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Abstract

We present an efficient computational method to solve selfconsistently the Bogoliubov–de Gennes equations of weak
coupling superconductivity. As a function of system size, the scaling of the CPU time required by the scheme is shown
to be preferable compared to the methods commonly used. Also, the scheme allows taking into account nonlocal pairing
interactions without additional computational cost. The favourable scaling behavior enables computation of microscopic
electronic structures for ranges of physical parameter values previously inaccessible. 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Problems with spatially or temporally dependent
pair potentials are the most interesting and challenging
ones in the theory of weak coupling (BCS) supercon-
ductivity. In addition to fundamental questions con-
cerning the electronic structure near surfaces and in
the intermediate and mixed states in type I and type II
superconductors, respectively, such problems include,
for example, the effects of impurities, vortex motion
and energy dissipation processes, vortex pinning, the
electromagnetic response of superconductors, and in
general relaxation and fluctuation effects. However,
as the BCS formalism of superconductivity is ana-
lytically solvable for homogeneous systems, it poses
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serious computational difficulties for systems lacking
translational invariance.

The Bogoliubov–de Gennes (BdG) formalism [1],
a fully microscopic wavefunction formulation of the
BCS theory, is a natural and reliable framework
to model inhomogeneous superconductivity [2]. Its
quasiclassical approximations have proven to be ef-
ficient, but their validity is limited to sufficiently
long length and time scales. The applicability of
quasiclassical theories is especially questionable for
high-temperature superconducting materials with co-
herence lengths of the order of atomic distances.
Also, atomic scale inhomogeneities in conventional
superconductors are typically associated with rapid
Friedel oscillations in the pair potential, a phenom-
enon that can be properly described only within a
fully microscopic theory, such as the BdG formal-
ism.
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2. Bogoliubov–de Gennes formalism

The Bogoliubov–de Gennes equations consist of
Schrödinger-type coupled eigenvalue equations

Ĥe(r)un(r) +
∫

dr′ �(r, r′)vn(r′) = Enun(r),

−Ĥ ∗
e (r)vn(r) +

∫
dr′ �∗(r, r′)un(r′) = Envn(r) (1)

determining the quasiparticle excitation energiesEn

and the corresponding electron- and hole-like ampli-
tudesun(r), vn(r). Above,Ĥe(r) denotes the single-
electron Hamiltonian

Ĥe(r) = − h̄2

2m
D(r)2 + U0(r) − EF;

D(r) ≡ ∇ − ie

h̄c
A(r) (2)

with A(r) the magnetic field vector potential,U0(r)
an external (for example, lattice) potential andEF the
Fermi energy. The quasiparticle equations are coupled
via convolutions of the amplitudes with the supercon-
ducting pairing amplitude�(r, r′). In addition to the
quasiparticle eigenequations, the formalism consists
of selfconsistency conditions

�(r, r′) = V (r, r′)
∑
n

[
v∗
n(r)un(r′) + v∗

n(r′)un(r)
]

×[
1− 2f (En)

]
,

j(r) = eh̄

m

∑
n

Im
{
f (En)u

∗
n(r)D(r)un(r)

+ [
1− f (En)

]
vn(r)D(r)v∗

n(r)
}

(3)

relating the pair potential�(r, r′) and the current den-
sity j(r) to the quasiparticle eigensolutions. Above,
f (En) = (eEn/kBT + 1)−1 denotes the temperature-
dependent Fermi distribution function, and the sum-
mations extend over all positive-energy quasiparti-
cle solutions of Eqs. (1) below a cut-off energy. The
selfconsistent solutions of Eqs. (1)–(3), together with
Maxwell’s equations relating the current densityj(r)
and the vector potentialA(r), determine the electronic
structure and the excitation spectrum of a supercon-
ductor for given external potential, magnetic field, and
temperature.

3. Computational challenges

Calculation of the properties of many-particle sys-
tems from first-principles microscopic quantum theo-
ries is in general an extremely difficult task. In compu-
tational treatments of the Bogoliubov–de Gennes for-
malism, these difficulties are manifested in the large
number of quasiparticle eigensolutions needed for the
summations of the selfconsistency equations. Typi-
cally, for system sizes of the order of a few supercon-
ducting coherence lengthsξ , the number of quasiparti-
cle eigensolutions required ranges from approximately
104 up to 106 in order to satisfy even moderate accu-
racy criteria. The computational effort can be partly
reduced by using semiclassical approximations for ex-
citations exceeding a given energy level [3], but in or-
der to reach high accuracy, the number of eigenstates
requiring exact treatment remains large.

Furthermore, numerical solving of the eigenvalue
Eq. (1) is rather difficult due to two widely separated
energy scales in the problem: for conventional low-
temperature superconductors the Fermi energyEF ex-
ceeds the gap energy� in general by at least two or-
ders of magnitude. Fig. 1 displays quasiparticle am-

Fig. 1. Three selfconsistently computed quasiparticle solutions and
the magnitude of the pairing amplitude� of an axisymmetric
vortex containing one flux quantum. The quasiparticle amplitudes
u(r) and v(r), where r is the distance from the vortex axis, are
denoted with the blue and the red curves, respectively, at the
corresponding eigenenergies. The materials parameters have been
chosen to correspond to NbSe2 (Tc ≈ 7.2 K) at the temperature
T = 0.01 K. Note the mixing of the Fermi wavelength and the
coherence length scales in the pairing amplitude in the quantum
limit temperatures.
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plitudes of three quasiparticle eigenstates in the vicin-
ity of an isolated axisymmetric vortex line enclosing
one magnetic field flux quantum. The materials pa-
rameter values correspond to NbSe2, a typical low-
temperature superconductor withTc = 7.2 K. The two
energy scales of the system are manifested in two
well-separated length scales in the quasiparticle wave-
functions: the rapid oscillations at the Fermi wave-
length are related to the Fermi energyEF, whereas
the modulational oscillation with approximate wave-
lengthξ corresponds to the gap energy. Especially, the
quasiparticle wavefunctions oscillate rapidly in typ-
ical computational domains with diameters dictated
by the coherence length scale. Consequently, in or-
der to reach even moderate accuracy for the quasipar-
ticle eigenstates, the discretization of Eq. (1) has to be
dense, thus implying heavy computational cost. It is to
be noted that an exact, elementary separation of these
energy scales for example by a factorized Ansatz is
not possible due to the requirement of selfconsistency:
as seen in Fig. 1, at ultralow temperatures the pairing
amplitude often displays oscillations corresponding to
both energy scales, mixed in a way which crucially de-
pends on the selfconsistency of the solution.

Due to the above-mentioned difficulties, combined
with the requirement of selfconsistency which neces-
sitates use of iterative methods, solving of problems
which do not possess any continuous spatial symme-
tries is nowadays practically impossible. The rapid de-
velopment of supercomputers has recently facilitated
first calculations for effectively two-dimensional prob-
lems (i.e. possessing one continuous symmetry) [4,5],
but even for effectively 1D problems one is still re-
stricted to use computational domains with diameters
of just a few coherence lengths.

In the following, we present an efficient computa-
tional method for solving the BdG equations for effec-
tively 1D systems. The method is compared with pre-
viously used schemes, and its computational cost as
a function of the system size is shown to be excellent,
thus enabling consideration of problems previously in-
accessible.

4. Comparison of computational methods

The most commonly used methods for solving the
Bogoliubov–de Gennes eigenvalue Eq. (1) for effec-

tively one-dimensional systems are shooting meth-
ods [6] and eigenfunction expansion methods [7–10].

4.1. Shooting methods

Shooting methods are particularly well suited for
solving 1D boundary value problems when the cor-
responding initial value problem does not have very
rapidly growing solutions — such solutions are usu-
ally related to high sensitivity of the problem on the
initial values, thus hampering shooting algorithms.
When applicable, shooting algorithms are effective in
yielding solutions with high accuracy. However, they
are not optimal for searching selfconsistent solutions
of the BdG equations. First of all, computation of the
large number of eigensolutions needed in a reliable
way is rather complicated to realize by using such
methods — especially the dense (quasi)continuum
part of the spectrum above the gap energy is cumber-
some to compute. Furthermore, due to the large Fermi
energy scale in the problem, the equations have rapidly
growing exponential solutions, which cause numerical
instabilities when shooting methods are applied.

4.2. Eigenfunction expansion methods

In the eigenfunction expansion methods (EEM),
the eigenvalue problem of Eq. (1) is discretized by
approximating the solutions with projections to a
finite-dimensional subspace spanned by a chosen set
of basis functions:

un(r) �
N∑

j=1

anjφj (r),

vn(r) �
N∑

j=1

bnjφj (r). (4)

The basis functions{φj }Nj=1 are typically selected to
be an orthogonal set of the lowestN eigensolutions in
the caseA(r) ≡ 0; �(r) ≡ 0, which usually is analyti-
cally solvable. The discretization transforms Eq. (1) to
an eigenvalue problem of a 2N × 2N coefficient ma-
trix [7]. In order to attain given accuracy criteria for
the solutions, the number of degrees of freedomN has
to scale in proportion to the linear dimensionL of the
system; typicallyN � 10M, whereM is the number
of solutions required [11]. As the computation of the
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individual coefficient matrix elements involves numer-
ical integration over the lengthL, the computational
cost of the method in terms of CPU timeτ is seen to
scale asτ ∼ L3 with respect to the system size.

4.3. Finite-difference discretization

Instead of the above-mentioned schemes, we have
used a computational method based on real-space
discretization for solving the Bogoliubov–de Gennes
equations [12–14]. For convenience, we use evenly
spaced grids and approximate the derivatives with
high-order central difference formulas [15]. For anN -
point lattice, this discretization converts Eq. (1) to a
2N × 2N matrix eigenvalue problem. The structure
of this coefficient matrix differs, however, essentially
from the forms given by general eigenfunction ex-
pansion methods: For ann-point central difference
scheme and a local pairing interaction, each of the
finite-difference equations couples onlyn nearest lat-
tice points, which yields a narrow-banded coefficient
matrix with bandwidth 2n− 1. Furthermore, the range
of the pairing interaction is in general only of the or-
der of the Fermi wavelength, such that the off-diagonal
integral terms in Eqs. (1) can be discretized in a way
which does not essentially broaden the bandwidth. Al-
though in general the number of degrees of freedomN

for the real-space discretization has to be larger than
for eigenfunction expansion methods in order for the
solutions to satisfy same accuracy criteria, the narrow-
bandedness of the matrix is a definite advantage in
terms of memory storage and CPU time requirements
for large system sizes.

We use an iterative Lanczos method implemented
in the ARPACK subroutine libraries [16] to solve
the discretized eigenvalue problem. The algorithm
utilizes the sparcity of the matrix by storing only
the band elements, thus yielding a memory storage
requirement which scales linearly withN . This is
highly advantageous in comparison to the EEM with
storage requirement scaling as∼ N2. Furthermore,
the scaling of the computational cost required to
diagonalize the narrow-banded matrices is much more
favourable than for the full matrices of the EEM.
Fig. 2 displays the CPU timeτ as a function ofN
for various numbers of required eigensolutionsM.
The tests were carried out on a Compaq AlphaServer
GS140 supercomputer using 5-point discretization

Fig. 2. CPU time required for the computation of theM lowest
eigenstates using the real-space discretization withN grid points.
These indicative tests have been performed on a Compaq Al-
phaServer GS140 computer, using five-point central difference for-
mulas and the Lanczos method implemented in the ARPACK sub-
routine libraries.

and ARPACK’s Lanczos algorithm. The data is only
indicative, owing to the fact that the parameters for the
Lanczos method were not optimized for each(N,M)

combination, and the total load of the system was
not invariant for all the test runs. However, it is seen
that the CPU time scales in the range investigated
approximately asτ ∼ N1.5, which is much more
favourable than scaling of algorithms diagonalizing
full matrices.

To fulfill a given accuracy requirement,N has to
scale linearly with the system sizeL. On the other
hand, also the density of the quasiparticle states is pro-
portional toL (when the system size is modified only
in the dimension corresponding to the computational
domain). As a function of the number of required so-
lutions M, the CPU time required by the ARPACK
routines grows faster than linearly forM � 40, but
this can be reduced to a linear dependence by split-
ting the computation. Altogether, the computational
time is seen to scale as a function of the system size
asτ ∼ L2.5, which for large systems is definitely ad-
vantageous compared to the EEM withτ ∼ L3.
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5. Discussion

We have developed an efficient computational meth-
od based on real-space discretization to solve the
Bogoliubov–de Gennes equations in effectively one-
dimensional geometries. Compared to the other meth-
ods commonly used for the same problem, the real-
space discretization combined with a fast band-matrix
solver is shown to be superior in efficiency in the limit
of large system sizes. An additional advantage of the
method is that nonlocal electron pairing interactions
can be taken into account without essentially increas-
ing the computational cost. In the future, possibilities
to extend similar ideas to effectively two-dimensional
systems are to be investigated.
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