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Stability of multiquantum vortices in dilute Bose-Einstein condensates
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Multiply quantized vortices in trapped Bose-Einstein condensates are studied using the Bogoliubov theory.
Suitable combinations of a localized pinning potential and an external rotation of the system are found to
energetically stabilize, both locally and globally, vortices with multiple circulation quanta. We present a phase
diagram for stable multiply quantized vortices in terms of the angular rotation frequency of the system and the
width of the pinning potential. We argue that multiquantum vortices could be experimentally created using a
suitable choice of these two parameters.
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[. INTRODUCTION tem would rather increase the number of vortices than nucle-
ate a multiply quantized vortex. Nevertheless, in suitable an-
Bose-Einstein condensation in trapped atomic gases wagrmonic traps multiquantum vortices have been argued to
realized and observed in 1995-3]. Later, those pioneering be (globally) energetically favorable with respect to vortex
experiments were followed by the creation of singly quan-lattices[27].
tized vorticeg4,5] and vortex lattice$6,7] in such systems. I this paper, we demonstrate that by using vortex pin-
Particularly after the creation of vortices in dilute atomic Ning, one could stabilize vortices with multiple circulation
Bose-Einstein condensaté8ECS, there has been pro- guanta in harmonically trapped dilute BECs subject to an
nounced interest in studying vortex configurati¢@kdue to external rotation. We show that the multlply guantized vortex
their inherent connection with superfluidity. Especially, the States become locally stable and energetically advantageous

stability of vortices in BECs has been the subject of intensiv@{.\/hen suitable external rotation an_d I(_)callzed pinning poten-
researct9—19. ials are employed. The required pinning of vortices could be

Singly quantized vortices in nonrotating, harmonically realized by foc_:usmg_ an intense, blue detuned Iasgr bea}m
) ' o along the rotation axis of the trap. We argue that using this
trappe_d BECs are_loca}lly Qnergetmally unstablg W'th.'n Fhescheme, multiquantum vortices could be experimentally cre-
Bogoliubov approximation in the sense that their excitation,
spectra contain anomalous negative-energy eigenmodes that
correspond to a thermodynamic instabili&—10]. If dissi-

pation in the system is not negligible, this local instability

implies that vortices will spiral out of the condensate. How- The |ow-temperature dynamics of the condensate is de-

ever, the anomalous modes are shifted to positive energiegribed by the time-dependent Gross-Pitaevskii equation
(with respect to the condensate engrgpder sufficient ro-  [28,29

tation of the systeni8]. Furthermore, self-consistent finite-

temperature theories predict singly quantized vortices to be ih0,D(r,t)=H(r)®(r,t)+g|P(r,t)|2P(r,t). (2.1

locally stable even in the absence of external rotation

[12,19,2Q. In fact, a sufficient criterion for the existence of The condensate wave functidp(r,t) is normalized accord-

single-quantum vortices in dilute BECs seems to be theiing to [|®(r)|2dr=N, whereN is the total number of par-

global stability, i.e., their having a lower free energy ticles. Above, the strength of interactions=4m%%a/M as

compared to the nonvortex state. This can also be guaranteedpressed in terms of the mabs of the atoms and the

by adequate rotation of the system. swave scattering lengtta. The effective single-particle
Presently, many of the intriguing properties previously ex-Hamiltonian

plored in conventional superfluid systems are being wit- .2

nessed in dilute BECs. In addition to singly quantized vorti- .

ces and vortex lattices, multiquantum vortices have been H(r)z—mV2+Vtr(r)+me(r)+Q-(r><|hV)

observed in thin films of superfluidHe [21] and in bulk (2.2

rotating He-A [22]. In superconductors, they can be stabi-

lized with the use of holes, antidots, or columnar defects asontains, in addition to the kinetic-energy term, external trap

pinning center$23—-29. Contrary to the situation in helium and pinning potentialsy,(r) andV,(r), respectively, and

superfluids and superconductors, multiquantum vortices rethe angular momentum term, arising from the rotation of the

main unobserved in dilute BECs. This is due to their generisystem at the angular veloci.

instability against dissociation into an array of single quan- Stationary solutions of the formb(r,t)= ¢(r)e”'“'" to

tum vortices when additional pinning potentials are absenEq. (2.1) obey the time-independent Gross-PitaevsidP)

[13,16,26. More specifically, an external rotation of the sys- equation

II. MEAN-FIELD APPROXIMATION
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wd(r)=H(r)p(r)+g|(r)|2e(r), (2.3 ments, provided that their free energies can be made lower

_ _ . than those of any other configurations—especially those of

where . denotes the chemical potential determined by thesarious vortex arrays. However, in the absence of pinning,
normalization condition for the condensate wave functionihe energy of a multiquantum vortex is greater than that of a
The solutions of the stationary GP equation are minimizergo|lection of singly quantized vortices with the same total

of the energy functional vorticity. As a consequence, multiquantum vortices have not
g yet been seen in dilute, harmonically trapped BECs.
E= f O*(rYH(rd(r)+ §|<I>(r)|4}dr. (2.9 In the case of a Bose-Einstein condensate without a rotat-

ing drive, the free energy minimizing state is vortex-free.
By using Eq.(2.3), the energy of the condensate may beHowgver, when the condensate is rota’Fed, its response is _to
written in the form acquire angular momentum by nucleating vortices. Preemi-
nently, there exists a critical rotation frequen@y at which
g 4 the energy of the condensate containing a singly quantized
E=uN- Ef | B(r)[*dr (2.9 yortex becomes equal to that of a nonvortex state. At higher
frequencies, vortices begin to nucleate from the edge of the
in terms of the chemical potential and the condensate waveondensate and form arrays in the condeng&y®26.
function. In the absence of pinning potentials in the condensate
Adding a small perturbation volume, there exists no global minima in the effective poten-
SD(r 1) = e[uq(r)e,ieq,h+v;(r)eieq,ﬁ]e,mt,ﬁ :Eir?l feflft by a vortex folr rotation friquencie(3<fﬂﬁ [33]. By
2.6 e effective potential we mean the energy of the system as a
function of the position of the vortex in the condensate. Add-
to a stationary solution of Eq2.3), reinserting it into the GP  ing a localized pinning potential on the trap rotation axis
equation and neglecting terms of higher than linear order in lowers locally the effective potential and can create a global
yields equations equivalent to the usual Bogoliubov equaminimum in the vicinity of the trap axis, thus enabling vortex
tions[30,31 occupation there. However, fét<(., the condensate vol-
ume outside the pinning potential would still remain ener-
Luq(r)+g¢2(r)vq(r)=Equq(r), (.78 getically disadvantageous for vortices. The presence of cir-
%2 . culation quanta in the system does not change the situation
Lug(r)+ g™ (1) Ug(r) =~ Equg(r) @79 due to thqe repulsive inte>;action between vortigbsj.

In conclusion, for rotation frequencieQ <()., states
containing vortices in the region between the edge of the
. ) ) pinning potential and the condensate boundary, i.e., nonaxi-
— ut29|4(r)|* and the quasiparticle amplitudes must Obeysymmetric vortex states, are not globally energetically stable.

the normalization [[|uq(r)|?=|vq (r)|?]dr = 84q:, mani- , : :
festing the bosonic character of the excitations. The condil-n this paper we restrict the study to rotation frequenéles

tion of local energetic stability of the solutions to the GP<QC’ and thus do not consider the energetics of nonaxisym-

equation is that there exist no positive-norm quasiparticlénetric states. Extending the analysis consistently to freq_uen-
excitations with negative energigs in the spectrum of Eqs.  C1€S¢>{}c would be an elaborate task due to the complica-

2.7). tions arising from different vortex-array configurations,
In what follows, we consider a Bose-Einstein condensaténutual interaction between vortices, and spatial dependence

radially confined by a harmonic trapping potentigj(r)  Of the vortex self-energy.

=3Mw?r? in cylindrical coordinates =(r,#,z). Here w is

the harmonic frequency of the trapping potential. The system

is rotated in the plane perpendicular to the symmetry axis of V. STABILITY OF MULTIQUANTUM VORTICES

the trap. We study the stability of rectilinear multiquantum

vortex lines of the formg(r)= ¢(r)e'™?, located along the

rotation axis. The winding numben determines the number Mere rotation of the condensate is not sufficient for stabi-

of circulation quanta in the vortex. We consider pinning po-lizing multiguantum vortices in harmonically trapped Bose-

tentials of the formV,(r)=A® (Ry,—r), where® denotes  Einstein condensates. In order to render multiquantum vortex

the unit step function and the amplituéde> n [35]. For nu-  structures globally stable, an additional pinning potential is

merically solving Egs(2.3) and(2.7), we use computational required besides the rotating drive.

for quasiparticle amplitudesg(r),v4(r), and eigenenergies
Eq: hereq labels the quasiparticle states. Aboves=H(r)

A. Global stability

methods similar to those described in R¢f,20,33. The computed energies of axisymmetric vortex states con-
taining m circulation quanta are shown in Fig. 1 f&t,
Ill. ENERGETICS OF VORTICES =0 um andR,=6 wum, as functions of the angular rota-

tion frequency(). In the absence of the pinning potential, the
In approaching thermal equilibrium, a physical systemenergy of a singly quantized vortex becomes equal to that of
gravitates to the state that minimizes its free energy. Consex nonvortex state at the critical rotation frequeriey. Ro-
quently, multiquantum vortices may be observed in experitation does not change the energy of the nonvortex state
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FIG. 1. Free energies per particle as functions of the angular FIG. 2 E”efgy differenceA E(m) = E(m) —~E(m—1) bgtween
frequencyQ for circulation quantan=0,1,2,3,4, and 5. The radii consecutive multiqguantum vortex states(at ) as functions of
of the pinning potentials used aregm and 6um (inse. In the thg radius of t_he pinning pOtentlﬁl_pm_ for m= 1.,_2,3,4, an_d 5 The
absence of the pinning potential, the energy of a singly quantizeﬁ’o'msAE(m)70 determine the minimum radii of the pinning po-

vortex becomes equal to that of a nonvortex state at the criticaﬁemial for which multiquantum vortices wit circulation quanta

rotation frequency)/w=0.19. Notice the shifting of the intersec- 2€c0me energetically favorable fe¥<{).. The inset shows stabi-
tions of the lines to lower values @ asR,, is increased. In the I_Il_zhed, radial multiquantum density profiles for=0,1,2,3,4, and 5.
results presented in this papemNa/a,,~90, where ap, e respective radii of the pinning potentRl;,(m) are chosen to
= (h/Mw)2is the harmonic-oscillator lengty/2m=7.8 Hz,and P€ 0. 0. 6,9,12, and 1am.
N is the number of particles per harmonic-oscillator length along
the cylinder axis. The qualitative results presented are, howevefoundaries are obtained by finding for each valu&gf the
independent of the specific physical parameter values chosen. rotation frequencie§) for which multiguantum vortices with
successive vorticities have equal energy, see Fig. 1. Specifi-

m=0 because it has zero angular momentum. Without pincally, the dashed line in Fig. 2 corresponds to the vertical line
ning potentials, the multiquantum states are not the true erdt 1= in Fig. 3.
ergy minima forQ)>()., due to the dissociation instability.
However, when a pinning potential is added, the stabilizing 15
frequencies of multiquantum vortices are shifted beldw
(see the inset in Fig.)1 where the nonaxisymmetric states
are not energetically favored.

Figure 2 presents the energy differences(m)=E(m) 10r
—E(m—1) between adjacent multiquantum state€)at ().
as functions of the radius of the pinning potential. The inter-
sectionsAE(m) =0 in Fig. 2 define the radiRy;, for which
multiquantum configurations witim circulation quanta be- 5
come globally energetically stable 8t=Q .. These are the
minimum pinning potential radii required to stabilize the cor-
responding multiquantum vortex states fa<().. In the

Rpin [ﬂm]

inset, condensate density profiles are shown for vortices with 0 , ‘ :
m=0, ... ,5,stabilized by sufficiently wide pinning poten- 0 0.05 0.1 0.15 0.2
tials. The rather large stabilizing values Rf;, compared to Qwl

the qore size of an unpl_nned vortex are partly due to the low FIG. 3. Phase diagram for the stability of multiquantum vortices
rotation frequency applied, *?Ut,a'so reflect the. Cond_ensate'i.ﬁ terms of the angular rotation frequenfy and the radius of the
rather strong tendency to distribute the vorticity uniformly pinning potentialRy;,. The parameter space is limited to frequen-
throughout the system. ) _ ciesQ < Q. in order to guarantee the global stability of multiquan-
The computed stability phase diagram for multiquantumy,m states. Neither rotation of the system nor the pinning potential
vortices in terms of the angular rotation frequency and theyone suffices to stabilize multiquantum vortices. Obviously, the
radius of the pinning potential is depicted in Fig. 3. Eachminimum stabilizing radii of the pinning potential could be further
phase covers an area of the parameter space where a muliecreased by increasing the rotation to frequenfies).. How-
quantum vortex with given winding numben is the mini-  ever, the situation is more complicated in that regime due to the
mum configuration of the energy functional. The phasepossible existence of stable states lacking rotational symmetry.
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Neither the rotation of the system nor the pinning poten- 12

tial alone suffices to stabilize multiply quantized vortices as .
is seen from Fig. 3 —a conclusion that applies equally well 0p ¢ o
outside the parameter space covered. As the width of the A
pinning potential is increased, more circulation quanta “fit” 8r °.%
inside the pinning potential for a given rotation frequency. - °.% Rpin = 0 pm
Similarly, as the rotation frequency is increased for a given é 6r Q°°°. + Qfw =042 K
pinning potential, the system can lower its energy by i~ booge, TH0 0 10 N
nucleating more circulation quanta in the multiquantum 4 °o;, o oo°° o
vortex located in the pinning potential. Evidently, the °%e °°°°.,.°°
minimum radii of the pinning potential could be further de- 2r _ °80 03323.-“
creased by increasing the angular rotation frequency above Bpin = 6 pm o o9°°
Q— in other words each phase displayed extends beyond Of-----=----=------ R ERREEEEEEEEE
0 =Q., although the present study does not cover that re- : : : : :

: 20 -10 0 10 20
gime. @

B. Local stabilit N I . .
y FIG. 4. Lowest quasiparticle excitation energies for a stabilized

The remaining question is the local energetic stability(r,,=6 wm) doubly quantized vortex line as functions of the
of multiquantum vortices, which is determined by the signquasiparticle angular momentum quantum numipgrfor rotation
of the lowest quasiparticle excitation energy of the condenfrequencies2, =0.15 (O) andQ,=0.23 (®). The subscripts de-
sate. For singly quantized vortices in nonrotating systemsyote, respectively, the lower and upper critical values for the global
there exists at least one anomalous mode, i.e., a negativetpility and the energies are measured relative to the condensate
energy eigenmode with positive norm, within the Bogoliu- energy @). Form>1 the unpinned vortex cannot be made locally
bov prescription. By rotating the system, those quasiparticlgtable by simply rotating the system, as is demostrated by the inset
states may be lifted to positive energies with respect to thér m=2. The anomalous mode persists below the condensate en-
condensate energy, implying local stability of the vortexergy, and further increase of rotation frequency would bring about
state. Such stabilization by pure rotation is not possibleeven more anomalous excitations for higher values of the angular
however, for unpinned multiquantum vortices as discusseehomentum.
below.

The inset in Fig. 4 displays the energies of the lowest
guasiparticle states for an unpinned doubly quantized vorteg
line. The system is rotated at the angular frequefidyo
=0.42, but the anomalous mode gj= —2 lies far below
the condensate energy. Further increase of rotation results

ensates using the Bogoliubov approximation. Energies of
ifferent multiquantum vortex configurations were computed
and compared with each other in order to find the globally
stable minimum-energy states. The analysis was restricted to

. b f ! o hiah PBtationally symmetric states by studying such rotation fre-
a growing number of negative-energy excitations at higheg, ,ancies for which the nucleation of vortices outside the vol-

valu_es of angular momenta. The above analysis generalizgs, o of the pinning potential is energetically hindered. We
to higher values o as well, and hence we conclude that g ssed hoth the local and global energetic stability of mul-
unpinned vortices V\_/ltPnn>_1 are locally unstable even in the tiquantum vortex states and presented a phase diagram for
presence of a rotating d”‘@ﬁ]: : . their stabilization in terms of the radius of the pinning po-
_However, the use of a pinning potential changes the Sitggig| and the angular-rotation frequency of the system.

ation, and multiquantum vortices can indeed be also locally In this paper, it was shown that a combination of a pin-
stabilized[36]. In the main frame of Fig. 4 are shown the iny hotential and external rotation of the system facilitates
lowest excitation energies for stahie=2 vortex at rotation ¢ existence of multiply quantized vortex states in harmoni-
frequencies) =0.15 (O) and(2,=0.23 (@). The anoma-  ¢4||y trapped BECs. Such pinning of vortices, which could
lous mode has disappeared from the spectrum as & consgs accomplished, e.g., with an additional laser beam, has
quence of the pinning, and the system is locally energeticallyfia, peen suggested but remains to be realized in the ex-
stable even well beyon€@,. The twofold purpose of the perimentq4,34]. From the practical point of view, one could
pinning potential is thus to lift the anomalous vortex-corepegin with a condensate containing a vortex lattice. Subse-
mod_es to pos|t|ve. energies, gnd to lower free energies qﬁuent switching on of the pinning potential and a suitable
multiquantum vortices, rendering them locally and globally shitting of the rotation frequency should then, in the light of
stable,_ respectively. The former is important because even the results presented, drive the system to a multiply quan-
a multiquantum vortex state would have the lowest configuyjzeq vortex state. We thus suggest that multiquantum vorti-

rational energy, it would not be experimentally accessible Vigses could be created using available experimental tech-
nucleation and thermal relaxation, if it were to possess diques.

local energetic instability.
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