Reprinted from Proceedings of the First European Conference on the Practical Applications of Lisp. Cambridge, UK, pages 183-191.

Reprinted with the permission of the author.

RFT Design System - Experiences in the Development and
Deployment of a Lisp Application

Jukka K. Nurminen
nurminen@rc.nokia.fi
Department of Knowledge Technology
Nokia Research Center
P.O. Box 156, SF-02101 Espoo, Finland

Abstract

In this paper we discuss the use of Lisp in an intel-
ligent design application. The RFT system has been
developed to support the design of analog electronic
devices. It facilitates the use of complicated numer-
ical design tools, such as simulators, and provides a
framework which can be completed with knowledge
modules to assist the user in certain design tasks.

- In addition to a brief presentation of the RFT
system, we discuss some practical issues of Lisp
software development including portability consider-
ations, graphical user interfacing and object-oriented
programming. We also present some comments from
the users of the RFT system to estimate the suitability
of a Lisp application for real use.

1 Introduction

Lisp is often used as a prototyping language and un-
til recently few Lisp programs have been in real use.
Lack of standardization and extensive hardware re-
quirements have been some of the main reasons that
have prohibited a wider use of Lisp. Now this sit-
uation has changed. Standardization, dropping hard-
ware prices, and advances in compiler technology make
it possible to seriously consider Lisp as an implemen-
tation language of software systems.

In this paper we discuss some of our experiences of
using Lisp to develop software for industrial use. The
discussion is concentrated mainly on issues that we
have found critical or problematic in a project that has
developed a knowledge-based design framework calied
RFT [6, 8. Since RFT is in use in several design
groups inside the Nokia Corporation we also discuss
some points that the users have considered important.

The rest of the paper is divided into three major
sections. Section 2 briefly presents the basic ideas and

183

the operation of the RFT system. Section 3 concen-
trates on practical experiences in the development of
the system. We discuss some of the reasons for using
Lisp in the implementation of the system, point out
some of the benefits and problems of this decision,
and present some of our solutions. Finally, in section
4 we summarize the discussion and present some con-
clusions. ’

2 RFT design system

2.1 Motivation

Analog electronic-design requires extensive use of nu-
merical tools. Simulators and other analysis and de-
sign tools are heavily used during the design cycle.
However, these tools are often difficult to use.

The user has to define the problem in a special way
for each tool, which requires a lot of routine work as
well as expertise. Moreover, the conceptual level of
the interfaces is often wrong. The design engineer can
most efficiently work with familiar concepts, such as
design diagrams. However, when he analyzes the de-
sign he has to formulate the same problem with other
concepts for the design tool. For instance, when using
a block level simulator he has to express his ideas using
simulator blocks. Some other tool may require him to
formulate the problem using mathematical equations.
This kind of conversions cause extra burden to the de-
signer and distract his concentration from the actual
design problem.

Difficulties in tool usage also make it hard to use
a number of tools in a co-operative way. Since a lot
of details has to be taken care of before a tool can be
started, it is difficult for a tool to state a problem and
invoke some other tool to solve it.

2.2 Intelligent use of design tools

One way to help with the above problems, is to include
into the design environment expertise that takes care
of details of tool usage. This is one of the basic ideas
of RFT. Expert users define knowledge of the design
process and of the design tools, and enter this knowl-
edge into the system.

RFT uses this knowledge in model and prob-
lem formulation and in conversions between differ-
ent representations. Combined with a graphical user-
interface this allows the user to work with familiar
concepts. The mathematical details of the design tools
and the necessary conversions are hidden from the user
allowing him or her to concentrate on important de-
sign decisions.

The necessary conversions are not simple. For ins-
tance, block-level simulators usually operate with ideal
components. Since the real components have many
non-ideal features, they have to be modeled using a
number of ideal simulator blocks. As an example, an
amplifier can be modeled using an ideal amplifier block
and a white noise random generator. Figure 1 shows a
simple functional level design diagram and some sim-
ulation models that can be used to model it. Which of
the models is selected, depends both on the topology
of the design diagram and on the parameter values of
the functional blocks. This kind of conversion knowl-
edge is used when a suitable simulation model is gen-
erated from the user defined design diagram. For some
components the conversions depend also on the goals
of the simulation. This is used to make the simulations
more efficient by removing irrelevant blocks. Thus the
conversion not only facilitates the use of the tools but
also improves their performance.

2.3 Higher level operations

Besides increasing the user-friendliness the above fea-
tures facilitate the development of another layer of au-
tomation on top of the basic tools. The basic tools
give the user feedback of the effect of design decisions
but they do not directly help in finding good design
solutions. Operations for giving design suggestions
and for searching for good designs are needed to in-
crease the automation level of the system. The imple-
mentation of this kind of features is fairly easy since
the user does not have to worry about the details of the
actual analysis. Automatic conversions and knowledge
of the use of the design tools take care of these.

A major class of high level operations are related
to design synthesis. The operations include both opti-
mization and rule-based design. One of the main goals

184

in the implementation of these techniques has been to
create general tools that can be used for a number of
different tasks in the design process.

Conventional optimization algorithms are usually
effective only in some specific problem types and most
of the algorithms require a mathematically rigorous
problem formulation. To avoid these limitations we
have used the simulated annealing algorithm [9], to
perform the optimization tasks. It is more flexible
and robust than conventional optimization methods
mainly because it is not dependent on the form of
the objective or constraint functions. Its drawback is
that the optimality of the results can only be guaran-
teed probabilistically. For reliable results, it requires
a large number of iteration steps and, respectively,
a large number of function evaluations. This makes
it impossible to use the algorithm when the compu-
tations are slow, e.g. with simulations. However,
in RFT many analysis are performed with problem-
specific, fast routines which allows the successful use
of the algorithm.

Although the above optimization concept is widely
applicable, it cannot be used for problems which
defy mathematical formulation or which require an
impractically long solution time. Design experience
and heuristics are therefore needed to supplement the
optimization features. For smooth operation it is
important that the rulebases representing this knowl-
edge are closely integrated with other parts of the sys-
tem, especially with the user interface and with the
analysis tools. To be able to do this, we transform the
if-then rules to Lisp functions. A special interaction
language is used to define how these rule-functions
behave when they need access to values that cannot be
deduced in the rulebases. For instance, missing values
can be asked from the user, derived by some analysis
or read from the design diagram.

2.4 RFT-design system

Figure 2 shows the main parts of RFT. Because the
application area of RFT is radio frequency design, the
analysis tools are intended for this field. However, by
changing the toolsets and design knowledge it would
be possible to apply RFT to the support of other de-
sign tasks as well.

The basic analysis tools, Aplac simulator [4],
TOPSIM simulator [11], cascade analysis and transfer
function analysis tools are all connected to the object-
oriented design representation through a layer of tool
knowledge. The purpose of the tool knowledge is to
take care of the details of tool usage.

Lisp Screen
Current Directory: RFT/

RFT/untitled.f KMTSeEYS

[2]]

RFT/measured.t .

RFT/nofey.t

EAIN v]4—~—>‘npsu4 HLWULT
)[;ouuu] — -

SE— NBYN GATN
anN

for}-—fon |

Figure 1: A screendump showing a functional level design diagram with some possible simulation models

Optimi- Design
zation Synthesis
Transfer
N Cascade i
Topsim 3 function Aplac
13 equations analysis

(Interfac% Interfac% (Interfac% (Interfacg

Design |
database N

14

Figure 2: The architecture of RFT

185

On top of the basic analysis tools are higher level
operations, rulebased design synthesis and optimiza-
tion. These operate in co-operation with one or sev-
eral basic tools. They may also refer to the design
diagrams that are being studied.

The graphical user interface allows users to edit
design diagrams and activate different tools. It also
takes care of the visualization of the results. Figure 3
shows a typical example of the use of RFT.

2.5 Current status of RFT

Currently RFT is in use in several product develop-
ment groups in Nokia Corporation. The computer
assisted analysis tools are the most frequently used
components of the system.

Design optimization is currently used actively only
in the selection of system level design parameters. In
this task it has given results that are comparable to
the designs developed by experienced engineers.

The rulebased design synthesis part is so far fairly
simple. More design expertise needs to be stored into
the system to make this feature really useful. We are
currently developing a design knowledge acquisition
tool to help in this task.

3 Development and deployment

issues

In this section we will discuss some issues that have
been significant in the development of RFT. With
some 40,000 lines of Lisp code, RFT is a fairly large
system. Graphical interaction with the user and co-
operation with external programs are important parts
of the system. In the following discussion we will es-
pecially emphasize these issues.

RFT has been implemented with Lucid Common
Lisp. During the project different Lisp versions have
been used; initially version 2.0, current release is runn-
ing both on version 2.1 and on version 3.0, and the
next major release of RFT is intended to be running
on version 4.0. The different platforms in use are Sun,
Apollo, and HP workstations.

3.1 Some language selection criteria

3.1.1 Fast prototyping

At the beginning of the project, the goals and ob-
jectives of the RFT system were not very clear. The
would-be users had a fairly vague idea of the possibil-
ities of computers and of knowledge technology. The

186

developers, on the other hand, were not very famil-
iar with the needs of design engineers. In order to
be able to better match the ideas of the different par-
ties, prototyping was considered necessary to provide
a concrete basis for further development.

Lisp is often claimed to be a good language for
fast prototyping [2]. The language constructs and ef-
ficient programming environments support fast pro-
gram development. This makes prototyping more fea-
sible by allowing large amounts of discarded code to
be rewritten quickly.

Another feature which further supports prototyp-
ing is a library of reusable Lisp routines that has been
developed in our group. This facilitates especially the
user interface development. The library allows differ-
ent projects to share code and thus reduces the often
quite time-consuming user-interface development ef-
fort.

3.1.2 Symbol manipulation

RFT was intended to provide a framework which the
users can tailor to their own needs. This is done by
defining knowledge both of the design process and of
the design tools. To be able to efficiently process these
definitions flexible symbol manipulation features are
needed.

Another important use of symbol manipulation
is transformations between different representations
used in the integrated design tools. For instance,
converting a mathematical formula to a representation
required by FORTRAN compiler.

3.1.3 Personal preferences and experience

The attitudes of the persons involved were in favor of
Lisp. All persons had earlier experience on using Lisp
either in a Lisp machine environment or on a personal
computer. In spite of the different platforms, all pre-
ferred working with Lisp compared to other language
alternatives such as C.

3.1.4 Portability

An important issue in developing software for indus-
trial use is that different users want to use the appli-
cation in different machines. Its difficult to justify an
investment to a new computer only to be able to run
some new software. Therefore an important practical
requirement is that the software should be portable.
Although Common Lisp has been standardized,
important language components, such as user inter-
faces and object-oriented extensions, are not standard-

Lisp Screen

Current Directory: RFT/

Parameters for response function analysis

Transfer function: FREQUENCY
Loop type: CLOSED-LOOP

6. B0E+7

4.806+7

2.08E+7
RFT/synth.f NMTS8EMS .

2. 00E+@

Impulse response RFT/synth.f NMTSBBMS

d8

o —{%] .
ns
Gain/Phase RFT/synth.f NTI0EMS

35.80

Edit attributes of element LOOP_FILTER

ABORY 0o IT

3868

MODEL
TRANSFORMATION_FUNCTION _(1.8+R2¢C1+S)/(R12C1*S)

Component level |mp|ment;;£on: none —_—

1.80 2.88 3.69 4.e8 5.00

deg

-38.088

-68.080

Figure 3: RFT screen during a typical working session

ized or the standards are so recent that few Lisp imple-
mentations support them yet. For this reason we have
had to pay special attention to the portability of our
software. Techniques for achieving this are discussed
in greater detail in the following sections.

3.2 Object-oriented programming

The RFT system is based on the object-oriented
paradigm. The main reasons for this are that

o the design objects of hardware design (e.g. mo-
dules, components, and connections) can be nat-
urally modeled as objects in the programming
language

¢ object-oriented programming supports the devel-
opment and maintenance of large software sys-
tems.

When the RFT development was started a ma-
jor problem was that the object systems were not
standardized. = This is going to be solved with
the emerging Common Lisp Object System (CLOS)
standard [5]. Since the standard was not available
when the development of RFT started, an in-house
object system called NOS (Nokia Object System) [7]
was used.

187

NOS was based on several key ideas:

o It was developed in standardized Common Lisp,
which makes it completely portable.

o The syntax of NOS was selected to be as near as
possible to the CLOS standard proposal available
at that time.

e NOS was intended to be very simple containing
only the most important features of object sys-
tems, such as generic function calls and simple
inheritance.

Although the implementation of NOS is fairly
simple, it has worked reasonably well. The initial idea
was to use NOS as an intermediate step before mov-
ing to CLOS. However, because of the positive expe-
riences with NOS, this has to be reconsidered when
CLOS implementations become available.

The main problem of NOS is that it does not sup-
port dynamic inheritance. Therefore modifications to
the class hierarchy are tedious. The addition of a new
slot or method to a class requires that all its subclasses
have to be re-evaluated or re-compiled. In a large
class hierarchy this can take several hours of time.
This problem does not prohibit the use of NOS. How-
ever, it makes it difficult to follow good ob ject-oriented

programming practice. Programmers try to avoid the
extensive re-compilations by minimizing modifications
in any super classes. This often results in solutions
that are both clumsy and unnatural.

Another problem, which is of historical origin, is
that the number of separate classes is too small. Be-
cause the class definitions required a lot of memory
space, the object system in HP that was used in the
early phases of RFT development could handle only a
very limited number of classes. To reduce the number
of separate classes we used parameterized abstract
classes to represent sets of different object types. Al-
though this problem has been solved in NOS, some of
the older parts of RFT are not very clearly structured
because they are written in a partly object-oriented
and partly functional programming style.

The usual problem with object-oriented systems
is disk storage of objects. In RFT the relevant data
of the object instances is written into normal oper-
ating system files in an application specific way. This
solution is not very good for maintenance since the
addition of a new slot to a class requires also mod-
ifications to the storage routines. Additionally, this
storage system is not very suitable to data transfer
between different applications. Our earlier solution to
store the objects in a relational database (Oracle) was
better in this respect, but it turned out to be too slow
to be acceptable to the users.

3.3 User interface

Graphical user interface is an essential component of
an interactive design environment. Its importance is
even emphasized in hardware design because many
design engineers are used to working with commer-
cial schema editors which provide sophisticated user-
interface services.

In the development of RFT the selection of user in-
terface software was similar to the selection of the ob-
ject system. There was an emerging standard, X Win-
dows, but when the project was started no completely
standardized version of X Windows toolkits existed,
and a commercially available Lisp interface to X Win-
dows was missing.

Therefore we abandoned X Windows and imple-
mented the user interface using the Windows Tool Kit
of Lucid Lisp. The benefits of this solution are that

o the Windows Tool Kit is available in all machines
that are supported by Lucid. This is an impor-
tant advantage since the same RFT source code
can be used in Apollo, HP, and Sun workstations.

188

o the Windows Tool Kit is intended for Lisp use
and therefore provides a natural interface to Lisp
code.

Some of the most cbvious disadvantages of our
solution are

e Lucid Windows Tool Kit uses a machine depen-
dent window system for the actual graphic op-
erations. In Apollo and Sun this concept works
well, but in HP where Lucid Windows Tool Kit
has been build on top of X Windows the speed
efficiency is bad. This is especially problematic
in tasks where constant visual feedback to the
user is needed, such as in positioning a compo-
nent. The likely reason for this problem is that
two large processes, Lisp and X Windows, are
competing for the available memory space which
increases the virtual memory load.

¢ X Windows provides a much larger variety of
services than Lucid Windows Tool Kit. How-
ever, these more sophisticated features are sel-
dom needed.

To further support the user interface development
we have developed on top of the Windows Tool Kit
an object-oriented, higher level window system called
AIGT [1] (Application Interface Generation Tools). In
addition to simple window classes, e.g. for messages,
menus, and forms, AIGT consists of several classes
that can perform fairly sophisticated operations. For
instance, a block-editor can be used to draw block-
diagrams, a grapher to visualize and modify graph
and tree structures, and a coordinate-window to draw
curves. This kind of general classes that can be in-
herited to the application classes have increased code
reusability in different application projects to a great
extent.

3.4 Some development problems

3.4.1 Lisp versions and portability

In general, the above concept of using Lucid Lisp,
Lucid Windows Tool Kit and NOS object system
has worked well. In theory all software would be
completely portable between the different platforms
and the interface should look exactly the same in each
installation.

In practice, however, there are small differences
(e.g. in external function interface and in path-
name handling) between different machines running
the same Lisp version. The differences are very small

so that there is only about 20 - 30 lines of code (of
the overall 40,000) that has to be changed. However,
although the number of differences is very small, notic-
ing and correcting them has sometimes required a lot
of work.

Most of the differences between successive Lisp
versions are documented and are thus easy to find.
Modifications in, e.g. process handling between ver-
sions 2 and 3 of Lucid Lisp, have forced us to modify
some parts of our code. Modifications are made more
complicated by the fact that different vendors have
very different distribution schedules. This means that
we have to keep the software compatible not only with
the different machines but with the different Lisp ver-
sions as well.

3.4.2 Customer service

Like all software new Lisp versions have bugs and un-
expected features. Good customer service is impor-
tant to assist with this kind of problems.

Different vendors have different approaches to cus-
tomer service. Sun has a centralized facility for bug
reports, an electronic mailbox where problems can be
directly sent. This kind of a system seems to work
well.

HP and Apollo have a hierarchical support orga-
nization. Problems are first reported to the national
customer support personnel. If they cannot solve the
problems, they forward the problems to the next level
in the organization hierarchy and so on, until some-
one comes up with an answer. In this way getting an
answer can take a long time. Another problem with
this kind of organization is that it can cause misun-
derstandings because the original problem changes its
form when it is forwarded up in the hierarchy.

3.4.3 Program development support tools

The Lisp development environment provides nice fea-
tures for program development. For instance, the in-
cremental compiler and the integrated debugger in-
crease the programming productivity considerably.
However, problems arise when the services provided
by the Lisp environment are not adequate. Since Lisp,
in spite of the operating system and external function
interfaces, is a fairly closed system, the use of Unix
tools for program development support is not easy.
For example, the use of version management tools,
such as RCS [10], requires modifications both to the
way the editor is used to find files and to the way files
are loaded and compiled. A fairly large interface has

189

to be written to be able to take advantage of all the
features of RCS. The same applies to the use of other

Unix-software such as relational databases.

3.5 User acceptance

3.5.1 Cost

Users attitudes have been fairly positive towards the
use of Lisp. The fairly small additional cost of the run-
time Lisp environment has not been a critical factor
so far.

The main cost factor is the hardware that is needed
to use the application. However, in our electron-
ics design application this is not a very big problem.
Most design groups already have workstations that are
needed to run various CAD-programs. To speed up
the simulations, most of the workstations are equipped
with larger amount of memory than the standard con-
figurations. Therefore, all of the design groups that
are currently using RFT were able to start its use
without extra hardware investments.

An additional feature that affects the hardware
cost is, that Lisp requires so much resources that it
is slow for more than one person to use a workstation
at the same time. However, because many CAD-tools
for electronics engineering require some graphical in-
teraction with the user via the system console, engi-
neers are used to this.

3.5.2 Efficiency

Because of the interactive nature of the application,
speed is one of the most important features for user
satisfaction. The most important factor affecting the
speed is the amount of memory. The larger the
memory space the less time is spent on swapping data
to the auxiliary memory. Interestingly, memory re-
quirements in different machines with the same pro-
cessor are not the same; in some machines the per-
formance is acceptably fast with only 6 MBytes of
memory but in other ones 7 MBytes is still not enough
for smooth performance.

Garbage collection, often claimed to be one of the
major problems of Lisp, has not been a real prob-
lem. In a design application the user spends most of
the session time thinking and considering different de-
sign alternatives. Therefore breaks or short time per-
formance drops because of the garbage collection are
not harmful. The main problem is that the machine
should signal the user clearly when garbage collection
is taking place. If this is not done clearly enough,

users try to click the mouse and press different but-
tons in order to make the machine respond. When
garbage collection is completed and the normal oper-
ation continues this kind of buffered input can cause
unexpected operations and accidental damage.

3.5.3 User extensions

Normal use of RFT is completely menu-driven and
the users do not have to know anything about Lisp
to be able to use the system. However, if users want
to change the behavior of the system and tailor it to
different tasks, they have to modify the design knowl-
edge.

Design knowledge definitions are extensions of Lisp
which have been implemented using macros. Although
the structure of the definitions is fairly simple, an el-
ementary knowledge of Lisp would be useful for those
persons who modify them. Problems are especially
likely to arise when the user makes an error in a defini-
tion, and he or she should understand what is wrong
and how it should be fixed.

A minor problem related to this kind of modifi-
cation is that the new or modified knowledge defined
in this way can only be used in the evaluated form.
Compilation is not possible since the run-time Lisp
environment does not include a compiler.

4 Conclusions

In general, Lisp has turned out to be a good language
selection for our application. It has fulfilled the main
objectives fairly well. The reactions of the RFT users
have shown that Lisp applications can be successfully
delivered and used in real design operations.

Most of the problems that we have encountered
can be attributed to two factors: missing standard-
ization of critical parts of Lisp and the still fairly
small size of the user community. The recent CLOS
standard and the eventual user interface standardiza-
tion are, likely to solve most of the portability prob-
lems. Standardization hopefully guarantees that these
features are implemented in an efficient way and in-
tegrated smoothly into Lisp environments. The in-
creasing number of Lisp users is likely to widen the
experience of the support personnel and stimulate the
development of tools to support Lisp program devel-
opment.

190

References

[1] AIGT Application Interface Generation Tools,
Usets guide, Nokia Research Center, Espoo, Fin-
land, July 1989.

[2] Fahlman, S. F., “Common Lisp,” in Traub, J. F.,
Grosz, B., Lampson, B. W., and Nilsson, N. J.
(eds.), Annual Review of Computer Science, Vol
2., Annual Reviews Inc., Palo Alto, California,
1987.

[3] Gross, J., “Two vendors tout CLIM standard,”
Computer Resekker News, July 24, 1989.

[4] Heikkila, P., Valtonen, M., and Pohjonen, H.,
“Automated Dimensioning of MOS Transistors
without Using Topology-Specific Explicit Formu-
las,” Proceedings of the 1989 ISCAS, Portland,
Oregon, May 1989.

Keene, S. E., Object-Oriented Programming
in Common Lisp, A Programmer’s Guide to
CLOS, Addison-Wesley Publishing Company,
USA, 1989.

(5]

[6] Ketonen, T., Lounamaa, P., and Nurminen, J.
K., “An Electronic Design CAD System Combin-
ing Knowledge-Based Techniques with Simulation
and Optimization,” in Proceedings of the Third
International Conference on Applications of Arti-
ficial Intelligence in Engineering, Palo Alto, Cal-

ifornia, August 9-11, 1988.

—_

[7] Maamies, T., “Implementation and Evaluation
of an Object-Oriented Programming System
and an Object-Oriented User-Interface Toolkit
(in Finnish),” Licentiate’s thesis, Laboratory
of Computer Science, Faculty of Information
Technology, Helsinki University of Technology,
1989.

Nurminen, J. K., “Coupling Symbolic and Nu-
meric Computing in Knowledge-Based Systems:
An Application to Electronics Design,” Licen-
tiate’s thesis, Systems Analysis Laboratory, Fac-
ulty of Information Technology, Helsinki Univer-
sity of Technology, 1989.

[8

—_—

Press, W. H., Flannery, B. P., Teukolsky, S. A.,
and Vetterling, W. T., Numerical Recipes - The
Art of Scientific Computing, Cambridge Univer-
sity Press, 1986.

—
L

[10] Tichy, W. F., “RCS - A System for Version Con-
trol,” Software - practice and ezperience, Vol.
15(7), July 1985.

[11] TOPSIM III, Computer Software, Torino Poly-
technico, Italy, 1983.

191

	Copyright: Reprinted from Proceedings of the First European Conference on the Practical Applications of Lisp. Cambridge, UK, pages 183-191.

