© 2001 Elsevier Science. Reprinted with permission from The Journal of Systems and Software 58, No. 3, pages 181-198.

H
; i &%) The Journal of
ﬁ% Systems and

Software

ELSEVIER The Journal of Systems and Software 58 (2001) 181-198

www.elsevier.com/locate/jss

Case study of the evolution of routing algorithms in a
network planning tool
Jyrki Akkanen, Jukka K. Nurminen *

Nokia Research Center, P.O. Box 407, FIN-00045 Nokia Group, Finland
Received 20 June 2000; received in revised form 14 October 2000; accepted 2 December 2000

Abstract

Traffic routing is a key component in a network planning system. This paper concentrates on the routing algorithms and follows
their evolution over multiple releases of a planning tool during a period of six years. The algorithms have grown from the initial
stage of finding shortest paths with Dijkstra’s algorithm to cover more complex routing tasks such as finding protected and un-
protected routes and capacity limited routing. We present the algorithms and in particular emphasize the practical aspects: how
previous algorithms were reused and what were the practical experiences of using the algorithms. A conclusion of the study is that
algorithms should be considered with an engineering attitude. It is not enough to focus on selecting the most sophisticated state-of-
the-art algorithm for a given problem. Evolution capability, potential for reuse, and the development cost over the system lifetime
are equally important aspects. © 2001 Elsevier Science Inc. All rights reserved.

1. Introduction

Developing computer solutions for real-life problems requires a model of the problem and a suitable algorithm to
solve it. An important consideration is the right level of detail and complexity of the model and of the solution
algorithm.

While a lot of research activity has been spent on developing better and better algorithms, for a practitioner the
most sophisticated and efficient algorithm may not always be the best choice. It is possible to solve many important
real-life problems with relatively simple techniques, at least after one is willing to accept suboptimal solutions. In many
cases small implementation effort, reduced risk, reuse of existing work, clarity and simplicity as well as potential to
adapt to new needs are more important aspects than running time or the optimality of the results.

Most modeling and algorithmic studies are static. They present models and algorithms that solve a given problem
but they do not consider what happens when the problem changes. In practice most applications that do not evolve do
not survive. Software, models, and algorithms have to be updated and further developed to meet the changing needs.
Our opinion is that the evolution potential of algorithms has not received enough attention.

The goal of this study is to understand better how algorithms need to evolve within a software systems lifetime and
to share our experience about what properties are important for an algorithm to cope with the evolution. The main
motivation is to highlight that evolution potential is an important attribute for the practical use of an algorithm.

In this paper we will illustrate the potential of a relatively simple, old algorithm by considering Dijkstra’s shortest
path algorithm (Dijkstra, 1959) and its use within a network planning tool (Nokia Networks, 1999). Starting from the
basic algorithm we present a set of practical problems that can be solved with minor changes to the algorithm. In some
problems we use the basic algorithm and implement a very simple control structure on top of it. In other problems we
modify the algorithm itself.

The structure of the paper is as follows. Section 2 discusses the evolution problem in more detail. Sections 3 and 4
briefly present some background information. In Section 3 we introduce the relevant network planning issues. In
Section 4 we review the shortest path problem and represent Dijkstra’s algorithm. Section 5 covers the applications of

* Corresponding author. Tel.: +358-7180-36442; fax: +358-7180-36229.
E-mail addresses: jyrki.akkanen@nokia.com (J. Akkanen), jukka.k.nurminen@nokia.com (J.K. Nurminen).

0164-1212/01/$ - see front matter © 2001 Elsevier Science Inc. All rights reserved.
PI:S0164-1212(01)00037-1

182 J. Akkanen, J.K. Nurminen | The Journal of Systems and Software 58 (2001) 181-198

Dijkstra’s algorithm to different network planning problems. Finally, in Section 6 we summarize our experiences and
draw some conclusions.

2. Evolution problem

The need for a software system to evolve arises from different reasons. The trivial reason is that corrections have to
be made to fix problems. A major need for modifications arises when the requirements to the software change. There
are several, partly overlapping reasons for these changes
e The requirements are initially incomplete or misunderstood. With this view the need for evolution arises from a

“bug” in an early phase of the software development process.

o The software is developed incrementally. This increasingly common viewpoint accepts that it is impossible to create
a complete specification of the software in advance. The software is developed in incremental steps that build on top
of previous releases and on user feedback.

e A new version of the software is needed. To preserve or increase their market share, the software vendors typically
need to develop new versions of their products with enhanced functionality. Almost always the only reasonable way
to go is to modify the old software.

e Software or a piece of it is reused in a different task than what is was initially intended for. The adaptation of a
software to a new use typically requires changes.

Because of its importance the software evolution problem has received a lot of attention. At general level it has been
one of the key driving forces behind the interest towards software processes and methodologies. A successful approach
to solve the problem has been various improvements in software structure and modularity (e.g. software architecture,
object-orientation, libraries, components, design patterns). Another major approach has been to create such software
development processes that both aim to create clean, easy-to-evolve software and ensure that all relevant requirements
are considered in the first stage. For example, Rajlich (1997), Burd and Munro (1998a) and Burd and Munro (1998b)
focus explicitly on the methodologies and tools to support software evolution. Furthermore, there are various ap-
proaches that try to measure the evolution potential of the software, e.g., Ferneley (1999), Granja-Alvarez and
Barranco-Garcia (1998), Welker et al. (1997), Svahnberg and Bosch (1999) and Mattsson and Bosch (2000) present
practical analysis software evolution in product families and frameworks, SER Consortium (1996) focuses on the
evolution of banking software. Davidson et al. (2000) concentrates on modeling the costs and Mockus and Weiss
(2000) on modeling the risks of software evolution at telecom applications.

Typically the efforts to deal with the evolution problem are focused on the general software system issues. The
number of studies that focus on the evolution of algorithms and that try to investigate what the evolution means to the
selection, implementation, and maintenance of algorithms is quite small.

Knuth (1989) is a detailed analysis of the development history of TeX typesetting system focusing on implemen-
tation mistakes. Ball and Magazine (1981) introduced various criteria for the comparison of heuristic algorithms, such
as case of implementation, flexibility, and simplicity, which to some extent characterize the evolution potential of the
algorithms.

Some systems experiment with ideas of automating algorithm evolution by using genetic programming, e.g. Lu-
kschandl et al. (1999) for routing algorithms and Teller (1998) for signal understanding algorithms. The systems are
constrained to limited problem areas and well-defined solution spaces and are still quite far away from practice.

3. Network architecture planning

An essential task of transmission network planning is to combine traffic demands with a given network topology.
This step is called routing. Fig. 1 illustrates the network planning process.

The traffic demands specify how much traffic needs to be sent between nodes x and y. An additional part of the
traffic demand is the protection requirement. It specifies whether a single route or two (preferably disjoint) routes are
needed. The protection affects the availability of the end-to-end connections in case of failure. Availability is an im-
portant planning criterion.

The topology specifies a candidate network structure. In addition to the nodes and edges it may have upper limits
for edge capacities. The networks are typically very sparse since extra edges add to the network cost.

After the routing operation has combined the topology and traffic demands it is possible to study issues like how the
capacities in the network changed, was there enough spare capacity for all the traffic, and what kind of routes the
traffic is using.

J. Akkanen, J.K. Nurminen | The Journal of Systems and Software 58 (2001) 181-198 183

Network topology Traffic demands
* nodes, segments, capacity « endpoints, capacity, availability

v 7
N,

Network
planning tool

Routing Criteria

* protection
Need for network . dlvers!ty o
modification? * capacity limits

* costs (node & segment)

 route length

., £ — | Output
« routed traffic

* spare capacity

« terminated and transit traffic
* cross connect capacity
« costs of connections

* availability estimates

Fig. 1. Network architecture planning process.

Network planning is a complicated task with multiple goals. It requires a lot of user judgment to balance the
different objectives and to anticipate future needs. Our experience is that a planning tool supporting the user in this
task should be very flexible and visual. Tedious planning steps could be automated, but the user must have control to
override all design decisions manually.

The tight user involvement sets some requirements for the planning algorithms. The algorithms should be fast
enough so that the user is willing to wait while they are running. There should rather be a set of small algorithms than a
single algorithm trying to solve the complete design problem. By running a sequence of smaller algorithms the user can
make manual changes between the steps or iterate back to previous steps. Finally, it is easier for the users to un-
derstand what a small algorithm does. There is less need to enter parameters to the algorithm since the user can make
decisions between the steps. This is especially true in balancing multiple objectives. The downside of the approach is
that the user must be competent and cannot just press a button and wait for a ready answer.

Nokia NPS/10 is a transmission network planning system that has been built with the above ideas in mind. It
consists of a set of simple tools, or commands, that the user can apply to any part of the network in any order he or she
likes. The control of the planning process is thus tightly in the hands of the user. NPS/10 contains features for capacity
and other calculations, a graphical user interface for visualization and editing the network topology and traffic, as well
as numerous algorithms for routing and topology generation. The system works in the Microsoft Windows envi-
ronment. The system has been in extensive internal use since 1993 and commercially available since 1996. According to
the last count the system has over 100 active users within Nokia.

4. The shortest path problem and Dijkstra’s algorithm
The shortest path problem is to find the path in a weighted graph connecting two given nodes a and b with the

property that the sum of the weights of all the edges is minimized over all such paths (Sedgewick, 1995). The problem
can be expressed as a linear optimization problem where the objective is to minimize

E Cl'j.x,'j

(iJ)eE
subject to
Xaj — Z Xia = 17
{illa.))€E} {il(.a)eE}
Xpj — Z xp = —1,
{/l(b.j)eE} {il(i.b)eEr}
Z Xy — Z xx =0 for ke N —{a,b}, and
{l(kjeE} {ilGk)eE}

x; =20 forall (i,j) € E,

184 J. Akkanen, J.K. Nurminen | The Journal of Systems and Software 58 (2001) 181-198

where N is the set of nodes, E is the set of directed edges, a, b € N are the endpoints for the path, ¢;; > 0 is the weight of
edge (i,j) € E, and x; denotes how many times the path goes through edge (i, /) € E.

Notice, that this formulation allows anomalous solutions that contain zero-weight cycles: in practical implemen-
tations these cycles can easily be avoided. The optimal solutions to the above problem are always integer, and if the
zero-weight cycles are removed x;; is always 0 or 1 in these solutions.

The network routing problem maps to the shortest path problem once the correspondence between “weights” and
some network planning criteria has been defined. The weights can, for instance, represent the costs of using an edge for
a route or they can simply be equal to one (to minimize the hop count).

Dijkstra’s algorithm is a breadth-first search through the network with an ingenious heuristic to cut the search
space. It requires that all weights in the network are non-negative.

Function Di jkstra (G: Graph, x:Node, y:Node)
returns Path // Returns the shortest path fromx toy in G
var
R: Set of Paths
V: Set of Paths
do
Add a trivial path fromx to x with weight O in R.
While R is not empty do
Let p be the path in R which has the least weight.
Move p fromR to V.
Let node v be the destination of path p.
If v=y then // early termination rule
Return p.
end if.
For every edge e incident from v in G do
Let w be the destination of e.
Let g be the path p extended by edge e.
If Vcontains a path to wthen // cutting rule
Do nothing.
else if R contains a path r to w then
If weight of q is less than weight of r then
Replace r by g in R.
end if.
else
Add g in R.
end if.
end for.
end while.
Return empty path.
end function.

In the algorithm presentation we manipulate directed paths from source node x to other nodes in the graph G. We
allow trivial paths as well, i.e. such paths that consist of a single node and no edges. The weight of a path is the sum of
the weights of its edges.

The algorithm makes a breadth-first search for minimum weight paths from source node x to other nodes in the
network until a path to the destination node is found. If the early termination rule (the first if- clause in the while-loop)
is removed, the algorithm searches for shortest paths from source node to all the other nodes.

The algorithm maintains two sets of paths. The paths in set }J are known to be optimal to their destination while
paths in set R are the best paths the algorithm has found thus far. Due to the cutting rule (the nested if-clause within the
inner loop) the sets together never contain more than one path to any node. (One can replace this rule with a simpler
rule “add ¢ in R if g is non-cyclic” and the algorithm still finds a shortest path, but with inferior performance. The set V'
will finally contain all non-cyclic paths from source node to other nodes.)

To implement the algorithm one can use very simple data structures. The elements of the sets are usually records
having fields for the destination node, for the last edge, and for the total weight of the path. A Boolean attribute field is
used to tell in which set the path is and a link field points to the element representing the initial segment of the path.

J. Akkanen, J.K. Nurminen | The Journal of Systems and Software 58 (2001) 181-198 185

This representation is possible since elements that enter set }” are never removed and no path can be inserted in R or V'
before its initial segments are in V. There is no need to store the whole path in each element since the path can be
collected by traversing through the links.

Many methods to help finding the minimum weight element in the tree R have been suggested, e.g. Dial’s imple-
mentation and various heap implementations (Ahuja et al., 1993; Cherkassky et al., 1994).

The key benefit of Dijkstra’s cutting rule is the already mentioned fact: the sets R and V together never contain more
than one element for each node in the network. This makes the algorithm very efficient. The maximum size of the sets is
known in advance (once the size of the network is known) and the path replacement in the cutting rule is extremely
easy: one just needs to modify the weight and parent link of a single element in the set. Thus the algorithm is very fast.
For example, a binary heap implementation solves the shortest path problem in O(elog(n)) time (where e is the number
of edges and n is the number of nodes in the graph).

5. Applications to network planning

In this Section we will discuss various network planning problems and, in particular, how Dijkstra’s algorithm has
been used to solve them. We are in particular emphasizing what kind of modifications to the basic algorithm have been
necessary and what have been the practical experiences of each step.

As any software development, the planning tool functionality is developed in stages. The main routing features in
different NPS/10 releases are represented in Table 1. Once completed the releases have been immediately taken into use
in real planning projects. The practical experiences have created new requirements and improvement needs, which have
been satisfied in subsequent releases. Since the number of requirements is typically higher than the available time and
resources permit, the development has to prioritize the features and constantly consider what is the most efficient way
to satisfy the user needs.

5.1. Unprotected routing

Unprotected routing is the most straightforward application of the shortest path algorithm. The problem is to find a
single route between given nodes with a minimum cost, assuming that each edge has a non-negative cost and an infinite
capacity. The problem maps directly to the shortest path problem. It can be solved with the basic Dijkstra’s algorithm.

Considering the practical network planning just having an efficient algorithm to route a single traffic requirement is
not adequate. In real networks one always has multiple traffic requirements which need to share the same transmission
links. This leads us to multicommodity flow problems: we have multiple commodities to be routed which are not allowed
to be mixed and which share common resources. Much research has been done on this topic and several sophisticated
techniques to solve such problems have been proposed (see e.g., Bertsekas, 1998; Balakrishnan et al., 1989; Assad,
1978; Schneur and Orlin, 1998). Unfortunately the problem is NP-hard and all these algorithms are computationally
feasible only with small networks.

We can distinguish two different facets of this issue. Firstly, the capacity of real equipment is limited: this is dis-
cussed in greater detail in Section 5.4. Secondly, in practice edge costs are not linear to their capacity but they increase
in steps. Edges have an initial fixed building cost (e.g., laying the cables), and after the initial investment the cost
increases in steps when more powerful equipment is needed (see Fig. 2).

A simple way to handle the initial building cost is to assume that the user specifies the network topology. The
building costs are thus implicitly taken into account already before traffic routing.

Table 1
Routing algorithms in different software releases
Release Date Features
1.0 12/92 Single path (Dijkstra)
1.1 2/93 Double path (Dijkstra)
Semimanual routing
L5 12/94 Heuristic double path
2.1 5195 Cost model
Capacity limited routing
3.1 9/96 Regions
3.3 5197 Multilayer routing
3.5 2/98 Iterative heuristic double path

Double path (Minimum cost flow)

186 J. Akkanen, J.K. Nurminen | The Journal of Systems and Software 58 (2001) 181-198

Cost (w)
_—
Yd
L4 —— Actual cost
- P
1 4 . .
—,, , e - = = Linearized cost
-
’
! / /’
/ ///
1/
v°
. >
Capacity (C)

Fig. 2. Edge cost function.

There are several alternatives to handle the capacity dependent variable costs. The simplest one is to ignore the costs
completely and rely on hop count or on some user specified cost. Hop count is often a useful starting point just to learn
something from the network behavior. A more refined cost model can be based on user specified estimated capacities.
We use a linear cost function

wij(c) = %ﬁ)&

where C;; is the user specified maximum capacity of the edge, W is the actual cost, ¢ is the capacity of the traffic to be
routed, and w;; is the weight to be used in the routing. Fig. 2 shows in dotted line three alternative cost functions.
The linear cost function is a very rough estimate of the actual cost. Its nice feature is that by having a linear function
the routing order is insignificant. Our scheme also favors edges that have been equipped with high capacity because the
unit cost per capacity unit is lower for high capacity equipment.
For a more advanced solution where the initial costs are better taken in account, see e.g. (Holmberg and Hellstrand,
1998).

5.2. Semimanual routing

In some cases the user may wish to manually specify how traffic is routed. This often happens when there are some
special issues that the routing algorithms do not take into account. The semimanual extension to basic unprotected
routing makes this possible. The user specifies an ordered set of nodes on the routes and the semimanual routing
algorithm finds the shortest path through this node set.

The algorithm uses Dijkstra’s algorithm in an iterative fashion.

Function Single_Path_Through(G: Graph, S:Vector of Nodes)
returns Path // Returns the shortest path passing nodes S in given order
var
P: Path
do
Let v be the first node of S.
Let P be the trivial path from v to v.
while there are nodes in S after v do
Let w be the next node in S after v.
Append Dijkstra(G,v,w) to P.
Set v to w.
endwhile.
return P.
endfunction.

Semimanual routine allows the user to have more control of the routing process but still makes it fairly easy to
specify long routes. The major drawback of the approach is that the user must specify the nodes in the proper order. A
failure to do so results into strange routes, especially when the selection between two equally long routes in arbitrary
(see Fig. 3).

J. Akkanen, J.K. Nurminen | The Journal of Systems and Software 58 (2001) 181-198 187

3 2

Y 77

7

2 3

Correct selection order Incorrect selection order

Fig. 3. Effect of selection order to the semimanual routing.

g s

74

2

Fig. 4. Unexpected result of semimanual routing.

In addition the algorithm itself might produce an unexpected result even though selection order were correct since
each path between two selected nodes is searched independently on the others (see Fig. 4).

There are techniques to improve the algorithm (e.g. branch-and-bound), but they were not tried in the software:
users deemed other features of the software to be more important than fixing these defects.

5.3. Protected routing

5.3.1. Double path

The purpose of protection is to make sure that a network connection continues to work also in case of failures. In
the 1 + 1 protection scheme the same signal is sent both through the primary and through the secondary route. If one
of the routes fails, the other one still continues to work. In terms of network planning the goal is thus to find two routes
for the traffic that use disjoint paths. Since edge failures are more common than node failures (e.g., a cable is broken
because of some construction work) the goal is to find two edge-disjoint paths for the traffic.

The following Double Path algorithm is a modification of Dijkstra’s algorithm (differences to the original algorithm
are underlined).

Function Double_Path_Dijkstra (G:Graph, x:Node, y:Node)
returns Pair of Paths // Returns the shortest path
var
R: Set of Pairs of Paths
V: Set of Pairs of Paths
do
Add pair of trivial paths fromx to x in R.
While R is not empty do
Let (p,p’) be the pair of paths in R which has the least weight.
Move (p,p’) from R to V.
Let nodes v,v' be the destinations of paths p,p/, respectively.
If v=y and v/ =y then
Return (p,p’).
endif.
For every edge e incident from v in G do
Let w be the destination of e.
Let g be the path p extended by edge e.
If Vcontains a pair of paths to (w,v’) then
Do nothing.

188 J. Akkanen, J.K. Nurminen | The Journal of Systems and Software 58 (2001) 181-198

else if R contains a pair of paths (r,r') to (w,v’) then
If weight of (q,p’) is less than weight of (r,r’) then
Replace (r,r') by (q,p’) in R.
end if.
else
Add (q,p’) in R.
end if.
end for.
For every edge e incident from v/ in G do
Let w be the destination of e.
Let 9’ be the path p’ extended by edge e.
If Vcontains a pair of paths to (v,w') then
Do nothing.
else if R contains a pair of paths (r,r’) to (v,w') then
If weight of (p,q’) is less than weight of (r,r’) then
Replace (r,r') by (p,q’) in R.
end if.
else
Add (p,q’) in R.
end if.
end for.
end while.
Return pair of empty paths.
end function.

The only difference between the original and double path algorithm is that while the original deals with paths, the
double path variant manipulates pairs of paths. The destination nodes of each pair can be the same or different. Of
course some fundamental operations need to be refined.

e The inner for-loop in the original is duplicated here. The first loop goes through possible extensions to the first path
p while the second loop tries to extend the second path p'. In other words, we extend only one of the paths in the
pair, not both simultaneously.

e The weight of the pair (p, p’) is the sum of weights of p and p’ and of common link penalties for the common edges in
p and p/

wp,p) =D wa)+ Y wlb)+ Y ple), (1)

ain p b in p/ ¢ in pnp

where p(c) is the common link penalty for edge ¢. That can be chosen for each edge separately or we can use a global

rule p(c) = Pw(c), where P is a constant, common link penalty factor. By varying this factor the user can control the

trade-off between route length and disjointness.

While it is relatively easy to show that the original Dijkstra algorithm really produces a shortest path, showing the
same result for the double path variant is much more difficult, mainly because of the extra complexity due to the
common link penalty in the weight function.

The double path algorithm is much more inefficient than the basic shortest path algorithm. The sets R and ¥ can
contain a pair of paths for every (ordered) node pair in the network, and a binary heap implementation runs in
O(nelog(n)) time. In practice this is not very severe limitation: as long as the networks are small and sparse the running
times are reasonable.

A different kind of complication is the need to specify the trade-off between route length and disjointness. This is
done via the common link penalty factor. As is often the case with this kind of parameter values, users find it very hard
to adjust the value so that a reasonable compromise can be achieved. In practice the penalty is almost always set to a
high value so that common edges are never preferred. Of course depending on the network topology common edges
cannot always be avoided.

5.3.2. Heuristic double path

Heuristic double path is an approach to shorten the running times of double path algorithm. The algorithm uses a
simple greedy approach: it finds a shortest path (primary route), increases the costs of the edges on the primary route,
and reruns the Dijkstra’s algorithm to find the secondary path.

J. Akkanen, J.K. Nurminen | The Journal of Systems and Software 58 (2001) 181-198 189

Function Heuristic_Double_Path(G: Graph, x:Node, y:Node)
returns Pair of Paths

var
P: Path
Q: Path
do

Let P be Dijkstra(G,x,y).
For each edge e in P do
Increase weight of e in G by common 1link penalty.
endfor.
Let Q be Dijkstra(G,x,y).
Return (P, Q).
endfunction.

This algorithm is fast compared to the double path routing of the previous section. The drawback is that the results
are not optimal in some cases. For instance in the network of Fig. 5 (assuming the weight of each edge is 1) the al-
gorithm selects the primary path (A-B-F-E, drawn with thick solid lines) too greedily. After that it no longer can find
an edge-disjoint secondary path between A and E (drawn with thick dashed lines where it differs from the primary
one). The normal double path algorithm, on the other hand, finds the paths (A-H-G-F-E) and (A-B-C-D-E)
correctly.

This kind of ring topology is common in real networks. Therefore the algorithm is not very useful in practical
planning tasks. Its main use is to get some results quickly especially in the initial planning phase when the user just
needs to become acquainted with the network behavior.

A similar heuristics to find several disjoint paths has been proposed by MacGregor and Grover (1994).

5.3.3. Iterative heuristic double path
Heuristic double path algorithm can be improved by iterating

Function Tterative_Heuristic_Double_Path(G: Graph, x:Node, y:Node)
returns Pair of Paths
do
Let Paths P and Q be Dijkstra(G,x,y).
Let w be the weight of (P, Q).
While w contains common 1link penalties do
Let graph H be equal to G where the weight of each
edge in P is incremented by common link penalty.
Let R be Dijkstra(H,x,y).
If weight of (P,R) is less than w then
Let w be the weight of (P,R) and let Q be R.
else
exit loop.

Fig. 5. Example of heuristic double path failure.

190 J. Akkanen, J.K. Nurminen | The Journal of Systems and Software 58 (2001) 181-198

5 5

-
N
-
N
[RR Y

10

Fig. 6. Iterative heuristic double path does not find global optimum.

Fig. 7. Iterative heuristic double path does not find disjoint paths.

Swap P and Q.
endwhile.
Return (P, Q).
endfunction.

To start with we search the shortest path from source node to destination node and assign it to both paths. Then we
try to improve the result step-by-step. We take one of the paths and reroute it trying to avoid the other one, and
continue rerouting the paths as long as the situation improves. Finally we reach a local optimum: rerouting neither of
the paths will improve the result.

Even though there is no upper bound for the number of iterations needed, usually a small amount (2-3) is enough,
so the algorithm is reasonably fast. Sometimes it may fail to find a global optimum (Fig. 6) or two disjoint routes
(Fig. 7). In the figures the numbers attached to edges denote edge weights and we assume common link penalties are
high. The resulting primary route is shown with thick solid line and the secondary one, where it differs from the
primary, with dashed line.

In spite of these weaknesses, the algorithm is useful in practice, giving acceptable routing in most practical cases.
The main benefit is that the algorithm is very adaptable to different ways of calculating the weight of the double path.

5.3.4. Double path with minimum cost flow

When, in the course of time, the transmission network plans became more detailed and the networks grew in size
and complexity, the double path Dijkstra algorithm presented above turned out to be too slow. As a replacement we
selected a well-known solution in the literature, an algorithm which is generally known as successive shortest path
algorithm to find a minimum cost flow, see (Ahuja et al., 1993; Suurballe and Tarjan, 1984).

Function Double_Path Min_Flow(G: Graph, x:Node, y:Node)
returns Pair of Paths
var
p: Mapping from Nodes to Reals // potential
v:Mapping from Edges to Reals // reduced weights
do
// find shortest path
Let P be Dijkstra(G,x,y).
// define node potentials
For each node n in G do
Let p(n) be the smaller from weight of P and weight of shortest path from x to n.
endfor.
// define residual graph

J. Akkanen, J.K. Nurminen | The Journal of Systems and Software 58 (2001) 181-198 191

For each edge e in G do
If e is in P then
Let v(e) be the sum of weight of e and common 1ink penalty of e.
else if reverse of e is in P then
Let v(e) be the negated weight of e.
else
Let v(e) be the weight of e.
endfor.
// calculate reduced weights in the residual graph
For each edge e from node a to node b in G do
Add p(a) - p(b) inv(e).
endfor.
// find augmenting path
Let H be graph G where weights are given by v.
Let Q be Dijkstra(H,x,y).
// combine shortest and augmenting path
Return the superposition of P and Q.
endfunction.

In the algorithm we assume the graphs are directed. One basic concept used in the algorithm is node potential. In
general, potentials are just numbers attached to nodes. Once one has a potential p(n) for each node n, one can calculate
reduced weights for edges: the reduced weight of an edge e from node a to node b is the weight of edge w(e) reduced by
the difference of the potentials of its endpoints

Wred(e) - W(e) +p(a) _p(b)

The key fact is that, for searching shortest paths between two nodes, it does not matter whether one uses reduced
weights or just plain weights. The reduced weight of a path, namely, equals to the actual weight of the path reduced by
the difference of the potentials of its endpoints.

The basic idea of the algorithm is that to have a double path from source node x to destination node, we actually
want a flow of two units from x to y. To get disjoint flows we restrict that each edge can carry at most one unit of flow
without extra penalty. Conceptually this is achieved by duplicating all the edges and increasing the weight of the
duplicate by the common link penalty weight. (However, in practice we don’t need to add the duplicates, see later.)

We start by searching a single unit of flow, i.e. the shortest path from source node to destination node, using the
known Dijkstra shortest path algorithm.

In the first for-loop we calculate a potential p(n) for each node. In this particular case potentials are selected in
such a way that the reduced weights on the shortest path P become zero while everywhere else they are non-negative.
The calculation effort is in practice very small after one retains the result set V' of the Dijkstra algorithm from the
previous shortest path search. After a shortest path P from x to y has been caught by the early termination rule, we
know that the paths in set V are shortest paths to those nodes which are closer to x than y, and for all the other
nodes the length of shortest path is at least the length of P. Thus, to calculate the potential p(n), we just need to
check whether set 7" contains a path from x to n, and p(n) is the weight of this path if it exists, and the weight of P
otherwise.

Fig. 8 shows the network of Fig. 7 after this phase. The numbers attached to edges are edge weights (these are the
same in both directions). The thick arrows denote the shortest path and the numbers attached to nodes are the po-
tentials.

ZaN
v

Fig. 8. Shortest path and node potentials.

192 J. Akkanen, J.K. Nurminen | The Journal of Systems and Software 58 (2001) 181-198

In the second loop we calculate a residual graph H which one gets when one “removes’ the already allocated flow P
from graph G. In practice this means recalculating the weight function. We increase the weight of each edge in P by
common link penalty: by doing so we “add” a duplicating edge with the increased penalty. To compensate, we turn the
weight of each reversed edge negative: by using such edge when allocating further flow one “cancels” the allocation
made earlier. All the other edges retain their weight. See Fig. 9. For clarity we have still retained the shortest path in the
figure. The common link penalty has been chosen as 100.

The second for-loop calculates the reduced weights so that we get rid of negative edge weights. By this way a new
graph is formed. Then we allocate a second unit of flow, an augmenting path Q, by searching the shortest path through
H. See Fig. 10, where you can see edges with reduced weight, the shortest path P (thick solid arrows) and the new,
augmenting path Q (thick dashed arrows).

The final step in the algorithm is to combine the unit flows P and Q into two paths. Of course P and Q are paths, but
it may now be that P traverses one edge forwards while Q traverses the same edge backwards. In the superposition of
the two paths these kinds of edges ““cancel’” each other and are removed. You can see the final result of our example
case in Fig. 11.

Table 2 shows the speed comparison of double path (Dijkstra), heuristic double path (heuristic), and double path
with minimum cost flow (min flow) algorithms. Density is the average degree of a node. The running times are seconds
with a 90 MHz Pentium computer. The double path algorithm was not able to solve the largest networks within 10
min.

The minimum cost flow algorithm is much faster than the double path Dijkstra algorithm. It can be also easily
extended to find any number of disjoint paths and not only two. On the other hand, it is more complex and requires
deeper insight of the problem and more understanding of the graph algorithms. These factors together with the limited
development resources and time pressure were the reasons why the double path Dijkstra algorithm was initially im-
plemented in our application. Although clearly inferior in solution time it was used almost five years before the
pressure to handle larger networks made it necessary to replace it.

Fig. 10. Reduced weights in the residual graph, augmenting path.

1 5

............1?.............)‘

10 v,
: 2 3,
1 ‘s
2 1
As

Fig. 11. Final result, original weights.

J. Akkanen, J.K. Nurminen | The Journal of Systems and Software 58 (2001) 181-198 193

Table 2

Speed comparison of the double path algorithms
Network Nodes Edges Density Dijkstra Heuristic Min flow
S10.TRP 10 10 2 0.1 0 0.1
S50.TRP 50 62 2.5 3.1 0.1 0.2
S290.TRP 290 374 2.6 289.1 0.7 0.9
S1154.TRP 1154 1498 2.6 * 7.4 9.7
DI10.TRP 10 22 4.4 0.2 0 0
D34.TRP 34 88 5.2 2.4 0.1 0.2
D130.TRP 130 358 5.5 60.4 0.5 0.8
D514.TRP 514 1474 5.7 * 4.6 3.3
D1026.TRP 1026 2974 5.8 * 14.7 6.7

In terms of speed heuristic double path and minimum cost flow algorithms are roughly equal (the difference comes
out mainly from the different heap implementations in shortest path algorithms). The big advantage of the minimum
cost flow algorithm is that it always finds an optimal solution whereas the heuristic algorithms cannot find good
solutions with all topologies. The benefit of the heuristic solutions (other than being simpler) is that they are more
adaptable. For instance when more complex calculation is needed for the route cost (e.g. to handle issues that arise in
multilayer routing) the minimum cost flow algorithm cannot be used. One practical approach in such situation is to
search for an initial solution with the minimum cost flow algorithm using an approximate cost function and then
improve this solution with the heuristic algorithm with proper cost function.

5.4. Capacity limited routing

The above routing algorithms assume that the network has an unlimited capacity. In reality each edge has a finite
capacity which depends on the devices that are located at the end nodes. The capacity can be incremented, but only
with an extra cost. Capacity limitation complicates the routing problem because the traffic demands can no longer be
treated independently from each other: the problem turns into multicommodity flow problem, which we already briefly
discussed in Section 5.1.

In addition to the general multicommodity flow problem solving techniques, some special solutions to capacity
limited routing problems have been suggested (e.g. Gavish and Neuman, 1989; Sanso et al., 1992). The problem is very
hard to solve with larger networks.

Ignoring the capacity limits is often a good approach in the initial planning but at the later planning stages more
accurate results can be achieved by taking in account the step behavior of capacity-to-cost function. One should
then try to avoid capacities that are little over the threshold values since in these cases most of the capacity is not
used.

One way to simplify the problem is to assume that the maximum capacities of the edges are predefined and the task
is to route the traffic to the capacity limited network. The nice feature of this approach is that the users can control
where in the network they want to have a high capacity area. The decision depends on a lot of issues, such as supply of
space, easy access for maintenance, or future growth potential, which no model can completely cover. Another mo-
tivation for using predefined capacity in the network is that the resulting network is better structured and is thus easier
to manage and maintain.

The resulting capacity limited routing is also a hard problem but it is easy to develop simple greedy heuristics for its
solution. The following heuristic works quite well in practice.

Function Capacity_Limited_Dijkstra(G: Graph, x:Node, y:Node, c:Real)
returns Path // Returns the shortest path
var
R: Set of Paths
V: Set of Paths
do
Add trivial path fromx to x with weight O in R.
While R is not empty do
Let p be the path in R which has the least weight.
Move p fromR to V.
Let node v be the destination of path p.

194 J. Akkanen, J.K. Nurminen | The Journal of Systems and Software 58 (2001) 181-198

If v=y then
Return p.
endif.
For every edge e incident from v in G which has more spare capacity than c do
Let w be the destination of e.
Let g be the path p extended by e.
If V contains a path to w then
Do nothing.
else if R contains a path r to w then
If weight of q is less than weight of r then
Replace r by g in R.
endif.
else
Add q in R.
endif.
endfor.
endwhile.
Return empty path.
endfunction.

The basic Dijkstra’s algorithm is modified to check that the traffic capacity requirements do not exceed the max-
imum capacity of the edge. The only change to the basic algorithm is the underlined check that the capacity in the edge
extending the already searched path p is large enough. The Capacity_Limited_Dijkstra algorithm selects the optimal
path for a single traffic requirement (x,y,c). Similar modifications can also be made to the double path or heuristic
double path algorithms. Notice that one can view this change as well as a change in the network topology: the edges
having not enough capacity are removed.

Normally there is a set of traffic requirements that have to be routed. Capacity_Limited_Routing routine tries to
route them in a decreasing order of capacities. The routing order is the heuristic step of the algorithm. The thinking
behind our ordering is that finding routes for the largest demands is difficult and therefore it is done first. The
approach is related to the bin packing problem and resembles the First Fit Decreasing heuristic (Kershenbaum,
1993).

Function Capacity_Limited Routing(G: Graph, D:Vector of Connections)
returns Mapping of Connections to Paths
var
P: Mapping from Connections to Paths
do
Sort D in descending order of capacity
For each connection d in D do
Let a and b be the endpoints of d.
Let ¢ be the capacity of d.
Let Pmap d to Capacity_Limited Dijkstra(G,a,b,c).
endfor.
Return P.
endfunction.

The network planners have found the results useful although it is fairly easy to construct examples where it fails. For
instance in the network of Fig. 12 the traffic A-D is routed first since it requires more capacity than A-F. The route
(A—E-D) is the shortest one for it (assuming w;; = 1) and there is enough capacity for it. Now an attempt to route the
demand A-F does not succeed since the route A-E-D has already consumed the 10 units of capacity between A—E and
E-D. In this case a reverse routing order would have produced a better result.

5.5. Other extensions

Transport networks are typically divided into separate regions for core, regional, and access networks with different
design rules and targets (Salo, 1998). The most straightforward effect of this division to the routing algorithms was that

J. Akkanen, J.K. Nurminen | The Journal of Systems and Software 58 (2001) 181-198 195

s 5 Traffic:
\\\ A-D 10 units
AN A-F 1 units
. .

Fig. 12. Example of a capacity limited routing failure.

one should avoid such routes that unnecessarily visit a region. For example, traffic that is internal to an access region
should not use other regions. This requirement was easy to include in the Dijkstra based algorithms: only a new way to
select the weights and topology was needed.

In addition to the above horizontal division the network functionality is divided into different layers also in the
vertical direction. For instance, the traffic is carried in low-capacity (2 M/1.5 M) links that are carried in high-capacity
(SDH/SONET) links that are carried in optical fibers. The effect for double path routing is that routes must be disjoint
both in the current layer as well as in the underlying layers. Instead of trying to generate the routes of all layers si-
multaneously we routed the traffic in only one layer at a time. This was done in such a way that the routes that had
already been fixed in the lower layers were taken into consideration. This extra constraint could be added to the
heuristic algorithms by only changing the weight calculation of path pairs. Common link penalty was added not only
when there were same edges on both paths but also when the paths shared a common edge on some lower layer.

It is interesting to notice that the double path with minimum cost flow algorithm does not allow these kinds of
changes to be made since it requires that the common link penalties are local. (Otherwise it is impossible to select
weights in the reduced graph for the augmenting path.) This is a good example of a trade-off situation where a more
efficient algorithm is more inflexible to new requirements.

These kinds of problems can be solved with branch-and-bound approach as well (Oellrich and von Puttkamer,
1998).

Having multiple layers makes it possible to protect at different layers: one may select to protect some traffic at the
low-capacity layer while some other traffic is protected at the high-capacity layer. Moreover, not all equipment is able
to protect the traffic. Therefore the protection function can happen only in certain nodes of the network. Routing
becomes rather challenging when also these facets are taken in account.

6. Conclusions

In this paper we have considered the use of Dijkstra’s algorithm to solve different routing problems encountered in
transmission network planning. The basic algorithm together with our relatively minor modifications has turned out to
be useful and practical in solving real-life problems.

The most important lesson of the study is the importance of evolution. The study shows that the requirements for
the algorithms change during the evolution of the software system. In order to meet the changing needs the algorithms
have to be modified and redeveloped. The ability of an algorithm to grow and meet the evolution requirements is an
important feature.

Our findings underline the importance to consider the evolution potential when making the decision about the
algorithms to be used. It is not enough to focus on selecting the most sophisticated state-of-the-art algorithm for a
given problem. The evolution capability, the potential for reuse, and the development cost over the system lifetime are
equally important aspects. Flexibility is often more important than strict optimality.

196 J. Akkanen, J.K. Nurminen | The Journal of Systems and Software 58 (2001) 181-198

It is also important to understand that because of the nature of the problem domain, network architecture planning,
the algorithms do not have to be very accurate. No model can completely handle all explicit and implicit goals and
variables of a real-life planning case. A planning tool has to provide facilities for the user to use his or her judgment to
control the planning process and to interpret and modify the results. An intuitive user interface and a set of fast,
interactively used, easy-to-use and easy-to-understand algorithms makes it possible for the user to experiment with
different alternatives and to compensate the inevitable deficiencies in the optimization algorithms of the software. As a
matter of fact, since it is almost impossible to specify the optimization problem very exactly, a rigid state-of-the-art
optimization algorithm may suggest theoretically optimal but practically infeasible solutions to the network archi-
tecture planning problem.

An interesting observation is that often the developers erroneously tend to set stricter requirements to the algo-
rithms than what the users really need. After all, they understand better the deficiencies of the algorithms and easily
worry too much. Users have certain priorities concerning different features of the software. Having the most efficient
and sophisticated routing algorithms is not necessarily a top priority issue. The solution power of sophisticated al-
gorithms is often needed for anomalous problem instances that seldom occur in practice. For example, in practical
telecommunication network plans the network topologies cannot be very complex: after all, the plans must be
maintained and understood by humans.

How is this interpreted to the requirements to the algorithms? What kind of algorithms would be most suitable to
fulfil the above requirements?

First of all the algorithms should be simple. Our experience suggests that it is in many cases reasonable to
sacrifice some accuracy or strict optimality if a simpler solution is available. Simple algorithms are easy to modify
and apply to new needs, the initial implementation time is often short, and the number of implementation errors is
likely to be small. As there is increasingly heavy pressure for fast time-to-market the speed of development to an
actual product stage is a critical issue. Moreover the companies face a shortage of skilled developers. Ideally the
developer should understand well the application area, programming, and the models and algorithms. The more
complex the algorithms are the higher the demands are for the developers. Simpliness is also significant for the
user since it is easier for them to understand what kind of calculations the software is performing for them. This
increases their confidence towards the results.

Another important goal for algorithm is generality. Special purpose heuristics often increase the accuracy or so-
lution speed of an algorithm but the heuristics used are often very vulnerable to changes. For instance, the double path
with minimum cost flow algorithm (Section 5.3.4) could not be used for the multilayer routing task.

The speed is third key attribute. A fast algorithm has several benefits. It allows the user to work interactively and in
that way to compensate for the shortcomings of the algorithm. A fast algorithm can also be used as a building block of
a more complex algorithm, such as in the heuristic double path (Section 5.3.2) or in capacity limited routing of the
whole network (Section 5.4). Finally, fast algorithm easily scales to larger problem instances. In our case, when we
began our development work, the typical network sizes were tens of nodes, but, in the course of years, the plan sizes
increased to thousands of nodes.

A problem with the above three key attributes is that they are often conflicting. For instance, special heuristics can
improve the solution speed. Moreover, in addition to the above criteria which contribute to the evolution and reuse of
the algorithms the normal issues, like accuracy of the results, should not be neglected completely. It is not easy to
derive any simple rules or recommendations that would help in the selection process. In our case we typically selected
the algorithm which took the least amount of development effort and was able to give acceptable results. The ac-
ceptability was tested through user feedback: we implemented a simple algorithm and made improvements only if
requested by users.

This paper presents a single case of algorithm evolution and it suffers from the normal weakness of case studies
that each development project is relatively unique (Zelkowitz and Wallace, 1998). More research would be needed to
better understand the issues involved. The problem with studies of real-life cases of software evolution is that a long
time span is needed. The goal of a real-life project is to create the necessary software and functionality — the col-
lection of research data is a by-product. Performing controlled experiments on this area is difficult, slow, and ex-
pensive.

An interesting topic for further research would be the development of new measures and ways to compare algo-
rithms in the evolution dimension. The “standard’ scientific way compares algorithm running times and closeness to
optimality. As the potential for evolution is not explicitly measured there is a risk that speed and optimality are
overemphasized in algorithm research. Possibly the measures of software complexity, such as Halstead (1977) and
McCabe (1976), could be used to somehow estimate the evolution potential of an algorithm. Even if the complexity

J. Akkanen, J.K. Nurminen | The Journal of Systems and Software 58 (2001) 181-198 197

measure would be a rough estimate of the evolution potential it would help in keeping this important practical per-
spective in focus.

References

Ahuja, R.K., Magnanti, T.L., Orlin, J.B., 1993. Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Englewood Cliffs,
NJ.

Assad, A.A., 1978. Multicommodity network flows — a survey. Networks 8, 37-91.

Balakrishnan, A., Magnanti, T.L., Wong, R.T., 1989. A dual-ascent procedure for large-scale uncapacitated network design. Operations Research
37 (5).

Ball, M., Magazine, M., 1981. The design and analysis of heuristics. Networks (11), 215-219.

Bertsekas, D., 1998. Network Optimization: Continuous and Discrete Models. Athena Scientific, Belmont, MA.

Burd, E., Munro, M., 1998a. Investigating component-based maintenance and the effect of software evolution: a reengineering approach using data
clustering. In: International Conference on Software Maintenance (ICSM’98).

Burd, E., Munro, M., 1998b. Reengineering support for software evolution: an evaluation through case-study. In: 22nd Annual Intenational
Computer Software and Application Conference (COMPSAC 1998).

Cherkassky, B.V, Goldberg, A.V., Radzik, T., 1994. Shortest paths algorithms: Theory and experimental evaluation. In: Proceedings of the Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms.

Davidson, J.W., Mancl, D.M., Opdyke, W.F., 2000. Understanding and addressing the essential costs of evolving systems. Bell Labs Technical
Journal 5 (2), 44-54.

Dijkstra, E., 1959. A note on two problems in connexion with graphs. Numerische Mathematics 1, 269-271.

Ferneley, E.H., 1999. Design metrics as an aid to software maintenance: an empirical study. Journal of Network and Systems Management 11 (1),
55-72.

Gavish, B., Neuman, I., 1989. A system for routing and capacity assignment in computer communications networks. IEEE Transactions on
Communications 37 (4), 360-366.

Granja-Alvarez, J.C., Barranco-Garcia, M.J., 1998. A method for estimating maintenance cost in a software project: a case study. Journal of
Software Maintenance: Research and Practice 9 (3), 161-175.

Halstead, M.H., 1977. Elements of Software Science. Elsevier, New York.

Holmberg, K., Hellstrand, J., 1998. Solving the uncapacitated network design problem by a Lagrangean heuristic and branch-and-bound. Operations
Research 46 (2), 247-259.

Kershenbaum, A., 1993. Telecommunications Network Design Algorithms. McGraw-Hill, New York.

Knuth, D.E., 1989. The errors of TeX. Software Practice and Experience (19), 607-685.

Lukschandl, E., Borgvall, H., Nohle, L., Nordahl, M., Nordin, P., 1999. Evolving routing algorithms with the JBGP-system. In: Evolutionary
Image Analysis, Signal Processing and Telecommunications. First European Workshops, EvolASP’99 and EuroEcTel’99. Proceedings, Springer,
Berlin.

MacGregor, M.H., Grover, W.D., 1994. Optimized k-shortest-paths algorithm for facility restoration. Software Practice and Experience 24 (9),
823-834.

Mattsson, M., Bosch, J., 2000. Stability assessment of evolving industrial object-oriented frameworks. Journal of Software Maintenance: Research
and Practice 12 (2), 79-102.

McCabe, T.J., 1976. Complexity measure. IEEE Transactions on Software Engineering SE-5 (4), 308-320.

Mockus, A., Weiss, D.M., 2000. Predicting risk of software changes. Bell Labs Technical Journal 5 (2), 169-180.

Nokia Networks, 1999. NPS/10, Computer software.

Qellrich, M., von Puttkamer, J., 1998. Reliable links in transmission networks, in DRCN’98.

Rajlich, V., 1997. MSE: A methodology for software evolution. Journal of Software Maintenance: Research and Practice 9 (2), 103-124.

Salo, E., 1998. Resilience of open topology SDH networks. In: First international workshop on the design of reliable communication networks,
IMEC, University Gent.

Sanso, B., Gendreau, M., Soumis, F., 1992. An algorithm for network dimensioning under reliability considerations. Annals of Operations Research
36, 263-274.

Schneur, R., Orlin, J.B., 1998. A scaling algorithm for multicommodity flow problems. Operations Research 46 (2), 231-246.

Sedgewick, R., 1995. Algorithms in C++. Addison-Wesley, Reading, MA.

SER Consortium, 1996. EUROBANQUET - Support for Effective Software Evolution in European Banks. http://dis.sema.es/projects/SER/
eurobang.html.

Suurballe, J.W., Tarjan, R.E., 1984. A quick method for finding shortest pairs of disjoint paths. Networks 14, 325-336.

Svahnberg, M., Bosch, J., 1999. Evolution in software product lines: two cases. Journal of Software Maintenance: Research and Practice 11 (6),
391-422.

Teller, A., 1998. Algorithms Evolution with Internal Reinforcement for Signal Understanding. Ph.D. Thesis, Carnegie Mellon University.

Welker, K.D., Oman, P.W., Atkinson, G.G., 1997. Development and application of an automated source code maintainability index. Journal of
Software Maintenance: Research and Practice 9 (3), 127-159.

Zelkowitz, M.V., Wallace, D.R., 1998. Experimental models for validating technology. IEEE Computer 31 (5), 23-31.

Jyrki Akkanen received the M.Sc., Ph.Lic, and Ph.D. degrees in Mathematics from the University of Helsinki in 1989, 1992 and 1995, respectively,
specializing in mathematical logic. Since 1995 he has worked as a senior software engineer at Nokia Research Center. His main interests have been
routing and optimization algorithms for telecommunication networks and software architectures for network design tools.

198 J. Akkanen, J.K. Nurminen | The Journal of Systems and Software 58 (2001) 181-198

Jukka K. Nurminen received the M.Sc and Tech.Lic. degrees from the Helsinki University of Technology in 1986 and 1989, respectively. In 1986 he
joined the Nokia Research Center where he is working as a principal scientist on the area of network planning tools. His current interests are
telecommunication network modeling as well as the model development and implementation processes.

	Copyright: © 2001 Elsevier Science. Reprinted with permission from The Journal of Systems and Software 58, No. 3, pages 181-198.

