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1 Introduction

Regarding scientific interest and technological potential, superfluidity, superconductivity

and lasing may be reckoned among the most important discoveries in the modern era

of physics. Although observable on macroscopic length scales, these phenomena are

fundamentally based on quantum mechanics. Especially, they are all manifestations of

macroscopic occupation of a single quantum state.

The notion of macroscopic occupation of a quantum state dates back to 1924–1925,

when Albert Einstein extended the statistical arguments presented by Satyendranath

Bose [1] to systems with a conserved number of particles [2, 3]. Einstein soon recog-

nized that an ideal gas of atoms obeying the resulting statistical distribution would

condense into the ground state of the system at low enough temperatures. According

to Einstein, a phase transition would occur at a critical temperature Tbec, below which

a macroscopic number of atoms occupies the quantum state having the lowest energy.

This phenomenon, subsequently termed Bose-Einstein condensation (BEC), is a unique,

purely quantum-statistical phase transition in the sense that it occurs in principle even

in noninteracting systems of bosonic particles.

In 1938, BEC was suggested by Fritz London to underlie the observed superfluidity of
4He in its low-temperature liquid phase [4]. Although London’s suggestion has recently

been supported by neutron scattering experiments [5] and Monte Carlo simulations [6],

the exact nature of BEC in superfluid 4He has remained somewhat unclear due to strong

interaction effects and consequent lack of a transparent microscopic theory. BEC is also

closely related to the Bardeen-Cooper-Schrieffer (BCS) mechanism of superconductiv-

ity [7], which can be viewed as simultaneous formation and condensation of fermion

pairs. In this generalized sense, the idea of bosonic condensation has been subsequently

found useful in such diverse fields as condensed matter physics (superconductors, exciton

condensates), nuclear physics (nucleonic condensation), astrophysics (meson condensates

in neutron stars) and elementary particle physics (chiral vacuum condensate).

In the 1960’s began an extensive search for BEC in a dilute, weakly interacting

bosonic gas, in which the phenomenon would not be blurred by strong correlation effects

of a liquid or a simultaneous BCS pairing of fermions. After decades of extensive efforts

to observe BEC of excitons in semiconductors, or of spin-polarized hydrogen and laser-

cooled alkali atoms (for a review, see Ref. [8]), the final breakthrough came in 1995.

Anderson et al. at JILA∗, soon followed by Davis et al. at MIT† and Bradley et al. at Rice

University, managed to realize and observe convincing evidence for BEC in magnetically

trapped 87Rb [9], 23Na [10] and 7Li [11] atomic clouds, respectively, after combined

laser and evaporative cooling to nanokelvin temperatures. These pioneering experiments

launched an avalanche of research on the physics of dilute atomic condensates.

The gaseous condensates are in many ways complementary to previously known sys-

∗Joint Institute for Laboratory Astrophysics, University of Colorado at Boulder.
†Massachusetts Institute of Technology.



– 2 –

tems exhibiting macroscopic quantum phenomena. Their interactions give rise to non-

linear phenomena not characteristic of laser fields, but are weak enough to allow high

condensate fractions and to facilitate quantitative theoretical analysis based on pertur-

bation theory, in contrary to the helium superfluids [12, 13]. On the other hand, in

addition to being bosonic systems instead of fermionic, the quantities directly observ-

able for gaseous condensates are quite different from the ones for superconductors. These

differences render the dilute, trapped BECs a new class of many-particle systems, which

has already yielded numerous experimental discoveries and offers an unprecedented test-

bench for developing thermal quantum field theories [14].

Regarding the experimental challenges to originally attain BEC in trapped atomic

gases, these systems have turned out to be surprisingly robust and flexible. Diverse means

to manipulate them—especially the strength and spatial dependence of the effective

atomic interactions—render the ultracold gases ideal tools for studying complex physical

phenomena in well-controllable systems. The phenomena already studied range from

atom lasers [15] to quantum phase transitions [16], but these systems have been suggested

to be utilized as laboratories to simulate and study for example cosmic strings [17], black

holes [18] and self-gravitating gases [19].

Although dilute, the trapped atomic vapours are interacting, nonlinear systems.

Their physics is consequently seldom exactly solvable, and also numerical approaches

typically rely on approximate methods. Due to diluteness and the ultralow tempera-

tures of the gases, mean-field approximation turns out to be a valid starting point for

perturbation theory taking into account higher-order atomic correlations [12]. Because of

inhomogeneity of trapped gases, even simplest mean-field approaches pose serious com-

putational challenges at finite temperatures, and the majority of the theoretical analysis

has been performed using the zero-temperature Bogoliubov approximation [20,21]. The

Bogoliubov approximation essentially neglects the effects of the thermal, noncondensed

gas component and all higher-order correlations between the atoms. For dilute gases

it yields in general excellent agreement with experiments in the zero-temperature limit.

The corrections to the excitation spectra predicted by the lowest-order mean-field ap-

proximation are typically only of order a few per cent for temperatures T � Tbec [22].

At higher temperatures, however, the thermal gas component becomes increasingly im-

portant and more refined approximations are needed.

The simplest finite-temperature extension of the Bogoliubov approximation, the

so-called Popov approximation of the Hartree-Fock-Bogoliubov theory [23, 24], takes

into account the thermal gas component in a self-consistent manner, but neglects all

higher-order correlation effects and the coupled dynamics of the thermal and condensate

components. The Popov approximation is in general quite accurate for temperatures

T � 0.6Tbec, but closer to Tbec discrepancies between its predictions and experimen-

tal data become obvious [25]. Much effort has been devoted to develop theories that

consistently extend beyond the Popov approximation. Due to the modifications in the

dynamical many-particle correlations caused by boson condensation, consistent mean-
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field theories including the effects of higher-order correlations turn out to be difficult to

formulate, and the challenge to develop a correct and computationally feasible theory

still remains [24, 26].

Coherence and superfluidity properties are of fundamental interest in the physics of

trapped, gaseous BECs. The interrelations between bosonic condensation, coherence and

superfluidity are highly nontrivial in finite, interacting systems, and in addition to dilute

BECs, important also for understanding the helium superfluids and high-temperature

superconductors. The degree to which the weak atomic interactions do sustain superflu-

idity in gaseous BECs, and the coherence properties of these systems have been central

issues under investigation. Usually the characteristic superfluidity properties, i.e. dissi-

pationless, irrotational flow, reduced moment of inertia, vanishing viscosity, and various

additional collective modes [27], are interpreted in terms of coherence and spontaneous

phase-symmetry breaking: the system is essentially assumed to be describable with an

order parameter having a well-defined phase. However, for finite systems at nonzero

temperatures such a description is only approximate, and its validity an important issue

to be investigated [28, 29].

Quantum phase coherence is typically manifested on microscopic length scales as the

existence of quantized vortices, which are string-like topological defects in the complex-

phase field. Quantized vortices are characteristic of macroscopic quantum systems: They

have been extensively analysed in the context of the helium superfluids [30,31] and super-

conductors [32], and have an important role also in cosmology and astrophysics (cosmic

strings [33], neutron stars [34]), nuclear and elementary particle physics (rotating nu-

clei [35]) and optics (optical vortices [36]). For dilute BECs, analysis of the existence

and properties of quantized vortices and the development of methods to create them

experimentally were rewarded in 2000 by the first realization and observation of vortices

in condensed 87Rb vapours [37]. The recent advances in creating vortices and observing

their dynamics [38–43], together with foreseeable future experiments, are providing im-

portant information on the coherence and superfluidity properties of these systems. A

crucial issue is the stability properties of vortex states—existence of stable, quantized

vortices is a characteristic feature of superfluid behaviour.

Despite the extensive theoretical analysis of vortex states in dilute, trapped BECs

[44], there still remain open questions. Due to computational challenges posed by the

Popov formalism, the analysis has been undertaken almost exclusively within the Bogoli-

ubov approximation. The effects of the noncondensate component on vortex structure,

stability and dynamics have not been thoroughly studied. Such investigations could

prove beneficial also in developing finite-temperature theories for these systems. For

example, the large density gradients associated with vortex states provide stringent tests

for theories based on approximations derived using the homogeneous gas limit [45–47].

The main objective of this thesis is to study the effects of the thermal component on

the structure and stability of vortex states in dilute BECs, by using the finite-temperature

Popov approximation and its extensions. In order to facilitate computation of the self-
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consistent vortex structures in the low-temperature limit, numerical methods for effi-

ciently solving the Bogoliubov-de Gennes quasiparticle eigenequations in effectively 1D

configurations are developed. A combination of numerical and analytical methods is

used to study the structure, stability and dynamical behaviour of vortex states within

theories having the structure of the Popov formalism. In addition, possibilities to en-

ergetically stabilize multiquantum vortex states by using a laser field pinning potential

are investigated.

Section 2 of this overview contains a description of the physical systems under consid-

eration, and the theoretical frameworks generally used to model them. The main results

on the structure and stability of quantized vortex states in trapped BECs (Papers I–V)

are presented in Section 3, which also contains a description of general rotational proper-

ties of bosonic condensates and their relation to superfluidity, a brief review of the results

obtained for pure condensates within the Bogoliubov approximation, and an account of

the current experimental situation on vortex states. The numerical methods developed

for solving the Bogoliubov-de Gennes quasiparticle equations for superconductors and

Bose-Einstein condensates (Papers VI–VIII) are presented in Section 4. The overview

is concluded with Section 5 summarizing the most important results obtained and their

proper interpretation.
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2 Dilute Atomic Vapours and Mean-Field Theory

Any first-principles theoretical description of an atomic gas or fluid faces two fundamen-

tal challenges: account of the atomic interactions and analysis of the ensuing many-body

problem. In general, neither of these problems can be resolved exhaustively—on the con-

trary, one usually has to resort to poorly controllable approximations. Concerning the

first issue, ab initio calculations yield binary interaction potentials between two atoms

accurately only for the very lightest elements [48]. Higher than binary-order encounters

complicate the situation even further, and a full, precise account of interactions is not

available even for the lightest atoms. On the other hand, given the form of the interac-

tions and the corresponding effective Hamiltonian of the system, the resulting many-body

problem is seldom amenable to detailed quantitative analysis—usually the interactions

and correlations between particles are too strong to allow the problem to be tackled

by means of perturbation theory, for example. In the field of low-temperature physics,

the helium superfluids are typical systems in this respect: for them the first-principles

many-body problem is analytically intractable and the validity of approximate methods

cannot be guaranteed. Various thermodynamical quantities, such as energy, pressure

and condensate fraction can be computed by using simulative Monte Carlo methods [6],

but such approaches do not yield detailed information on the excitation spectrum or

dynamics of the system, and are feasible only for relatively small system sizes.

The dilute, ultracold atom vapours are exceptional in being interacting systems for

which the ab initio quantum mechanical description can be formulated accurately and re-

solved using well-controllable approximations combined with experimental data. Firstly,

it remarkably turns out that their interactions can be accurately modelled with a simple

effective interatomic potential [49, 50]. Secondly, for dilute gases the resulting many-

body problem can be tackled by analytic means. Many-particle effects alter the effective

binary interactions from those in the vacuum, but for dilute vapours these modifications

can be taken into account perturbatively [12]. In the conventional treatment, mean-field

theory serves as a starting point to perturbation theory, in which higher-order particle

correlations are taken into account. It is to be noted that this approach is not a sim-

ple weak-coupling perturbation expansion in the interaction constant that is assumed

to be small—in fact, interactions in these systems are prominent in the sense that they

substantially affect the density distribution of trapped gases, for example.

In Subsection 2.1, after a general account of trapped ultracold atomic gases under

consideration, we briefly describe how the effective trapping potentials arise from the

interactions of neutral atoms with electromagnetic fields, and how the interactions of

ultracold atoms can be modelled in a simple, yet accurate way. In addition to describing

the characteristic features of trapped atom vapours, these considerations are intended

to motivate the effective low-energy Hamiltonian used as the starting point for first-

principles theoretical models. The usual mean-field approaches and their extensions are

described in Subsections 2.2 and 2.3, respectively.
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2.1 System characterization

The dilute, ultracold gases in question typically consist of N = 103–1010 neutral alkali-

metal (or hydrogen) atoms, which are controlled, manipulated and measured using mag-

netic and laser fields [51–53]. Alkali atoms are especially suitable for such purposes

since their optical transitions can be excited with available lasers and their energy-level

structure enables laser cooling to extremely low temperatures.

The alkali-atom vapours are isolated and confined by generating with magnetic

and/or optical means typically an effectively harmonic trapping potential in a vacuum

cell. Using various advanced cooling methods, typically laser cooling followed by evapo-

rative cooling, the temperature of trapped gases can be lowered to the nanokelvin regime.

At such temperatures the equilibrium phase of the alkalis is naturally a solid, and the

gaseous systems have only a limited lifetime. This inherent metastability of ultracold

gases poses a fundamental difficulty for reaching phase-space densities required for Bose-

Einstein condensation. Fortunately, the molecular formation proceeds predominantly

only via higher than binary-order collisions in order to effectively distribute the surplus

energy released in the process. The ratio of such collisions to the binary collisions needed

for thermalization depends on the density of the gas, and can be decreased by reducing

it. This ratio is of crucial importance because it determines whether the gas has time to

be evaporatively cooled and properly thermalized according to the appropriate quantum

statistics before solidification. For typical maximum gas densities nmax ∼ 1014 cm−3, the

lifetime of the gaseous phase is of order one minute, while the thermalization time scales

are of order τther ∼ 10−2 s. Thus, thermalization can be arranged to be much faster than

solidification.

The ground-state electron configuration of alkalis consists of closed shells and a single

valence electron in an ns state. Since the electronic angular momentum vanishes, the

total atomic angular momentum is the sum of the valence electron and nuclear spins,

and in the absence of external electromagnetic fields the ground-state doublet is split

only by the hyperfine interaction between the electronic and nuclear magnetic moments.

The atomic excitations are “frozen” at sub-Kelvin temperatures and the atoms may be

regarded in this respect as structureless composite particles, but the finite total spin

implies them to have an internal degree of freedom.

The total spin also determines the quantum-statistical nature of these composite

particles according to the spin-statistics theorem: particles with integer spin are bosons

and obey Bose-Einstein statistics, and those with half-integer spin are fermions that

obey Fermi-Dirac statistics [54]. Equivalently, since neutral atoms consist of Z + A

fermions and the atomic number Z is odd for alkalis, their quantum statistical nature

is bosonic for isotopes with odd mass number A, and fermionic for even mass number

isotopes. This quantum-statistical nature crucially affects the properties of atom vapours

when they are cooled to low enough temperatures. Quantum statistical effects have

been demonstrated by cooling separately trapped vapours consisting of bosonic and
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fermionic isotopes of a given atomic species: At temperatures approaching the quantum

degeneracy limit, the squeezing of the fermionic vapour ceases due to the Fermi pressure

originating from the Pauli exclusion principle [55]. In contrast, bosonic vapours continue

to compress with lowering temperature, until finally the maximum phase-space density

attains values corresponding to Bose-Einstein condensation. For a uniform ideal gas in

three dimensions, the critical phase-space density is given by nλ3
dB = 2.612, where n is

the density of the gas and λdB = (2π�2/MkBT )1/2 the thermal de Broglie wavelength for

atoms with mass M [54]. In finite systems, the thermodynamic BEC phase transition is

somewhat smoothened, but for trapped mesoscopic vapours it is still an abrupt transition

at a well-definable temperature. For typical experimental conditions with the alkalis,

the transition temperature is of order Tbec ∼ 10 nK – 1 µK. Below Tbec, a macroscopic

fraction of the gas occupies the collective ground state of the system and forms a phase-

coherent condensate.

Trapping of neutral atoms

The usual atom traps and many advanced cooling techniques utilize the interaction of

atoms with external magnetic or laser fields, or both [51–53]. Trapping of neutral atoms

is typically based on shifting of atomic energy levels in an electromagnetic field—this

shift corresponds to an effective external potential for an atom.

In an external magnetic field B(r), the level shift is due to the Zeeman interaction

of the field with the magnetic moment of the atom. Due to the substantial difference

in mass, the contribution of the nucleus to the atomic magnetic moment can usually

be neglected. For ground-state alkali atoms, the magnetic moment is consequently de-

termined by the spin of the valence electron. The eigenstates of the effective atomic

Hamiltonian including the hyperfine and Zeeman interactions can be labeled with the

quantum numbers F and mF related to the total atomic spin in the zero-field limit and

its projection in the direction of the magnetic field, respectively. The level splitting is

given by the Breit-Rabi formula [56]. For typical field strengths used in the experiments,

the hyperfine splitting substantially exceeds the Zeeman effect, and the magnetic field

dependence may be linearized to yield for the atomic energy

E(F,mF) = E(F ) +mFgFµBB, (2.1)

where gF is the Lande g-factor of the atom, µB Bohr’s magneton, and B the magnetic

field strength at the position of the atom. Depending on the sign of the factor mFgF,

the states are termed high- or low-field seekers, for the obvious reason. It is to be noted

that mF is practically a good quantum number even for moving atoms, since at velocities

corresponding to nanokelvin temperatures the atoms follow adiabatically changes in the

direction of the magnetic field.

The atomic Zeeman effect can be utilized in trapping the atomic gas with an external

magnetic field. In typical magnetic traps, the time-orbiting potential (TOP) and Ioffe-

Pritchard traps being the most commonly used [53], the effective field magnitude in the
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condensate volume can be accurately approximated by a harmonic potential having a

field minimum at the trap center.∗ According to Eq. (2.1), such a field configuration

provides for atoms in low-field seeking states a harmonic trapping potential

Vtrap(r) =
1

2
M(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), (2.2)

where M is the atomic mass and ωi(mF ) are the classical harmonic oscillator frequencies.

On the other hand, high-field seekers are expelled out of the trap. In order to have the

same trapping potential for all atoms, in most experiments performed using magnetic

traps the gas consists of atoms polarized in only one hyperfine state, i.e. the hyperfine

degree of freedom is fixed.

Neutral atoms can also be manipulated with laser fields. Interaction of light with an

atom gives rise to conservative and dissipative forces on the latter [59,60]. In the alkali-

gas experiments one usually utilizes the valence electron ns–np transition, which lies in

the optical region. In the first-order dipole approximation, which is usually sufficient in

the optical regime, the conservative force component arises from the interaction of the

laser field with the dipole moment it induces to the atom. For laser frequencies slightly

detuned from the transition, the resulting dipole force can be written as the negative

gradient of the potential

Vdipole(r) =
d2

ε0c

∆I(r)

∆2 + (�Γnp/2)2
. (2.3)

Here ∆ = �ωlaser − (Enp − Ens) is the detuning of the laser, d the appropriate dipole

matrix element between the states, Γnp the linewidth of the excited state, and I(r) the

laser intensity. The shape of the potential is determined by the laser intensity profile.

The potential is attractive for red detuning (∆ < 0) and repulsive for blue detuning

(∆ > 0). Being a conservative interaction, the dipole force is naturally suitable for

trapping purposes. The simplest such an optical trap is a focused red-detuned laser

beam. In contrast to magnetic traps, optical traps do not require the atomic hyperfine

degree of freedom to be fixed since the trapping potential is essentially independent of the

magnetic substate. This allows investigation of multicomponent condensates composed

of two or more coexisting hyperfine species.

The dissipative part of the atom – laser field interaction gives rise to the so-called

radiation pressure. Radiation pressure is mainly utilized in laser cooling of atoms, but it

is also used to compress the atom vapour in magneto-optical traps. In optical trapping

it heats the gas by enhancing spontaneous emission processes, and in order to reduce

heating, the detuning of the laser has to be kept rather large.

Atomic interactions at ultralow temperatures

Although the trapped atomic vapours are dilute, they are far from being ideal gases.

Atomic interactions crucially affect the thermalization, equilibrium and dynamical prop-
∗Due to Earnshaw’s theorem, magnetic field cannot have a local maximum in free space [57, 58].
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erties and lifetime of these systems, and a detailed account of the interactions is required

in modelling them theoretically. In general, an accurate determination of atomic interac-

tions constitutes an overwhelming problem. The dilute, ultracold gases are exceptional

in that one can find a simple effective interaction potential that is expected to accurately

model their atomic interactions.

As long as the binary interaction potential of structureless bosons is spherically sym-

metric and decays sufficiently rapidly at large interparticle separations, the binary colli-

sion properties in the low-energy limit are known to be described by a single parameter,

the s-wave scattering length [61,62]. The same applies to elastic collisions of two bosonic,

magnetically polarized alkali atoms.∗† The energies up to which the s-wave contribu-

tion dominates the collision cross-section of alkalis correspond typically to microkelvin

temperatures [48]—in the experimentally attainable nanokelvin regime neglect of other

partial waves is thus well justified. The scattering lengths depend sensitively on the de-

tails of the atomic interaction potential, and can be calculated ab initio only for hydrogen

with sufficient precision [63]. However, the s-wave scattering lengths of several atomic

species can be determined experimentally with good accuracy, primarily via cold-atom

photoassociation and rethermalization measurements [48]. In some cases, the energies

of colliding atom resonant states can be tuned with an external magnetic field. Since

the scattering length depends sensitively on such Feshbach resonances, it is possible to

adjust the effective atomic interaction with external fields [64–66].

The total s-wave cross section of identical bosons can be approximated by the “effec-

tive range” low-energy form σ(k) = 8πa2/[(1− 1
2
k2are)

2 + k2a2], where �k is the relative

momentum of colliding particles, a the s-wave scattering length, and re the “effective

range” of the interparticle potential [62]. On the other hand, the pseudopotential [67]

Vint(r, r
′) = gδ(r− r′)

∂

∂r
r, (2.4)

where the coupling constant g is related to the s-wave scattering length via

g = 4π�2a/M (2.5)

and r = |r− r′| denotes the atomic separation, scatters only via the s-wave channel and

yields σ(k) = 8πa2/[1 + k2a2] for the total cross section. The pseudopotential Vint(r, r
′)

can thus be used as an effective low-energy binary interaction potential valid at least in

the regime kre, ka� 1. The scattering lengths of alkalis are typically a few nanometers,

i.e. they are large in the atomic scale and often exceed re [49]—in such a case the validity

criterion of the pseudopotential reduces to ka� 1. It is to be noted that when operating

∗Purely s-wave collisions of unpolarized alkali atoms can be characterized by two scattering lengths,
corresponding to the triplet and singlet pairing channels of their electronic spins.

†For identical fermions, the s-wave scattering length always vanishes due to the antisymmetry of the
pair wave function. Spin-polarized fermionic atoms are thus “asymptotically non-interacting” in the
low-energy limit, which complicates their cooling to ultralow temperatures.



– 10 –

on regular wave functions, the pseudopotential reduces to the simple contact interaction

potential

Vint(r, r
′) = gδ(r− r′). (2.6)

Generally in many-particle systems higher than binary-order encounters can have an im-

portant contribution to interactions. However, their relative contribution is proportional

to the gas parameter na3 [67]. Essentially, the gas is regarded as dilute if na3 � 1.

For typical condensate densities n = 1013–1015cm−3, the gas parameter is less than 10−4

and higher-order collisions may be neglected. The elastic interactions of dilute ultracold

bosonic atom vapours are thus expected to be accurately modelled by the simple effec-

tive potential (2.4) or (2.6). It is to be noted that the reduced form (2.6) presupposes

that the high-energy degrees of freedom of the many-particle wave function have already

been integrated out.

In addition to elastic collisions, composite particles with internal level structure can

also interact inelastically. Inelastically colliding atoms usually escape from the trap due

to spin flipping or simply because of the excess energy released in the process, and

constitute a loss of atoms determining the trap lifetime. The most important inelas-

tic processes in cold atom traps are collisions with vacuum impurity atoms, three-body

recombination processes leading to molecule formation and spin-flip transitions arising

from the coupling of atomic magnetic moments [50]. The rates of these processes de-

pend on the experimental conditions and the atomic species used. However, alone the

requirement that the thermalization rate given by elastic collisions has to substantially

exceed the trap loss rate implies that inelastic processes can be accounted for only as

a second-order effect which limits the trap lifetime, but otherwise does not affect the

interaction properties of dilute vapours.

Effective Hamiltonian

The considerations presented above motivate choosing the effective low-energy Hamilto-

nian

ĤΩ =

∫
dr

[
ψ̂†(r, t)HΩ(r)ψ̂(r, t) +

1

2
gψ̂†(r, t)ψ̂†(r, t)ψ̂(r, t)ψ̂(r, t)

]
(2.7)

as the starting point to model a dilute, trapped, bosonic atom vapour in a frame rotating

with angular velocity Ω with respect to the laboratory frame. Above, ψ̂(r, t) denotes the

bosonic atom field operator, and the interactions are modelled with the contact potential

given in Eq. (2.6). Furthermore,

HΩ(r) = −�
2∇2

2M
+ Vtrap(r) − Ω · L (2.8)

is the single-particle Hamiltonian in the rotating frame (L is the angular momentum op-

erator) for a particle confined by the trapping potential Vtrap(r). The trapping potential

is usually of the harmonic form of Eq. (2.2).
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2.2 Bogoliubov and Popov mean-field approximations

The ultracold dilute atomic vapours provide a rare possibility to compare detailed ex-

perimental data to the predictions of first-principles finite-temperature quantum field

theories describing an interacting many-particle system. The intimate interplay between

theory and experiments has already advanced finite-temperature quantum field theories,

and further progress in this direction is expected as improving experimental accuracy

provides increasingly stringent tests for theoretical models.

Quantitative analysis of interacting, i.e. nonlinear, quantum field theories is a funda-

mental challenge in modern physics. Only few interacting field theory models in one and

two spatial dimensions have been solved exactly. Typically, various mean-field approxi-

mations are used to circumvent the problem of solving the full many-body Schrödinger

equation. For weakly interacting bosonic gases, even the simplest mean-field approaches

yield in general good agreement with experiments [22]. Furthermore, the diluteness of

these systems allows in principle developing systematic perturbative approaches to take

into account higher-order interaction effects. The objective is to develop a quantita-

tively correct and computationally feasible formalism which can be used to calculate the

physics to desired accuracy. Despite extensive efforts in this direction, such a theory is

still lacking for dilute BECs [24, 26, 68].

Assuming the global U(1) symmetry of the Hamiltonian (2.7) to be spontaneously

broken in the BEC transition, the boson field operator is usually written in the mean-field

approaches as the Bogoliubov decomposition

ψ̂(r, t) = Φ(r, t) + ψ̃(r, t), (2.9)

where Φ(r, t) = 〈ψ̂(r, t)〉 is the macroscopic condensate wave function and ψ̃(r, t) the

noncondensate field operator for quantum and thermal fluctuations [20, 21].∗ It is to be

noted that for nonvanishing condensate wave function the total particle number operator

N̂ =

∫
dr ψ̂†(r, t)ψ̂(r, t) (2.10)

no longer commutes with the Hamiltonian, which implies breaking of the particle-number

conservation. This defect of the Bogoliubov decomposition can, however, be approxi-

mately compensated by using instead of ĤΩ the grand-canonical Hamiltonian

K̂Ω = ĤΩ − µN̂, (2.11)

where the chemical potential µ = µ(t) is chosen to yield the desired average number of

particles. Essentially, this procedure turns out to be justified as long as the number of

condensed particles N0 =
∫
dr |Φ(r, t)|2 is macroscopic, i.e. N0 � 1.†

∗The expectation values 〈· · · 〉 are intended to also average over time scales that exceed the duration
of a typical atomic binary-collision process.

†It has recently been shown that essentially the same results can be derived by using more rigorous
particle-number-conserving approaches [69–71]. Strictly speaking, the coherent symmetry-breaking state
is not stationary but decays via quantum phase spreading, leading to collapses and revivals of the
condensate wave function.
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The dynamics of the system is determined by the Heisenberg equation of motion,

which takes according to Eqs. (2.7), (2.10) and (2.11) the form

i�
∂

∂t
ψ̂(r, t) = KΩ(r, t)ψ̂(r, t) + gψ̂†(r, t)ψ̂(r, t)ψ̂(r, t), (2.12)

where KΩ(r, t) = HΩ(r) − µ(t).∗ The expectation value of this equation yields the

essentially exact equation of motion

i�
∂

∂t
Φ = KΩΦ + g〈ψ̂†ψ̂ψ̂〉

= KΩΦ + g
[|Φ|2Φ + Φ∗〈ψ̃ψ̃〉 + 2Φ〈ψ̃†ψ̃〉 + 〈ψ̃†ψ̃ψ̃〉],

(2.13)

for the condensate wave function. Furthermore, subtraction of Eq. (2.13) from (2.12)

yields correspondingly the equation of motion

i�
∂

∂t
ψ̃ = KΩψ̃ + g

[
ψ̂†ψ̂ψ̂ − 〈ψ̂†ψ̂ψ̂〉]

= KΩψ̃ + g
[
2|Φ|2ψ̃ + Φ2ψ̃† + Φ∗(ψ̃ψ̃ − 〈ψ̃ψ̃〉)

+ 2Φ
(
ψ̃†ψ̃ − 〈ψ̃†ψ̃〉) + ψ̃†ψ̃ψ̃ − 〈ψ̃†ψ̃ψ̃〉]

(2.14)

for the noncondensate operator.

Similar equations of motion can also be obtained for the noncondensate operator

products appearing on the right-hand sides of Eqs. (2.13) and (2.14). Correspondingly,

such equations contain still higher-order operator products, resulting ultimately in an

infinite hierarchy of equations of motion [72]. In order to attain a feasible, closed for-

malism, the traditional way is to reduce the degree of fluctuation operator products by

using mean-field approximations and approximate versions of Wick’s theorem [73]. It is

to be noted that this approach essentially relies on the diluteness assumption of the gas,

since high-order correlations are expected to be weak in such systems.

The traditional “first-order” mean-field treatment is based on approximating the

fluctuation operator products as

ψ̃†ψ̃ � 〈ψ̃†ψ̃〉,
ψ̃ψ̃ � 〈ψ̃ψ̃〉,

ψ̃†ψ̃ψ̃ � 2〈ψ̃†ψ̃〉ψ̃ + 〈ψ̃ψ̃〉ψ̃†.

(2.15)

Inserting into Eqs. (2.13) and (2.14), one finds the approximate equations of motion

i�
∂

∂t
Φ(r, t) = LΩ(r, t)Φ(r, t) − gnc(r, t)Φ(r, t) + gm̃(r, t)Φ∗(r, t), (2.16)

i�
∂

∂t
ψ̃(r, t) = LΩ(r, t)ψ̃(r, t) + gΦ2(r, t)ψ̃†(r, t) + gm̃(r, t)ψ̃†(r, t), (2.17)

∗Note the slightly different notation in Papers I–IV.
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where

LΩ(r, t) = KΩ(r, t) + 2gn(r, t) (2.18)

and

nc(r, t) = |Φ(r, t)|2,
ñ(r, t) = 〈ψ̃†(r, t)ψ̃(r, t)〉,
n(r, t) = nc(r, t) + ñ(r, t),

m̃(r, t) = 〈ψ̃(r, t)ψ̃(r, t)〉

(2.19)

denote the condensate, noncondensate and total densities, and the anomalous noncon-

densate average, respectively. Equation (2.16) is the time-dependent, generalized Gross-

Pitaevskii equation for the condensate wave function [24,74–76]. On the other hand, Eq.

(2.17) for the noncondensate operator is now bilinear and can be transformed into wave

function equations by using the Bogoliubov transformation

ψ̃(r, t) =
∑

q

[
uq(r, t)αq − v∗q (r, t)α

†
q

]
(2.20)

of the fluctuation operator in terms of the bosonic quasiparticle creation and annihilation

operators α†
q, αq. Inserting the transformation into Eq. (2.17) implies the quasiparticle

amplitudes uq(r, t) and vq(r, t) to satisfy the coupled equations of motion

i�
∂

∂t
uq(r, t) = LΩ(r, t)uq(r, t) − g

[
Φ2(r, t) + m̃(r, t)

]
vq(r, t), (2.21a)

−i� ∂
∂t
vq(r, t) = L−Ω(r, t)vq(r, t) − g

[
Φ∗2(r, t) + m̃∗(r, t)

]
uq(r, t). (2.21b)

Furthermore, for the Bogoliubov transformation to be canonical, the amplitudes are to

satisfy the normalization condition

∫
dr

[
u∗q(r, t)uq′(r, t) − v∗q (r, t)vq′(r, t)

]
= δqq′ , (2.22)

which can be straightforwardly shown to be consistent with Eqs. (2.21). According to

Eqs. (2.19) and (2.20), the noncondensate density and the anomalous average can be

written in terms of the quasiparticle amplitudes as

ñ(r, t) =
∑
qq′

[
fqq′(t)

(
u∗q(r, t)uq′(r, t) + v∗q (r, t)vq′(r, t)

)

− 2Re{gqq′(t)uq(r, t)vq′(r, t)} + δqq′|vq(r, t)|2
]
,

(2.23a)

m̃(r, t) = −
∑
qq′

[(
2fqq′(t) + δqq′

)
v∗q (r, t)uq′(r, t)

− gqq′uq(r, t)uq′(r, t) − g∗qq′v
∗
q (r, t)v

∗
q′(r, t)

]
,

(2.23b)
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where

fqq′(t) = 〈α†
qαq′〉, gqq′(t) = 〈αqαq′〉 (2.24)

are the normal and anomalous quasiparticle distribution functions, respectively. Finally,

the chemical potential µ(t) is determined by the requirement that the integrated density

equals the total particle number N = 〈N̂〉:

N =

∫
drn(r, t). (2.25)

Equations (2.16), (2.21) and (2.23) together with equations of motion for the quasipar-

ticle distribution functions determine the time evolution of the system in the Hartree-

Fock-Bogoliubov (HFB) mean-field scheme [24, 77, 78]. The corresponding stationary

equations, i.e. the time-independent generalized Gross-Pitaevskii equation

LΩ(r)Φ(r) − gnc(r)Φ(r) + gm̃(r)Φ∗(r) = 0, (2.26)

and the quasiparticle eigenequations

LΩ(r)uq(r) − g
[
Φ2(r) + m̃(r)

]
vq(r) = Equq(r), (2.27a)

L−Ω(r)vq(r) − g
[
Φ∗2(r) + m̃∗(r)

]
uq(r) = −Eqvq(r) (2.27b)

can be shown to diagonalize the Hamiltonian operator within a quadratic mean-field

approximation, via the stationary Bogoliubov transformation corresponding to Eq. (2.20)

[24]. Furthermore, the solutions of these equations minimize the free energy of the system

(to a good approximation, see Ref. [79]) when the quasiparticle distribution functions

obey the Bose-Einstein distribution, i.e.

ñ(r) =
∑

q

[
n(Eq)

(|uq(r)|2 + |vq(r)|2
)

+ |vq(r)|2
]
, (2.28a)

m̃(r) = −
∑

q

[
2n(Eq)uq(r)v

∗
q (r) + uq(r)v

∗
q (r)

]
, (2.28b)

where

n(Eq) =
1

eEq/kT − 1
. (2.29)

Equations (2.26) through (2.29) form a closed set determining the structure and exci-

tation spectrum of the system in thermodynamic equilibrium at temperature T . For

homogeneous BECs, the mean-field approach can be shown to be reliable only if the gas

is sufficiently dilute, i.e.

na3 � 1, (2.30)

and the temperature is not too close to Tbec [12]. Bosonic condensation modifies the

effective atomic interactions in ways which can be found out in principle only by solving

the many-body problem itself. However, for dilute gases these modifications are small in

the sense that they do not invalidate the mean-field starting point, and can be taken into
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account perturbatively. The criterion (2.30) is well satisfied under typical experimental

conditions for trapped condensates, and in this respect the approximations underlying

the HFB formalism are expected to be justified. On the other hand, the theory of

phase transitions implies that fluctuations invalidating the mean-field approach grow in

the vicinity of the BEC transition. For trapped systems, however, this needs not to

be the case and mean-field approximations may be useful even through the transition

region [68].

This HFB mean-field scheme has, however, certain shortcomings. First of all, it is

plagued by ultraviolet and infrared divergences: The expression (2.28b) for the anoma-

lous average turns out to diverge at high energies, and in the homogeneous limit Vtrap = 0

also infrared divergences arise in physical quantities. Ultraviolet divergences are typical

for theories based on effective low-energy Hamiltonians, and the underlying reason for

them in this case is the inappropriateness of the effective Hamiltonian (2.7) and espe-

cially the contact interaction potential (2.6) in the high-energy regime. On the other

hand, the infrared divergences can be traced back to inaccuracies in approximating the

noncondensate operator triple product according to Eqs. (2.15) [68].

Furthermore, the HFB approximation turns out to predict a spurious gap in the low-

energy end of the excitation spectrum even in the homogeneous limit [24]. This energy

gap violates the Hugenholtz-Pines theorem [80], and more generally Goldstone’s theorem

[81] which essentially states that spontaneously broken continuous symmetries give rise

to bosonic modes that have a linear dispersion relation in the long-wavelength limit.

The HFB scheme thus evidently fails to correctly predict the low-energy spectrum. The

defective energy gap is also due to the failure of the triple-product approximation. In Eqs.

(2.26) and (2.27) it is caused by the terms containing the anomalous average m̃ = 〈ψ̃ψ̃〉
in much the same way as the energy gap in the BCS theory of superconductivity is

caused by the pairing amplitude ∆ ∼ 〈ψ̂↑ψ̂↓〉.
An obvious, although rather ad hoc way to modify the HFB formalism to get rid of

the ultraviolet divergence and to conform it to Goldstone’s theorem is to set explicitly

m̃(r, t) ≡ 0 (Popov approximation) (2.31)

in the HFB equations, instead of determining the anomalous average self-consistently ac-

cording to Eqs. (2.23b) or (2.28b). This Popov approximation (PA) to the HFB theory,

or HFB-Popov approximation, yields a gapless spectrum [23, 24]. The PA is equiva-

lent to the finite-temperature Hartree-Fock theory in which all correlations between the

particles, excluding the binary collisions corresponding to the interaction potential, are

neglected. The PA has been recently given a firmer theoretical foundation [68], and is

the most widely used finite-temperature formalism for dilute BECs.

For dilute gases in the low-temperature limit T � Tbec, the thermal gas fraction

Ñ/N , where Ñ =
∫
dr ñ(r, t), becomes negligible and the self-consistent HFB-Popov

equations are often approximated by setting explicitly

ñ(r, t) = m̃(r, t) ≡ 0 (Bogoliubov approximation) (2.32)
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in the HFB formalism, instead of Eqs. (2.23) or (2.28). The resulting Bogoliubov ap-

proximation (BA) [20] consisting of the Gross-Pitaevskii equation and the Bogoliubov

quasiparticle equations is computationally much less demanding than the PA. The BA,

and especially the sole GP equation, is still the most commonly used model to analyse

the physics of dilute BECs.

2.3 Beyond first-order mean-field theories

In addition to energetically averaged thermodynamic quantities, the experiments on di-

lute atomic BECs yield accurate information on the frequencies of individual collective

modes of these systems. Such detailed spectral data provides unusually direct and strin-

gent tests for the accuracy and correctness of the finite-temperature field theories.

At temperatures T � Tbec, the Bogoliubov approximation yields in general excellent

agreement with experimental results on the structure, excitation spectrum and dynamics

of the condensate [22]. Furthermore, the finite-temperature Popov approximation agrees

well with experimental data on collective modes for temperatures T � 0.6Tbec, but

for higher temperatures discrepancies between its predictions and experiments become

evident [25, 82]. For spectrally averaged thermodynamic quantities, however, the PA

works in general well up to temperatures T � Tbec.

The detailed reasons underlying the failure of the PA for temperatures approaching

Tbec are not known, but they are probably mainly due to the two main deficiencies of

this approximation: Firstly, effects of the background gas on atomic correlations are

not properly taken into account in the PA. Improper treatment of correlations is ex-

pected since they are represented in the HFB approximation by the anomalous average

m̃, which is altogether neglected in order to obtain the PA. Secondly, formalisms based

on the HFB approximation neglect the coupling of the condensate excitations with the

thermal gas. Improper treatment of the coupled dynamics of the condensate and noncon-

densate is an inherent feature of first-order mean-field theories. In the previously given

derivation this defect traces back to the coarseness of approximations (2.15). These ap-

proximations amount to neglecting the quasiparticle interactions, which are responsible

for thermalization and the decay of excitations, for example.

A way to proceed beyond the PA and to lift the above-mentioned limitations is to

evaluate the corrections to the exactly diagonalizable quadratic mean-field formalism

using systematic second-order perturbation theory. The first second-order theory for a

homogeneous Bose gas at zero temperature was developed by Beliaev in 1958 [83, 84].

An alternative pseudopotential method [85–87] was extended to second order in 1959–

1960. Recently, these second-order theories have been generalized to describe trapped,

inhomogeneous systems [68, 88].

In addition to including the lowest-order correlations in a way which yields a gapless

spectrum (as required by Goldstone’s theorem) and allows decay processes by partially

taking into account the quasiparticle interactions, these systematic treatments also clar-
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ify the validity criteria and accuracy of the first-order theories, and especially of the PA.

They show that the mean-field theories serve as a valid starting point for a consistent and

well-defined perturbation theory. However, due to computational challenges, the predic-

tions of second-order theories have not yet been properly compared with experimental

data.

As first approximations to take into account correlation effects neglected by the Popov

approximation, the so-called G1 and G2 theories have been developed [46, 89]. Com-

pared to the systematic second-order treatments, these formalisms are substantially less

demanding computationally. In fact, they have structures similar to the Popov approx-

imation, with the only difference in allowing the interaction couplings to depend on the

correlation mean fields in a self-consistent manner. More specifically, the theories can

be expressed in the form of the generalized Gross-Pitaevskii equation

L′
Ω(r)Φ(r) − Uc(r)nc(r)Φ(r) = 0, (2.33)

and the quasiparticle eigenequations

L′
Ω(r)uq(r) − Uc(r)Φ

2(r)vq(r) = Equq(r), (2.34a)

L′
−Ω(r)vq(r) − Uc(r)Φ

∗2(r)uq(r) = −Eqvq(r), (2.34b)

where

L′
Ω(r) = KΩ + 2Uc(r)nc(r) + 2Ue(r)ñ(r). (2.35)

Comparison to Eqs. (2.18), (2.26) and (2.27) reveals that these equations reduce to the

Popov approximation by setting Uc(r) = Ue(r) ≡ g. The G1 theory is obtained by

choosing Ue(r) ≡ g and Uc(r) = g[1 + m̃(r)/Φ2(r)], and the G2 by choosing Ue(r) =

Uc(r) = g[1 + m̃(r)/Φ2(r)]. The general structure of the equations implies that all these

Popov-like approximations (PLAs) are gapless, but on the other hand none of them

treats the noncondensate dynamically. In the G1 and G2, effects of the medium on

atomic collisions are taken approximately into account through the effective, spatially

dependent coupling functions Uc(r) and Ue(r). The two versions are based on different

approximations for the momentum dependence of the full many-body T -matrix in the

homogeneous gas limit [45–47].
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3 Vortex States in Trapped BECs

Since the 1940’s, the relationship between Bose-Einstein condensation and superfluidity

has been extensively investigated mainly in order to understand the physics of superfluid
4He. The term superfluidity generally refers to a complex of unusual hydrodynamic fea-

tures, including the absence of viscosity, reduced moment of inertia, the occurrence of

quantized vortices, infinite thermal conductivity, and additional sound modes in compar-

ison to ordinary medium [27]. A characteristic property of superfluids is the metastability

of superflow, i.e. the ability to support dissipationless, persistent currents practically in-

definitely long [90]. Intuitively, these properties can be understood to stem from the

macroscopic coherence related to Bose-Einstein condensation.

After the first experimental realizations of dilute, gaseous BECs in 1995, there has

correspondingly been great interest to find out their coherence and superfluidity prop-

erties. These quantum gases differ substantially from the helium superfluids. Since

metastability of superflow essentially depends on repulsive particle interactions, a fun-

damental question is whether the interactions in dilute BECs do sustain superfluidity

and, more specifically, in which ways is superfluidity manifested in these mesoscopic,

inhomogeneous systems.

The stability properties of vortex states is a crucial issue in this respect—the existence

of stable, quantized vortices is a characteristic feature of superfluid behaviour, and can

be seen as a manifestation of the metastability of superflow on microscopic length scales.

Despite extensive theoretical analyses on this issue, there still exist open questions.

A majority of the analysis has been conducted within the Bogoliubov approximation,

and the effects of the noncondensate component on vortex stability and dynamics have

remained somewhat unclear. The main objective of the research summarized in this

thesis is to clarify these aspects on vortex stability in trapped, dilute, single-component

BECs.∗

In Subsection 3.1, we outline the main features of the response of coherent condensate

matter to external rotation, and qualitatively describe the structure of quantized vortices

in dilute BECs. In addition, we present the stability criteria relevant for vortex states,

and briefly summarize the experiments on quantized vortices in gaseous condensates. The

stability and dynamics of vortex states in pure condensates is discussed in Subsection

3.2. The effects of the thermal gas component on vortex states is the main topic of this

thesis. It is the subject of Subsection 3.3, in which also the main results of Papers I–IV

are presented. Finally, in Subsection 3.4 we analyse the conditions required to stabilize

multiquantum vortex states on the basis of the results presented in Paper V.

∗The hyperfine degree of freedom allows a rich variety of vortex structures in multicomponent con-
densates [91–93], and enables the existence of topological “textures” similar to those found in the A and
B phases of 3He [31]. In this thesis, however, we restrict to consider vortices only in single-component
condensates.
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3.1 Quantized vortices and metastability of superflow

The macroscopic coherence related to BECs implies these systems to have unusual ro-

tational properties. A partially condensed gas or liquid can have contributions to its

angular momentum from the center of mass motion, and from the intrinsic angular mo-

menta of the incoherent noncondensate and coherent condensate components. Focusing

on the latter, we note that a pure condensate can be described according to Eq. (2.9) by

the macroscopic wave function

Φ(r, t) =
√
nc(r, t)e

iS(r,t), (3.1)

where nc(r, t) = |Φ(r, t)|2 denotes the density of the condensate, and S(r, t) is the

complex phase of the wave function. Consequently, the condensate current density

jc = (�/2iM)(Φ∗∇Φ − Φ∇Φ∗) reduces to the form

jc = nc
�

M
∇S. (3.2)

Identifying the factor multiplying the density of the condensate with its velocity field

vc(r, t), the condensate flow is seen to be irrotational:

∇× vc = 0 (3.3)

within the condensate volume.

Equation (3.3) strongly constrains the response of the condensate to rotation. In

general, irrotationality results in a substantially reduced moment of inertia from its

classical value [22,94]. One possibility for the condensate to respond to external rotation

is to acquire angular momentum by exciting quantized vortices. Due to the single-

valuedness of the condensate wave function, the line integral of the gradient of its phase

along any closed path C in the condensate volume must be a multiple of 2π:

∆S =

∮
C

∇S · dl = 2πm, (3.4)

where m is an integer. If the condensate volume is singly connected, this integer has

to vanish according to Stokes’ theorem. On the other hand, it may be nonzero if C

encompasses a curve along which nc(r, t) = 0. Such one-dimensional topological defects

in the complex phase of the condensate wave function are called quantized vortices.

For simplicity, let us consider an axisymmetric, stationary vortex state with the

condensate wave function of the form

Φ(r) = Φ(r, z)eimθ (3.5)

expressed in cylindrical coordinates r = (r, θ, z). Here the integerm 
= 0 is the circulation

quantum number, or winding number, of the vortex located along the z-axis. According
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Figure 3.1: Density profile of an axisymmetric quantized vortex

state in a radially trapped pure BEC. The ratio of the healing length

ξ and the radius of the condensate is determined by the effective

interaction parameter γ = Na/aho, where aho = (�/Mω⊥)1/2 is the

harmonic oscillator length corresponding to trapping frequency ω⊥ in

the radial direction.

to Eq. (3.2), the condensate circulates about the vortex axis with an azimuthal velocity

component

vθ =
1

r

m�

M
, (3.6)

which notably differs from ’classical’ rigid-body rotation. The total angular momentum

of the state is L = Nm�, which corresponds to condensation of all the particles into a

state having angular momentum m�. The density profile can be found by solving the

Gross-Pitaevskii equation (2.26) within the Bogoliubov approximation [95, 96]. Fig. 3.1

displays a typical density profile for a radially harmonically trapped condensate vortex

state. Dimensional analysis of the GP equation shows that local inhomogeneities in the

condensate wave function decay with a characteristic length scale given by the so-called

healing length

ξ =
1√

8πn̄ca
, (3.7)

where n̄c is the average density surrounding the inhomogeneity. Especially, as the con-

densate density vanishes on the vortex axis, it heals back to the surrounding density

essentially within a distance ξ from the center line (provided that the dimensions of the

condensate exceed ξ). Instead of a single axisymmetric vortex, in the general case vor-

tices may naturally be bent and the condensate may contain several vortices [97–100],

but the previous analysis is still valid asymptotically in the vicinity of individual vortices.
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Stability criteria

In discussing the stability of bosonic condensate states, we usually refer to their energetic

stability. By definition, a physical system is locally energetically stable, or metastable,

if its state is a local minimum of the free energy functional under the relevant external

constraints. Furthermore, such a state is called globally energetically stable, or (thermo-

dynamically) stable if the minimum is absolute. Another important stability concept

is the dynamical or Lyapunov stability. Essentially, the system is dynamically stable if

small perturbations to its state lead only to small deviations in its time development. Dy-

namic stability is a weaker condition than energetic one, since the theory of Hamiltonian

dynamics implies that energetically stable systems are also dynamically stable [101].

A convenient way to determine the dynamical and local energetic stability of a sta-

tionary condensate state is to examine its excitation spectrum: If it contains an anoma-

lous negative-energy excitation with respect to the condensate state, the system can

lower its energy by transferring matter from the condensate state to the anomalous

mode—in such a process also the free energy is decreased since the more uniform occu-

pation number distribution implies increased entropy. Consequently, a condensate state

containing an anomalous mode is energetically unstable, and decays with a time scale

determined by dissipation rate. On the other hand, if the spectrum is strictly positive

and the distribution functions obey the Bose-Einstein distribution, the free energy has a

local minimum and the system is at least metastable. Finally, if the spectrum contains

complex frequencies implying the corresponding states to be exponentially growing in

time, the state is dynamically unstable and decays even in the absence of dissipation,

and vice versa.

Energetics of rotating condensates

Whether a trapped condensate responds to rotation by nucleating vortices or by other

means of acquiring angular momentum, can usually be determined by energetic consid-

erations. In general, condensates with repulsive interactions turn out to favour creation

of vortices and excitation of surface modes when rotated, while attractively interacting

vapours favour centre of mass motion [97,102–105]. In what follows, we focus on the sta-

bility of vortices and consequently restrict to consider the case of repulsive interactions.

Especially, in order to investigate the metastability of superflow, the aim is to determine

whether the system has (meta)stable states with nonvanishing angular momentum when

it is not rotated externally.

Consider a system confined by a trap rotating with a constant angular velocity Ω. The

trap is assumed to be at least slightly anisotropic, such that the condensate can exchange

angular momentum with it. According to statistical mechanics, the system is equili-

brated with respect to the frame in which the external potential is time-independent,

i.e. in the frame rotating with the trap [54, 106]. The thermodynamically stable state
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correspondingly minimizes the rotating frame free-energy functional

FΩ = Flab − ΩL, (3.8)

where Flab = 〈Ĥ〉 − TS is the free energy in the nonrotating laboratory frame, and

L = 〈L̂〉 the angular momentum of the system in the direction of external rotation.

We note in passing that a direct consequence of the minimization principle of FΩ is

that a state having angular momentum L and free-energy excess ∆Flab with respect to a

stable state with vanishing angular momentum may become stable for rotation velocities

exceeding the critical value

Ωc =
∆Flab

L
(3.9)

often called the thermodynamic critical angular velocity.

The stable states minimize the function FΩ(L), which we define to denote the absolute

minimum of FΩ for given total angular momentum L. They thus satisfy ∂FΩ/∂L = 0,

or
∂Flab

∂L
= Ω, (3.10)

which implicitly determines the angular momentum L(Ω) of the stable state as a function

of the trap rotation frequency—above, Flab denotes the absolute minimum of the free

energy in the laboratory frame for given angular momentum (i.e. the free energy of

the yrast states). Supposing first that L(Ω) is a smooth, invertible function, we may

differentiate the relation (3.10) along the stable state trajectory to find

∂2Flab

∂L2
=
∂Ω

∂L
= I−1, (3.11)

where I denotes the moment of inertia I = ∂L/∂Ω of the system. Since energetically sta-

ble states are also mechanically stable, their moment of inertia is positive, which implies

also ∂2Flab/∂L
2 to be positive. On the other hand, in the absence of external rotation,

the energetically most advantageous metastable states correspond to local minima of

Flab. Since the ground state in a static trap is naturally always irrotational, positivity of

∂2Flab/∂L
2 implies that there are no other local minima corresponding to finite angular

momenta. Hence, we find that metastability of superflow implies L(Ω) to be discontin-

uous. By numerically minimizing the free energy within the Bogoliubov approximation,

the angular momentum of a pure, weakly interacting, harmonically trapped condensate

has indeed been found to have discontinuities with respect to Ω [97]. These correspond

to transitions between states having different numbers of vortices, as expected.

However, although the discontinuity of L(Ω) is a necessary condition for metastabil-

ity of superflow, i.e. stability of vortices in this case, it is not always sufficient. Intu-

itively, discontinuities in the angular momentum as a function of rotation velocity imply

changes in the structure of the stable state, but this results in the existence of additional

metastable states only if the structurally different configurations are separated by suf-

ficient energy barriers. It is to be noted that even changes in the topological charge of
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the state are not always associated with such energy barriers. A surprising counterex-

ample is a harmonically trapped condensate in the weak-interaction limit: It turns out

that quantized vortices in such a system are structurally unstable, and can disappear

in the course of normal time-evolution even while the energy of the condensate is con-

served [107]. In general, metastability of superflow can thus be sustained only if the

system is sufficiently strongly interacting. For example, for a repulsively interacting con-

densate confined to an annular geometry, the states with different winding numbers are

expected to be separated by energy barriers, giving rise to metastable rotational states.

Indeed, this turns out to be the case [108–110]. The energy barriers are essentially due

to the tendency of the repulsive interaction to favour uniform density distribution, i.e.

nodes in the condensate density along which topological charge can unravel cost energy.

In simply connected geometries, however, the existence of such energy barriers is not

guaranteed even in the presence of repulsive interactions. As described in Subsection 3.2,

numerical analysis of the energy of pure condensates reveals that metastable vortex states

exist only for finite trap-rotation velocities—especially, vortex states are unstable in

staticly trapped pure condensates [97,98,111]. The role of the noncondensate component

in this picture is, however, still somewhat unclear. Subsection 3.3 and Papers I–IV of

this thesis focus on this aspect on the stability of vortices in dilute BECs.

Experimental realization of vortex states

Vortices have recently been realized and observed in experiments with dilute BECs. The

first realization in JILA utilized an ingenious method, in which part of an irrotational

condensate is directly transformed into a singly quantized condensate vortex state of an-

other hyperfine species by selectively inducing transitions between the hyperfine states

with a two-photon microwave field [37, 112]. When the microwave field coupling the

hyperfine components is turned off, the system equilibrates to a state consisting of two

phase-separated, but partially overlapping condensates. Finally, the irrotational compo-

nent can be selectively removed, resulting in a single-component condensate in a vortex

state. The vortex structure was observed by using nondestructive phase-contrast imag-

ing technique. Subsequently, also the motion of the vortex core inside the condensate

has been tracked. Essentially, in nearly spherical condensates vortices were observed to

precess in circular orbits with constant radius about the condensate center [38].

A few months after the first realizations of condensate vortex states at JILA, a group

at the Ecole Normale Supérieure (ENS) in Paris rotated a cigar-shaped single-component

condensate with a laser beam in the longitudinal direction and observed the creation of

vortex arrays of single-quantum vortices [39,40]. At MIT regular vortex lattices hosting

even of order one hundred vortices have been observed after applying laser-beam rotation

to large condensates [41,42]. Recently, the ENS group has been able to obtain full-length

images of vortices and to follow their dynamical evolution in prolate condensates [43].

Vortices and vortex rings have also been generated by creating turbulences in the
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condensate with moving objects [42,113], via the decay of solitons [114,115], by exerting

the condensate a torque with a rotating thermal cloud [116] and by rotating the con-

densate using a purely magnetic trap [117]. Recently, also multiquantum vortices with

charges m = 2 and m = 4 have been created by using a topological phase engineering

method [118–120].

Up to now, the conditions for nucleation of vortices [42, 116, 117, 121, 122] and their

lifetime have been the central themes in the experimental study of vortex states in dilute

BECs. The recent developments in engineering vortex states and obtaining full-length

images of vortex lines pave the way for experiments yielding detailed information on the

dynamical evolution and excitation modes of vortices.∗

3.2 Stability and dynamics of vortices in pure condensates

Let us consider vortex states in condensates confined by an axisymmetric harmonic trap.

With the z-axis oriented along the trap symmetry axis, the geometry of the trap and

the condensate ground state are determined by the asymmetry parameter

λ =
ωz

ω⊥
, (3.12)

where ωz and ω⊥ = ωx = ωy are the axial and radial trapping frequencies, respectively.†

The trap geometry is prolate for 0 < λ < 1, spherical for λ = 1 and oblate for λ > 1.

The case λ = 0 corresponds to an infinitely long cylindrical geometry.

The stability and dynamics of vortex states has been mainly addressed within the

Bogoliubov approximation (cf. Subsection 2.2), which neglects the noncondensate com-

ponent and assumes the system to be composed of a pure condensate. In the following,

we first discuss the energetic stability of stationary, axisymmetric pure condensate vortex

states, and then relate the results to the dynamical behaviour of off-axis vortices.

Axisymmetric vortex states

Let us first consider an axisymmetric vortex state with the vortex center line located

along the symmetry axis of the trap and the condensate. Such a configuration is sta-

tionary, and its stability can consequently be determined from the excitation spectrum.

Using the BA, the spectrum is given by the HFB eigenequations (2.27) in the ap-

proximation (2.32). Due to the axial symmetry, the condensate wave function and the

∗In addition to experimental investigation of quantized vortices, the superfluidity properties of
gaseous BECs have also been studied and demonstrated by exciting the so-called “scissors mode” with a
sudden rotation of an anisotropic trapping potential [123,124], by stirring the condensates with moving
laser beams [125,126] and by moving them in corrugated lattice potentials [127].

†To be precise, the trap is assumed to be slightly anisotropic in the xy plane in order to be able to
transfer angular momentum to the condensate. Basically, we neglect the effect of such a small anisotropy
to the structure of the condensate state.
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quasiparticle amplitudes may be chosen to have the form Φ(r) = Φ(r, z)eimθ and

uq(r) = uq(r, z)e
i(qθ+m)θ,

vq(r) = vq(r, z)e
i(qθ−m)θ,

(3.13)

where m is the number of circulation quanta enclosed by the vortex, and the integer

qθ denotes the angular momentum quantum number of quasiparticles. Inserting this

Ansatz into the Eqs. (2.26) and (2.27) yields effectively 2D eigenequations from which

the condensate wavefunction, quasiparticle amplitudes and energies can be computed. In

the case λ = 0, the Ansatz may be further reduced to Φ(r) = Φ(r)eimθ for the condensate

state and

uq(r) = uq(r)e
iqzzei(qθ+m)θ,

vq(r) = vq(r)e
iqzzei(qθ−m)θ,

(3.14)

for the quasiparticles, where qz denotes the axial wave number of quasiparticles. The

cylindrical case is consequently computationally only one-dimensional.

The quasiparticle spectrum of axisymmetric singly-quantized (m = 1) vortex states

in repulsively interacting pure condensates is always real [128], and such states are con-

sequently always dynamically stable.∗ On the other hand, multiquantum vortex states

with m ≥ 2 generally exhibit eigenmodes with complex frequencies corresponding to the

dissociation instability of the vortex into m single-quantum vortices [128, 131]. Due to

the dynamic instability of multiquantum vortices, we consider here only singly quantized

vortices. We return to this issue in Subsection 3.4, where we discuss the stabilization of

multiquantum vortices using additional laser field pinning potentials.

Already the first computations of the spectrum for singly quantized vortex states

confined by an irrotating trap with λ =
√

8 (corresponding to time-orbiting potential

traps) revealed that the lowest quasiparticle mode with qθ = −1 is anomalous, i.e. it has

a negative energy but positive norm [132]. The corresponding mode was observed to be

anomalous also in the cylindrical geometry with λ = 0 [133]. The negative-energy mode

is seen in Fig. 3.2, which presents the lowest part of the quasiparticle spectrum within the

BA. The existence of the negative-energy mode was soon shown to be a general feature

of staticly trapped vortex states, and an interpretation of this anomalous mode was

presented [111]. Essentially, excitation of this mode was argued to result in displacement

of the vortex from the condensate center and the mode itself to correspond precession of

the vortex line about the trap symmetry axis. In the presence of dissipation mechanisms

and an initial perturbation to break the axisymmetry, the system could lower its energy

by continuously transferring matter from the condensate state to this anomalous mode,

resulting in spiralling of the vortex to the outskirts of the condensate and, eventually,

∗In traps suitably asymmetric about the vortex axis even singly-quantized vortices can have imaginary
frequency modes, implying them to be dynamically unstable against tilting of the vortex line with respect
to the trap axis [129,130].
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Figure 3.2: The low-energy part of the quasiparticle energy spec-

trum within the BA for a cylindrically trapped (Ω = 0) condensate

penetrated by a single-quantum vortex line. Only states with axial

wave number qz = 0 are shown. The physical parameter values are

the same as in Papers I–II.

its annihilation. Thus, the existence of the anomalous mode would imply unstability of

vortex states.

In the cylindrical case λ = 0 the lowest excitations with qθ = −1 for various values of

qz are so-called Kelvin modes, which are helical deformations of the vortex line with wave

number qz [30,134]. As expected, the density distributions ρq(r) = |uq(r)|2 + |vq(r)|2 (cf.

Eq. (2.28)) of these modes are strongly peaked in the vortex core. The longest wavelength

Kelvin modes are anomalous, the most negative energetic being the mode with qz = 0.

Fig. 3.3 displays the density distributions of this so-called lowest core localized state

(LCLS) and the condensate vortex state. The LCLS corresponds to rigid precession of

the vortex about the trap axis. The angular velocity and the direction of precession

are determined correspondingly by the modulus and the sign of the mode frequency

ωLS = ELS/�, where ELS denotes the energy of the lowest state, i.e. the LCLS. Especially,

the negative sign of ELS implies the vortex to precess in the direction of the condensate

vortex flow [129,135,136]. In the ideal gas limit, the negativity of ELS is obvious, since

the Bogoliubov equations imply the lowest Kelvin mode to be the irrotational ground

state of the system, which the axisymmetric vortex state exceeds in energy by �ω⊥.

For repulsively interacting condensates the situation is more complicated, but by using

the Thomas-Fermi approximation it can be analytically shown that the anomalous mode

energy approaches zero from below for increasing interaction parameter γ = Na/aho [137]

(see also Ref. [138]).

In physically relevant finite geometries with λ > 0, the axial quantum number is dis-

crete and the number of anomalous modes always finite. In analogy with the cylindrical
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Figure 3.3: Density distributions of the LCLS and the condensate

vortex state. The LCLS is strongly localized into the vortex core

region. The relative scale for the densities is arbitrary.

geometry, the even z-parity anomalous modes∗ have angular momentum −� with respect

to the condensate vortex state [129, 139, 140]. The number of such modes depends on

the form of the trap: Oblate, spherical and slightly prolate geometries yield only one

anomalous mode corresponding to precession of a slightly curved vortex line about the

trap axis. However, for increasing prolateness parameter λ the energy ELS of the lowest

mode, the LCLS, becomes more negative and additional anomalous modes appear with

more complicated z dependence. These additional anomalous modes correspond to pre-

cession of a deformed vortex. For long, cigar-shaped condensates the LCLS corresponds

to bending of the vortex near its endpoints, where the local condensate density is low.

Correspondingly, its energy is substantially lower than expected from the peak density at

the center of the condensate. For cigar-shaped condensates, the existence of the anoma-

lous modes corresponding to small radial displacement and strong bending of the vortex

line suggests that for rapid enough external rotation the ground state of the system

should be a bent vortex instead of an axisymmetric state. Indeed, this has been verified

by numerically minimizing the GP energy functional for rotating traps [100, 141–143].

Although axisymmetric pure condensate vortex states are seen to be energetically

unstable in static traps, it is to be noted that they can be stabilized by rotating the

trap [144]. For externally rotated axisymmetric condensates the Bogoliubov equations

imply the quasiparticle energies to transform due to Doppler effect as

Eq(Ω) = Eq(0) − �qθΩ, (3.15)

where Eq(Ω) is the excitation energy in the frame rotating with the angular velocity Ω.
∗We do not consider odd z-parity modes, because they are not associated with displacement of the

vortex from the condensate center, but rather correspond to tilting of the vortex line with respect to
the trap symmetry axis.
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Since the system is thermalized with respect to the frame co-rotating with the trap, the

vortex state becomes metastable for rotation frequencies exceeding the value

Ωm = |ωLS|, (3.16)

at which the LCLS is lifted to positive energies in the rotating frame.∗ Due to lowering

of the LCLS energy, the required metastability frequency Ωm increases for increasing

trap prolateness.

Off-axis vortices

The linear eigenmode analysis of axisymmetric vortex states in principle describes the

stability and dynamics of the vortex only infinitesimally close to the trap symmetry

axis. Consequently, it is important to find out whether the results of the linear analysis

hold for off-axis vortices at finite distances from the trap axis. However, because of

the nonstationary nature of such states and the nonlinear dynamical behaviour of the

condensate wave function, their analysis is both analytically and computationally more

challenging [146].

For simplicity, let us again first consider the cylindrical case λ = 0. The existence of

the negative-energy mode associated with infinitesimal displacement of the vortex from

the condensate center suggests that also finite displacements of the vortex reduce the

energy of the system. The change in the free energy per unit length induced by the vortex

as a function of its displacement d from the trap axis can be calculated analytically in

the Thomas-Fermi (TF) limit γ = Na/aho � 1 by neglecting the effect of the vortex to

the condensate density profile [136]. The result

∆E(ζ,Ω) =
8π

3
µξ2n0(1 − ζ2)3/2

[
ln

(
R⊥
ξ

)
− 4

5

µΩ

�ω2
⊥

(1 − ζ2)

]
, (3.17)

where R⊥ is the TF condensate radius in the radial direction, n0 the maximum density

of the corresponding irrotational condensate, and ζ = d/R⊥ the fractional displacement

of the vortex, is presented in Fig. 3.4 for different trap rotation frequencies. The result

is qualitatively correct also for condensates for which the TF limit is not justified, as

has been verified by explicit numerical analysis of the GP equation [98, 147, 148].† As

expected on the basis of the linear analysis, for nonrotating traps the vortex free energy

has a local maximum at the trap axis. Furthermore, it decreases monotonically as

a function of the vortex displacement, indeed implying the tendency of the vortex to

∗Simultaneously, other quasiparticle energies are assumed to remain positive in the rotating frame.
This turns out to be the case for singly quantized vortices in a finite range Ωm < Ω < Ωnucl, where Ωnucl is
the critical vortex nucleation frequency determined by the Landau criterion for surface excitations [145]
(see also Paper V).

†Strictly speaking, even these analyses are approximate in the sense that they do not properly take
into account the asymmetric distortion of the condensate velocity field related to the displacement of
the vortex from the trap symmetry axis.
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Figure 3.4: Energy of the vortex state as a function of the vortex

displacement within the TF approximation for various values of the

trap rotation velocity.

escape the condensate. On the other hand, the free energy curves also suggest that

vortices can be stabilized by rotating the trap, as also expected from the analysis of

the quasiparticle energies. At the metastability frequency Ωm � Ω
(TF)
m the axisymmetric

vortex state becomes locally stable. Consequently, for Ω � Ω
(TF)
m slightly off-axis vortices

are attracted to the trap center, which is then a local energy minimum. For rotation

velocities Ω � Ω
(TF)
c , the vortex state is globally stable.∗

The gradient of the energy as a function of vortex position gives rise to an effective

conservative force acting on the vortex in the radial direction. Part of this force is

related to condensate density gradients: Since the density is locally suppressed in the core

region, the vortex effectively feels a buoyancy force directed towards lower condensate

densities [151]. Also, the asymmetric distortion of the condensate velocity field due to

vortex displacement from the trap axis contributes to this conservative net force [146].

Despite the radial force acting on the vortex, in a pure condensate its motion in

the radial direction is prohibited by the conservation of energy. Formally, this results

from the Hamiltonian nature of the bare GP equation, which does not have dissipative

terms. In the dynamical evolution a pure condensate state is thus restricted to move

along constant energy manifolds, implying off-axis vortices in the cylindrical geometry to

precess in circular orbits with constant radius. Note that such a motion is in agreement

with the eigenmode analysis of axisymmetric vortex states. For off-axis vortices, it may

be interpreted in terms of the Magnus effect [30, 152–154]: A cylinder moving with

∗It is to be noted that these results hold qualitatively also for vortex states of superfluid 4He in
a cylindrical container [149, 150]. However, the curvature of free energy as a function of vortex dis-
placement decreases for increasing cylinder radius, implying vortices in macroscopic cylinders to be
practically stable even when the cylinder is not rotated.
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velocity v in a homogeneous, incompressible, inviscid fluid having a potential flow with

circulation κ about the cylinder experiences an effective Magnus force

FMag = −ρ(v − vL) × κ, (3.18)

where ρ is the density of the liquid and vL its ambient velocity far from the cylinder. If

the relative velocity v− vL is constant in time, the Magnus force balances the resultant

external force acting on the cylinder, giving rise to drifting of the cylinder in the direction

orthogonal to the applied external force. Similarly, an off-axis vortex acted by a resultant

force in the radial direction drifts along a circular trajectory about the condensate center.

Using Eq. (3.18) as an estimate for the vortex precession angular velocity ωpr, and

neglecting the condensate ambient velocity (essentially, this amounts to neglecting the

asymmetric distortion in the condensate velocity field), one finds

ωpr =
Fr

2π�MRprnc

; (3.19)

here Fr is the net radial force acting on the vortex, Rpr the radius of the precession tra-

jectory, and nc the condensate density in the vicinity of the vortex. This estimate agrees

rather well with the results obtained by numerically integrating the time-dependent GP

equation [147]. Qualitatively, the precession frequency is an increasing function of the

precession radius Rpr, primarily due to the lower condensate density outside the con-

densate center. On the other hand, for small precession radii the precession frequency

approaches ωLS, in agreement with the linear eigenmode analysis.

Analysis of off-axis vortex dynamics in finite geometries with λ > 0 is computationally

challenging, and not much work has been done so far in this direction. Especially for

strongly prolate geometries the mixing of several anomalous precession modes results

in complicated behaviour, from which simpler modes are difficult to resolve [140, 147].

However, the qualitative features of vortex dynamics in numerical simulations agree with

the results obtained within linear eigenmode analysis.

In conclusion, while harmonically trapped pure condensate vortex states are energet-

ically unstable, the nondissipative condensate dynamics results in stability of vortices

due to the absence of dynamical instabilities for singly quantized vortices. Consequently,

off-axis vortices move in closed trajectories and never escape the condensate. However,

this picture has to be modified for real systems which always have noncondensed gas

present, giving rise to dissipative effects.

3.3 Effects of the noncondensate component on vortex states

The pure-condensate assumption is always only an approximation for real condensates.

At finite temperatures, part of the system is noncondensed, with the noncondensate

fraction approaching unity near Tbec. In fact, because of quantum fluctuations, the

noncondensate fraction is finite for interacting systems even at zero temperature. Con-

sequently, concerning especially the properties of quantized vortices, it is interesting and
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important to find out how the results obtained for pure condensates are modified when

the noncondensate is taken into account. Despite the active theoretical investigation on

the properties of vortex states in dilute BECs, notably few analyses on the nonconden-

sate effects have been reported. The aim of the research presented in this thesis was

primarily to clarify this aspect on the physics of vortex states in trapped BECs.

Essentially, the noncondensate modifies the pure condensate picture in two ways.

Firstly, the coupling to the thermal cloud affects the physics of the condensate by pro-

viding it a dissipation mechanism. In addition, the interactions between the condensate

and the noncondensate components modify the excitation spectrum and the structure of

inhomogeneous states from those for a pure condensate.

In this Subsection, we analyse the relevance and importance of these effects for vor-

tex states. After a brief account on the influence of dissipation on vortex dynamics, we

concentrate in presenting the main results of Papers I–IV, and relating them to the ex-

isting literature. First, results on the structure and stability of vortex states within the

self-consistent Popov approximation and its gapless extensions G1 and G2 are presented.

The surprising but obvious discrepancy between the predictions of these HFB-type for-

malisms and the experimental observations of vortex states is the main subject of the

following analysis. All the computational results presented in this Subsection correspond

to the physical parameter values given in Ref. [155], unless explicitly stated otherwise.

Dissipative vortex dynamics

The thermal cloud has an important effect on the dynamics of the condensate by pro-

viding it a dissipation mechanism. The interaction between the condensate and the

noncondensate components enables exchange of energy and momentum between them,

resulting in damping of the condensate collective modes as opposed to the behaviour of

the pure condensate. Especially, the noncondensate component affects vortex dynamics

by imposing a friction force Fn for moving vortices. This friction force is proportional

to the relative velocity of the vortex line with respect to the noncondensate, and arises

from collisions between the vortex and the normal-component quasiparticles. In the

homogeneous limit it may be written in the form [153,156]

Fn = −D(v − vn) − ñ(v − vn) × κ, (3.20)

where v−vn is the velocity of the vortex line with respect to the thermal gas and D > 0

is the longitudinal friction coefficient, the magnitude of which depends on the details of

the vortex-quasiparticle interactions. Comparing to Eq. (3.18), the second term can be

identified with the Magnus force component due to the thermal gas.

In a static, nonrotating trap the normal component velocity vn may be assumed negli-

gible, and consequently only the longitudinal term opposing vortex motion is dissipative.

For moving vortices, this longitudinal drag force combined with the Magnus effect gives

rise to a velocity component in the direction of the net conservative force acting on the
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vortex. Consequently, a moving vortex gradually drifts towards local energy minima. In

a nonrotating trap, this leads to spiralling of the vortex outwards from the condensate

center [156, 157]. Simultaneously, its velocity grows due to the proportionality of the

balancing Magnus force to the density of the gas. Finally, as the velocity of the vortex

exceeds the local sound velocity in the condensate, the vortex is annihilated by phonon

(quasiparticle) emission. In contrast to the pure-condensate approximation analysed in

the previous section, the energetically unstable vortices thus in fact decay because of the

dissipative interaction with the thermal cloud always present in the system. However,

because of the diluteness of gaseous BECs, dissipation may be so weak that the lifetime

of vortices due to dissipation exceeds the condensate lifetime itself [156]. Also in this

respect the dilute BECs fundamentally differ from superfluid 4He.

Structure and stability of vortices within the Popov approximation

In addition to providing a dissipation mechanism for the condensate, the noncondensate

also modifies the pure-condensate excitation spectrum and the structure of inhomoge-

neous states. In principle, these modifications could also affect the stability of vortex

states.

The effect of the thermal gas on the structure and stability of vortices was first inves-

tigated by Isoshima and Machida, who computed self-consistent solutions for axisymmet-

ric, irrotationally trapped, cylindrical (λ = 0) vortex states at finite temperatures within

the Popov approximation (cf. Subsection 2.2) [155]. For sufficiently high temperatures,

they indeed found the excitation spectrum to be positive and thus the vortex state to

be stabilized. However, due to computational difficulties associated with iteration to-

wards self-consistent solutions, the authors were unable to investigate the stability in

the low-temperature region T � 0.3Tbec. In Paper I, an effective computational scheme

based on high-order finite-difference discretization combined with an implicit Arnoldi

method (cf. Section 4) was applied to survey this low-temperature region. Quite surpris-

ingly, the vortex state was found to be energetically stable within the PA even in the

zero-temperature limit. Fig. 3.5 displays the energy of the LCLS mode for low tempera-

tures: It vanishes in the zero-temperature limit, but is well-behaved and positive for all

temperatures below Tbec, signalling the vortex state to be locally energetically stable.

This result sharply contrasts the picture of vortex unstability given by the Bogoliubov

approximation.

The structure of the vortex state is presented in Fig. 3.6, which displays the con-

densate and thermal component density profiles at various temperatures. The effect of

the repulsive interactions is seen in the density profiles: the thermal gas is concentrated

in regions with small condensate density. Especially in the low-temperature limit, the

noncondensate is strongly localized to the vortex core region void of the condensate.

The energetic stabilization of the vortex state is directly related to this partial filling

of the vortex core region with the thermal gas. Essentially, the thermal gas acts in the
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and 650 nK within the PA.



– 34 –

r [ξ]

ñ′

Figure 3.7: The noncondensate density distribution for a cylindrical

vortex state at T = 50 nK within the PA. The contribution ñ′(r) from

the states other than the LCLS is also shown.

vortex core as a repulsive mean-field potential that lifts the lowest core localized state

to positive energies. This lifting effect can be understood by considering the effective

potential

Veff(r) = Vtrap(r) + 2gn(r) − µ, (3.21)

which appears as a Hartree mean field for quasiparticles in Eqs. (2.27). If the thermal

component contribution in the total density n(r) is neglected, Veff is negative in the

vortex core region, thus enabling a core localized excitation to have a negative energy.

On the other hand, even a small amount of thermal gas concentrated in the core region

substantially affects the effective potential felt by the lowest state that is localized into

the same region, and lifts its energy owing to the repulsive mean-field interaction. For

the specific physical parameter values used, a noncondensate fraction of less than 1%

manages to stabilize the vortex in the zero-temperature limit.

In fact, as displayed in Fig. 3.7, at low temperatures the noncondensate peak in

the core region originates essentially from the LCLS occupation itself—the energies of

the other excitation modes are always of order E ∼ �ω⊥, and their occupations thus

negligible for temperatures well below the harmonic trapping energy scale. It is to

be noted that the occupation of the LCLS is finite even in the zero-temperature limit

since its energy vanishes linearly as the temperature approaches zero. Consequently, it

is essentially the repulsive interaction of the LCLS with itself that ultimately lifts its

energy to positive values and stabilizes the vortex at low temperatures (see also the

analytic argument presented in Ref. [44], p. R176).
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Figure 3.8: Density profiles for the condensate, thermal cloud and

the anomalous average in the core region of a cylindrical condensate

vortex state within the PA (solid line), the G1 (dashed line) and the

G2 (dashed-dotted line) at temperature T = 400 nK.

Differences between gapless HFB theories

The differences in the vortex structures between the PA and its G1 and G2 extensions

were analysed in Paper II. Previously, corresponding comparisons had been done only for

irrotational condensate states [26,46,79,89]. A comparison of these theories for strongly

inhomogeneous vortex states is especially interesting since the G1 and G2 extensions

are based on assumptions about the momentum dependence of the full many-body T -

matrix which can be shown to be valid only in the homogeneous gas limit [46]. Thus,

their validity and precision for inhomogeneous states remains to be investigated.

As shown in Paper I, all these gapless HFB formalisms qualitatively agree in predict-

ing the vortex state to be energetically stable at all temperatures below Tbec. Also, on

the basis of Paper II, the condensate and thermal gas density profiles differ by only a

few percent between these theories outside the vortex core region. However, in the core

region the differences turn out to be substantial. Fig. 3.8 presents the density profiles

of the condensate and the thermal gas in the vicinity of the core region at temperature

T � 0.5Tbec. On the vortex axis, the total density is approximately 20% higher in the

G2 than in the PA. The higher core density in the G2 can be understood in terms of

the “softening” of the repulsive interaction in this region due to many-body effects (cf.

Refs. [46, 79]).

The density profiles suggest that differences in the excitation spectra between the

approximations are largest for quasiparticle states localized in the vortex core region.

Indeed, the LCLS was found to be especially sensitive to the variations in the density.

Fig. 3.9 displays the energy of the LCLS as a function of temperature for the PA, G1 and

G2. The relative differences between the approximations in the LCLS energy are 25–40%
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Figure 3.9: The LCLS energy for a cylindrical vortex state as a

function of temperature within the PA, G1 and G2.

even at temperatures T � 0.6Tbec, where the PA has excellent precision in describing

the spectra of irrotational condensates. For other modes, the differences in the energy

were found to be much smaller.

The substantial differences in vortex core density and the LCLS energy were argued to

provide stringent tests for the precision of the mean-field theories considered. Especially,

such tests were suggested to be valuable in assessing the validity of the G1 and the G2

theories in modelling strongly inhomogeneous systems.

Comparison to experimental results

Due to the diluteness of gaseous BECs, the vortex core diameters in these systems

are microscopically large and exceed the corresponding value for 4He by several orders

of magnitude. In experimental realizations of condensate vortex states, the healing

length essentially determining the core radius has been of order ξ � 1 µm, while the

core parameter for 4He is a � 0.8 Å at atmospheric pressures [30]. Consequently, the

vortex structures in alkali-atom condensates are almost visible. By switching off the

trap potential and letting the cloud to expand ballistically by a factor of order 10,

vortex configurations can actually be imaged [38–43, 117]. Finally, the free expansion

process can be modelled theoretically in order to extract precise information on the

original condensate state [158–160]. Although the method is destructive, the dynamical

evolution of vortices can be followed by a series of such measurements.

The first systematic experimental investigation of vortex dynamics in gaseous BECs

was conducted by the JILA group [38]. The vortices were initially created in a nearly

spherical two-component condensate confined by a static trap. The irrotational com-

ponent partly fills the vortex core and, due to repulsive interactions, enlarges it to the

degree that the vortex can be observed by using nondestructive phase-contrast imaging.
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The irrotational component can be reduced or totally removed with suitable resonant

light beams. If completely removed, the core shrinks and the vortex can be observed

only using destructive ballistic-expansion imaging.

The vortices were observed to precess in circular orbits with practically constant

radii, the precession direction coinciding the direction of the condensate vortex flow.∗

The negligible radial movement of the vortices implies that dissipation in the system

was very weak—the characteristic decay time of vortices at the gas densities used in the

experiments substantially exceeds the lifetime of the condensate [156]. The dependence

of the precession frequency νpr on the radial core displacement and the degree of filling

of the core with the irrotational condensate component were also studied. For relative

displacements in the range ζ = 0.2–0.4, the frequency νpr was found to be almost con-

stant. The precession frequency showed a decreasing trend for increased core filling, but

this dependence was rather weak; for core radii of order 10ξ associated with substantial

core filling, νpr exceeded on the average half the value for bare-core vortices.

The measured bare-core precession frequencies and, especially, the precession direc-

tions agree with the predictions of the Bogoliubov approximation—in the precession

frequency, the relative difference between the measured and computed values is of order

10% [140]. On the other hand, the observations definitely disagree with the picture given

by the PLAs (PA, G1 and G2), which imply precession in the opposite direction at least

in the limit of small precession radii. The analysis of this discrepancy resulted in Papers

III and IV, the main results of which are presented in the following Subsection.

Effects of noncondensate dynamics

The Popov approximation and its extensions G1 and G2 have been quite successful in

modelling the collective modes of irrotational condensates, and the obvious discrepancy

between their predictions for the vortex state precession mode and experimental obser-

vations is surprising. The mean-field approximation itself seems not to be the cause

of this discrepancy, since the Bogoliubov approximation describes the observed vortex

dynamics qualitatively correctly, and even quantitatively with reasonably good accuracy.

Essentially, there are three conceivable possibilities to explain this discrepancy: The

degree of thermalization of the vortex states in the JILA experiments was incomplete,

the motion of off-axis vortices modifies their physics compared to stationary vortex

states, or the PLAs simply fail in describing the lowest energy collective modes of vortex

states. It is to be noted that dissipation was indeed weak in the JILA conditions,

raising doubts that moving vortices were not perfectly thermalized. If the degree of

thermalization is low, the LCLS occupation may be negligible and the vortex core not

properly filled with the noncondensate. It is to be noted that while thermalization on

∗A few counterprecessing vortices were also observed. These “rogue” vortices seemed to have some-
what anomalous structures, and the inverse precession direction was speculated to arise from a compli-
cated distribution of angular momentum between the two condensate components [38].
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average may be fast compared to the precession velocity of the vortex, certain degrees of

freedom may thermalize much slower than others [161]. However, higher dissipation and

thermalization rates in other experiments have resulted in decay of vortices rather than

their stabilization [39–43]. Improper thermalization seems thus not to be a probable

reason underlying the failure of PLAs to describe the JILA experiments.

In Paper III it is pointed out that the typical precession velocities of off-axis vortices

are high enough to give rise to deformation of the vortex core structure and modification

of the excitation spectrum from those of static vortices. Consequently, validity of the

stationary mean-field theories in modelling off-axis vortex states is questionable. A

criterion for the validity of quasi-static formalisms is derived starting from the time-

dependent HFB equations (2.21), which in the Popov approximation can be cast into

the form

i�
∂

∂t
fq(r, t) = O(r, t)fq(r, t), (3.22)

where the matrix notation

fq(r, t) =

(
uq(r, t)

vq(r, t)

)
, O(r, t) =

( L(r, t) −gΦ2(r, t)

gΦ∗2(r, t) −L(r, t)

)
(3.23)

has been used (L = LΩ=0). If the mean fields vary slowly in time, Eq. (3.22) may be

approximated by the quasi-stationary eigenequations

Eq(t)f
(0)
q (r, t) = O(r, t)f (0)

q (r, t). (3.24)

For this adiabatic approximation [162] to be justified, the transition rates between the

quasi-stationary states f
(0)
q must be negligible in the exact time development of the

system. As shown in Paper III, this criterion can be formulated quantitatively with the

requirement ∣∣∣∣ 1

ωqq′
〈f (0)

q′ |ḟ (0)
q 〉±

∣∣∣∣ � 1 (for all q′), (3.25)

where the positive- and negative-sign scalar products are defined as

〈fq|fq′〉± =

∫
dr [u∗q(r)uq′(r) ± v∗q (r)vq′(r)], (3.26)

the transition frequency ωqq′ = (Eq −Eq′)/�, and ḟ
(0)
q denotes the time derivative of f

(0)
q .

The quasiparticle states are normalized according to

|〈f (0)
q |f (0)

q 〉±| = 1, (3.27)

where the minus sign is used for states with 〈f (0)
q |f (0)

q 〉− 
= 0, and the plus sign otherwise—

the sign of the scalar product in Eq. (3.25) is chosen according to the normalization of

the state f
(0)
q′ .

Essentially, this validity criterion shows that the adiabatic approximation is accurate

if the kinetic rates in the system are much slower than the frequency separations between
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certain excitation levels. Due to the smallness of the characteristic trapping energy scale

corresponding to time scales of order τ ∼ 1/ω̄tr ∼ 1s, even rather slowly time-dependent

phenomena may violate the adiabaticity criterion. Concerning vortex dynamics, it is

interesting to find out whether nonadiabatic effects are relevant for precessing vortices.

The characteristic kinetic rate for moving vortices is essentially determined by the time

in which the vortex traverses a distance corresponding to its core diameter. For circular

precession orbits with radii Rpr � ξ, this characteristic kinetic rate exceeds the precession

mode frequency. As the latter is typically given by the harmonic trapping frequency,

nonadiabatic effects are expected to be relevant for precessing vortices.

A more detailed estimate on the adiabaticity of moving vortices is presented in Paper

III.∗ Considering a circularly precessing vortex line in a cylindrically trapped (λ = 0)

condensate, the matrix element appearing in the criterion (3.25) was estimated by using

the uniform vortex motion approximation

〈f (0)
q′ |ḟ (0)

q 〉± � v · 〈f (0)
q′ |∇f (0)

q 〉±, (3.28)

where v is the velocity of the vortex line. Equations (3.25) and (3.28) yield for the vortex

velocity v = |v|v̂ = vv̂ the criterion

v � vqq′ =

∣∣∣∣∣
ωqq′

v̂ · 〈f (0)
q′ |∇f (0)

q 〉±

∣∣∣∣∣ (for all q′) (3.29)

for the quasiparticle state f
(0)
q to follow the moving vortex adiabatically. The limiting

adiabaticity velocities vqq′ were estimated by using quasiparticle solutions for an axisym-

metric vortex state to approximate the matrix elements. Fig. 3.10 presents these limiting

velocities for transitions between the lowest collective modes in the conditions of the JILA

experiments [38]. Comparison of the computed adiabaticity velocities to the experimen-

tal vortex precession velocity vexp � 0.1mm/s reveals the criterion (3.29) to be poorly

fulfilled, implying nonadiabatic effects to be nonnegligible. Especially, the slow limiting

velocity implied by transitions between the LCLS and the so-called breathing mode is in-

teresting, as the LCLS crucially affects the core structure and the self-stabilization mech-

anism of the vortex. Deformation of the LCLS would imply substantial modifications to

the vortex core structure and possibly also affect the self-stabilization mechanism.

The analysis presented in Paper III shows nonadiabatic effects to be important for

precessing off-axis vortices. In order to investigate whether the deformation of the core

due to vortex motion could affect the self-stabilization mechanism, uniformly precessing

vortices in a staticly trapped, repulsively interacting condensate were investigated in

Paper IV using the fully time-dependent Popov approximation introduced in Section 2.

In the frame co-rotating with the vortex, the time-dependent Gross-Pitaevskii equation

∗A similar analysis on the nonadiabatic effects for moving vortices in superconductors has been
presented in Ref. [163].
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(2.16) and the quasiparticle equations (2.21) reduce in the Popov approximation to the

stationary equations

LΩpr(r)Φ(r) − gnc(r)Φ(r) = 0, (3.30)

for the condensate wave function and

LΩpr(r)uq(r) − gΦ2(r) = E ′
quq(r), (3.31a)

L−Ωpr(r)vq(r) − gΦ∗2(r) = −E ′
qvq(r) (3.31b)

for the quasiparticle amplitudes. Above, Ωpr is the angular velocity of the precessing

vortex. In the course of thermalization, a staticly trapped system approaches the equilib-

rium statistical distribution determined by its energy spectrum in the laboratory frame

of reference. The expectation values 〈E〉 of quasiparticle energies in the laboratory frame

and the eigenenergies E ′ in the rotating frame are found to be related by

〈E〉 = E ′ +
∫
dr [u∗(Ωpr · L)u+ v(Ωpr · L)v∗] (3.32)

for a given quasiparticle eigenstate (E ′, u, v).
The self-stabilization of vortex states due to the noncondensate was studied by deriv-

ing a lower bound for the quasiparticle energies. By neglecting the kinetic energy terms,

one obtains for a repulsively interacting gas the lower bound

〈E〉 >
∫
dr ρ(Vtrap + gnc + 2gñ− µ), (3.33)
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where ρ = |u|2 + |v|2 is the density distribution of the quasiparticle state. Furthermore,

since the lowest states are strongly localized into the vortex core region, it is useful to split

the above integral into contributions from the vortex core region C and its complement

C ′. In terms of the Thomas-Fermi approximation

n(TF)
c =

1

g
(µ− Vtrap − 2gñ) (3.34)

for the condensate density and the parameter

w =

∫
C
dr ρ∫

C′ dr ρ
(3.35)

characterizing the degree of quasiparticle core localization, the inequality (3.33) implies

〈E〉 >
∫

C

dr ρ
[
Vtrap + 2gñ− µ− gmax

C′
{n(TF)

c − nc}/w
]
, (3.36)

where maxC′{· · · } denotes the maximum value of its argument outside the vortex core

region. For the mode to be anomalous, the integrand has to attain negative values

somewhere in the core region, i.e.

ñ <
1

2g

(
µ− Vtrap + gmax

C′
{n(TF)

c − nc}/w
)
. (3.37)

As argued in Paper IV, the last term on the right-hand side may be neglected for anoma-

lous modes if the gas is sufficiently strongly interacting and the temperature is not too

close to Tbec. In such a case the inequality (3.37) reduces to

ñ(r) �
1

2
n0(r) (3.38)

for some r ∈ C, where n0 is the local maximum density in the vicinity of the vortex

core. This result implies the anomalous modes to be lifted to positive energies as the

noncondensate in the core region fills approximately half of the core volume. Moreover,

such filling of the core is a natural consequence of thermalization and the existence of

the anomalous core modes themselves. The self-stabilization mechanism is thus valid

quite generally for the PA and other formalisms sharing the same structure.∗

In Paper IV, this stabilization mechanism contradicting the experimental observa-

tions and the predictions of the BA is interpreted to originate from the improper treat-

ment of the noncondensate dynamics by the Popov-like approximations. Basically, these

approximations treat the noncondensate concentrated in the core region as a static pin-

ning potential for the vortex. The lifting effect for the energies of the core-localized

anomalous modes of such a static repulsive potential is naturally stronger than that of a

∗The argument presented in Paper IV remains valid also if the orthogonality condition between the
condensate and the excited states is imposed. For details, see Ref. [68], p. 3857.
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realistic, dynamical noncondensate peak. The improper treatment of the noncondensate

dynamics is also reflected to the LCLS, which in the PA describes precession of the vor-

tex about a static noncondensate peak rather than a coupled motion of them (see also

the discussion in Ref. [44], p. R177). In conclusion, a reliable analysis of the stability

and dynamics of condensate vortex states requires a formalism that takes properly into

account the coupled dynamics of the condensate and the noncondensate.

3.4 Stabilization of multiquantum vortices

Multiply quantized vortices (MQVs) are known to be energetically unstable in homoge-

neous superfluids described by a scalar order parameter [30]. Basically, this is due to the

proportionality of the vortex energy to the square of its circulation, implying splitting of

multiply charged vortices to simply quantized ones to be energetically favourable. The

conclusion remains valid also when the interaction of vortices in taken into account.

Such vortices can, however, be stabilized by breaking the homogeneity of the super-

fluid with suitable external potentials. In superconductors, holes, antidots and columnar

defects in the underlying atomic lattices have been used as pinning potentials to stabilize

MQVs [164–166]. Multicharged vortices have been also observed in thin superconducting

films [167] and thin layers of superfluid 4He [168]. Furthermore, such structures exist

in bulk superfluid 3He, which has a complicated non-scalar order parameter due to spin

degrees of freedom [31].

Harmonically trapped BECs are not homogeneous, but such trapping turns out to

be too shallow to allow the existence of stable MQVs in single-component systems. The

instability of multiquantum vortices is manifested in the existence of negative energy

and complex frequency modes in their excitation spectra. In the 2D cylindrical geometry

corresponding to λ = 0 (cf. Eq. (3.12)), axisymmetric multiquantum vortex states exhibit

complex frequency modes corresponding to a splitting instability for certain values of

the interaction strength gN [128]. In finite geometries corresponding to λ > 0, complex

frequency splitting modes always exist [169]. In harmonically trapped condensates MQVs

are thus not only energetically [97,98,105,139] but also dynamically unstable, and decay

even in the absence of dissipation.∗ Such vortices have recently been, however, created

by using topological phase engineering methods [118–120].

One possibility to stabilize MQVs in dilute condensates is to use steeper than har-

monic trapping potentials—for example power-law potentials of the form Vtrap ∼ rα

with α > 2 provide strong enough confinement to suppress the unstable multiquantum

vortex modes for weakly enough interacting condensates [171]. Another way is to use

strong enough pinning potentials for vortices. An axisymmetric trap supplemented by

a strongly repulsive pinning potential at the symmetry axis essentially corresponds to a

toroidal geometry, which supports also multiquantum vortices if the pinning potential

∗It is interesting to note that these complex frequency modes are absent for homogeneous (Vtrap = 0)
condensates, i.e. the dynamical instability is induced by the trap potential [170].
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Figure 3.11: Phase diagram for the lowest-energy vortex state as a

function of the trap rotation frequency and the radius of the pinning

potential. For physical parameter values used, see Paper V.

is thick enough. The additional potential could be realized by focusing a blue-detuned

laser beam through the trap center.

In Paper V, conditions for energetically stabilizing multiquantum vortices in such a

cylindrical geometry are investigated within the Bogoliubov approximation. Energeti-

cally favourable states are surveyed with respect to the trap rotation velocity Ω and the

radius of the pinning potential Rpin. For simplicity, the investigation is confined to region

Ω < Ωc, where Ωc denotes the critical rotation velocity at which the singly quantized ax-

isymmetrix vortex states becomes energetically favourable compared to the irrotational

condensate state. In this region one may restrict to consider only axisymmetric vortex

states.

By computing the vortex state energies as functions of Ω, Rpin and the circulation

quantum number m, the phase diagram represented in Fig. 3.11 was obtained. The

diagram displays the minimum energy state in the ΩRpin plane, and shows that MQVs

can indeed be made energetically favourable in rotating traps with suitable pinning po-

tentials. In addition, the pinning potentials rendering a given number of circulation

quanta energetically favourable are also shown to locally energetically stabilize the cor-

responding vortex state. Consequently, it is suggested to be possible to drive the system

continuously into a multiquantum state by starting from a configuration containing only

singly quantized vortices.
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4 Numerical Methods for Solving BdG Equations

The Hartree-Fock-Bogoliubov (HFB) equations, i.e. the quasiparticle eigenequations

(2.27) supplemented by the self-consistency relations (2.28) result from the quadratic

mean-field approximation for a weakly interacting, partially condensed boson gas. Their

similar fermionic counterpart, the Bogoliubov-de Gennes (BdG) equations, are of central

importance in the context of superconductivity, where they constitute the wave function

formulation of the Bardeen-Cooper-Schrieffer (BCS) theory.∗

These quadratic mean-field theories can be solved rather easily for homogeneous sys-

tems [73], but for inhomogeneous problems they typically pose serious computational

challenges. Although wave function formalisms are natural frameworks in treating in-

homogeneous systems, such challenges are expected when trying to extract detailed

information on interacting many-particle systems using first-principles quantum theo-

ries. In wave function formalisms, these difficulties are manifested in the large number

of quasiparticle eigensolutions needed in the self-consistency relations.

An important part of the research summarized in this thesis is the development of

computational methods for solving the HFB and BdG equations self-consistently. The

computational scheme which enabled finding the previously inaccessible low-temperature

vortex solutions presented in Papers I and II was initially developed for fermionic BdG

equations. In Subsection 4.1, this computational scheme is presented in the context

of the BCS theory of superconductivity, and compared to other methods commonly

used. This is also the subject of Papers VI–VIII. Finally, in Subsection 4.2, the specific

computational features of bosonic HFB equations are discussed.

4.1 Fermionic systems

The Bogoliubov-de Gennes equations of superconductivity consist of the coupled eigen-

value equations

He(r)uq(r) +

∫
dr′ ∆(r, r′)vq(r) = Equq(r), (4.1a)

−H∗
e(r)vq(r) +

∫
dr′ ∆∗(r, r′)uq(r) = Eqvq(r) (4.1b)

for the quasiparticle energies Eq and amplitudes uq(r), vq(r) [172]. Above, He(r) denotes

the single-electron Hamiltonian

He(r) = − �
2

2me

[
∇− ie

�c
A(r)

]2

+ U0(r) −EF, (4.2)

where A(r) is the magnetic field vector potential, U0(r) the external lattice potential and

EF the Fermi energy of electrons. The BdG equations are coupled integro-differential

∗The HFB quasiparticle equations (2.27) are also sometimes called Bogoliubov-de Gennes equations.
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equations if the pairing potential ∆(r, r′) is nonlocal. They are furthermore supple-

mented by the self-consistency conditions relating the pairing amplitude and the current

density j(r) to the quasiparticle eigensolutions:

∆(r, r′) = V (r, r′)
∑

q

[1 − 2f(Eq)][v
∗
q (r)uq(r

′) + v∗q (r
′)uq(r)], (4.3a)

j(r) =
e�

me

∑
q

Im

{
f(Eq)u

∗
q(r)

[
∇− ie

�c
A(r)

]
uq(r)

+ [1 − f(Eq)]vq(r)

[
∇− ie

�c
A(r)

]
v∗q (r)

}
, (4.3b)

where V (r, r′) describes the electronic pairing interaction and f(Eq) = (eEq/kBT +1)−1 is

the Fermi-Dirac distribution function. The summations in the self-consistency relations

include all states below a suitable cut-off energy.

Finding self-consistent solutions to the BdG equations is computationally demand-

ing. The number of quasiparticle eigenstates required in the self-consistency summations

scales as ∼ L3 with respect to a characteristic system dimension L, and is large even

for L � ξ, where ξ is the superconducting coherence length characterizing spatial vari-

ations in the pairing amplitude. Another major computational challenge is hidden in

the two widely separated length scales of the problem: The coherence length scale often

substantially exceeds the Fermi length scale that characterizes the oscillations in the

quasiparticle amplitudes. In addition, the nonlocality of the pairing amplitude, albeit

usually of short range, is a challenge for finding efficient computational methods for the

quasiparticle equations. In practice, 3D problems are overwhelmingly time-consuming

to solve self-consistently even with modern supercomputers. Fortunately, many interest-

ing problems have continuous spatial symmetries, which can be utilized to reduce the

effective computational dimensionality. The first effectively 2D problems are becoming

computationally feasible, but even for 1D problems one is still restricted to use small

computational domains.

In Papers VI–VIII, an efficient computational scheme for solving the BdG equations

in effectively 1D geometries is presented. The method is applied to compute electronic

structures of isolated multiquantum vortices (Paper VII) and the ultralow-temperature

thermodynamics of a superconducting π-junction (Paper VIII).

Similar problems have previously been approached by using typically so-called eigen-

function expansion methods (EEMs) [133, 155, 173–175], in which the eigenvalue equa-

tions (4.1) are discretized in a function basis typically consisting of eigensolutions in the

analytically solvable case A = ∆ = U0 = 0. The full solutions are approximated by

their projections to a subspace spanned by a finite number N of basis functions. The

projection converts the eigenequations to an eigenvalue problem of a dense 2N × 2N

matrix, which is solved numerically. As argued in Paper VI, the CPU time τ scales for

the method as τ ∼ L3, where L is the length of the effectively 1D system.
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Figure 4.1: The CPU time τ required to compute M lowest eigen-

states using the real-space discretization scheme with lattice size N .

Compaq AlphaServer GS140 computer and the Lanczos method im-

plemented in ARPACK subroutine libraries have been used in the

test. The slight irregularities in τ are due to varying total load of the

system.

Instead of an EEM, a scheme based on high-order real-space discretization combined

with an iterative Lanczos method eigensolver was used in Papers VII, VIII and Ref.

[176]. By using an evenly spaced discretization lattice with N grid points and n-point

central-difference formulas to approximate the derivatives, the BdG equations are again

transformed to an eigenproblem of a symmetric 2N×2N matrix. However, this coefficient

matrix is now a band matrix with bandwidth 2n−1 if the pairing amplitude is local, and

only slightly wider for typical nonlocal pairing amplitudes.∗ Although in the real-space

discretization the number of degrees of freedom typically has to be larger than that in

the EEMs to obtain the same accuracy, the banded structure of the coefficient matrix

is a definite advantage with respect to memory storage and CPU time requirements.

Furthermore, the real-space discretization allows taking nonlocal short-range pairing

amplitudes into account essentially without additional computational cost, in contrast

to EEMs.

The narrow-bandedness of the coefficient matrix and the restriction to consider only

states up to a given cut-off energy can be fully utilized by using the iterative Lanczos

method to solve the discretized eigenvalue problem. Specifically, its implementation in

the ARPACK† subroutine libraries was used in Papers VII and VIII. Fig. 4.1 presents

the scaling of the CPU time τ of the algorithm as a function of the lattice size N and

∗The optimal value for n is approximately 10, while N is typically of order 1000.
†http://www.caam.rice.edu/software/ARPACK/.
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the computed number of eigenstates M . The CPU time is seen to scale approximately

as τ ∼ N1.5, which is substantially more favourable than within the EEMs. The method

is thus superior if solutions with high accuracy are required. In Paper VI, the CPU time

requirement is shown to scale as τ ∼ L2.5 as a function of the system size for a fixed

discretization lattice density. This scaling is also advantageous compared to the EEMs

with τ ∼ L3, and enables using larger computational domains.

4.2 Bosonic systems

The bosonic HFB equations closely resemble the fermionic BdG equations, suggesting

similar computational methods to be applicable in solving them. However, there exists

also crucial differences between these formalisms: The fermionic quasiparticle Hamilto-

nian

HBdG =

( He(r) ∆(r, r′)
∆∗(r, r′) −H∗

e(r)

)
(4.4)

is Hermitian at least for local pairing amplitudes, while the HFB Hamiltonian

HHFB =

( L(r) −gΦ2(r)

gΦ∗2(r) −L(r)

)
(4.5)

is not. On the other hand, the bosonic equations do not contain such widely separated

length scales as the Fermi wavelength and the coherence length for the BdG equations.

Despite these differences, the finite-difference scheme described above can be applied

to solve effectively the HFB equations with only slight modifications [177]. Due to the

absence of short-wavelength oscillations in the bosonic quasiparticle amplitudes, the dis-

cretization grid can be chosen relatively much sparcer than in the case of fermionic BdG

equations. Instead of the Lanczos method, the nonhermiticity of HHFB requires using

the more general Arnoldi method in solving the discretized eigenvalue problem. This

does not, however, essentially affect the scaling behaviour of the CPU time requirement.
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5 Summary

The main objective of the research presented in this thesis was to investigate quantized

vortices in dilute atomic Bose-Einstein condensates within microscopic finite-temperature

mean-field theories.

In Papers I and II, the structure and stability of vortices in partially condensed atomic

vapours were investigated using the self-consistent Popov approximation and its gapless

extensions G1 and G2. Substantial structural differences in the vortex core region were

found between the formalisms. However, quite surprisingly, the energetically unstable

pure-condensate vortex states were found to be stabilized by the noncondensed gas com-

ponent even in the zero-temperature limit within all these Popov-like approximations.

The analysis of this self-stabilization mechanism and the related problem of vortex

precession direction lead to results presented in Papers III and IV. In Paper III, it

was argued that under typical experimental conditions the deformation of quasiparticle

excitations due to nonadiabatic effects should be taken into account when modelling time-

dependent condensate states at finite temperatures. Especially, the thermal cloud was

shown to be unable to follow precessing off-axis vortices rigidly, giving rise to deformation

of the core structure of moving vortices. Fully time-dependent quasiparticle equations

should thus be used to correctly model such states, instead of the (quasi)stationary

equations corresponding to the adiabatic approximation. The failure of the adiabatic

approximation also compromises the prediction of energetic stability of vortex states

given by the stationary Popov-like formalisms.

In order to find out whether the core deformation could affect the stability of moving

vortices, in Paper IV uniformly precessing off-axis vortex states were analysed using a

fully time-dependent Popov approximation. A lower bound was derived for the quasi-

particle energies, showing that a partial filling of the vortex core with noncondensed

gas always suffices to lift the energies of unstable anomalous modes to positive values,

thus rendering vortex states energetically metastable. Furthermore, such filling of the

core region is a natural consequence of thermalization and the existence of core-localized

anomalous modes themselves. The results presented in Paper I showing axisymmetric

vortex states to be metastable within the Popov approximation were thus argued to be

valid also for general off-axis vortex states.

The unphysical prediction of vortex stability was argued to originate from the im-

proper treatment of the noncondensate dynamics inherent for first-order mean-field ap-

proximations. This defect of the Popov-like formalisms has been attributed to their

failure in predicting the excitation spectra of irrotational condensates near Tbec, but its

relevance also in the low-temperature limit has not been recognized previously.

Stabilization of multiquantum vortex states in harmonically trapped condensates

by using an additional repulsive pinning potential was investigated in Paper V. The

phase diagram for energetically favourable vortex states as function of the trap rotation

velocity and the width of the pinning potential was presented. The pinning potentials
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required to render multiquantum vortices energetically favourable were also shown to

locally energetically stabilize the corresponding vortex states.

The computational methods facilitating the survey of self-consistent vortex solutions

in the zero-temperature limit were initially developed for the fermionic Bogoliubov-de

Gennes equations used to model inhomogeneous superconductors. The numerical scheme

was presented in Papers VI–VIII with applications to multiquantum vortex states and

π-junctions in s-wave superconductors. As functions of the system size and numerical

accuracy, the scaling of the CPU time and memory storage requirements of the method

were shown to be preferable compared to other methods commonly used. In addition,

short-range nonlocal pairing interactions can be taken into account in the scheme without

essentially increasing the computational cost.

During the recent years, the experimental breakthroughs in creating and manipu-

lating alkali-atom condensates have also invigorated the development of thermal field

theories for weakly interacting BECs. The success of lowest-order mean-field theories in

modelling these systems has been remarkable, but the rapid development in experimen-

tal methods is beginning to provide measurement data accurate enough to pose definite

tests for theories taking into account higher-order effects. Due to strong inhomogeneities,

vortex states are especially suitable for testing the validity of theoretical models. The

results presented in this thesis indicate that the most common finite-temperature mean-

field theories used to model dilute atomic BECs drastically fail when applied to vortex

states. This failure underlines the need for a computationally feasible finite-temperature

formalism that consistently extends beyond the Popov approximation in taking into ac-

count higher-order atomic correlations and in treating the dynamics of the condensed

and noncondensed components on an equal footing.
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Abstracts of Publications I–VIII

I. We compute the structure of a quantized vortex line in a harmonically trapped

dilute atomic Bose-Einstein condensate using the Popov version of the Hartree-

Fock-Bogoliubov mean-field theory. The vortex is shown to be (meta)stable in a

nonrotating trap even in the zero-temperature limit, thus confirming that weak

particle interactions induce the condensed gas a fundamental property character-

izing “classical” superfluids. We present the structure of the vortex at ultralow

temperatures and discuss the crucial effect of the thermal gas component to its

energetic stability.

II. We compute structures of vortex configurations in a harmonically trapped Bose-

Einstein condensed atom gas within three different gapless self-consistent mean-

field theories. Outside the vortex core region, the density profiles for the condensate

and the thermal gas are found to differ only by a few percent between the Hartree-

Fock-Bogoliubov-Popov theory and two of its recently proposed gapless extensions.

In the core region, however, the differences in the density profiles are substantial.

The structural differences are reflected in the energies of the quasiparticle states

localized near the vortex core. Especially, the predictions for the energy of the

lowest quasiparticle excitation differ considerably between the theoretical models

investigated.

III. Considering a moving vortex line in a dilute atomic Bose-Einstein condensate

within time-dependent Hartree-Fock-Bogoliubov-Popov theory, we derive a crite-

rion for the quasiparticle excitations to follow the vortex core rigidly. The assump-

tion of adiabaticity, which is crucial for the validity of the stationary self-consistent

theories in describing such time-dependent phenomena, is shown to imply a strin-

gent criterion for the velocity of the vortex line. Furthermore, this condition is

shown to be violated in the recent vortex precession experiments.

IV. We study the stability of vortices in trapped single-component Bose-Einstein con-

densates within self-consistent mean-field theories—especially we consider the

Hartree-Fock-Bogoliubov-Popov theory and its recently proposed gapless exten-

sions. It is shown that for sufficiently repulsively interacting systems the anomalous

negative-energy modes related to vortex instabilities are lifted to positive energies

due to partial filling of the vortex core with noncondensed gas. Such a behavior

implies that within these theories the vortex states are eventually stable against

transfer of condensate matter to the anomalous core modes. This self-stabilization

of vortices, shown to occur under very general circumstances, is contrasted to the

predictions of the non-self-consistent Bogoliubov approximation, which is known

to exhibit anomalous modes for all vortex configurations and thus implying insta-

bility of these states. In addition, the shortcomings of these approximations in
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describing the properties of vortices are analysed, and the need of a self-consistent

theory taking properly into account the coupled dynamics of the condensate and

the noncondensate atoms is emphasized.

V. Multiply quantized vortices in trapped Bose-Einstein condensates are studied using

the Bogoliubov theory. Suitable combinations of a localized pinning potential and

external rotation of the system are found to energetically stabilize, both locally and

globally, vortices with multiple circulation quanta. We present a phase diagram for

stable multiply quantized vortices in terms of the angular rotation frequency and

the width of the pinning potential. We argue that multiquantum vortices could be

experimentally created using these two expedients.

VI. We present an efficient computational method to solve selfconsistently the

Bogoliubov-de Gennes equations of weak coupling superconductivity. As a function

of system size, the scaling of the CPU time required by the scheme is shown to be

preferable compared to the methods commonly used. Also, the scheme allows tak-

ing into account nonlocal pairing interactions without additional computational

cost. The favourable scaling behavior enables computation of microscopic elec-

tronic structures for ranges of physical parameter values previously inaccessible.

VII. Superconducting quasiparticle excitation spectra are computed for m times quan-

tized flux lines using a self-consistent Bogoliubov-de Gennes approach. We find m

discrete branches of bound-state solutions in the spectrum, corresponding to dif-

ferent values of the quasiparticle angular momentum. Owing to the bound states,

the STM tunneling conductance of the vortex is predicted to display m rows of

peaks as a function of the distance from the vortex axis.

VIII. The electronic structure of domain walls in superconductors is computed as a

function of temperature within Bogoliubov-de Gennes theory. We find a sponta-

neous interface transition at an ultralow temperature T� ≈ 10−2Tc, in which the

selfconsistent pair potential transforms from smooth Ginzburg-Landau form into

oscillatory Friedel-like behavior. The transition is associated with a lifting of the

energy of midgap excitations and the formation of an energy minigap. Alike the

bulk superconducting phase transition at Tc, this midgap transition is manifested

with a pronounced peak in the specific heat of domain-wall matter. The transition

is also predicted to occur in thin SNS Josephson junctions.
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