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Abstract

A model has been developed for diffusion controlled electrodeposition of metallic particles at the interface between two
immiscible electrolyte solutions. A rate law was derived for the case where no preferential nucleation sites are present. Palladium
particles were deposited at the water � 1,2-dichloroethane interface by reduction of aqueous ammonium palladate using butylfer-
rocene in the organic phase as electron donor. Experimental results were in good agreement with the theoretical model derived.
The potential dependence of the nucleation rate was found to follow a classical exponential law. © 2000 Elsevier Science S.A. All
rights reserved.
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1. Introduction

The advantage of studying nucleation phenomena by
electrochemical techniques is that the supersaturation
can be controlled by the applied interfacial potential. In
1996 Cheng and Schiffrin [1] nucleated gold particles at
a polarisable liquid � liquid interface. The basic concepts
of nucleation and growth at a liquid � liquid interface
are essentially similar to those at a solid electrode, i.e.
formation of a nucleus, which grows after reaching a
critical size [2]. The nucleation process at a solid elec-
trode is affected by the interaction between the newly
formed phase and the electrode substrate. The main
difference when nucleation takes place at a liq-
uid � liquid interface is that, for the latter, this interac-
tion is very small. In addition, the liquid � liquid
interface should be free from defects serving as perma-
nent preferential nucleation sites, thus making it an
ideal substrate for interfacial nucleation studies.

The growth of each nucleus is determined by the rate
of incorporation of new atoms, and for fast kinetics

mass transfer controls growth. As growth proceeds the
diffusional fields overlap and the diffusional geometry
changes from hemispherical to linear. This is a very
complex problem and an exact solution cannot be
obtained. Scharifker and co-workers [3–5] introduced
the idea of planar diffusion zones to approximate the
expected current. The applicability of this approach is
still under debate [6]. Mirkin and Nilov [7], Sluyters-
Rehbach et al. [8] and Heerman and Tarallo [6] have
suggested some refinements to the model and more
recently Scharifker et al. [9] have scrutinised the theo-
retical aspects of these approaches in comparison with
numerical simulations.

Modelling nucleation and growth phenomena at liq-
uid � liquid interfaces requires that diffusion in both
phases must be considered, since the charge transfer in
these systems occurs by transport of electroactive spe-
cies to the interfacial region from both phases. The
diffusional fields thus generated are coupled and the
diffusional problem in both adjoining phases must be
solved. This paper presents a nucleation and growth
model for the liquid � liquid interface based on the
concept of planar diffusion zones. The experimental
results are compared to model predictions.
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2. Theory

The immiscible electrolyte system that is being con-
sidered consists of an organic solvent immiscible with
water containing an organic redox couple, in contact
with an aqueous solution of a metal ion. By applying a
suitable interfacial Galvani potential difference, hetero-
geneous electron transfer from the organic redox couple
to the aqueous metal ion takes place, leading to the
electrodeposition of a metal phase at the interface. This
type of electrodeposition experiment has been carried
out with gold [1] and is equivalent to classical electrode-
position at a solid electrode. The nucleation and growth
reaction can be written as:

nM

nRed

Red(o)+MnM+(w)+ (M0)j(s)

l
nM

nRed

Ox(o)+ (M0)j+1(s) (1)

where Red and Ox denote the reduced and oxidised
components of the electron donor redox couple. nRed is
the number of electrons transferred from the organic
redox couple and nM is the number of electrons re-
quired to reduce the metal ion. j is the number of atoms
in the growing particle. nOx is used in several equations
and is defined as nOx= −nRed for convenience, where
the negative sign denotes that Ox is a reaction product.

For a reversible reaction the two-phase Nernst equation
that defines the interfacial potential is given by [10]:
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where ERed/Ox
0% and EM0/MnM

0% are the formal potentials of
the organic and aqueous redox couples referred to the
standard hydrogen electrode in the respective phases.
These values include all activity coefficient terms. The
superscript s denotes surface concentration. The activ-
ity of the metal in the particle is assumed to be unity
and the formal redox potential of the metal couple is
assumed to be independent of size, although density
functional calculations of aluminium clusters imply a
pronounced change in the binding energy per atom for
clusters comprised between one and thirteen atoms [11].
The size of the cluster considered here, is much larger
than this and electronic size effects have been neglected.
The overpotential h is defined as:

h=Do
wf−Do

wfeq (3)

where Do
wfeq is the equilibrium potential for the

reaction.
Care has to be taken in analysing electrodeposition at

liquid � liquid interfaces in relation to the physical
meaning of the overpotential experienced by a cluster
present at the interface. The situation here differs from
that at a solid electrode since there is no electronically
conducting substrate and the electron donor is a soluble
redox species. Therefore, the process has some similari-
ties with homogeneous nucleation of particles. Fig. 1
illustrates the reaction that takes place. A central issue
that needs understanding is the actual driving force
experienced by a growing particle at the interface. For
a metal � solution interface, the problem can be easily
defined since the potential experienced by the new
growing phase is that of the electrode and therefore, the
growth overpotential is clearly defined. For a liq-
uid � liquid interface, the electrode surface is a dielectric
termination and not a conductor.

The nature of the potential distribution can be con-
sidered from the analysis given in Fig. 2. A fundamen-
tal relationship that must be valid for the transfer of a
test charge along any pathway across the interface,
irrespective of whether the particle is crossed or not, is
that the line integral:7

zie
#f(l)
#l

dl=0 (4)

i.e. the energy resulting from transferring an idealised
test charge across any closed loop, must be zero. zie is
the test charge, f(l) is the potential at any point in the
loop and l is the integration variable. The use of Eq. (4)
implies that the Galvani (or ‘inner’) potential is a
measurable quantity. We are employing this concept

Fig. 1. Schematic presentation of the electrochemical reduction of
palladate at the liquid � liquid interface. Two electrons are transferred
from the organic butylferrocene redox couple to reduce the palladate.

Fig. 2. Schematic diagram showing the transfer of an idealised test
charge across any closed loop at the liquid � liquid interface in the
presence of a metallic particle. Since the work for any closed loop has
to be zero, the overall driving force for the deposition reaction must
equal the potential across the interface.



C. Johans et al. / Journal of Electroanalytical Chemistry 488 (2000) 99–109 101

here due to the need to use an electrical variable in
order to define an electrochemical nucleation and
growth supersaturation. A consequence of this is that a
growing particle, which by its metallic nature must be
an equipotential, behaves as a bipolar electrode in
which the sum of the interfacial potential drops at the
water � particle and the particle � organic solution inter-
faces must equal the total interfacial Galvani potential
difference across the liquid � liquid interface, i.e.:

Dp
wf+Do

pf=Do
wf (5)

where the index p refers to the particle. It follows that
the overall driving force for the deposition reaction is
the potential across the interface.

The mass transfer equations for a single growing
particle can be solved using the following assumptions:
1. the particle is spherical;
2. hemispherical diffusion applies in both phases;
3. no convective term due to particle growth is

considered;
4. the mass balance condition is that the total flux of

reducing agent from the organic phase equals that
of metal ions being deposited on the growing nuclei;

5. the diffusional field may be regarded to be in a
quasi-stationary state provided that it develops
much faster than the rate of particle growth.

With these assumptions the diffusional equations are:

Di
�#2ci

#r2 +
2
r
#ci

#r
�

=0 (6)

where ci is the concentration of the species under
consideration, i.e. the concentration of the metal ion,
the reduced form of the redox couple or the oxidised
form of the redox couple. Di is the diffusion coefficient
of species i, r is the distance from the centre of the
particle and t denotes the time from the beginning of
growth. The initial conditions are:

ci(r,t=0)=c i
b (7)

where the superscript b denotes bulk concentration.
The boundary conditions are given by:

limr��ci(r,t)=c i
b (8)

The fluxes at the surface of the particle can be related
to its radius by noting that the flux of metal ions to the
particle will be proportional to its rate of volume
change. Thus, the growth rate is related to the concen-
tration gradients at the surface as follows:

Di

#ci

#r
)
r=R(t)

=
2nM

niV(
dR(t)

dt
(9)

where V( is the molar volume of the deposited phase
and R(t) is the radius of the particle as a function of
time. In the derivation of Eq. (9) it has been assumed
that the diffusional fields can be partitioned symmetri-
cally across the whole volume of the system, that is to

say regardless of the actual position of the particle at
the interface. In this case half of the diffusional field
will be present in the organic phase and the other half
in the aqueous solution. The integration of Eq. (6)
using conditions (7)–(9) leads to:

ci(r,t)=c i
b−

nM

ni

2R(t)2

rV( Di

dR(t)
dt

(10)

Hence, from Eqs. (2) and (10) the relationship between
the surface concentrations and the Galvani potential
difference is given by:
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Eq. (11) is non-linear and a general solution in closed
form for the radius as a function of interfacial potential
and time could not be found. However, for a given set
of bulk concentrations, the diffusional problem will
have only one degree of freedom, i.e. when all initial
conditions are given, there is only one function for the
radius for a given potential and time.

2.1. Potentiostatic response for a single particle

If a function of the radius can be found such that the
surface concentrations are constants with time, then
this solution will also satisfy the condition of constant
interfacial potential that is applied in a potentiostatic
experiment. Setting r=R(t) in Eq. (10) gives the sur-
face concentration of species i as:

c i
s=c i

b−
nM

ni

2R(t)
V( Di

dR(t)
dt

(12)

where c i
s is the surface concentration, which is constant

for a given potential. The radius of the particle is
obtained by integration of Eq. (12) from zero to t under
the condition that R(0)=0:

R(t)=
�niDiV( (c i

b−c i
s)t

nM

�1/2

=kt1/2 (13)

From Eqs. (11) and (13):
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Although analytical expressions for the parameter k
as a function of potential can be obtained from Eq.
(14), a numerical solution through iteration is more
convenient. For a sufficiently large overpotential the
surface concentration of one reactant j (M or Red) can
be considered to be zero. This is a limiting case for the
growth rate and the parameter k written in terms of the
limiting species j is obtained from Eq. (13) as:

k=
�njc j

bDjV(
nM

�1/2

(15)

In particular, when experimental conditions are chosen
such that the surface concentration of the metal ion
approaches zero (nMDMcM

b �nRedDRedcRed
b ) the parame-

ter k is given by:

k= (cM
b DMV( )1/2 (16)

This result is similar to that obtained for a nucleus
growing at a solid electrode [3]. However, in this case
the parameter k differs by a factor of 21/2 due to the
difference between the spherical and hemispherical ge-
ometry of the growing phase. The current to an isolated
particle formed at t=0 is obtained by solving the
current density from Eqs. (9) and (13), using the rela-
tionship between the concentration gradient and the
current, i.e.:

#ci

#r
)
r=R(t)

=
I(t)

niFADi

(17)

from which the current is:

I(t)=
2pnMFk3t1/2

V( (18)

I(t) is the current to a single particle.

2.2. Effect of o6erlapping diffusional fields

For nucleation and growth at a solid electrode, over-
lap of the diffusional fields around the nuclei takes
place only in one phase. The situation at a liq-
uid � liquid interface is more complicated, since overlap
of the diffusional fields occurs in both phases, and
therefore, a relationship between these overlapping
fields must be established. The coupling between the
diffusional fields leads to variable surface concentra-
tions. Overlap will be treated using the concept of
planar diffusion zones introduced by Gunawardena et
al. [3] but the size of the planar diffusion zone will be
defined in a different manner. Although there is a
possibility of surface diffusion of particles at a liq-
uid � liquid interface, their physical coalescence is ne-
glected in the present model. The approach of planar
diffusion zones requires that at least one surface con-
centration is constant. In the present derivation the
current is calculated assuming a constant surface con-
centration for one reactant. The experimental condi-

tions for which the expressions obtained are valid are
discussed later.

A planar linear diffusion zone of area S(t), is defined
so that the flux to this zone equals the radial flux to a
single nucleus neglecting overlap [3]:

IP(t)=IR(t) (19)

where IP is the linear diffusion current to the planar
diffusion zone, IR is the current to the particle following
hemispherical diffusion and t is the time elapsed since
the formation of the nucleus. Following Scharifker’s
model [3], it will be considered that the area of the
planar diffusion zone is assumed to grow linearly with
time:

S(t)=pat (20)

where a is a parameter describing the growth rate of the
diffusion zone. It will be shown in what follows that the
assumption that a is independent of time is correct. The
current to an isolated particle formed at t=0 is given
by Eq. (18). The current due to linear flux to the
growing planar diffusion zone is given by (see Ap-
pendix A for derivation):

IP(t)=
niFDciDi

1/2

p1/2

& t

0

#Si

#u
(t−u)1/2 du (21)

where Dci=c i
b−c i

s has been introduced for simplicity.
Eq. (21) differs from the solution used in earlier studies
[3–9]. The planar diffusion zone maps the real three-di-
mensional (3D) diffusion field of an independently
growing nucleus into a hypothetical 2D diffusional
field, where only diffusion perpendicular to the interfa-
cial plane occurs. Previous studies [3–9] have related
the current to the planar diffusion zone directly to the
Cottrell equation, i.e. to a uniform diffusional layer
over the whole diffusion zone initiated at t=0. How-
ever, as the mapped diffusion zone grows the time scale
counted from the onset of the diffusion layer growth
will shift, and hence the current to the hypothetical
zone cannot be directly related by the Cottrell equation.
In this study a solution is presented where a uniform
diffusion layer inside the planar diffusion zone is not
required. Eq. (21) is an exact solution of the current to
the planar diffusion zone in the 2D case defined above,
where no radial diffusion can occur, as the area grows.
ai is solved from Eqs. (13), (18), (19) and (21) to yield:

ai=Di

� ni

nM

pVDci

�1/2

(22)

Thus the parameter a is independent of time (Eq.
(20)). To account for the overlap of the diffusional
fields the total area fraction covered by the planar
diffusion zones is calculated. Avrami [12] showed that
the area fraction covered by randomly distributed cir-
cular areas can be related to the total area fraction
covered by these neglecting overlap through:
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ui=1−exp(−uex,i) (23)

where ui and uex,i denote the area fractions covered
when accounting for and neglecting overlap of species i,
respectively. uex,i is given by the sum of the areas of the
planar diffusion zones corresponding to all particles
N(t) at time t :

uex,i=pai

& t

0

#N
#u

(t−u)du (24)

where N is the number density of nuclei as a function of
time. uex,i does not have the conventional meaning of
an area fraction since its value is comprised between
zero and infinity.

2.3. Nucleation rate law

A nucleation rate law is needed to calculate uex,i. In
contrast to the metal � solution interface, the liq-
uid � liquid interface is assumed to be free from perma-
nent nucleation sites. On a solid substrate the Gibbs
energy of formation of nuclei is lower on these sites. An
exponential nucleation rate law has commonly been
used to describe the formation of new nuclei at solid
electrodes [6]:

#N
#t

=N0A exp(−At) (25)

where N0 is the maximum number of nuclei that can be
formed on the surface and A is the nucleation rate
constant. The extended area of species i is obtained
from Eqs. (24) and (25) as [6]:

uex,i=paiN0

At+exp(−At)−1
A

(26)

The physical meaning of N0 is different from that for
a metal electrode since a finite number of nucleation
sites is not necessarily present. This will be discussed
later on. The rate of nucleation should be dependent on
the supersaturation, i.e. the applied potential and the
surface concentrations of the reactants at the liq-
uid � liquid interface. In what follows, the nucleation
model considered assumes that the rate of formation of
new nuclei is constant at the surface fraction not cov-
ered by a planar diffusion zone and zero if it is covered.
This corresponds to an exclusion-zone model in which
the growing diffusional fields inhibits and eliminates
nucleation in the exclusion region. The justification for
this assumption is the strong dependence of nucleation
rate on supersaturation. In this case, the growing diffu-
sional hemispherical fronts will quench any further
nucleation. Exclusion zones and local inhibition of
nucleation rates have been treated both theoretically
and have been shown in electrochemical nucleation
experiments [13–15]. Serruya et al. [16] have shown
that the exclusion zones are effectively equal to the

planar diffusion zones. From Eq. (23) the nucleation
rate law is given by:

#N
#t

=A(1−ui)=A exp(−uex,i) (27)

where A is the nucleation rate constant and uex,i is the
extended coverage of species i. This rate law is depen-
dent on the species considered. The conditions for
which it is applicable are discussed later. From Eq. (24)
with Eq. (27):

uex,i=paiA
& t

0

(t−u) exp(−uex,i)du (28)

Since (t−u) exp(−uex,i) and its derivative with respect
to t are continuous functions Eq. (28) can be reduced to
a differential equation [17], i.e.:

#2uex,i

#t2 =paiA exp(−uex,i) (29)

with the following initial and boundary conditions:

uex,i(0)=0 (30)

and

#uex,i

#t
)
t=0

=0 (31)

Differential (29) is solved by separation of variables
(Appendix B), and the area fraction neglecting overlap
is given by:

uex,i(t)=2 ln
�exp(− (2paiA)1/2t)+1

2
�

+ (2paiA)1/2t

(32)

2.4. Final equations

The current density to the interface is obtained by
calculating the linear flux to the area fraction covered
by the planar diffusion zones accounting for their
growth. Thus, similar to Eq. (21) (Appendix A), the
current density is given by:

j(t)=
niFDciDi

1/2

p1/2

& t

0

#ui

#u
(t−u)1/2 du (33)

Eq. (33) can be integrated for the two nucleation rate
cases previously discussed. For the exponential rate
law:

#ui

#u
=paiN0(exp(−At)−1)

exp
�paiN0(At−1+exp(−At))

A
�

(34)

and for the exclusion-progressive rate law (Appendix
B):
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#ui

#u
=

4
(2paiA)1/2 exp(−(2paiA)1/2u)(1−exp(− (2paiA)1/2u))

(1+exp(− (2paiA)1/2u))3

(35)

The parameter ai is given by Eq. (22). The current
density (Eq. (33)) has to be numerically evaluated for
both rate laws (Eqs. (34) and (35)). These equations are
also valid for nucleation at solid electrodes if a (Eq.
(22)) is multiplied by 23/2 to account for the difference
in the symmetry of the growing phase.

2.5. The constant surface concentration prerequisite

This section is intended to show that overlap can lead
to variable surface concentrations at a particle growing
under potentiostatic conditions and to deduce the con-
ditions in which the derived model applies. Flux conti-
nuity requires that the current given by Eq. (33) for two
different species are equal, e.g. for M and Red:

nRedFDcRedDRed
1/2

p1/2

& t

0

#uRed

#u
(t−u)1/2 du

=
nMFDcMDM

1/2

p1/2

& t

0

#uM

#u
(t−u)1/2 du (36)

where uRed and uM denote the coverage of the interface
by the respective species. From the Avrami theorem
(23), the expressions for uex (Eq. (24)) and Eq. (36)
yield:

nRedFDcRedDRed
1/2 p1/2aRed

& t
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N(u)exp
�

−paRed

& u
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#N
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(u−w)dw

�
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nMFDcMDM
1/2p1/2aM
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0

N(u)exp
�

−paM

& u

0

#N

#w
(u−w)dw

�
(t−u)1/2

du

(37)

It follows from the expression for ai (Eq. (22)) that
the value of the constant in front of the integral is
independent of the species considered. The definition of
ai includes the assumption that the surface concentra-
tions are constant. The only difference between the left
and right hand sides of Eq. (37) is in the exponential

terms in the parameters ai, and hence these must have
the same value independently of the species considered.
Thus, equating Eq. (22) for M and Red and simplifying
gives:

nRedDRed
1/2 DcRed=nMDM

1/2DcM (38)

The surface concentrations of the planar diffusion
zone are, by definition, equal to the surface concentra-
tions of the particle. Thus, the surface concentrations
can be solved from Eq. (12). Substituting the expres-
sions for Dci into Eq. (38) and simplifying gives:

DRed=DM (39)

This implies that the surface concentrations are con-
stants only if the diffusion coefficients are equal. Quali-
tatively, this is explained by the different degrees of
overlap resulting from different diffusion coefficients.
Different degrees of overlap result in different mass
transport efficiencies, and hence the surface concentra-
tions must vary to maintain flux continuity. However, a
quasi-constant surface concentration can be achieved if
a large potential step is applied so that the surface
concentration of one species approaches zero and
the surface concentrations of the other species are
large. This condition occurs, for example, when
nRedDRedcRed

b �nMDMcM
b . In this case, changes in the

absolute values of the surface concentrations required
for flux continuity will occur in the species with high
surface concentrations, and hence the absolute value of
the surface concentration of the limiting species can be
considered as constant. The supersaturation will also be
determined by this limiting species, and hence the rate
law derived for the liquid � liquid interface is also appli-
cable. Stewart et al. [18] have discussed similar situa-
tions in connection to cyclic voltammetry and electron
transfer at liquid � liquid interfaces. It follows from this
condition that Dci=c i

b in Eq. (33).

3. Experimental

A typical four-electrode cell configuration for the
liquid � liquid interface was used [19]. The potential was
controlled and recorded using an Autolab PGStat 100
(Ecochemie, Netherlands) potentiostat controlled by a
PC. The cell configuration shown in Cell 1 was used:

(Cell 1)
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Fig. 3. Calculated transients for the exclusion-progressive rate law.
The organic redox species was chosen as the limiting species. The
following values were used: nM=2, nRed=1, DRed=0.83×10−5 cm2

s−1, V( =9.33 cm3 mol−1 and cRed
b =0.5×10−6 mM. The transients

were plotted for the following nucleation rates: A=3.28×106 (—),
2.00×106 (···), 1.22×106 (---), 0.75×106 (-··-··-) and 0.46×106

cm−2 s−1 (— — —). The Cottrell transient (-·-·-) is also presented
for the same parameters.

was cleaned after each potential step measurement to
ensure a clean interface.

4. Results and discussion

4.1. Model predictions

The transients predicted for the exclusion-progressive
rate law calculated from Eqs. (33) and (35), for a large
potential step where Dci=cRed

b , are plotted for several
nucleation rate constants in Fig. 3. The plots are for a
diffusion coefficient of 0.83×10−5 cm2 s−1 for butyl-
ferrocene and a molar volume of 9.33 cm3 mol−1 [22]
for palladium. At short times the approximation u=
1−exp(−uex):uex can be used and consequently,
from the definition of uex it follows that the current at
short times corresponds to individually growing nuclei.
At long times the expected Cottrell behaviour, corre-
sponding to linear diffusion resulting from the overlap
of the spherical diffusional fields is observed.

Fig. 4 compares the transients and deposition charges
for the instantaneous nucleation case for the Scharifker
model and for the model developed here. These tran-
sients were calculated for a solid electrode from Eq.
(12) in Gunawardena et al. [3] and Eqs. (23), (24) and
(33) by setting N(t)=H(t)N0 where H(t) is the unit
step function. The latter simplifies Eq. (33) to:

j(t)=2nFci
b(aiDiN0)1/2F((paiN0t)1/2) (40)

where F denotes Dawson’s integral. The parameter a

(Eq. (22)) was corrected for the different growth sym-
metries by multiplying with 23/2. The transient for the
model derived in this study crosses the Cottrell tran-
sient. The deposition charges are also shown in this Fig.
4. The transient corresponding to the Scharifker model
does not cross the Cottrell transient and therefore the
deposition charge is systematically smaller than that
derived from the Cottrell equation. This error stems
from the quasi-stationary assumption that the electrode
coverage and the area of the planar diffusion zones are
constant when the current is solved (see text referring to
Eq. (21) and Appendix A). The result of this assump-
tion is that the current is underestimated since the
current density to any point in the area covered is
related to t=0 instead of the actual time at which it
was covered. As expected, the deposition charge of the
present model reaches that of the Cottrell transient at
long times.

There has been some controversy regarding the appli-
cability of the concept of planar diffusion zones for the
description of current transients for nucleation with 3D
diffusion controlled growth [6]. The approximation of
planar diffusion fields should be verified not only by
measurements but also using computer simulations.
Unfortunately, no such rigorous studies, with random

Fig. 4. Calculated transients and the corresponding deposition
charges for instantaneous nucleation. The results refer to: (—) the
model derived in this study, Eq. (40), (···) the model by Gunawardena
et al. [3], (---) the Cottrell transient.

where s denotes the interface studied. A positive cur-
rent is defined as transfer of a positive charge from the
aqueous phase to the organic phase. 1,2-Dichloro-
ethane (1,2-DCE) (HPLC grade Rathburn Chemicals,
Scotland), Li2SO4, LiCl and (NH4)2PdCl4 (Aldrich,
USA) were used without further purification. Butylfer-
rocene (BuFc) (Aldrich, USA) was the electron donor
in the organic phase. MQ-treated water was used
throughout. Tetrabutylammoniumtetrakis(pentafluoro-
phenyl)borate (TBATPBF20) was prepared by metathe-
sis of tetrabutylammoniumchloride (TBACl) and lithi-
umtetrakis(pentafluorophenyl)borate (LiTPBF20) in 2:1
mixtures of methanol and water, followed by recrys-
tallisation in acetone [20]. The applied potentials were
transformed to the Galvani scale as described elsewhere
using Do

wfTBA+
0 = −225 mV [21]. The system was stud-

ied by cyclic voltammetry and potential step techniques.
For the potential step experiments the potential was
initially set at Do

wf=49 mV and stepped to the range
from 249 to 299 mV with a 12.5 mV interval. The cell
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distribution of nuclei and non-instantaneous nucle-
ation, have been presented. Nagy and Denuault [23]
performed a series of random walk simulations for an
instantaneous nucleation process at an ordered square
lattice. Although the latter is experimentally very un-
likely, it gives at least the qualitative features also
applicable to a random distribution of nuclei. For
instance, the current transient was found to cross that
of the corresponding Cottrell transient and at long
times asymptotically approach the Cottrell transient.
The model presented here also predicts these features.

4.2. Experimental results

Finding a suitable experimental system for electro-
chemical studies of nucleation processes at liq-
uid � liquid interfaces is difficult due to the sensitivity of
nucleation phenomena to the presence of adventitious
nucleation sites, e.g. resulting from spontaneous deposi-
tion of particles at the interface. This can result from
coupling between ion and electron transfer. The system

used in this study also leads to a spontaneous deposi-
tion. However, this was very slow and the reproducibil-
ity of the transients observed indicates that the effect on
the results is small. The spontaneous reaction rate was
found to decrease with increasing pH. Slow precipita-
tion of palladium oxide was observed at pH\7. The
pH of the solution was buffered at 5.3. The sulfate/
bisulfate buffer does not form complexes with palla-
dium. LiCl was added to the base electrolyte to stabilise
the palladate complex. The spontaneous reduction of
the palladium ion could, however, not be completely
stopped and a black precipitate could be observed after
two days of contacting the two phases at open circuit.
This spontaneous reaction is slow enough not to affect
the observed current transients, provided that the po-
tential step is performed rapidly after the solutions are
brought into contact. However, if the system was al-
lowed to stand for longer than 20 min with the solu-
tions in contact prior to the application of the potential
step, the shape of the transient was significantly af-
fected, shifting the peak position to shorter times and
introducing Cottrell character at the beginning of the
transient due to the presence of particles at the interface
before the potential step.

Fig. 5 shows cyclic voltammograms for the electro-
chemical reduction of PdCl42− at the water � 1,2-DCE
interface. When only the aqueous or organic redox
couple was present, the voltammogram followed the
base line, indicating that the redox couples themselves
are not transferring in the polarisation window. When
both the organic redox species and the aqueous ammo-
nium palladate solutions were present an irreversible
reduction peak was observed, with a Galvani peak
potential of Do

wfp=273 mV. In this case the currents at
the negative end of the scan were slightly larger than
those observed in the absence of Pd(II), due to the
transfer of the butylferrocenium ion formed in the
deposition reaction. Fig. 5 also shows that when the
scan was reversed at a less positive potential, before the
onset of linear diffusion, a typical nucleation loop was
observed with higher currents on the reverse sweep than
on the forward sweep.

Fig. 6 shows the current transient responses to a
potential step experiment. All the measurements were
performed by first applying a potential of 49 mV for 30
s, where no electrochemical deposition occurs and then
stepping to the desired potential. These transients are
characteristic of a typical nucleation and growth pro-
cess. The increase of the current corresponds to a
growing reaction area, whereas the following decrease
is due to the onset of linear diffusion conditions. As
predicted by the theory, the transients reach a maxi-
mum that is larger than the theoretical Cottrell re-
sponse calculated with a diffusion coefficient of
0.83×10−5 cm2 s−1 for butylferrocene. This diffusion
coefficient was obtained from microelectrode measure-
ments. In addition, the theory predicts that the tran-

Fig. 5. Cyclic voltammograms for Cell 1 obtained at a sweep rate of
25 mV s−1. (---) 0.5 mM BuFc (1,2-DCE)+5 mM TBATPBF20

(1,2-DCE) in contact with 100 mM LiCl+100 mM Li2SO4 (H2O).
(—) as before but with the addition of 1.0 mM (NH4)2PdCl4 to the
aqueous phase. (···) represents a voltammetric scan reversed at a
potential less positive than the peak potential featuring a clear
nucleation loop.

Fig. 6. Experimental transients at the following potentials for the
system described in Cell 1: 299 (—), 286.5 (···), 274 (---), 261.5 (-··-··-)
and 249 mV (— — —). The Cottrell transient (-·-·-) was calculated
as in Fig. 3.
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Table 1
Nucleation rate A and N� obtained from the exclusion-progressive
rate law

10−6 A/cm2 s−1Do
wf/mV 10−6 N�/cm2

s−1

299 9.633.28
261.5 2.00 7.52
274 5.881.22

4.590.75261.6
249 3.590.46

very similar to that obtained from the exclusion-progres-
sive rate law. Although N0 is related to a physical
nucleation preferential site, similar parameters as N0 in
Eqs. (25) and (26) can still be defined on the basis of the
exclusion zone model discussed here (Eq. (B15)). The
overall nucleation rate decreases markedly in the same
time range at which the current peak occurs. This
indicates that the physical reason for the decay of the
overall nucleation rate is a decrease of the average
interfacial surface concentrations and hence, the super-
saturation. This is an indication that the liquid � liquid
interface is free from preferential nucleation sites, and in
this sense ideal for nucleation studies.

5. Conclusions

A model for diffusion controlled nucleation at the
liquid � liquid interface, based on the model developed by
Scharifker and co-workers [3–5] has been presented. This
model cannot be applied to all experimental conditions
since the coupled diffusional fields in the two phases lead
to variable surface concentrations. Thus, there is a need
for a more general approach to model diffusion con-
trolled nucleation processes. The nucleation process at
the liquid � liquid interface has been shown to be different
from that at solid electrodes, as the results indicate that
the interface is free from preferential nucleation sites. In
addition, the nucleation rate was found to depend
exponentially on the applied voltage.
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Appendix A. Derivation of current by linear diffusion
to a growing area

The differential equation system for linear flux to a
growing area can be written as:

D
#2c((xs,ys),z,t)

#z2 =
#c((xs,ys),z,t)

#t
(A1)

c((xs,ys),z,t=0)=cb (A2)

limz��c((xs,ys),z,t)=cb (A3)

c((xs,ys),z=0,t)=cb−DcH(t− t0(xs,ys)) (A4)

where (xs,ys) is a coordinate in the interfacial plane, z
is the distance from this plane and H is the Heaviside
unit step function. This differential equation system

Fig. 7. Comparison of theoretical transients and nuclear number
densities obtained for the different rate laws; (—) exclusion-progres-
sive, (···) exponential rate law and (---) the experimental transient
obtained at 299 mV.

sient of a step performed to a less positive potential
crosses that of a step performed to a more positive
potential after the peak. This is also observed in the
experimental results. However, the currents recorded at
the least positive potentials were slightly smaller than
expected. This is likely to be due to increased surface
concentration of the limiting reactant at less positive
potentials.

The transient obtained with the largest potential step
was fitted to the exclusion-progressive nucleation rate
law by a method of trial and error. The rest of the
transients were well fitted by applying an exponential
relation between the applied potential and the nucleation
rate. The activation energy predicted from classical
nucleation theory [24], which equates the Gibbs energy
of the critical nucleus to the activation energy for
nucleation predicts a linear relation between the loga-
rithm of the nucleation rate and the inverse square of the
applied potential. However, atomistic theory predicts a
linear relationship between the logarithm of the nucle-
ation rate and the applied potential [25]. The obtained
rate constants and number of nuclei (Eq. (B15)) are given
in Table 1.

The experimental transients can also be successfully
fitted to the theory if the exponential rate law is used
instead of the exclusion-progressive rate law. As shown
in Fig. 7 the number of nuclei as a function of time is
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arises from the definition of the planar diffusion zones,
where the 3D diffusion problem is reduced to two
dimensions. When a coordinate is covered by a planar
diffusion zone its surface concentration changes by Dc,
from cb to cs. The function t0(xs,ys) describes the time
of onset of linear diffusion as a function of coordinate
(xs,ys) on the interfacial plane. Hence, t− t0(xs,ys) is
the time elapsed from the onset of the linear flux to this
coordinate. The surface concentration is schematically
presented in Fig. 8 for an arbitrary area.

Application of conditions (A2) and (A3) to the
Laplace transformation of Eq. (A1) gives:

C( ((xs,ys),z,s)=
cb

s
+F( ((xs,ys),s) exp

�
−
� s

D
�1/2

z
�

(A5)

where F( ((xs,ys),s) is an integration constant with re-
spect to z and is solved from boundary condition (A4):

C( ((xs,ys),0,s)=
cb

s
−Dc

exp(−st0(xs,ys))
s

(A6)

The concentration profile is obtained from Eqs. (A5)
and (A6) as:

C( ((xs,ys),z,s)

=
cb

s
−

Dc
s

exp(−st0(xs,ys)) exp
�

−
� s

D
�1/2

z
�

(A7)

The current density is obtained from the gradient at
z=0:

j((xs,ys),t)=nFD1/2Dc
exp(−st0(xs,ys))

s1/2 (A8)

Inverse transformation of Eq. (A8) gives the current
density to the coordinate (xs,ys) as a function of time:

j((xs,ys),t)=
nFD1/2Dc

p1/2

H(t− t0(xs,ys))
(t− t0(xs,ys))1/2 (A9)

The total current to the growing area is given by
integration of the current density over the surface S :

Ip(t)=
&

j((xs,ys),t)dS (A10)

Combining Eq. (A9) with (A10) and defining u=
t0(xs,ys) gives:

Ip(t)=
nFD1/2Dc

p1/2

& t

0

#S
#u

du

(t−u)1/2 (A11)

where the fact that the current density is zero when
tB t0(xs,ys) has been used to obtain the upper integra-
tion limit.

Appendix B. Derivation of exclusion-progressive rate
law

The exclusion-progressive rate law is derived from
Eq. (29):

#2uex

#t2 =paA exp(−uex) (B1)

Let us define:

p=
#uex

#t
(B2)

Application of the chain rule gives the derivative of p :

#p
#t

=
#p
#uex

#uex

#t
=p

#p
#uex

(B3)

Substitution of Eq. (B3) into Eq. (B1) gives:

p
#p
#uex

=paA exp(−uex) (B4)

Solving for p by separation of variables and integration
gives:

1/2p2+C1= −paA exp(−uex) (B5)

from which p is solved:

p=
#uex

#t
= (−2paA exp(−uex)−2C1)1/2 (B6)

Separation of variables of Eq. (B6) gives:

t+C2=
& duex

(−2paA exp(−uex)−2C1)1/2 (B7)

This integral can be written on the following form by
defining x=exp(−uex):

Fig. 8. Schematic representation of growing planar diffusion zones at
two different times; (···) at t0 and (—) at t2, where t2\ t1. The
concentration is defined as cs inside and cb outside the planar
diffusion zones. With time the diffusion zones overlap and the
covered area acquires arbitrary shape. This behaviour of the interfa-
cial concentration is described by Eq. (A4). The schematic diffusion
zones are distributed in time and space according to the exclusion-
progressive rate law.
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F=
& dx

(a+bx)1/2x
(B8)

to which the solution is given by Weast [22]. Hence, the
solution to Eq. (B8) is:

uex(t)= ln
:
−

paA

C1tan
�(2C1)1/2t+ (2C1)1/2C2

2
�2

+C1

;
(B9)

Initial conditions (30) and (31) give the integration
constants as C1= −paA and C2=0:

uex(t)= ln
: paA

paAtan
�(−2paA)1/2t

2
�2

+paA

;
(B10)

Converting the tangent in Eq. (B10) to exponential
form and simplifying yields:

uex(t)=2 ln
�exp(− (2paA)1/2t)+1

2
�

+ (2paA)1/2t

(B11)

From Eqs. (B11) and (27) the actual coverage is ob-
tained as:

u(t)

=1−exp
�

−2 ln
�exp(− (2paA)1/2t)+1

2
�

− (2paA)1/2t
�

(B12)

Derivation of Eq. (B12) with respect to t :

(u

(t

=4
(2paA)1/2 exp(− (2paA)1/2t)(1−exp(− (2paA)1/2t))

(1+exp(− (2paA)1/2t))3

(B13)

The number of nuclei as a function of time is obtained
from Eqs. (31) and (B12) as:

N(t)=2
(2A)1/2

(pa)1/2(exp(− (2paA)1/2t)+1)
−
�2A

pa

�1/2

(B14)

This rate law gives a finite number of nuclei as t��:

N�=
�2A

pa

�1/2

(B15)
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