships 
and correlation studies. A number of case studies are done based on stated hypotheses that 
management has been interested in. Mostly these hypotheses are also interesting in general, like post 
delivery quality of those products that have been most faulty in design. Statistical methods are used to 
find out facts to prove whether each hypothesis is true or not. In case of positive correlation the 
utilisation topic of the work is covered by discussing under each case example about the possible use 
of the result. Finally, a special attention is paid on opportunities for prediction.  
      
          
5.1. Related work 

In Section 5.1.1 we first discuss about past related work covering studies at Ericsson in Finland. Next 
section, 5.1.2, concentrates on findings in a few studies performed in other Ericsson companies. 
Section 5.1.3 includes results from two closely related theses, which were completed during the 
present study at University of Linköping. Section 5.1.5 introduces a significantly related research that 
was run at Ellemtel in order to develop a fault content estimation model. The last section 5.1.5 
includes two big research projects, PROFES and LUCOS, where also material from other than 
Ericsson companies was used. 

5.1.1. Studies at Ericsson in Finland 

An early attempt to use statistical analysis on the software products collected in the quality database 
is found in (Rautakorpi, 1993). The purpose was to see if any correlation between SW product 
parameters really exist, and to propose a statistical model in order to be able to predict the size of the 
product, the man-hour effort, and the number of faults.  A sample of 177 software products developed 
in 8 middle-sized projects at Ericsson in Finland was studied. A few parameters related to the design 
process (e.g. number of signals, number of states, planned man-hours, volume, modification grade) 
were identified and a total of eight different correlation with quality related data (e.g. number of faults, 
fault density in Function Test) were measured. An example of an interesting finding in this study was a 
significant (r = 0,70) correlation between total number of signals and PLEX volume of modules as 
shown in Figure 5.1. A simple formula that could be used in prediction of the volume was derived. The 
more signals, the more the volume grows. Another result was that the correlation between man-hours 
consumed for design of the product and faults found in Function Test was observed to be quite high. 
Accuracy in prediction of man-hours was also studied. Accuracy between predicted and actual man-
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hours was found to be very good. The accuracy is improving within the same project family as a
function of time, so the study was able to show that the organisation has learned all the time. 

Figure 5.1 Relationship between volume and signals

According to this study several existing measurement data (e.g. modification grade8, man-hours used,
type of product) are inadequate regressors for quality. For this reason these metrics are too coarse for
project planning purposes and for derivation of planning constants. The limited scope of the study did
not include other aspects (e.g. human factors, complexity, stability and effectiveness of inspections).

New chances of further usage of data from the databases 

After this study a lot of new data has been collected from projects and there is a good reason to test
whether the hypotheses are still valid when a larger sample of new material is used. The study was
also limited to Function Test results collected at release. Now it is possible to study also post-release
phases. In projects finished after this study, more accurate data is also available, for example, the 
number of new and modified signals, data from inspections and an improved product type.

5.1.2. Studies in other Ericsson companies

Ericsson Telecom (currently Ericsson Utvecklings AB) has run a few Master’s Theses on quality
issues. These studies concentrated on searching for design variables that would be good enough for 
prediction of error-prone software modules. One study (Johansson, 1993) of 4 geographically
distributed projects within Ericsson collected the number of new and modified signals from 390
products. The product S SigFF was chosen in order to study its linear regression with number of
faults found in Function Test. The variable S is the size of the software unit in non-commented source
statements (NCSS). SigFF, the number of new and modified signals, was collected from Function
Framework (FF) documents that are produced in early phase of the software design process.

Another parallel study (Ohlsson, 1994) focused on predicting which software modules are likely to be
error-prone. In this study, more than 130 modules were available. The researches found, among other
things, a few new measures that could be used for prediction. For example, a complexity measure
collected from SDL-objects is known before the coding phase. Modified McCabe Cyclomatic
complexity was another example of many candidate predictors, which were included in the regression
analysis and usefulness evaluation.  An indicated fact from usual Ericsson projects was that
approximately 80% of faults found in Function Test are focused on only 20-30% of software modules.
Some further discussion based on these studies has been later going on, for example see
(Johansson, Nord, 1995).

8 See Section 2.1.3  for definition of modification grade.
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New chances of further usage of data from the databases 

The number of new and modified signals, which is already available from several big projects at 
Ericsson in Finland, is an interesting data for further study. The correlation of this variable to faults 
found after test phases could also be investigated. If some correlation is found then this information 
could be used during design to concentrate corrective actions on these most error-prone products 
(see Section 5.4.6). 

5.1.3. Studies at University of Linköping (Liu)  

In his Licenciate thesis, Ohlsson (1996) has studied methods for early identification of fault-prone 
modules. The study was based on empirical data, i.e., design metrics and fault data from two 
successive releases of switching system software developed at Ericsson Telecom. A number of 
design metrics collected from design was analysed by applying a multivariate analysis. Ohlsson 
considered 21 design metrics from literature and from earlier studies. Identification of predictive 
design metrics that can help to make prediction as accurate as possible was done by studying 
correlation between two and three different variables in turn. The researcher succeeded in finding 
combinations that can be applied as prediction models at the completion of design. The best models 
identified were also validated by using a new approach, so called Alberg diagram (Ohlsson, 1994). 
The diagram shows the accuracy of the best prediction models in relation to the real fault data 
collected from software releases. As a conclusion, the best predictions can be based on number of 
signals and number of decisions. Both variables are known after completion of design (before coding). 
The analysis indicated that it should be possible to identify the 20% of the modules representing 50% 
of the faults. In his doctoral thesis, Ohlsson (1998) has further studied and refined his methods aiming 
at effective fault prediction.  Empirical studies from real projects provide useful material to compare 
with results of the present study. An integrated fault analysis method is very similar to Ericsson’s FAP 
analysis mentioned in Section 4.1. Based on this empirical data, some related quantitative analysis 
results are discussed in the light of 14 hypotheses (Fenton, Ohlsson, 2000). 

New chances of further usage of data from the databases 

Alberg diagram that is already implemented in the quality measurement system at Ericsson in Finland 
could be utilised to see how the diagram differs for different phases, FT, ST, and 6 months.  When 
counted signal and decision data from the latest projects becomes available, it is possible to study 
dependencies between these variables and fault densities. The study result should be used to check 
whether these facts could be introduced in new/ongoing projects to improve quality. Studies of other 
driving factors, like project, process and resource could also be started. 

5.1.4. Studies conducted by Ellemtel 
   
Since 1984 Ellemtel (currently Ericsson Utvecklings AB) has run research projects concerning 
software reliability prediction models and experiments on software structure metrics (Rydström, 
Viktorsson, 1989).   A research project carried out at Ellemtel Telecommunication Systems 
Laboratories in co-operation with Telesoft Ab and Department of Communication Systems at Lund 
Institute of Technology (Lennselius, 1990) resulted in guidelines on how to develop a Software Fault 
Content Estimation Model. Data from Ericsson projects were collected to compare estimated fault 
densities with actual values. There were 7 industrial design projects involved in a total of 101 software 
modules. At first, these studies tried to find a correlation between ten software complexity and 
structure attributes and fault content. Complexity metrics derived from SDL description were included 
and correlation between each candidate metric and the number of errors were computed. The most 
promising variables, which positively correlated to the number of errors, were number of SDL symbols 
per module and number of unique signals sent to the module from other modules. The relations of this 
type of measures and the number of errors, and relations between coding time and each of the 
measures, was also studied. The complexity and structural analysis was proved to be a useful tool for 
identifying critical software products in order to be able to make process control actions in early 
phases of the development. However, the researchers concluded that differences in fault contents 
between projects could not be explained only by the software structure metrics. It is necessary to take 
into account both the development process and the software product to be developed. Studying also 
other factors affecting the number of software faults, like project ability and applied methods/tools 
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continued the research. Thus as a next step, these studies concentrated on such candidate fault 
drivers that likely have a major impact on fault content, for example, personnel capability and 
experience as well as project organisational factors. Guidelines on how to develop a software fault 
estimation model are given in (Lennselius, 1990). This model was also experimentally used at 
Ericsson in Finland. In the 1980’s the systematic measurement methods did not yet exist, so the 
collection of data was troublesome and the samples of reliable material available were small. 
Therefore, the usage of these types of models at Ericsson was not broad.  

New chances of further usage of data from the databases 

Project distribution and size aspects can be utilised from the existing database. There are several 
data that unfortunately did not lead to a systematic collection. Project stability (e.g. stability of 
requirements), experience profile of project members and number of software signals would be useful 
and easy to collect from recently finished projects. 

5.1.5. Other related studies  

PROFES

PROFES (PROduct Focused improvement of Embedded Software processes), a research project 
funded by EC, started in January 1997. The project that was divided into a baselining cycle and an 
improvement cycle was finished in September 1999. Ericsson in Finland is one of seven industrial and 
research partners co-operating with a few European University/research centres. The project’s 
strategy was to link customer oriented quality factors to the characteristics of the software 
development process. PROFES also aimed to integrate goal oriented measurements (GQM), software 
process assessment (e.g. CMM, SPICE), Product/Process Dependency Modelling (PPDM) and the 
Experience Factory (EF) concept. PROFES addressed well exploitable results through the 
methodology, User's guide, guidelines to software process - product relationships, tool support and 
training material as well as application of the method in real projects. Project conclusion took place in 
October 1999. Results of industrial applications have already been presented in several conferences, 
see for example (Solingen, Derks, Hirvensalo, 1999). PROFES results are generally available 
(http://www.ele.vtt.fi/profes/).

Effectiveness measurement study 

A research group at Ericsson in Finland has developed a model to measure the development 
effectiveness of AXE10 exchange’s network signalling applications. The results are based on a 
finished research project “Effectiveness Measurement System” (EMS), which instead of traditional 
“implementation volume” (e.g. lines of code) approach, was looking into “functional volume” oriented 
effectiveness measurement. A study of several Function Point (FP) based metrics was done and a 
Functionality Increase Indicator was created. Calculation details for effectiveness were defined and 
Effectiveness baseline for software development within a subsystem was determined. The new 
attribute characterises the functional content of a project and the functionality increase indicator can 
be used for estimation of effort and improvement of effectiveness within this subsystem development. 
The project has improved readiness of using the new indicator in different design centres by deploying 
it in the form of training material, instructions, workshops and support.  

Project controllability (LUCOS) 

In order to find solutions to problems presented in Section 3.4  (e.g. lack of driving metrics during 
project) and needs for automated data retrieval, a new project was started in co-operation with 
Helsinki University of Technology (http://mordor.cs.hut.fi/lucos/) and, among other partners, with 
Ericsson's research group in Finland. The project was started during the present study and the 
duration was three years. The objective was to improve project controllability by defining a set of 
management indicators that could visualise the performance e.g. by using a web based control panel 
solution. Second, the focus was on automating data collection from existing data sources to a central 
database. The long-term objective was defined to support project prediction and planning, 
organisational learning and process improvement through an experience database (by storing more 
detailed information than during past years). 
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5.2. About material used as research object 

The main intention of this section   is to highlight characteristics, the amount, the type and the size of 
modules involved in our present study. Section 5.2.1 gives some facts and measured results from 
three real software projects at Ericsson. Section 5.2.2 visualises the time evolution of data collected 
into the database, the language and the size distribution as well as the degree of categorisation to 
new and modified modules. All selected sixteen data sets are presented in Section 5.2.3. 

5.2.1. Examples of project characteristics  

Characterising a new project based on past projects provides useful knowledge for planning. 
Understanding the profile of the current project to be launched helps to see how the project differs 
from other projects in key issues. A few typical sample constants collected from three projects 
included in the present study are given in Table 8.  

Table 8.   Characteristics of three projects 

Characteristics  Project A Project B  Project C 
Modules 
Number of new modules 
Number of modified modules 
Total number of modules

19
18
37

13
35
48

  - 
13
13

Effort (total man-hours) 
 Actual  man-hours
 Planned man-hours  
 Deviation from plan

75244 
73175 
2,8%

50711 
51995 
-2,5%

46779 
28800 
 62,4% 

Volume
SW volume, Total  (NCSS) 
Average size of module (NCSS) 
SW volume, Modified  (NCSS) 9

Average modification grade (%)

38008 
1027 
21147 
55,6

50324 
1056 
18638 
37,0

56275 
4329 
5066 
9,0

Number of detected faults 
- Function Test (FT) 
- System Test (ST) 
- RFA+6 months 
Totally all phases

105
11
14

130

120
25
22

167

102
37
11

150
Fault densities (Faults/total KNCSS) 
- Function Test 
- System Test 
- RFA+6MO 
Total fault density for all phases

2,76
0,29
0,37
3,42

2,38
0,50
0,44
3,32

1,81
0,66
0,20
2,67

Fault catching ratios 
Percentage of  faultless modules in FT
Ratio % faults caught in FT 
Slip-through RFA+6MO

45,9
80,8
10,8

35,4
71,9
13,2

15,4
68,0
7,3

Delivery Precision (%) 
 RFA Planned at TG2 / Actual    
 Ahead / Behind

93.7
B

96.7
B

Lead Time (months) 
 TG2 - PRA  
 TG2 - RFA 

13,5
16,5

9,3
11,8

8,0
12,1

Productivity 
 Total volume / man-hours 
 Modified volume / man-hours

0,51
0,28

0,99
0,37

1,20
0,11

Quality (Fault) Productivity 
 - FT Faults / kilo man-hours 1,40 2,37 2,18

Numerical figures alone do not provide complete characterisation of projects. However, when 
discussed together with background material  (like project specifications, Final reports, Test reports) 
                                                          
9 See Section 2.1.3  for definitions of modified volume and modification grade.
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the measured numbers provide basic material for further analyses to understand whether the project
went well or badly. As a conclusion, some comments on differences between projects A, B, C are
given, for example: 

Project A and B includes also new modules, project C only modified existing ones. However, we can 
observe that in project C the total software volume is large in spite of low degree of modification.
Project C should modify big modules. Deviation from plan in effort is very small in project A and B. In
general big software projects tend to exceed planned effort and delivery delays are usual risks (Jones, 
1994, 1996). However, in project C, the effort was underestimated, deviation from plan is significantly
higher. One reason is that requirements changed heavily during this project and caused extra hours. 
In all three projects, 70-80% of faults are detected in Function Test. Fault slip-through10 to first 6-
month period is low, approximately 10%. Short lead time in project C seems not to have a negative
impact on operational quality, the slip-through and fault density figures for project C are even smaller
than in other projects.

5.2.2. Examples of module characteristics

In this Section, we discuss what kind of modules were available for the present study from the existing
measurement databases. Figure 5.2 shows the material that is available for our study: more than 
1000 modules on local company and more than 10000 ones on corporation level. Distribution of
module data by programming language is presented. Size distribution and change of size by time is 
also discussed.

Evolution in data collection 

Historical trend of stored data from PLEX modules is presented in Figure 5.2 to demonstrate that 
material has been collected regularly.
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Figure 5.2 Flow of collected PLEX modules

Distribution by programming language

Programming language distribution of new and modified SW modules stored in Ericsson-wide PQT
(global) database since 1992 is shown in Figure 5.3. In addition, Ericsson in Finland has maintained
local database since 1987 containing data from 953 PLEX and 120 assembly (ASSEM) modules,
which are shown in local column. Modules generated from High Level PLEX (HLPgen) represent an
approach that has been used in several big projects. High Level PLEX (HLPLEX) is a high-level
design language by which the programmer specifies module functions. There is a code generator

10 Slip-trough expresses in percent the number of faults discovered after a certain phase compared to the fault count for all 
phases.
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available generating ordinary PLEX source code from HLPLEX specifications.  In specific applications 
the corporation has also used a proprietary version of  Pascal language (ERIPA).

Distribution of new and modified modules by
software type
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Figure 5.3 Module type distribution

Size distribution 

Figure 5.4 shows the distribution by size class in columns for PLEX modules < 10 kilo statements
representing whole of Ericsson. A curve shows the cumulative percentage of modules. From this 
percentage curve one can read that sizes less than 2000 statements represent approximately 50 % of 
modules.
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Figure 5.4 Module size distribution of PLEX modules

Fraction of new and modified modules

 As the modules are either new or modified, this categorisation is presented in Table 9. This sample
does not include modules without reported modification grade (HLPLEX generated modules are also
excluded). It is usual to modify some existing base product; therefore only about 30 % of all modules
are completely new. At local level the percentage is even smaller, 19%. However, one can observe
that during late 1980’s Ericsson in Finland has developed a higher proportion of new modules. This is
probably due to the fact that new application areas were started in 1987-1991.
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Table 9.   Categorisation of modules

Module
category

Number of 
Modules

(Global PQT) 
1992-1996

Percentage Number of
modules
(Local)

1987-1991

Percentage Number of
modules
(Local)

1992-1996

Percentage

New 2193 29 % 130 33 % 104 19 % 
Modified 5442 71 % 267 67 % 439 81 % 
Totally 7635 100 % 397 100 % 543 100 %

A study regarding size growth of modules

The local trend (Figure 5.5) shows that the average size of PLEX modules has grown from 1800 to
2500 statements during past years. The spread of size has been smaller in early 1990’s. In 1996, 50
% of modules belong to size category between 900 and 3800 statements.
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Figure 5.5 Yearly spread of module size - local trend

Summarising we can conclude that the modules to be studied are mainly written in PLEX language,
the average size varies between 1800-2500 statements and modification of old modules is used to a 
great extent (only 20-30 % of modules are fully new). 

5.2.3. Selected data sets

In this section we introduce data sets that are used for case studies in Section 5.4 including grounds
for their selection. Samples of data fetched from Ericsson's databases are composed of sixteen 
project and product data sets explained in Table 10. Several different data sets were selected
because certain data was not available in all projects or quality and consistency of data had to be
ensured.

Table 10.   Data set descriptions

Data set Description Section
1 Data from 16 finished local major projects having verified man-hour, milestone and fault

information available for the whole life cycle of the project (see Table 8 for typical project
characteristics). However, the sample is small composing of projects on different
application areas.

5.4.1,
5.4.2,
5.4.8,
5.6

2 Data from 1405 new modules stored in global database. A random sample. Because of
observed data inaccuracies, included are only new modules, having a design effort  >
100 man-hours. Excluded are also HLPLEX generated modules because their code is
not comparable to manually produced code.

5.4.2
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Data set Description Section 
3 Data from 127 new modules stored in local database to be used to study relationship 

between size and design man-hours of modules. Local modules were selected because 
quality of recorded man-hours in local database was proved to be particularly high. 

5.4.2

4 Data from 25 finished local major projects. Selected were as many projects as possible 
having recorded dates available to determine planned lead time for module 
implementation and test.  

5.4.3

5 Data from 242 modules having passed their first 6 months after external release and 
developed in all type of projects during 3 successive years in 1990’s.  

5.4.4

6 Data from 499 modules that passed their first 6 months after external release. A random 
sample from local database. 

5.4.5,
5.4.11

7 Data from 7991 modules that passed their first 6 months after external release. A 
random sample from global database.

5.4.5

8 All modules developed locally during 5 successive years, covering also modules 
developed during the present study. The selection was based on programmed graphical 
facilities available in the PQT system. The selected time period was Function Test 
phase.  This emphasises the importance of identifying low quality products as early as 
possible. 

5.4.6

9 6055 global modules (of which 436 local ones). A large sample covering all delivered 
modules in global database to see the improvement trend during four years. 

5.4.7

10 All 137 modules having an additional technical type stored in local database were 
selected because this data was only recorded and used in 3 mobile telephony projects 
on local level. 

5.4.9

11 57 modules representing a certain product group recorded in the expanded global 
database. Product groups were collected during the present study within a specific 
application area. All available modules that passed 6 months their first 6 months after 
external release within the area were considered.  

5.4.10

12 499 modules local products released during 4 successive years and passed their first 6 
months in the field. A data set of 5618 other modules from global database is included in 
a study of modification grades. 

5.4.11

13 Selected were 17 projects including 170 modules with their 12 months passed since 
external release.  Only local projects of different size, in average 10 modules per project, 
were studied because their history was best known.  

5.4.12

14 A separate sample of 1946 answered and finished Trouble Reports registered for 
modules with their first 6 months in the field passed. A two-year time 1997-1998 span 
was chosen.  

5.4.13

15 A sample of 4 local subprojects representing 229 modules.  The  data set closely relates 
to the same collection of modules than in Data set 10. One additional project finished 
during the present study is included.  Size of projects varies between 40-90 modules and  
50-100  KNCSS in total.  

5.4.4,
5.5.1,
5.5.2,
5.5.4

16 A subset of selected 8 new modules from the last finished project belonging to Data set 
15.

5.5.2

Ten out of sixteen data sets relate to local projects because some data was collected only locally and 
information about background of these projects was best available. The rightmost column refers to 
the section(s) of the case study where the data set is used. 

5.3. Method of the case studies  

5.3.1. Stating  and handling of  the hypotheses 

In our case studies in Section 5.4 and 5.5,  a number of hypotheses are stated and handled 
systematically in the following way. 

Background 

Each heading  includes motivation and argumentation how the hypothesis came up and why  was it 
selected. It is discussed  whether  the hypothesis is fully new or does it appear in the literature. The 
most common literature references for equal or opposite claims (if any) are given and highlighted 
here.
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Title of the hypothesis 

The hypothesis is formulated in one sentence. 

Facts

Measured facts based on provided data set are presented in a form of graphs and tables. This 
section includes statistical analysis and interpretation. Indications whether the material available 
provides evidence for or against the hypothesis is obtained.  

Conclusion

This heading is used to conclude whether the hypothesis is true or not. 

Use

Under this heading we provide hints for how this result and facts can be used by the organisation that 
is responsible for the production of software.  

Discussion (optional) 

Whenever applicable, possible error sources and general validity of results are discussed here. If 
appropriate, the result is compared to related research in the software engineering community. In 
case that the result significantly differs from other people’s results, some possible reasons are 
discussed.

5.3.2. About the research method  

In this study, methods and tools are used to analyse relationships that exist between different 
variables collected from the software. The purpose is also to prove the statistical significance of 
results. Common statistical basics are followed (Milton, 1995 and Oakland, 1990). Statistical analysis 
has been done based on a number of functions in Appendix 7. Examples of the most commonly used 
methods are the following: 

Correlation analysis 

Pearson correlation coefficient ( r ) is used to express linear relationship between two variables, x and 
y. It is based on covariance and standard variances. Correlation coefficient can vary between (-1, 1). 
The closer the value of coefficient is to r = 1, the closer the two variables are positively correlated.

Regression analysis 

The method is needed to indicate how variable Y depends on X, when a very good correlation 
between the variables has been obtained during the correlation analysis. Least squares method is 
used to calculate the coefficients for a straight line representing linear regression.

Trend analysis 

In this study several time-based trends are investigated. There are series of results, which show 
upward, or downward tendency. 

Rough Set Analysis 

The technique is used to find the best possible combination of several independent variables, which 
have an impact on a certain dependent variable. 
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5.3.3. Views of presenting information in case studies 

The intention in case studies is to present information from four different main points of view: 

Time based trend view where the results are presented to see the evolution in time e.g. as year by 
year trend curves. 

Organisation view that presents the results by using organisational unit (or a group of units) as a 
      selection criteria. The view allows comparisons between organisations. The organisation view 
      either involves material from many design centres, (e.g., global view concerning the whole 
      of Ericsson) or local view that involves material concerning only one local design centre (e.g., 
      Ericsson in Finland). 

Project view where the results are presented projectwise to compare results between projects    
     on different types of software.  

Module view presents the results per module, per a certain group of modules, or the selection is 
     based on the type of modules. 

The view of presentation used is mentioned in Section  5.3.4 for each case study (Tables 11…14). 

5.3.4. Selected relationships and correlation studies 

There are many kinds of new issues that can be derived and learned from assessment type 
measurements. Having a look at measurement results usually raises new interesting questions. The 
case studies below are searching for new dependencies and correlation between attributes (e.g. 
quality, lead time, efficiency). The purpose/motives of each topic is argued. The view and the 
statistical tool/method used for each measurement case is given in four tables below. We have divided 
the case studies into four areas:

General matters of interest,  
Case studies related to pre-release and post-release quality, 
Studies of quality by type of modules, and
Other aspects of faults detected at the customer. 

Three general issues that we study are summarised in Table 11 and  discussed in Sections 5.4.1-
5.4.3.

Table 11.   General matters of interest 

Attributes Measurement View Tool/Method Section
Quality vs. productivity Number of faults/volume is 

compared with volume/man-hour 
Project Scatter diagram 5.4.1

Effort vs. volume Development man-hours vs. 
software volume in statements 

Project Regression 
analysis 

5.4.2

Man-hours spent for unit design 
vs. volume in statements 

Module Regression 
analysis 

5.4.2

Lead time vs. quality Correlation between planned 
leadtimes and fault density  

Project Scatter diagram 5.4.3

Our first general study topic in Table 11 concerns quality versus productivity. One constant 
demand from managers is the improvement of quality and productivity. The argumentation for this 
study is to visualise organisation's capability to produce high quality with high productivity. 
As a second topic we study relationships between effort and volume both on project level and on 
software module level. We find out whether the collected data supports the fact that effort and 
volume should represent a nearly linear dependency. This topic was selected because similar 
results have in earlier studies been used to build effort estimation models (Putnam, 1978; Boehm, 
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1981). Selection of the third topic, lead time versus quality, was based on an intuitive management 
experience assuming that a tight schedule could even improve quality.

Four test related issues (Table 12): post-release quality vs. quality seen in Function Test, occurrence 
of "Stinker" modules, cumulative fault density, and fault density  vs. slippage are discussed in Sections 
5.4.4-5.4.8.

Table 12. Case studies related to pre-release and post-release quality

Attributes Measurement View Tool/method Section
Post-release quality vs. 
quality seen in Function 
Test 

Post-release fault density in 
modules that were faultless in 
Function Test  

Module,
Project

Stratification,
Rough set analysis 

5.4.4

Post-release fault density in 
modules that were proved to be 
low quality modules in Function 
Test 

Module Stratification,
Rough set analysis 

5.4.5

Occurrence of "Stinker" 
modules

Ratio % of stinker modules (both 
new and modified) 

Module P-chart 5.4.6

Cumulative fault density  Mean fault density in FT+ST+6 
months

Organi-
sation,
Time 

Trend diagram 5.4.7

Fault density  vs. 
Slippage 

Correlation between  of fault 
density in Function Test and 
slippage 

Project Scatter diagram 5.4.8

Selection of the first two issues in Table 12 was based on questions raised in Management Review 
meetings. As there are a number of faultless modules in Function Test, it is interesting to know 
whether these non-faulty modules are still faultless in the field. On the other hand, it is reasonable to 
pay attention on the classical question: Are the most faulty modules in design error-prone also in the 
field? For identification of low quality ("Stinker") modules an application of Statistical Process Control 
(SPC) based on P-Chart is available. This method was used to study differences in the ratio of stinker 
modules between new and modified modules. Cumulative fault density expresses how well the faults 
have been prevented to flow from development to test and operation (e.g. caught in inspections). 
Finally, we try to find some indication of correlation between fault density in Function Test and 
slippage (slip-through). Slip-through attribute expresses a percentual amount of faults "delivered" to 
the customer and therefore a number of real slipping ratios collected from projects is studied. 

Next, we selected three issues (Table 13) that we  discuss in Sections 5.4.9-5.4.11 in order to see the 
impact of module type on quality.  

Table 13.   Quality by type of modules 

Attributes Measurement View Tool/method      Section 
Quality by new module 
type    

Fault densities by the new type 
introduced within new projects in 
FT+ST+ 6 months 

Module 
type 

Bar 5.4.9

Post-release quality by 
groups of modules 

Post-release fault density by the 
technical product groups 

Module 
group 

Bar 5.4.10

Post-release quality by 
degree of modification   

Post-release fault density by 
modification grade 

Local,
Global 

Bar 5.4.11

The first topic in Table 13  is "Quality by new module type". A new technical type was introduced in the 
database system (in the local system only) and data from more than 200 modules was collected since 
1993.  Now there is enough statistical material available to utilise this data and therefore fault densities 
by type are discussed. The new type is explained in Section 5.4.9.   The second topic concerning 
post-release fault density by module group enables a new cross-organisational view. As one of the 
further development needs was (see Section 3.5.1, Table 6) product group (e.g. subsystem), we 
initiated its implementation in the measurement system for the modules belonging to the Product 
Provisioning area TSS (Trunk and Signalling Subsystem). The first measurement results using this 
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grouping are presented in Section 5.4.10. As a third topic we selected a study regarding the impact of 
modification grade. There is not much such knowledge in the literature. The earlier studies (see e.g. 
Section 5.1.1) focused on fault density in Function Test, now we focus on 6-month post-delivery period 
(Section 5.4.11).  

At last, our case studies  include two customer oriented issues (Table 14), namely quality seen during  
7-12  months after  delivery and severity of customer detected faults, that are discussed in Sections 
5.4.12-5.4.13.

Table 14.  Other aspects of faults detected at the customer 

Attributes Measurement View Tool/method Section
Quality at the second  
6-month period 

Fault density during 7-12 months 
after delivery 

Project Bar 5.4.12

Severity of faults Proportion (%) of faults causing 
fatal failures at the customer 

Organisation Pie chart 5.4.13

As a first topic in Table 14 we focus on the second 6-month operational period at the customer.  
In practice it may happen that the modules are not yet in broad operation during the first 6 months and 
thus this period is relatively short and limited. Also a 12-month period (Grady, 1992) appears in the 
literature. The second period was thus needed (see Section 3.5.1) but no baseline data was available. 
Therefore, the purpose and method for a separate study about quality seen during 7-12 months was 
specified. The results of the study carried out (Ahola, 1996) are summarised and discussed in Section 
5.4.12. The second study in Table 14 relates to  on the severity of faults.  It is essential to know how 
fatal the current faults are. Some results from earlier fault analyses are available. Further details are 
presented in Section 5.4.13.

5.4. Case studies - exploitation possibilities of results 

In this section we concentrate on finding relationships between (external) attributes in the order 
specified in the previous Section 5.3.4. The most important relations and correlation studies are 
presented here case by case in a manner described in Sections 5.3.2 and 5.3.3, including graphics 
and findings. Some new hypotheses are stated and tested in the light of the collected material. We 
have formulated hypotheses for eleven out of eighteen case studies. The argumentation for stating a 
hypothesis has been a  possibility to tie it to literature, or an aspect that it might be otherwise generally 
interesting.  In cases with no formulated hypothesis we study correlation and discuss the meaning of 
results. Test results are presented by showing measured facts. Discussions include the usage 
(application) of each measurement case.  

5.4.1. Quality Productivity  

The graph in Figure 5.6 helps to visualise quality improvement compared to productivity improvement. 
Each dot represents a finished project. Quality is expressed here as faults detected in Function Test / 
new and modified kPLEX volume. Productivity is defined as volume (new and modified 11) / man-hours 
spent to produce this volume. 

                                                          
11 New and modified volume means the sum of volume in all new modules plus the sum of modified part (volume of the module x 

modification grade)  in all modified modules developed within the project  
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Quality Productivity in PLEX SW design - Local
view
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Figure 5.6 Quality Productivity

Facts (Data set 1):
A majority of projects are located in the lower right area that means high productivity with high quality.
Correlation coefficient (r = - 0,11) is showing a weak negative correlation. Trend curve is not
meaningful here. One “exceptional” project is found in the upper left area - the reasons should be
analysed in more detail. One observation regarding this project is a very low (11%) modification grade
of modules.

Quality vs. project effort 

Dependence between quality and total man-hours of projects was also studied. The following
hypothesis was stated.

Hypothesis 1:

   Amount of project faults correlates positively to the total effort of the project.

This simple evidence is also found in the literature (Putnam, Myers, 1997) showing that also in other
databases an increase in the number of  defects goes along with an increase of effort. 

Function Test faults vs. Project effort
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Figure 5.7 Relationship between Function Test faults and project effort 

Facts (Dataset1):
Figure 5.7 depicts the effect of increasing project effort on the total number faults detected in Function
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Test for the same projects as in Figure 5.6. Correlation between total Function Test faults and total 
project effort is significant because the value (r = 0,88) for the correlation coefficient is greater than the
critical value (0,4973 in case of 16 items). 

Conclusions:
The case study provides support for the hypothesis because significant correlation was found.

Use:
This fact can be used as a very rough fault prediction model. When you know the effort then you also
know how many faults are expected.

5.4.2. Effort vs. volume

In this section, we are first searching how project effort depends on the source program volume
developed in the project. Secondly, we discuss whether there is any correlation between coding effort 
and source program volume. As a third topic we try to find out a correlation between quality and 
coding effort.

Project effort vs. volume 

The cost models, such as COCOMO (Boehm, 1981) and SLIM (Putnam, 1992) are based on the
argument that effort has a positive correlation to volume estimated in SLOC or in delivered source
instructions (KSDI). In order to see how the issues look as we use material  from PQT database
(modules written in PLEX) we formulated the following hypothesis.

Hypothesis 2:

  Project effort correlates positively to the new and modified volume to be developed.

Project effort vs. New and modified PLEX volume
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Figure 5.8 Relationship between man-hours and volume

Facts (Data set 1):
New and modified volume was selected because the project effort includes all man-hours spent to
produce this volume. The study only includes the local subprojects, because validated data was
available only from local database. As data from 16 past major projects (the same ones as in Figure 
5.6, from 1990’s) was studied, the following dependencies were found (Figure 5.8). 
Correlation is strong and significant because the value (r = 0,91) for the correlation coefficient is 
greater than the critical value (0,4973 in case of 16 items). In the graph there are smaller projects
deviating remarkably from the regression line. For example, the project marked with “x” did modify the 
modules less than 10% in average, so the effort was mainly spent to produce other documents than
the program code.  All the modules in this project were modified products. Also the modification grade
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has its inaccuracies. According to the Final report of the project (Mellberg, 1996) requirements were
heavily changing during the project causing extra effort in design and testing. 

Conclusions:
Project man-hours correlate well with the new and modified volume supporting our hypothesis.

Use:
These results can be used for rough estimation of project effort when the new and modified volume is 
predicted at the start of the project. It is possible to derive a simple equation for prediction.

Discussion:
In the light of literature the man-hours should not have a fully linear relationship with volume. Some
estimation models, e.g. COCOMO in embedded mode, (Boehm, 1981, p. 76) state a slightly unlinear
dependence. The reason for different result might be that our local subprojects do not involve all 
administrative man-hours, which are in some projects reported on the main project. An indicator set in 
a measurement guidebook (Jones, 1998)  includes similar size–effort relationship. The intention is to
use it to crosscheck effort estimates generated by other means to analyse reasons for the deviation if 
the estimates fall outside the  95% confidence limits. To get a useful method, enough historical data
from finished projects for the same application domain is needed.

A study of Unit design (coding) man-hours and volume of modules 

As man-hours for Unit Design & Basic Test and PLEX volumes per module were listed from the PQT
database, we observed that a number of new big modules were found having only a small man-hour
effort spent. A new module of 3210 PLEX statements can not be designed in 3 man-hours. Possible
error sources are:

A number of stored “new” modules are obviously not new, but considered being new when their
module identity is new. 
Some man-hours are clearly estimates or rounded figures.
A project may have several different modules with the same amount of man-hours for each of 
them.
It is unclear how man-hours for beginners are handled in different companies - are their hours
registered on job training or time-reported directly on software modules?

One can not rely so much on man-hour data - so we investigated new modules only (about 1400
modules, collected from all companies within PQT, Data set  2). The graph (Figure 5.9) shows that
any reasonable correlation between man-hours and volume can not be obtained. However, Figure 5.9
indicates that there are two different behaviours in these modules, a set of big modules which required
less man-hours and a set of middle-sized modules with a large effort consumed.
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Figure 5.9 Coding man-hours vs. volume of modules
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The reason would be the incorrectness of man-hour data mentioned above and, on the other hand,
the differences in module difficulty and designer’s skill levels. In connection with this thesis it was not
possible to investigate in detail the data that was not available in the database. It would be reasonable
to augment the PQT database by new data like module complexity, functional type of the module and
design competence per module. The result also stresses the importance of data validation before
inserting data items into the database. Ericsson in Finland has been more careful in classifying
modules (new and modified) and registering man-hours. Thus, as shown in Figure 5.10, there is a
significant linear dependency  between man-hours and volume in new modules (Data set 3).

Manhours for Unit Design & Basic Test  vs.  volume
in new modules - Local view
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Figure 5.10    Coding man-hours vs. volume of modules

Correlation is significant because the value (r = 0,72) for the correlation coefficient is greater than the
critical value (0,1966 if the number of items N > 100).

Quality vs. Unit design & Basic Test effort 

Quality is expressed here as the number of faults detected during Function Test. Correlation between
quality and design effort was studied for the same collection of modules as in Figure 5.10 (Data set 3). 
Quality depends on the man-hours as shown in Figure 5.11 indicating the fact: the more man-hours,
the more faults.

Function Test faults vs. Unit Design &
Basic Test  manhours
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Figure 5.11    Quality vs. Unit Design & Basic Test hours in new modules - Local view 

However, the correlation is not very good (r=0,51). One reason might be booking inaccuracies in
module man-hours. The rightmost picture shows that fault density does not correlate so well to man-
hours (r = 0,11). Correlation is not significant because the value (r = 0,91) for the correlation coefficient
is lower than the critical value (0,1966 if the number of items N > 100). Exceptionally high fault
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densities appear in some smaller modules. The reason might be incomplete inspection or Basic Test.
In the future it is important to register carefully the hours and faults for inspection and Basic Test
activities to understand better the drivers to quality observed in Function Test. Competence and 
complexity are also important driving attributes for which collected data was not available per module.

5.4.3.    Lead time vs. quality 

Lead time means the calendar time from the start to the end of a defined phase or process according
to  the project model (see Section 2.1.1). In this study, lead times, either planned or actual, are based
on milestone dates corresponding to tollgates or other important events (e.g. final release of modules)
in a project. In order to study relationship between lead time and quality the following hypothesis was
stated and tested. 

Hypothesis 3:

   Shorter planned lead times lead to better quality for the project.

The hypothesis is quite “revolutionary” because usually the exact opposite phenomenon  is presented,
i.e.; better quality can lead to shorter cycle times.  Traditionally,  e.g. the importance of early
inspection has been argumented by claiming that it reduces the lead time (Fagan, 1986 and Gilb,
1988). Poor quality was one of the most common reasons for schedule overruns in a survey of about
4000 projects (Jones, 1994). Abdel-Hamid (1991) presents some insight into effect of time pressure
on error rate showing that error generation can increase by as much 50% under severe schedule
pressures.
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Figure 5.12    Fault densities to planned lead times 
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However, some software managers have presented indications (Toivo, 1996) that tight time schedules 
correlate with quality of the modules developed within a project. This is why the project that has a tight 
schedule should choose the resources very carefully.  It is usually expected that a competent design 
team is able to produce good quality. Because any measure is not available expressing which project 
has a tight schedule it has been assumed that a short schedule is a tight schedule. A short schedule 
can be determined by comparing planned lead times of different projects. To get more facts from 
projects a separate study was specified and performed (Lindberg, Sundström, 1996). 

Facts (Data set 4): 
To test the hypothesis we use the planned lead times instead of actual ones. Quality for a project is 
measured as actual mean fault density for the project. It is also reasonable to classify projects with 
respect to effort in man-hours. We use three classes in order to distinguish between small and large 
projects:  < 5000, 5001-20000 and > 20000 man-hours (mh). In each quadrant of Figure 5.12, x-axis 
shows planned lead time TG3-PRA12  in days.  Y- axis shows fault density for all phases FT, ST, 6 
months. The leftmost upper quadrant includes all analysed 25 projects showing that correlation is not 
so strong. It is significant because the value (r = 0,53) for the correlation coefficient is greater than the 
critical value (0,3961 in case of 25 items). 

In small projects we observe a weak negative correlation, -0,34 (not significant, critical value is 0,7545 
in case of 7 items). Projects larger than 5000 man-hours have lower fault density when the planned 
lead time is shorter, same to eleven large projects (> 20000 man-hours) in the rightmost lower 
quadrant. Correlation (r=0,59) is not significant because the critical value for 11 items is 0,6021. 

Conclusions:
Some support for the hypothesis but the correlation is not strong. The hypothesis was not true for 
small projects.

Use:
The results like this can be used to optimal break down of project schedule. 

5.4.4. Post-release quality of modules faultless in Function Test

A significant number of modules appear to be faultless in Function Test (FT). A sample  in Figure 3.2 
(see page 21)  shows that around 30% of modules are faultfree in Function Tests at Ericsson. Similar 
figures have been presented in other studies (Khoshgoftaar, 1992) discussing a random sample, 
where  30 out of 109  modules are faultless (28%). Other pareto analyses (Ohlsson, 1998) regarding 
Function Test show that 74% of modules are responsible for 100% of faults, so the rest of modules, 
i.e. 26% are faultfree. Software defect studies from different environments over many years in the area 
of software engineering conclude that about half  the modules are defect free (Boehm, Basili, 2001). A 
proposal for a new study item popped up in the Management Review (Hirvensalo, 1994) to find out 
whether or not essentially more faults appears later in modules that have been faultless in Function 
Test.  Because  faultless modules have basically not been a concern in earlier studies (as they focus 
on fault prone modules) we state a question: “are the modules faultless in Function Test still faultless 
in later test phases and field operation”. This implies the following hypothesis. 

Hypothesis 4: 

  The modules that have been faultless in Function Test (FT) are also faultless after release. 

Facts (Data set 5): 
A number of modules have been studied below in order to know how the modules faultless in FT look 
after release. The study focused on 73 faultless modules out of 242 modules that have passed FT and 
also been in operation for 6 months (the uppermost row in Table 15 below).

First, the rightmost column shows that post-release fault density (i.e. in System Test (ST) and during 6 
months (6MO) at the customer) has been the lowest in modules having zero faults in FT.  Either the 

                                                          
12 TG3 marks a point in time when coding of software modules starts; At  PRA  the coding and  Function Tests are finished. For 

further details of definitions of TG3 and PRA, see Section 2.1.1. 
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FT did not succeed to find faults or the quality in design was really very high. Secondly, we observe
that percentage of faultless modules also after release is the highest within these modules. Finally, 
Table 15 shows that the zero fault modules have the smallest size in average. 

Table 15.   Post-release quality - faultless modules in FT vs. faulty modules after release

Faults detected
in Function

Test per
module

Number
of

modules

of which faultless
modules after

release in number
and per cent (%)

Volume in 
total

(NCSS)

Average
size

(NCSS)

Number of
Post-release

faults
(ST / 6MO  Sum)

Mean Post-
release fault

density
(ST /  6MO)

0 73 59  (80,8 %) 94211 1291 15 / 11          26 0,16 /  0,12 
1-2 73 51  (69,9 %) 106248 1455 20 / 17         37 0,19 /  0,16 
3-5 46 21  (45,7 %) 93403 2031 38 / 26         64 0,41 /  0,28 
> 5 50 12  (24,0 %) 128696 2574 129 / 86       215 1,00 /  0,67 

Totally 242 143 (59,1 %) 422558 1746 202 / 140     342 0,48 / 0,33 

Our further analysis  showed also that 60% of modules in the first category have low modification
grade (< 20%) while the last category mainly contains highly modified modules. From Table 15 one
can easily calculate that also the number of post-release faults is the lowest in the first category.

On the other hand, it is also necessary to find out how often it is the same product that is faultless in
FT and also after release. The third column in Table 15 shows that 59 out of 73 zero fault modules
have been faultless also after release, i.e., in 81% of cases, the same single module has been
faultless in all phases. This gives some indication that the reason for post-release faultlessness has
not been insufficient execution of Function Test. However, further investigation of the data set showed
that still the rest 14 modules were faulty either in ST or during 6 months. These modules contain those
26 post-release faults that were not detected in FT. Collected measurement figures, such as size and
modification grade do  not alone explain the reason for slippage, but each single module (e.g.
difficulty, competence) and fault must be analysed individually. Differences of Inspection and Basic
Test results between each group of modules should also be compared in further studies. 

Facts (Data set 15):
In order to prove this hypothesis further, another collection of modules (Data set 15) was  studied
project by project (Figure 5.13). The graph in Figure 5.13 shows the trend per project that is similar to
results presented in Table 15. We use lower granularity in classification for faults detected in FT
because of smaller number of modules per project. The columns representing post-release fault
density of modules that were faultless in FT (the leftmost columns marked in bold) have the lowest
post-release fault density.
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Figure 5.13    Post-release fault density in projects

Projects included in Figure 5.13 have succeeded to produce a number of  modules that were  faultless 
in all phases. The highest percentage of such modules appears in the  category  where faults in FT is
zero. In these four projects around one third of all modules are faultfree in FT and  more than 80% of 
them are also faultless in ST and during 6 month (Table 16). This percentage is significantly high with 
respect to occurrence of fully faultless modules within all modules (compare to the rightmost column).
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Table 16.   Faultlessness in four projects 

Project Volume in 
total

(NCSS)

Number 
of

modules 

of which faultless 
modules in FT  in  
number and  per 

cent (%) 

of which faultless 
modules in FT, ST 

and 6MO  in  
number and  per 

cent (%) 

Occurrence of fully 
faultless modules 
out of all modules 

in per cent (%) 

A 94999 89 27 (30,3) 24   (88,9 %) 27,0
B 56970 41 16 (39,0) 14  ( 87,5 %) 34,2
C 50324 48 17 (35,4) 14  (82,4 %) 29,2
D 82876 51 15 (29,4) 12  (80,0 %) 23,5
All 285169 229 75 (32,8) 64 (85,3 %) 28,0

Conclusions:
Studying   two data sets provided evidence for  hypothesis 4. In more than  80% of  cases, where a 
module is faultless in Function Test, the same single module is faultless after release. Both the 
number of post-release faults and fault density is the lowest in this category of modules. For these 
reasons it can be concluded that these modules have not been problem modules in the field. 

Use: 
Trace the modules that have been faultless in FT, ST and 6 months, analyse the driving factors which 
led to good quality and learn about them. High percentage of such modules can be used as a 
goodness measure of the Function Test process. It is also useful to publish a list of these modules that 
were faultless in all  phases to acknowledge the personnel about good quality. 

Discussion: 
The study neither considers complexity  of faultless modules nor  the severity of faults. In some 
modules there is a risk that the use after delivery to the customer has not yet been broad and 
therefore no faults occurs during 6 months. 
   

5.4.5. Post-release quality in modules having high fault content in test 

Testers traditionally believe  that  the probability of the existence of errors in a module is proportional 
to the number of errors already found in that module (Myers, 1979). This is especially true if a module 
is badly structured (e.g. spaghetti code) and thus error prone. Early during the present study a 
question arose: “Are the most faulty modules in design also error prone in System Test and in the 
field?”. Quality management was interested in studying this question  by using appropriate material 
available in the PQT database. We formulated the following four hypotheses.  

Hypothesis 5: 

a) The higher number of faults detected  per module in Function Test, the higher fault density 
     in System Test.  
b) The higher number of faults detected  per module in Function Test, the higher fault density 

after internal release (i.e. in System Test and during first 6 months). 
c) The higher fault density in Function Test, the higher fault density during first 6 months after 

external release (RFA). 
d) The higher number of detected faults per module in Function and System Tests, the higher 

fault density during first 6 months after external release (RFA).

Facts  for hypothesis 5a (Data set 6): 
The hypothesis 5a can be proved by investigating whether the modules that have been faulty in 
Function Test still remain faulty in System Test. The analysed small sample (Table 17) of Finnish 
modules shows that high amount of faults (e.g. > 5 faults) detected in Function Test per module 
means that a majority (> 57 %) of these modules are still faulty after internal release (i.e. in System 
Test). The higher is the number of faults detected in Function Test, the higher is the proportion of 
faulty modules in per cent. As a higher number of faults is detected in Function Test then also the 
mean fault density in System Test is getting higher. On the other hand, Table 17 shows that average 
size in NCSS is increasing, i.e., the faulty modules are bigger modules. 
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Table 17. Post-release fault density vs. faults detected in Function Test - local view

Faults detected in
Function Test per

module

Number
of

modules

of which faulty
modules in System

Test  in  number
and per cent (%)

Volume in 
total

(NCSS)

Average
size (NCSS) 

Mean  fault
density in 

System Test
(ST)

0 154 14   (9,1 %) 201329 1307 0,12
1-2 146 42 (28,8 %) 259727 1779 0,22
3-5 96        33  (34,4 %) 214008 2229 0,32
> 5 103 59  (57,3 %) 287313 2789 0,76

Totally 499 148 (29,7 %) 962377 1929 0,38

Facts  for hypothesis 5b (Data set 7):
We use a larger sample from global view to prove the hypothesis that is very close to the hypothesis
5a. Modules in Table 18 are divided into five categories by the number of faults detected in Function
Test (FT). Two added categories are used for modules where more than five faults were introduced
because absolute fault figures on global level appeared to be higher than on local level. Post-release
fault density (see the rightmost column for ST+6MO) is constantly growing as function of faults
detected in FT.  On the other hand, it is also necessary to find out how often it is the same module that 
is faulty in FT and after release. This can be observed in column 3.

Table 18.   Post-release fault density vs. faults detected in Function Test - global view

Faults detected in
Function Test per

module

Number
of

modules

of which faulty
modules after

release in number
and per cent (%)

Volume in 
total

(NCSS)

Average
size (NCSS) 

Mean Post-
release fault

density
(ST+6MO)

0 2390 889  (37,2%) 4696539 1965 0,50
1-2 2043 1006 (49,2%) 4225358 2068 0,63
3-5 1404 881  (62,7 %) 3255502 2319 0,90

6-10 926 713  (76,9 %) 2497289 2697 1,27
>10 1228 1018 (82,9 %) 4219501 3436 2,06

Totally 7991 4507 (56,4 %) 18894189 2364 1,05

Facts for hypothesis 5c (Data set 6):
In our hypothesis we also expect to know the dependence between fault densities observed in FT and
after delivery. We use Data set 6 again but we use normalised data (faults/KNCSS) instead of
absolute faults per module.  The following Figure 5.14 and Table 19 show the post-release fault
density during RFA+6 months by fault density categorised in FT. The highest fault densities during 6
month are observed in groups  of modules having a high fault density in FT. 

Fault density during 6 months after delivery  vs.
Fault density in Function Test
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Figure 5.14    Comparison of  fault densities in test vs. 6 months after delivery
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Table 19.   Detailed module data by categories included in Figure 5.14. 

Fault density in 
Function Test  per module 

(Faults/KNCSS) 

Number of 
modules 

Volume in total 
(NCSS)

Fault density during 
6 months after delivery 

(Faults/KNCSS) 
0 154 201329 0,17

0,01 - 0,99 84 263996 0,21
1,00 - 1,99 85 208951 0,21
2,00 - 3,99 83 162997 0,39

> 4 93 125104 0,87
Totally 499 962377 0,32

Facts for hypothesis 5d (Data set 6):  
Finally, we categorise our  material by summed faults detected in Function and System Tests  (Table 
20). Still the highest post delivery fault density appears in the lowermost category where also the 
highest percentage of faulty modules (48,4 %) occurs. 

Table 20.   Post delivery fault density vs. faults detected in pre-release  testing

Faults detected in 
Function Test + 

System Test  per 
module 

Number 
of

modules 

of which faulty 
modules after 

delivery in  number 
and  per cent (%) 

Volume in 
total

(NCSS)

Average 
size (NCSS) 

Fault density 
during 6 months 

after delivery 
(6MO) 

0 140 21   (15,0%) 174701 1248 0,17
1-2 133 22  (16,5 %) 218111 1640 0,13
3-5 104        38  (36,5) 230099 2212 0,33
> 5 122 59  (48,4 %) 339466 2789 0,50

Totally 499     140  (28,1 %) 962377 1929 0,32

Now the next issue of analysing is how these faulty modules differ from other modules in the 
lowermost category. Regarding this category, our  rough-set analysis showed that more than half of 
faulty modules represented highly modified  (i.e. modification grade ranges 40-99%) modules. The 
majority of other modules (Fault 6MO =0) consisted of small new modules or modules with 
modification grade lower than 20%. 

Conclusions:
In our study, we found evidence to support all the four stated hypotheses 5a …d. Higher post-release 
or post delivery fault densities appear in those module categories where the higher number of faults 
are detected in Function Test (or in Function Test +  System Test). Hypothesis 5c appeared to be true 
because we observed the highest fault densities during 6 month in groups  of modules having a high 
fault density in Function Test.

Discussion:
Hypothesis 5a appeared recently also in other studies(Fenton, Neil, 1999; Fenton, Ohlsson, 2000) in a 
form “Higher incidence of faults in Function Testing (FT) implies higher incidence of faults in System 
Testing (ST)”. Hypothesis 5d is closer to the statement presented in the related study (Fenton, 
Ohlsson, 2000) “Higher incidence of faults in all pre-release testing (FT and ST) implies higher 
incidence of faults in post-release operation (SI and OP)”. In their investigation, the phase “SI” means 
first 26 weeks at a number of  site tests that is exactly the same compared to the period RFA+6 
months in the present study. Their phase “OP”  means first year of operation after site tests.  The data 
for the first year of operation was not stored into the measurement database and thus not available for 
the present study. 

Use:
These facts can be used for example in planning and setting alarm limits during Function Test in order 
to catch and act on the modules that most likely will be faulty in the field. 

5.4.6.  Identifying occurrence of "Stinker" modules

The existing databases provide opportunities to identify modules having a very low quality. There are 
several possibilities to define a very low quality module (so called "stinkers"). It can be defined by 
using a high number of faults as criteria. However, the absolute number of faults is to a large extent 
dependent on module size. A better definition is found by using statistical process control method to 
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indicate whether the quality is deviating from "normal” level too much. According to Ericsson's PQT
definition the “stinker” modules are modules having a fault density that significantly exceeds the
capability level of the organisation and software process. It is supposed that the fault density of a
mature process is below a certain limit. This control limit is set to 3  (3  standard deviation) + Mean
Fault Density. If a module is out of this limit this can NOT happen only because of random variation. In
this way it is possible to count the sum of modules deviating from "normal" level and to calculate ratio
of stinker modules as the number of assumed stinker modules divided by the total number of modules.

Facts (Data set 8):
Figure  5.15  illustrates the principle described above in the context of Function Test phase.  Mean 
stinker ratio for the entire displayed graph is indicated as a straight horizontal (red) line.  Upper control 
limit, UCL and lower control limit, LCL are indicated as the incremental (green) lines. The actual ratio
of stinker modules is also given (black line). 

Figure 5.15    Ratio of low quality modules

As an additional information to the graph it is useful to list the modules (which are assumed to be 
stinkers) having "improbably" high fault density. This list contains information on module identity, 
name, and release date and project identity.

Use:
Ratio of Stinker modules can be used to analyse the stability of the design process, to identify
potential problem areas and to obtain basic information for root-cause analyses.

5.4.7. Time based trend of cumulative fault density 

In order to study the accumulated fault density for FT+ST+ 6 months, a time based trend presentation
has been developed and introduced during this study (Figure 5.16).

Hypothesis 6: 

   Company-wide software process improvement actions lead to a real decreasing effect on total 
   fault density. 

Several companies have been able to reduce fault density in consequence of their process 
improvement activities. NASA/SEL has provided some error data taken from 60 projects over the full
lifetime (McGarry et al., 1994). HP set a “10 x” improvement goal in 1986 to reduce their product post-
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release defect density by a factor of ten in five years. The result (Grady, 1997) shows that the trend
was year by year decreasing and HP achieved a 6 x company wide defect density improvement.

 Software product quality - Corporation & Local view
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Figure 5.16    Trend of cumulative fault density (Note 13)

Facts (Data set 9):
The graph shows a decreasing trend of fault density. Quality shows significant improvement in
comparison with baseline i.e. fault density during 1993. Improvement is 53 % on 1996 on corporation
level. The graph also shows a higher quality (lower fault density) at local company (LMF/T) contra all
design centres of the corporation.

Conclusions:
There is observable support for the hypothesis. During the period in question organisations have taken
systematic improvement actions that have lead to a positive trend.

Use:
The presentation can be used by management to see that improvement actions performed during past
year have affected significantly in reality. It is also easily possible to calculate savings or return on
investment (ROI) when a large amount of trouble reports has been avoided. Management has also
used first PQT results in the ESEPG97 conference to show the effect of corporate improvement 
program (Mobrin, Wästerlid, 1997). 

5.4.8. Correlation between fault density in test and slippage

A correlation should also exist between fault density in Function Test and slip-through to the period of
the first 6 months after external delivery (RFA + 6 months). This attribute was used in  Ericsson’s ESSI
program as a Key Performance Indicator for a vital action that aimed at  improving the ability of testing 
activities to prevent faults slipping through to the customer.  Now we have an opportunity to present
some real figures.

Facts (Data set 1):
Slip-through was studied in the same projects as in Section 5.4.2. The following sample (Figure 5.17)
shows only a weak negative correlation. The correlation coefficient is - 0,56 (significant) for fault
density calculated with respect to total volume of modules, but a bit lower correlation, r = - 0,46 (not

13  Note. The figures under the x-axis represent the size of two statistical samples per each period, i.e. the number of modules
that have passed 6 months.
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significant), was obtained for new and modified volume of modules of same 16 projects. The critical
value for  the correlation coefficient is - 0,4973 in case of 16 items. 

Slip through RFA + 6 months  vs. Fault density in
Function Test
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Figure 5.17    Influence of fault density on slip-through

Use:
When fault density in test is predicted or measured then it is possible to predict slip-through ratio.

Discussion:
Because the correlation is weak it is difficult to interpret the result. Fault density in Function Test may
either tell about bad quality in design or goodness of testing. It is necessary to find other driving
attributes  for slip-trough and perform multi-dimensional analyses. The graph only shows how the 
situation looks in circumstances where design and testing methods have varied. 

5.4.9. Quality by type of the module

A study of fault densities by new module type was performed in order to see quality variations
between different technical types of module. The new module type expresses the main task of a
function block. The new module type, tailored especially for digital mobile telephony modules, is as
follows:

T   Traffic Traffic handling 
C   Coordination Coordinator tasks
I   I/O Read from or write to an I/O buffer 
M   MAP Participate in Mobile Application Part signalling
D   Data SB Store subscriber data
A   Analysis Analyse numbers and series

Fault densities for each type in the three phases, FT, ST and first 6 months after delivery, look as 
shown in Figure 5.18. 

Facts (Data set 10):
From the graph one can see that I/O modules have very high quality during 6 months after delivery. 
Only one fault is found (only in one module out of 45 modules). I/O modules are based on well-known
macros and usually the same simple routines are repeated. Coordination and Analysis modules are
fully faultless during 6 months. The average size of these modules (typically < 1000 statements) is 
smaller than the size of Traffic handling modules. Traffic handling and MAP modules are more
complex and more difficult to test in Function Test. Faults in Traffic handling modules are found more
frequently during operation.
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Fault density for FT, ST, 6 months by module type - Local
view
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Figure 5.18    Quality by type of the module

Use:
This telecommunication switching oriented classification, set in an early phase of a project, provides 
information of the probable problem module that need more focus during design, inspection and test
(for example, in design of preventive actions, in selection of test cases). The organisation can use the
measured facts above as basis for a more detailed root-cause analysis within those groups of
modules in which the faults typically slip (e.g. Traffic handling, MAP). 

Discussion:
Because testability is different in different  types of applications above it would be worthwhile to 
compare architecture of these applications and the impact of the architecture on testability of modules.

5.4.10.   Quality by technical group of modules

The quality measurement database system (PQT) has been further developed during this study by 
introducing a product group. Within TSS (Trunk and Signalling Subsystem) the modules can be
divided into four technical groups:

TSS_ISUP (ISDN User Part), 
TSS_CAS (Channel Associated Signalling),
TSS_TUP (Telephony User Part), and 
TSS_NUP (National User Part). 

Fault density during first 6 months within TSS by
groups

0,0
0,2
0,4
0,6
0,8
1,0
1,2
1,4
1,6

NUP CAS ISUP TUP Totally

Group

Fa
ul

ts
 / 

K
N

C
SS

Figure 5.19    Quality by module group
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The new concept is important for a geographically distributed company in which one local design 
centre has a prime responsibility for these modules developed in different countries. Figure 5.19 
shows the 6-month fault density that has been defined as a key performance indicator concerning 
quality.

Facts (Data set 11):
The graph is able to show that the biggest quality problems have been in the NUP area.  

Use:
The grouping like this or similar provides a cross-organisational view on technical area by category. It 
is the responsibility of the design organisation to analyse what are the root-causes for problems. For 
example, we suppose that root-causes maybe related to the clarity of NUP specifications etc, but 
those issues are not discussed here. 

5.4.11. Module quality by modification grade

Already early experience (Myers, 1979) has  shown that modifying an existing program is more error-
prone than writing a new program. Existing (old) modules are normally used as base when new 
software units are developed for telecommunication switching systems (see e.g. Table 9 in Section 
5.2.2).  In our case, modification grade expresses in per cent to what extent the new software unit is 
new and modified, i.e., telling how much new and changed code the new software unit contains. This 
definition implies something opposite to degree of re-use that is widely used. Management of design 
organisations  needed modification grade in fault density and productivity calculations because it was 
often more appropriate (i.e. rightful) to  consider new and changed parts of the module. The 
modification grade used in this study is defined in more detail in the PQT manual (Ericsson, 1995). A 
tool for automating calculation of modification grade from source code was available thus providing an 
opportunity to study the effect of modification in the light of our data.  Questions arose  like “Is the 
quality higher in modules of minor modifications” or “How the quality of modified modules compares to 
quality in new modules”. We stated the following hypothesis.

Hypothesis 7: 

  The lower modification grade, the lower number of post-delivery faults per module is expected. 

Facts about faultlessness (Data set 6): 
Table 21 contains data collected by modification category. Faultlessness in tests does not tell the 
whole truth about quality. In this section we identify amount of modules that have been faultless during 
their first 6 months. The results in rightmost column of Table 21 show that the number of faults per 
module is increasing in categories where modification is less than 40%. In the lowermost row we can 
also observe how the results compare to new14 modules.

Table 21.   Faults and faultlessness by modification grade during first 6 months after delivery 

Module  
modification 

category 

Number of
modules in the 

category 

of which faultless during 6 
months in number and  

per cent (%) 

Faults per module 
during  

6 months 
1 –10  % 161 123   (76 %) 0,40
11-20  % 87 56   (64 %) 0,68
21-40  % 76 44   (58 %) 1,07
41-99  % 77 54   (71 %) 0,81

100 % (New) 98 81   (83 %) 0,40

Facts about fault density by modification grade during first 6 months (Data set 12):
It is also interesting to see the influence of modification grade on fault density during the first 6 
months. Here the fault density reflects the number of faults per total lines of modules, not per modified 
lines, because in the field operation the customer does not care whether a fault occurs in new parts or 
modified parts of software modules.  In accordance with Figure 5.20, a significantly lower fault density 

                                                          
14 Modification grade for new modules is considered to be 100%. 
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is obtained in categories 1-10, 11-20 %. The trend in modules developed on local level is similar to the
phenomenon at other Ericsson companies.

Fault density during 6 months after delivery by
modification grade
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Figure 5.20    Fault density by modification grade category

Facts about occurrence of problem modules (Data set 12): 
The material in modification grade categories was also studied in more detail in order to see whether
there are less problem modules in categories with lower modification grades. Let us assume that a
module having  > 5 faults during 6 months after delivery can be considered as a problem module. The
study of this aspect showed a low occurrence of such problem modules in the group of modules
modified less than 20% (1 item out of 248 items, i.e. 0,4 %), but significantly higher occurrence (6
modules out of 153 items, i.e. 3,9 %) in highly modified modules (21-99 %). 

Conclusions:
The results show that our hypothesis is true. The lower is the modification the less faults per module.
New modules are less faulty than highly modified modules.

Use:
This knowledge can be used to achieve a lower fault density during 6 months after delivery by 
designing modules either with minor modification or by making a totally new module instead of 
modifying an old module to a large extent. Measurement results thus help to understand the effects of 
modifying software. The modification grade can also be used for comparing the design and the test 
effort between new and modified modules.

5.4.12. Module quality during 7-12 months after delivery 

Hypothesis 8: 

   Fewer faults are detected during 7-12 months in comparison with first 6 months after external 
   delivery.

Facts (Data set 13):
Quality seen during 7-12 months was examined in a separate study (Ahola, 1996) from 17 projects
which, in addition to Function Test, System Test and 6 months, have passed their first 12 months after 
external delivery. Data from 170 modules was included. The graph in Figure 5.21 shows fault densities
in all the 4 phases per project and the average over all projects. Average fault density for all projects is 
shown in the rightmost column of each phase.
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Fault density by project in 4 phases
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Figure 5.21    Fault densities measured up to the end of 12 months 

Conclusions on results of the study:
There is a weak linear correlation between 6 month's and 7-12 month's quality.
Variations between projects and modules are high.
70% of modules are faultless during 7-12 months, but occurrence of modules having at a 
 maximum 2 faults is more than 90%.
The fraction faultless modules during 7-12 months nearly equals to 6-month figure, but 
 faultlessness does not always occur in the same module.
In nine projects, the fault density during 7-12 months is clearly equal or lower than during the first 
half of the year.
On average, the 7-12 month's fault density over all projects is not lower than the 6-month fault 
density.
In eight projects, the fault density for 7-12 months is even higher than during the first 6 months.

Discussion:
It is difficult to know whether the modules, during the first half year, have been in broad use or not – a 
fact that can explain the higher 7-12 month's fault content in several projects. Point in time when a
single module has started in the real commercial traffic at the customer's site is also very difficult to
trace. Thus, the variations between modules in duration of operational period have influenced on
results.

Use:
The result can be used to predict roughly how many faults are left after the end of first 6 months. In
new projects, it is thus reasonable to continue collection of faults after first 6 months and instead use
statistics for the first year. This type of study also provides a basis for further analysis of type and
severity of those faults that slipped through to the customer.

5.4.13. Proportion of faults causing fatal failures at the customer 

In simple fault density measurements, no distinction between fatal and less serious faults is made, but
all faults that cause correction of code are counted. However, information on severity of faults is
usually available from trouble reporting systems/databases in software companies. Because this 
information was easy to search by using an existing function in the measurement system, an extended
analysis is possible here.

In software of telecommunication switches, a fault is categorised to be fatal, for example, if it causes a
complete system failure (total stoppage) or cyclic restarts. This means that the exchange has lost its 
ability to handle traffic and this situation can only be changed by manual intervention. In the second
category, severe, a fault causes large or small restarts or traffic disturbance on a single route or for a
few subscribers only. A fault is categorised as minor when single units are blocked for short periods of
time without any traffic disturbance. Also failures in documentation that cause handling errors and
opinion reports belong to this minor category.
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Hypothesis 9: 

 The most severe faults detected in the field represent a minority of faults.

Facts (Data set 14):
When a big sample of faults collected during 2 years is classified in more detail we observe that less
than 10 % of faults represented fatal failures (Figure 5.22).  The sample includes a number of software
faults tied to modules, which have passed their 6 months after external release, accepted by the
designer to represent a real fault, and thus caused a software correction in the module.

Distribution by fault severity - 6 months after
external delivery

Fatal (A)
8,3 %

Severe (B)
57,1 %

Minor (C)
34,6 %

Figure 5.22    Fault classification by severity 

Conclusions:
Our hypothesis is true.

Use:
This measurement result is useful in preventing and minimising the percentage of fatal faults on the
condition that the reasons for and types of fatal faults are carefully analysed to learn how to prevent
them. If the percentage of fatal faults is getting lower, the result can then indicate the positive effect of 
preventive actions. This indicator is more customer-focused than fault density measurement. The
additional data related to modules having fatal faults can also be used in causal analyses of quarterly
fault density figures.

5.5. Considering early design attributes

This part of the study mainly limits to a few predictive and driving measures based on data already 
collected until now.  Four issues (Table 22) are discussed in Sections 5.5.1-5.5.3.

Table 22.  Case studies considering early design attributes

Attributes Measurement View Tool/method Section
Fault content  and  SW
volume vs. Complexity of 
software interface

Faults in Function Test vs. 
number of signals

Project,
Module,
Module type

Regression
 analysis

5.5.1

Percentage of faultless
and  faulty modules

Distribution of modules in Function
Test fault categories

Module Rough set
analysis

5.5.1

Early detection rate Inspection faults / faults in all 
phases

Project,
Module

Bar 5.5.2

Effort  and cost of 
detecting a fault

Preparation factor,  Inspection
hours, Man-hours / fault 

Project Bar 5.5.3
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We move the measurement point to an earlier process phase and use collected signal and inspection
data to study their relationships between results observed at later phases of the project. As the first 
driving attribute we selected the complexity of software interface to study its impact on the software
volume and the number of faults detected in Function Test (Section 5.5.1).

The influence of module type (e.g. traffic handling etc.) is also studied. As the second issue we study
the percentage of faultless and faulty modules by classifying signals and faults into four categories.
Two last issues in Table 22 relate to the inspection process providing quantitative knowledge about
the early detection rate (Section 5.5.2) and the cost of detecting a fault (Section 5.5.3). Because
collected man-hour figures were available for the preparation of inspection, a study of preparation
factor is included.

5.5.1. Studying  impacts of number of signals on faults and volume

The complexity of a software interface in the AXE software is represented by the number of sent and
received software signals. In the previous study (Section 5.1.1), the total volume of modules correlated
significantly to the number of all signals. Instead of using all signals per module, as investigated in the
related previous study, we focus on sums of new and changed signals collected from 6 projects
finished after the previous study15. Normally the number of new and changed signals (SigFF) is known
in an early phase and can easily be counted from Function Framework (FF) documents or from signal
libraries.

Interdependence between volume and number of signals on project level

First we find out on project level how new and modified volume in statements correlates to total
number of new and changed signals. The left side of  Figure 5.23 shows a significant linear 
dependence because the correlation coefficient of 0,94 is greater than the critical value (0,8114 in
case of 6 items). The correlation between Function Test faults and signals is also significant as shown
in the right side of  Figure 5.23.
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Figure 5.23    Relationship between volume, faults and signals

Signal studies on module level

Since another study (Ohlsson, 1996) has proved the number of new and changed signals (SigFF) to
be a possible predictor for fault-prone software modules, we collected SigFF figures and compared
them to faults detected from modules within a few Finnish projects (Data set 15). The type of module
studied in Section 5.4.9 is expected to influence on results and the type is thus included.

15 Later projects only reported number of new and changed signals for each new and modified module 
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Facts (Data set 15):
Correlation coefficients of SigFF to Function Test (FT) faults, fault densities and volumes as 
dependent variable are presented in Table 23.  Correlation was studied in four subsets: SigFF-T = 
SigFF figures in Traffic handling modules, SigFF-M in MAP, SigFF-I  in I/O and SigFF-O in other types 
of modules, i.e. in the rest of modules  (e.g. Coordination, Analysis). The SigFF appear to correlate 
best to FT faults and modified volume in traffic handling modules where signal communication plays a 
central role. The result is statistically significant because the values 0,65 and 0,63 for the correlation 
coefficient are greater than the critical value (0,4438 in case of 20 items).  In Table 23 we also observe 
that correlation of SigFF to fault densities is very weak.  

Table 23.   The Pearson correlation between SigFF and variables 

Variable SigFF-T SigFF-M SigFF-I SigFF-Other SigFF-All 
Number of modules 20 62 54 43 179
FT faults 0,65 0,30 0,18 0,12 0,26
Modified volume 0,63 0,57 0,43 0,49 0,47
FT faults/modified  volume -0,02 -0,09
FT faults/total volume 0,06

A study of signals and faults by category 

As observed in this study, SigFF shows a clear dependence to Function Test faults. However, sizes 
and numbers of faults in modules were small, thus the prediction ability of SigFF on single module 
level is poor and variations are high. For this reason, a linear regression is not necessarily a best basis 
for prediction purposes. Instead, we classified SigFF’s into “rough sets” as shown in Table 24.  

Table 24.   Distribution of modules in Function Test (FT) fault categories 

Distribution of modules in FT fault categories   
0    1  - 2   3  - 4   > 5 

SigFF N n % n % n % n % 
  1 - 5 49 25 51,0 16 32,7 5 10,2 3 6,1

  6 - 15 46 15 32,6 15 32,6 9 19,6 7 15,2
 16 - 30 42 11 26,2 17 40,5 4 9,5 10 23,8

> 30 42 5 11,9 14 33,3 8 19,0 15 35,7
Sum 179 56   62 26 35   

The number (N) of modules in each “rough set” is almost equal. In zero fault category the number (n) 
and the percentage of faultless modules is decreasing when SigFF is getting higher.  In the rightmost 
column one can see an opposite phenomenon. 

Use:  
If the SigFF categories for modules to be developed within a project are known in early phase, then it 
is possible to identify modules, which need more attention on preventive quality issues.   

Discussion: 
In older projects, some SigFF figures may indicate a lot of new and changed signals but only a signal 
name has been changed. So, carefulness and tool support is needed in collection. All changes in a 
module are not affected by signals but other functional changes in code. 

     
5.5.2. Impact of inspection process on quality 

Improving early detection rate - project level 

In this section we first present some real measurement results on distribution of faults by phase 
including inspection. During past years many projects have stored inspection statistics on project level 
(Lahtivuori, 1997). Figure 5.24 shows some fractiles on percentual amount of major remarks. A risk 
relating to the statistics is that classification between major and minor remarks may vary in literature 
and especially in older projects. A traditional golden rule should be to find as many faults as possible 
in inspections. Early experience has  shown software inspections to be a method finding 60-90 
percent of all defects (Fagan, 1986). The following hypothesis can be stated based on this idea.  
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Hypothesis 10:

   More than 75% of faults are found in inspections (regarding the whole project).

"Early detection rate" was one important quality indicator at LORAL (Section 3.1.3). The same
expression was presented  as "Inspection detection rate” at Ericsson (introduced in Section 3.2.2).
Several studies report high rates, e.g. according to empirical  results at Bull (Weller, 1993)  inspections
found 70 percent of all the defects detected after the code was completed. We based our hypothetical
percentage of early detection rate on experience. However,  we could not expect as high figure (85%)
as LORAL because this company has achieved CMM level 5.  Instead, we use 75%.

Facts (Data set 15):

Fault distribution in 4 successive projects
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Figure 5.24    Percentual distribution of detected faults

As data collected from practical projects (Figure 5.24) shows, the last project D has succeeded to find
69 % of faults in inspections whereas the other projects have found less. The early detection rate has
all the time slightly improved in these successive projects (from 49% to 69%). However, in three last
projects, the proportion of faults found in Function Test remains constant. In the light of this data set,
also the percentage of summed faults found in inspection and Basic Test is also quite stable in
projects B, C and D.  Table  25 illustrates the relation of early detection rate to fault density in Function
Test (FT)  and during 6 months (6MO) after delivery. 

Table  25.   Fault detection in four successive projects

Fault detection rate Project A Project  B Project  C Project  D 
% detected in inspection 48,9 52,7 62,6 69,0
% detected in inspection and Basic Test 88,8 77,2 78,3 81,6
% detected in FT 9,6 16,8 15,6 15,6
% detected during 6 months 0,7 3,0 2,8 1,4
FT faults/modified  volume 7,1 8,0 6,4 7,9
6MO faults/total volume 0,21 0,25 0,44 0,19

Some other empirical studies (Konradi, 1999) which also used Ericsson’s material showed that 64% of 
total defects in the project were found  in inspections. The percentage (64%)  in this study neither 
includes defects found in code review nor minor defects. In another earlier case study (Ohlsson,
1998), 179 (57%) out of  316 major faults were detected during development. The percentage is lower
despite of the fact that code review faults are included. Retrospective lessons learned from HP
(Grady, 1997)  reveal  that inspections typically found 60-70 percent of defects. 

Conclusions:
The hypothetical rate 75 % is still too ambitious to achieve, so our hypothesis is not true. Evidence is
weak for any conclusion that early detection rate has a positive effect on post-release fault densities.
In all projects we obtain low rates (< 3%) of detecting faults during 6 months.
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Improving early detection rate – module level 

It has been less usual to measure and study  inspection data on module (source code) level.
However, all modules should be inspected equally well in order to improve early detection of faults and
stability of the inspection process. As the present measurement system only registered faults at post-
release phases, we introduced also the measurement of inspection and unit test faults per module.  It 
is then possible to compare faults found in inspections vs. later life-cycle phases,  i.e. Insp, BT, FT, 
ST, 6MO phases for the same module. As some new data became available during the ongoing study,
a question come up from an experienced section manager (Reiman, 2000) concerning the relation
between faults found in code inspection and testing. The following  hypothesis was stated. 

Hypothesis 11: 

   A majority of implementation faults in a module are detected in inspection and unit testing; i.e. 
   more faults are caught in code inspection and Basic Test than in Function and System Test.

Facts (Data set 16, Project D): 
First, our results concern new modules developed in project D. We discuss new modules separately, 
because variations in modified modules appeared to be very high. Fault profile for new modules in
project D (Figure 5.25) shows that overall the majority of faults is found in inspections and Basic Test.
However,  in 3 out of  these 9 new modules the number of faults found in Function and System Test
was higher than the sum of code inspection and BT faults.

For selected modified modules (Modification grade < 10%) the profile does not look that normal 
because of high column in FT. Many faults slipped to 6 months  because System Test did not find all
of them. 
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Figure 5.25    Total number of faults detected in different phases

A deeper insight into new modules within project D gives us results shown in Table 26. Let us
denote:

Diff = Difference between majors/faults found in Inspection and Basic Test, and  faults found per
 module in post development testing (FT+ST)

Cum FD = Cumulative (post inspection) fault density as faults found per module during post
development testing  and 6 months divided by module size (Faults / KNCSS) 

Early detection rate for these modules representing negative Diff is naturally lower (32,4%) than in
modules with positive Diff (73,4%). In three uppermost modules, where Diff is negative, we can
observe a significantly higher post inspection fault density (Cum FD). Module D3 that contains the only
fault slipped to 6 months period belongs to this category.  Studying the  modules modified more than
10%  in project D  we resulted in figures presented in Table 27. 
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Table 26.   Inspection results from new modules

Module NCSS Number of faults 
Insp+BT       FT+ST             6MO 

Diff
(Insp+BT)-( FT+ST) 

Cum FD 
FT+ST+6MO 

D1  954 4 10 0 -6 10,48
D2 286 0 3 0 -3 10,49
D3 359 7 9 1 -2 27,86
Totally 1599 11 22 1 -11 14,38
Early detection rate 32,4 %  
D4 838 7 4 0 3 4,77
D5 498 3 0 0 3 0,00
D6 1002 11 5 0 6 4,99
D7 696 12 6 0 6 8,62
D8 397 10 2 0 8 5,04
D9 781 15 4 0 11 5,12
Totally 4212 58 21 1 21 4,99
Early detection rate 73,4 %

The upper  part of  Table 27 includes  modules with negative Diff whereas the lower part only contains 
modules with positive Diff. Comparison of  both groups of data shows that in average the Cum FD is 
smaller  in the lower group of modules. It is a surprise that the lower group contains a few modules 
having high Cum FD. Lower early detection rate did not make any difference between fault found 
during 6 months. The reason might be that quality of inspections and  testing has been heterogeneous 
in modified modules. Another reason is that too many faults in modified modules  have slipped from 
System Test to 6 months (see also Figure 5.25). 

Table 27.   Inspection results from modified modules

Module NCSS
(mod)

Number of faults
Insp+BT         FT+ST           6MO 

Diff
(Insp+BT)-( FT+ST) 

Cum FD (mod) 
FT+ST+6MO 

D10 309 0 1 0 -1 3,23
D11 289 0 2 0 -2 6,92
D12 278 0 1 1 -1 7,19
D13 171 0 2 0 -2 11,73
D14 665 1 4 0 -3 6,02
D15 1365 3 5 1 -2 4,40
D16 213 1 2 0 -1 9,38
D17 601 3 8 0 -5 13,31
D18 690 5 7 0 -2 10,15
D19 923 7 9 0 -2 9,75
D20 375 3 7 1 -4 21,31
D21 449 4 6 0 -2 13,37
D22 1353 13 19 2 -6 15,52
Totally 7681 40 73  5 -33 10,16
Early detection rate 33,9 % 

D23 215 0 0 0 0 0,00
D24 127 0 0 0 0 0,00
D25 112 0 0 0 0 0,00
D25 808 1 0 0 1 0,00
D27 68 1 0 0 1 0,00
M28 135 3 0 0 3 0,00
M29 859 9 2 0 7 2,33
M30 686 5 2 0 3 2,91
M31 295 4 1 0 3 3,39
M32 267 6 0 1 6 3,75
M33 258 3 1 0 2 3,87
M34 481 5 3 1 2 8,31
M35 67 2 1 0 1 15,02
M36 577 11 8 2 3 17,33
M37 259 5 3 2 2 19,31
Totally 5213 21 34 6 34 5,18
Early detection rate 67,1 % 
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Conclusions:
In new modules we get some support for hypothesis 11. In these modules we can also conclude that 
the negative Diff indicates higher post inspection fault density. Regarding modified modules, the
results do not follow the stated hypothesis homogeneously.

Use:
The measurement can be used to evaluate capability of the inspection process to find faults early. 
Data to be collected from many modules (in the future) would provide more information about
percentage of modules where the hypothesis is true. The profile shown in Figure 5.25 also helps to
compare inspection results to amount of faults slipped through to the field. The profile provides a basis
for root-cause analyses regarding modules where faults slipped from inspection to test phase. The 
result can also be used to identify possible risky modules (where the hypothesis is true) before
delivering them to the customer. Aiming at positive Diff  helps to decrease post inspection fault density
and thus post development fault costs. A module is possibly a risky module when a majority of faults 
slip to test and operational phases.

Discussion:
In practice it is always difficult to make a distinction between major and minor defects. Some
inspections tend to detect mostly minor defects. A high rate of detecting majors is an important
goodness issue of inspection. Therefore, a possible new measurement might be the number of majors 
divided by the number of all defects. Experience from projects included in data set 15 shows that
majors only represent 12-19% of defects (Lahtivuori, Karvonen, 1997).

5.5.3. About cost of quality assurance 

Investing effort on inspections 

Attention to inspection planning and execution can be improved in three ways by:

Increasing planning and preparation effort prior to actual meetings,
Ensuring that enough hours are planned and used for inspections in respect to overall

 project man-hours, and
Supporting with proper tools.

One of the key issues is thus the invested effort.  The four projects studied (Data set 15) also
succeeded to collect inspection man-hours in order to calculate the following important factor:

   Preparation man-hours
Preparation factor =  100  ---------------------------------------------------------------  (%)

   Preparation man-hours + Meeting man-hours
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Figure 5.26    Improvement trend in preparation for inspections
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Facts (Data set 15): 
Results from our real projects show that preparation factor varies between 50 and 65 per cent (Figure  
5.26). Results in other companies  e.g. at IBM (Kan, 1994)  provide some basis for comparison 
yielding  51 per cent  inspection preparation factor for  AS/400 computer system software. Variations 
of  the preparation factor between individual  inspections are high. Data collected from hundreds of  
inspections to computer based support system (WebIR) at Ericsson in Finland showed that 
preparation factor conformed to normal distribution the mean value being between 50 and 60 per cent 
(Jokikyyny, 1998).

Use: 
The results can be used to show that improving the preparation factor helps to achieve higher early 
detection rate. This is a fact in case of project D as shown in Figures 5.24 and 5.26. The facts 
collected from real projects can be used for motivation e.g. in inspection training situations. Recently, 
the use of inspection preparation and meeting hour data was recommended for organisations 
beginning quantitative quality management (Paulk, 1999).  

Inspection man-hours vs. project man-hours 

Most projects usually register spent man-hours by phase and in total. As inspection man-hours are 
carefully collected it is possible to find out their relation to project man-hours per phase or to total man-
hours spent.  Facts from our 4 local projects in question are found in Table 28.  

Table 28.   Inspection effort in projects 

Project Project man-hours Inspection hours Inspection effort (%) 
A 101266 5181 5,1
B 37059 2660 7,2
C 50711 2931 5,8
D 54528 3191 5,9

Project man-hour figures are taken from PQT and inspection hours from project Quality reports. The 
figures are fairly good, but some sources, like  (Gilb, 1994), recommend even more: about 15% of 
project budget will probably be used when a company is mature. A classical article  (Fagan 1986) 
mentions that typically, all design and code inspection cost amounts to 15 percent of project cost. 
Inspection hours are not completely accurate because, in project A, the man-hour data was not yet 
available in all inspection records. However, starting measurement of this kind of issues serve as basis 
for further planning and improvement of inspection activities. Inspection practices also change over 
time; for example project B introduced weekly inspections. In project D, a new inspection planning and 
recording tool was started for the first time.  

Use:  
The result can be used in project planning to ensure that enough hours are invested to inspections. A 
planning constant stating, that  5-7 % of project man-hours should be planned for inspections (see 
Section  5.5.2), can be used for similar projects. 

Cost of detecting a fault

Even more interesting is to compare the cost of detecting a fault in inspection to costs in tests. Man-
hours spent to detect a major fault for our four project ranges as shown in Table 29.   

Table 29.   Cost of finding software faults 

Phase Man-hours / major fault 
Inspections 5…7
Basic Test 17…23

Function Test 83…111 

The figures in Table 29 also show what inspections can pay-off compared to Function Test. It is much 
cheaper to find faults early. Many faults are introduced early, but detected late. The earlier fault 
analyses (Hirvensalo, 1990b) show that 40 per cent of faults detected in Function Test are introduced 
in function specification and detailed module design. Many examples of similar percentage (30-40%) 
can be found in Function Test reports in industry, e.g. at Ericsson. In another study (Ohlsson, 1996) a 
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conclusion was that 45 % of faults were introduced before coding phase. Ohlsson did not include the
category “Where faults should have been found”16. For example in project D, 53% of analysed
Function Test faults should (and could) have been found during inspections before coding.  Because
so many faults are present in earlier phases and they could have been detected earlier, it is 
reasonable to put more effort on inspection.

5.6. Opportunities to use measurement data for prediction of quality 

Predictions are important for a project in order to monitor the project to meet the goals and to keep
quality within accepted limits. In the previous section several opportunities to use collected data for
prediction have come up. This section discusses and verifies a few possible practical approaches,
techniques and models. The models provide prediction opportunities either on project level or facilitate 
prediction of fault content on module level. Some models are also able to identify fault-prone software
modules.

5.6.1. Prediction opportunities on project level 

Predictions based on fault distribution by phase within a project 

Prediction of fault density for a project can be based on a known percentual distribution of faults 
between test and operational phases. Empirical distribution extracted from data existing in the quality 
measurement database  (Data set 1 including the same 16 Finnish projects as in Section 5.4.2) looks
as shown in Figure 5.27.

Distribution of detected faults by phase, 16 local
projects
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Figure 5.27    Fault distribution by phase

This knowledge can be used for prediction by estimating at first the total volume in KNCSS to be 
developed within a project. Fault density goal for RFA+6 months is used to derive the total amount of 
faults. From the fact that 75% of these faults should be found in Function Test (FT) it is possible to get 
an estimate for the number of faults to be detected during FT (in order to meet the goal for RFA+6
months) and use it for example as a test completion criteria. In order to clarify the method, the 
following example of steps is given: 

1. Estimate the total software volume in KNCSS  to be developed within project.
2. Identify the fault density objective in faults/KNCSS for RFA+6 months (as stated by project

 management).
3. Multiply the objective value by KNCSS to get the number of faults that are allowed to occur 
    during  6 months. 

16 This category is included in  Ericsson’s Function Test reports as a standard part of fault analysis
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4. Calculate from historical data the distribution of faults by phase, e.g., 10% for  6 months, 75% 
     for FT. 
5. By using the ratio 10% and allowed number of faults for 6 months, determine the number of 
     faults for all phases.  
6. Use "known" distribution (step 4) of  faults to determine an estimate for FT faults (e.g. 75% of all  
     faults in FT) that should be caught in Function Test. 

The above model can be called a fault density prediction model.

Predictions based on reliability growth models 

It is possible to use the Reliability Growth Models (Conte, 1986) to forecast the latent errors left in 
software after testing. These models are mathematical expressions that describe a pattern of error 
discovery. Experience collected from software projects has  shown that the number of errors as 
function of time fits more or less closely to a known statistical distribution, for example Exponential or 
Raleigh distribution (Kan, 1995). Choosing the right model needs measurement data from previous 
projects. This data is available on Test reports from start of testing up to internal release (PRA), but a 
new opportunity is to collect time based distribution even up to end of first 12 months after external 
release (RFA). Such distributions help to see per project the proportion of faults that are left in the 
field. This method is best suitable for big projects. The main assumption is that the defect rate 
observed during the development phase is positively correlated with the defect rate in the field. In 
software and in our case the defect rate is defined as defects per KNCSS in a given time unit (e.g., the 
first 12 months after delivery). In Ericsson case, for example, Figure 5.14 showed evidence for this 
assumption - the higher fault density in Function Test the higher is the fault density in the field.  

According to Kan, the Raleigh model has been implemented in several software quality assessment 
tools, for example, in SAS and STEER, which are available in the industry. Software Productivity 
Consortium has also developed a PC based tool (Kan, 1995). An MS Excel based prediction tool 
supporting this Raleigh model based method is available at Ericsson in Canada (Miranda, 1998). This 
tool is a planning aid that is able to create a Raleigh distribution based on estimated fault content 
projecting it to desired intervals. The main advantage is that this type of tools can be used to monitor 
the project in order to keep the post-release fault content in desired limits (when the discovered 
number of faults can be compared to forecasted values). By using support tools for retrieving 
information from the Trouble Report database it is possible to automate collection of weekly actual 
figures.  

This method is likely to be best applicable on the main project level because at the main level more 
statistical material than on subproject levels is available. The method seems to be most useful when 
earlier phases, i.e., defects detected in inspections, are also included. 

5.6.2. Prediction opportunities on module level 

In this section we discuss some prediction models which can be applied by using the measurement 
data already collected into existing databases. On the other hand, we analyse usefulness of a few 
methods that need new/additional data to be collected. The intention is to list possible predictors to be 
included in future measurements, not to develop any new prediction models. When feasible, some 
results from prediction accuracy (or comments on accuracy) are presented. We limit this discussion to 
models for prediction of low quality (stinkers) or risky modules. Models can be divided into two groups: 

“Check list ” methods to predict and identify low quality modules 
Quantitative models based on one or more attributes, which are available before coding phase.   

Check list methods

Check list methods  are based on a questionnaire evaluating risks in different phases of development.  
We introduced a method where attributes of the old base module are first investigated. Second, the 
attributes of new design are audited based on a number of module specific questions. Analysis of 
attributes of the base module includes fault and correction history, readability of documents, 
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Measuring requirements 

Mapping to CMM models helps to identify some important measures. One of them is the number of 
changes due to requirement change requests (CR) during the project.  Number of CRs was included 
in a GQM Plan (Hirvensalo, 1999), as well as the number of estimated and actual hours for raising 
from the CR. In addition to the “GQM” question  “How stable are the requirements” is the question. 
”How good are the requirements”. A subjective measure for clarity of requirements is suggested. The 
project members can give their estimate for clarity in a nominal scale: Fully clear, clear or not clear. 

Time-based distribution of faults 

Distribution of faults by trouble registration date, for example weekly flow of incoming faults, is useful 
information for calibration of Reliability models. As shown is Section 5.6.1, this information could be 
used for prediction. The data should be made easily retrievable from trouble report handling systems 
to get weekly flow covering all phases of project life-cycle plus the operational phase. 

Considering new process models and languages

During the present study we made some planning on measurement of Incremental Design. Data from 
module increments must be collected per increment as for example number of faults. On project 
release only the final size of the module is taken into account and fault over increments are summed 
up. In the future, incremental design will be applied also in the area of object-oriented (OO) design. 
Several literature references are available concerning OO metrics, see e.g. (Henderson-Sellers, 
1996). A reference showing usage of OO code metrics is found at NASA/SATC21. Besides different 
way of design, the size (volume) measurement faces problems. We introduced Measurement Data 
Definitions for volume and Modification grade for C/C++ and JAVA programs. However, the simple line 
counting based volume appeared to be not feasible for C++. A better solution is that measurements 
should more consider C++ classes, methods, inheritance, include libraries, number of children, 
coupling etc. to get more information. 

6.6.4.

                                                          

A proposal for improved quality cost measurement 

Literature concerning quality, for example Juran (1980), Arthur (1993) and Ericsson’s EQ (1989), 
accept widely that quality cost can be divided into the following three classes: 

Preventive “costs”, 
Quality control costs, and 
Fault costs. 

Preventive  “costs” represent rather preventive quality investments than costs. Quality control costs 
are often called appraisal costs. In connection with this study it has been refined what to include in 
each of the three classes. Preventive quality work includes quality planning and support, 
development of the operations system, improvement of methods, tools and processes, improvement 
projects or programs and tasks arisen in quality audits and assessments and analyses in order to 
prevent faults. Some sources include also training (Arthur, 1993), but in this model the training is 
excluded because it is difficult to make distinction between normal basic training and education having 
a particular impact on quality. Appraisal costs include design inspections and code check, reviews, 
audits and assessments, test work and its preparations, test configuration management (TCM) etc. 
Fault costs are divided into internal and external ones. Internal costs include the correction of faults 
discovered in tests and inspections by the developer and rework to be done due to changes. External 
costs cover all redesign, retest and correction due to faults/failures reported by the customer after 
delivery.

A proposal for a new way of visualisation of the Preventive quality investments in relation to Fault 
costs and Appraisal costs is modelled in Figure  6.6. From this type of illustration it is possible to see 
whether an increasing investment in preventive activities has a positive impact on reduction of total 
quality costs.

21 NASA Software Assurance Technology Center, see    http://satc.gsfc.nasa.gov/metrics/codemetrics/index.html
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Figure 6.6 Visualisation of quality costs

Furthermore, the calculation routines needed to collect man-hours from the time reporting system are
to be specified and implemented. Usually these systems are very company specific, but by using
proper activity codes it is possible to separate man-hours into the three classes mentioned above.
Man-hours in each three main classes can be summed up on upper organisational level from
department reports and multiplied by average man-hour price.

6.6.5. Proposals for ISP measurements

As identified in previous chapters there is a need to get measured facts from influence of software
design on ISP (In-Service Performance).  Traditionally, telecommunication manufacturers and
operators have been able to measure performance of the entire system by using software-related
indicators for availability/reliability performance, for example (Ericsson Telecom, 1992)

Number of  Complete Exchange Failures (CEF) 
Number of major and minor restarts
Number of major restarts with reload 
Subscriber line failure intensity. 

ISP is continuously relevant also in new telecommunication equipment in future communication
networks. Design is of vital importance to ISP. Some senior experts at Ericsson have presented that
only design can reduce system down-time. However, it is not easy to find driving factors because
there is a complex impact relation between ISP and design process/technology attributes. Thus, some
sort of dependency modelling is necessary.  During the present study we have identified a few useful
modelling techniques to find design effect-ISP relationship, among others,  the Product/Process
Dependency (PPD) Modelling that was developed in PROFES project (Birk, 1998). PPDs  concerning
e.g. reliability issues involves a possibility for a company to build-up a repository containing
experience of process/technology impacting drivers for ISP. The PROFES Repository of Product-
Process Dependencies available from PROFES  www page (http://www.ele.vtt.fi/profes/)  is a good
basis for an well-organised way to re-use and update knowledge on driving factors by subprocess.  It 
is a responsibility of  an organisation to prioritise the key drivers and define measures for them.

The models for a certain application can properly be created and updated in ISP improvement
programs with experienced operational support and design people participating. We suggest a few 
measurements, which already during software development could focus on driving factors influencing
the ISP, such as:

Awareness and use of critical design rules is assessed by using simple measurements.

Quality of old base modules is assured as discussed in Section 5.6.2.
Effectiveness of inspection and test teams is regularly measured.

Possible “stinker“ modules are monitored by  measured as in Section 5.4.6. 































































































Appendix 3 

PQT description 

PQT (Productivity, Quality,Time) is a collection of  measurements indicating the performance of 
Ericsson�s Research & Development operation. Ericsson�s standard PQT was initiated in 1992 by 
Corporate Executive Committtee demanding performance measurements, as well as rational analysis
and improvement work. Ericsson in Finland (LMF/T) has been a pioneer, having active quality
measurements already ten years before PQT was launced. LMF/T participates also in further work as
a member of the PQT group.

The objective with Ericsson PQT has been to implement a measurement system that serves as an
integrated part of the continuous improvement process by: 

¶ Making it possible to visualize long-term trends and thereby identifying areas of improvements,
¶ Supporting  �management by facts�, 
¶ Supporting the definition and follow-up of new quantitative objectives, and 
¶ Increasing quantitative knowledge from the development process.

Productivity, Quality and Time were defined as the three entities that together provide the complete
performance view. 

Productivity
  Volume/Manhour

Quality

   Fault density

Planning precision
Delivery precision

   Quality in TR/AC handling

Time
Project Lead Times

         between TGs/milestones

PQT metrics are �assessment� type metrics that mainly ��stare� afterwards at the final result of design,
not �driving� metrics.
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APPENDIX  3 

PQT DESCRIPTION

Productivity is expressed as Volume / Manhours. As a first step Ericsson has used �implementation�
volume (e.g. High level language statements)  here. Volume of �functionality� is studied in connection
with further development of PQT.

Quality  is measured as Fault density  (Faults / Volume) in three phases:

¶ during Function Test up to internal product release,
¶ between release and delivery to the customer, and 
¶ 6 months accumulated from delivery to the customer.

Precision expresses process quality and is measured as the relation between Planned and Actual
leadtimes. Both Delivery and Planning precisions are measured. Quality in TR  (Trouble Report) and
AC (Approved Correction) means high performance in answering TRs as well as in releasing
corrections.

Time measurements - quite simply - mean measurement of calendar based Lead Time in projects. An
active data collection in tens of Ericsson companies has been continued since the first quarter of
1992. Data collection supports data ownership and responsibility of the line organisation. Multi-user
database tool with menu-system and pre-defined graphs are available.

Up to now Ericsson has results from hundreds of projects and thousands of products (e.g.  SW 
products written in high level languages) to analyse. Results, for example, the fault density for delivery
date + 6 months are widely used in ESSI (Ericsson System SW Initiative) improvement program to
indicate whether the quality at the customer is getting better.
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Appendix 4 

Existing quality measurement process at 
Ericsson in Finland 

The purpose of this annex is to present the measurement flow in Ericsson Finland in more detail.
Figure 4-1 shows a simplified �process� view of Finnish application to software measurement
procedure used since 1992 up to now. 

Figure 4-1 Measurement process

Input

Data is collected as primitive information from each ongoing projects. Main inputs are the Data
Collection Forms that are sent from design (line) organisations to quality organisation. Input
Information flows either on paper or as electronic mail.

Data Collection 

Collection of data is Event controlled. This means that all data shall be reported as it becomes
available at the time of the event. Flow of information - when and what data is collected from project
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APPENDIX  4 

   EXISTING QUALITY MEASUREMENT PROCESS AT ERICSSON IN FINLAND

process - is shown in Figure 4-1. Points in collection represent the ordinary review points (events),
called Tollgates and Milestones, in the Ericsson�s project management process.

There is project-related data as well as product-related data.Data on project level consists mainly of
date and manhour information whereas on product level of actual sizes and faults etc. Each rectangle
in the picture (see Figure 4-2) visualises a specific Data Collection Form to be sent to quality
organisation, which ensures that all the relevant data from projects the organisation is responsible for 
is received in time.

Thus, the data collection is made in a consistent and consequent way by reporting data when it is
demanded.

Data collection is not fully automated at the moment. However, there are some tools available for
supporting collection. Tools exist for counting of program size in statements and for collection of faults
per product registered in Trouble report handling system etc.

COLLECTION OF MEASUREMENT DATA

TG2 TG3 PRA TG4 RFA TG5 RFA+6m
P
R Actual Actual Actual Actual Actual Actual
O TG1date TG3date PRAdate TG4date RFAdate TG5date
J TG2date
E Planned Planned
C TG3date
T PRAdate PRAdate

TG4date TG4date
L RFAdate RFAdate
E TG5date TG5date
V Manhours Manhours Manhours Manhours
E TG2 - TG3 TG3 - TG4 TG3 - TG4 TG4 - TG5
L (-PRA)

P PRA date RFAdate
R RR dates
O (planned,
D changed,
U actual)
C Faults in BT TRs/Faults in Faults
T TRs/Faults in System Test six months

Function Test from RFA
L Volumes
E Modgrades
V Manhours for
E UD + BT
L CPunit/RP type

Teamwork

EXPLANATIONS: Date of TG (tollgate) means the date of corresponding MILESTONE in the project process!
PRA = PRODUCT RELEASE
RFA = READY FOR ACCEPTANCE
TR = Trouble report
BT  =  Basic Test
UD  = Unit design
RR  = Release request

Figure 4-2   Data collection during the project process 

Definition of Data & Results 

The collected data is well defined by using a specific form in order to keep consistency. Measurement
Data Definition (MDD) is used for each collected data to describe briefly: 

¶ Name and Description
¶ Purpose/Benefit
¶ Measurement unit 
¶ Method of collection
¶ Application
¶ Method of implementation
¶ Strengths
¶ Risks/weaknesses.
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APPENDIX  11 

 FAULT DENSITY IN C/C++ SOFTWARE DESIGN - EXAMPLE MRD

Example Graph 

Source:

The MRD is based on Ericsson's Measurement System (EMS) manual (formerly PQT Manual), 1999 
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