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The less common helium isotope, 3He, becomes superfluid when the temperature falls below 1 mK. Superfluidity is one 
indication of a condensation into the same quantum mechanical state. For 3He the condensation into a single state occurs 
by forming Cooper pairs. In the superfluid state 3He is an ideal substance to study a non-conventional p-wave spin-triplet 
pairing. This dissertation considers theoretically different topological defects that appear in the superfluid state and the 
effect of impurities.

Vortices and solitons are the most common topological defects that appear in superfluid 3He. They may be observed in 
both A and B phases by using nuclear magnetic resonance (NMR). Here we consider the A phase vortex texture in the 
presence of a stable A-B phase boundary. As a result two new possible vortex textures were obtained to exist at the A-B 
boundary. Both of these surface sheet textures differ from the vortex sheet that appears in the bulk A phase. Different 
dissipation mechanisms are analyzed by calculating the NMR absorption spectrum caused by solitons. The normal- 
superfluid relaxation causes only line broadening, but the spin diffusion, which results from the inhomogeneous texture, 
also shifts the soliton peak to higher frequencies.

Typically helium is an ultra-pure liquid without any impurities. Experimentally the effect of impurities on the superfluid 
state can be investigated by using a very porous aerogel. When the empty space inside aerogel is filled with liquid helium, 
the aerogel strands act as an impurity and scatter the helium quasiparticles. In this thesis the effect of impurities on 
superfluid 3He is analyzed by using the quasiclassical theory and by considering two simple scattering models. In the 
homogeneous scattering model the impurities are assumed to be evenly distributed, the assumption that is often used for 
superconductors. In the inhomogeneous model the impurity density is allowed to depend on location. Using these models 
the critical temperature, pair amplitude, and superfluid density for 3He are determined numerically. 

helium-3, superfluidity, texture, vortex, soliton, impurity, hydrodynamic theory, quasiclassical theory
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1 Introduction

At low temperatures both stable helium isotopes, 3He and the more common
isotope 4He, are liquids. At normal pressures they remain liquids even at
absolute zero temperature. However, near the absolute zero one starts to
observe superfluidity, a flow without friction. For 4He the transition temper-
ature to superfluid state is about 2 K and for 3He it is only about 1 mK.
Superfluidity is similar to superconductivity in metals, where the electric cur-
rent flows without resistance. In this thesis I concentrate on the theoretical
studies of superfluid 3He. Theories created for superconductors can often
be applied also for 3He. Since the order parameter for 3He is more complex
than for typical superconductors there exist various phenomena that cannot
be observed in superconductors.

The superfluidity in 3He was first observed at the beginning of the 1970’s
by Osheroff et al. [1] and since then it has been studied extensively. In the
superfluid state, depending on external parameters (temperature, pressure
and magnetic field) three types of phases have been observed. They all
have different physical properties due to dissimilar internal symmetries. In
all phases one may observe various topological defects. The most common
defects are vortices that appear when the superfluid is put into rotation.
Vortices are linear objects aligned along the rotation axis, and surrounded
by a circulating flow. They are similar to vortices in superfluid 4He and in
superconductors. The vortices and other defects in 3He may be observed by
using the nuclear magnetic resonance (NMR) which is an important tool for
analyzing the state of superfluid 3He.

Typically 3He is an ultra-pure liquid since all the impurities are adsorbed
on the walls of the container. This enables us to investigate the substance
itself and not to worry about complications caused by impurities. For exam-
ple, by applying a pressure of some 34 bar, one may solidify the liquid and
observe the growth and shrink process of an almost perfect crystal. How-
ever, also the impurities may give us information about the superfluid itself.
In 3He the adding of impurities may be done using silica aerogel. Aerogel
has a spaghetti-like structure, where only a few nanometer thick, long silica
strands form a self-supporting structure that has a large open volume, even
up to 99.5%. These aerogel strands scatter the helium quasiparticles and act
as an impurity when the open volume is filled with superfluid 3He. Impuri-
ties cause the superfluid condensate to be reduced but not necessary totally
suppressed.

Even if the behavior of superfluid 3He is complex, it is very well un-
derstood. The theories are well developed and they often agree with the
experiments quantitatively. Nowadays the remaining unsolved theoretical

1



problems are often too difficult to be solved by analytical methods and nu-
merics is needed. The problems presented in the thesis are mainly solved by
using different numerical methods and computers.

This thesis is divided into two parts. In the first part I concentrate on
the hydrodynamic theory which can be used to calculate different textures on
the length scales that are much larger than the coherence length ξ0 ≈ 50nm.
This part also includes a short introduction to NMR in Sec. 3. The second
part of the thesis, described in Sec. 4, contains a short introduction to the
quasiclassical theory of 3He. This theory is used to calculate the effect of
impurities by considering two simple scattering models.

1.1 Order parameter in 3He

Superfluidity in helium is one indication of the condensation where parti-
cles start to occupy the same macroscopic quantum state. In contrast to
4He atoms, which are bosons, the 3He the atoms are fermions which cannot
occupy the same state. Therefore it is not the atoms that have the same
wave function but the bosonic Cooper pairs formed by two helium atoms.
These Cooper pairs are in the p-wave spin-triplet state with orbital angular
momentum L = 1 and spin S = 1 [2–5]. This implies that, in general, nine
complex amplitudes are needed to determine the actual state. Typically the
order parameter is represented by using a complex 3× 3 matrix Aµj, where
the first index µ refers to the spin and the second index j to orbital degrees
of freedom.

The observed superfluid phases correspond to specific forms of the general
matrix. The phase diagram for 3He is illustrated in Fig. 1. In the absence
of magnetic field the most stable phase at low pressures (below 21 bar) and
also at higher pressures at low temperatures is the B phase. For B phase the
order parameter has the form [4–6]

Aµj = ∆Be
iϕRµj . (1)

Here Rµj is a rotation matrix in three dimensions and the real parameter
∆B is the pair amplitude that determines the energy required to break one
Cooper pair. For the A phase, which is stable at high pressures at temper-
atures near the superfluid transition temperature Tc, the order parameter is
given by [4, 5, 7]

Aµj = ∆Ad̂µ(m̂j + in̂j), (2)

where m̂ ⊥ n̂. Here the unit vector l̂ = m̂× n̂ defines the axis of the orbital
angular momentum of a Cooper pair and d̂ defines the spin axis. The phase
factor exp(iϕ), seen in the B phase order parameter, is hidden in the orbital
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Figure 1: Phase diagram for 3He at low temperatures. The dashed line de-
notes the A-B phase boundary at zero magnetic field and the dash-dotted
line for B = 100 mT. The region for stable A1 phase, just below Tc, is so
thin that it is not observable in this scale.

triad {̂l, m̂, n̂}. In the presence of external magnetic field the stability region
of the A phase extends to lower temperatures and also to lower pressures.
At the same time there appears a thin region of A1 phase just below Tc. The
A1 phase differs slightly from the A phase.

Typically the superfluids can be analyzed by using a phenomenological
two-fluid model where the liquid is a mixture of normal viscous fluid, with
density ρn and velocity vn, and superfluid. The superfluid has velocity of vs

and a density of ρs = ρtot − ρn, where ρtot is the total density of the fluid.
For the B phase the superfluid velocity is given by

vs =
h̄

2m3

∇ϕ , (3)

where ϕ is the phase in the order parameter, m3 is the mass of 3He atom
and h̄ = h/2π is Planck’s constant. Since the flow is potential, the vorticity
vanishes, ∇×vs = 0. This is not valid, for example, at the vortex cores where
the order parameter is not of the simple form as above in Eq. (1) [8–10]. The
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diameter of the vortex core is determined by the coherence length ξ, which
for 3He is typically around 50 nm. Around a vortex the circulation

κ =
∮
dr · vs =

h̄

2m3

∮
dr · ∇ϕ = n

h

2m3

= nκ0 (4)

is a multiple of the circulation quantum κ0 = h/(2m3). The vortices in the
B phase are typically one quantum vortices with n = 1. This minimizes the
kinetic energy. In the A phase the superfluid velocity is given by

vs =
h̄

2m3

∑
i

mi∇ni (5)

and there exist many different types of vortices. Now there is no such re-
striction for the vorticity ∇ × vs, and the order parameter can retain its
bulk form, given by Eq. (2), also inside the vortex core. These continuous
vortices are typically much larger in diameter than the B phase vortices and
are mostly two-quantum vortices. Inside the core the circulation can have,
in principle, any value. In the anisotropic A phase the superfluid density
ρs is no longer a scalar, but depends on the orientation of the l̂ vector with
respect to the superfluid velocity.
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2 Hydrostatic theory

Within the hydrostatic theory the free energy of superfluid 3He may be writ-
ten as a expansion in spatial gradients of the order parameter. The hydro-
static theory is valid at general temperature T < Tc. The external perturba-
tions, a magnetic field and an applied flow for example, are assumed to be so
small that the order parameter sustains its bulk form, where the amplitude
∆ is fixed by temperature and pressure. In the A phase the leading terms in
the free-energy density are the magnetic and dipole terms together with the
gradient energy density [5, 11,12]. The dipole term

fd = −1

2
λd(d̂ · l̂)2, (6)

measures the strength of the dipole-dipole interaction between nuclear mo-
ments and favors l̂ ‖ d̂. The magnetic term

fh =
1

2
λh(d̂ ·B)2 , (7)

describes the coupling to the external field B and prefers to have d̂ ⊥ B.
The gradient energy density fg, where

2fg = ρ⊥(vs − vn)
2 + (ρ‖ − ρ⊥)(̂l · (vs − vn))

2 + 2C(vs − vn) ·∇× l̂

− 2C0l̂ · (vs − vn)(̂l ·∇× l̂) +Ks(∇ · l̂)2 +Kt(̂l ·∇× l̂)2

+ Kb |̂l× (∇× l̂)|2 +K5|(̂l ·∇)d̂|2 +K6

∑
i,j

[(̂l×∇)id̂j]
2, (8)

contains also the kinetic energy arising from the counterflow velocity v =
vs − vn. Now the characteristic length scale is the dipole length ξd =

(h̄/2m3)
√
ρ‖/λd ≈ 10 µm, which is much larger than the coherence length

and is obtained by comparing the dipole and kinetic terms. Similarly com-
paring the dipole and magnetic terms one obtains the dipole field Bd =√
λd/λh ≈ 2 mT. All the coefficients appearing in the energy density are pos-

itive and have been calculated in the weak-coupling approximation [13–15].
Similarly in the B phase one may write the free energy using the rotation

matrix Rµj and the phase ϕ. An extensive introduction to hydrostatics in
the B phase is given in Ref. [16]. Since there are no B phase texture calcula-
tions presented in this thesis the explicit form of the different energy terms
is omitted. However, some main points should be noted: In the B phase the
conservation of the mass current fixes ∇2ϕ = 0. Together with the boundary
conditions this already determines ϕ. Additionally the dipole-dipole interac-
tion between the 3He atoms favors that the rotation angle in Rµj is fixed to
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θ = arccos(−1/4) ≈ 104◦. As a result, spin currents are not conserved but
decay on the scale ξd. The remaining energy terms determine the rotation
axis for Rµj. The variation of this axis typically takes place on the length
scale that is much larger than ξd and therefore one must usually take into
account the form of the helium container, whose diameter is normally a few
millimeters.

2.1 A-B phase boundary

In both superfluid phases there exist several different textures and topologi-
cal defects. The most common of such defects are vortices. They are created
when the counterflow velocity exceeds some critical value [17]. An interesting
situation occurs when one has two separate phases, both with different inter-
nal symmetries, at different parts of the sample and a thin phase boundary
between these regions. This phase separation can be achieved, for example,
by having a non-uniform magnetic field. If a topological object penetrates
through this boundary, its structure is usually modified.

In publication [P1] we calculate the structure of the A phase vortex in
the presence of the A-B phase boundary. The calculations were motivated by
recent experiments where the A-B phase boundary is stabilized in the middle
of the long cylinder by having an axial magnetic field whose magnitude is
peaked at the half way of the cylinder [18]. The large magnetic field prevents
the B phase from filling the whole cell when the sample is cooled. In the
upper part of the cell the A phase remains in the metastable supercooled
state.

When one starts to rotate the experimental cell, the vortices first appear
in the A phase since the critical velocity for creating vortices is considerably
smaller there than in the B phase. In order to minimize the kinetic energy
the vortices form a vortex bundle at the center of the cylinder, such that on
average 〈vs〉 ≈ vn inside the vortex bundle. Since the continuous unlocked
vortices in the A phase have a large soft core and the number of circulation is
two times the circulation quantum, it is hard for these vortices to penetrate
to the B phase where vortices carry only one quantum of circulation and
have a small singular core. So, instead of going through the phase boundary,
the vortices bend along the boundary and terminate at the edge of the cell
as illustrated in Fig. 2. We are especially interested in this case where no
vortices are present in the B phase, i.e. the superfluid component is still at
rest in the laboratory frame. For large enough rotation velocities the vortices
start to penetrate to the B phase and the mechanism involves the classical
Kelvin-Helmholtz instability [18].

Mathematically, the boundary condition at the A-B phase boundary may

6



Figure 2: Left: Behavior of the A-phase vortices in the presence of the phase
boundary. The upper part of the cell is in A phase state where the vortices
create a nonzero superfluid velocity. The lower part is in a vortex-free B
phase state where the superfluid part is at rest and only the normal fluid
rotates with the cell. Right: Calculation area used to determine the texture
is denoted by rectangles. Periodicity along the azimuthal angle is assumed.

be written as [19–21]

d̂ = ±
↔
R · ŝ (9)

(m̂ + in̂) · ŝ = ±eiϕ (10)

l̂ · ŝ = 0, (11)

where ŝ is the normal of the A-B boundary, ϕ is the phase and
↔
R the rotation

matrix appearing in the B-phase order parameter. Here the second equation
states that the phase angle is continuous across the A-B boundary. The last
equation indicates that the l̂ vector lies parallel to the A-B boundary. This
differs from the behavior near the walls where the l̂ vector is forced to be
normal to the walls.

If one considers the region outside the vortex bundle at some constant dis-
tance from the cylinder axis shown in Fig. 2 and ignores the small curvature,
one obtains the following simplified 2D model for the calculations: the A-B
phase boundary resides at z = 0 and there is a periodic structure along the
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y-axis (the azimuthal axis) with period of Ly. In the x direction (the radial
direction) we have translational invariance. In reality, these are true only ap-
proximately, but they give a simple model to examine the effect of the phase
boundary. Far below the phase boundary (z → −∞), deep in the B phase,
we have no vortices and the superfluid velocity is zero. Therefore the counter-
flow velocity is only due to the normal fluid velocity (vB = vsB−vn = −vn).
Deep in the A phase the counterflow velocity vA = vsA − vn is, due to vor-
tices, considerably smaller than vB. In the calculations we used vA = 0.
This is appropriate when we consider a region that is not far from the vortex
bundle. The circulation of two quanta inside the calculation area is ensured
by having vB = 2κ0ŷ/Ly deep in the B phase.

The characteristic length scale for the rotation matrix
↔
R in the B phase is

typically much larger than the characteristic length scale (dipole length ξd)
in the A phase. Therefore the variation in rotation matrix can only result
from the boundary condition for d̂, given by Eq. (9). Since, even with a free
boundary condition, we obtain that d̂ ≈ ŷ also at the boundary, the rotation
matrix was chosen to be constant, such that d̂ = ŷ at the phase boundary.
This simplifies the calculations, and we only have to take into account the
B-phase kinetic energy in the form

fB =
1

2
ρs(vsB − vn)

2. (12)

This term is required to stabilize the vorticity at the phase boundary.
The texture near the phase boundary is obtained by discretizing the cal-

culation area (0 ≤ y ≤ Ly and −Lz ≤ z ≤ Lz) into 2NyNz points and taking

the phase field ϕ and the five angles needed to define the vectors d̂, m̂ and n̂
at these discrete points to be the minimization variables. At the A-B bound-
ary only one angle in addition to ϕ is needed. Minimization was done using
the conjugate gradient method. As an initial guess a continuous unlocked
vortex or one period of vortex sheet was used on the A-phase side.

As a result two new types of textures were found. For large Ly, or equiv-
alently at small counterflow velocities, the vorticity separates into two com-
posite one-quantum vortices that are aligned on the A-B boundary as illus-
trated in Fig. 3. These one-quantum vortices consist of two half-quantum
cores where l̂ = ±x̂. For larger counterflow velocities (Ly ≤ 5.7ξd) a more
stable configuration consists of two half-quantum cores at the boundary and
the remaining circulation appearing as a one-quantum vortex between these
cores above the phase boundary as shown in Fig. 4. The obtained textures
seem to be independent of the initial ansatz, i.e. whether a normal vortex
or a period of bulk vortex-sheet is used as the initial texture. Transition be-
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Figure 3: Low-density texture on the A phase side when Ly = 8ξd in the
coordinate system where vn = 0. The light strip in the cones denotes the
rotation of the m̂ and n̂ vectors around l̂, as indicated in the upper-left
corner. The texture contains two separate one-quantum vortices, both with
two half-quantum cores at the phase boundary aligning perpendicular to the
plane of the paper (along the x-axis). The cores are denoted by shading and
at the cores l̂ = ±x̂. In the left-side one-quantum vortex vector l̂ sweeps the
upper hemisphere with lz > 0 and in the right-side vortex the hemisphere
with lz < 0. The B phase texture at z < 0 is not illustrated here but there
the phase field ϕ is only slightly distorted from bulk value (ϕ ∝ y + const)
near the vortex cores.

tween these two textures seems to be hysteretic, especially the high-density
texture can remain stable at least up to Ly ≈ 7.5ξd.

The experimental identification of the texture at the phase boundary is
quite difficult. The magnetic field at the phase boundary is strongly inhomo-
geneous. This complicates the analysis of the NMR absorption signal since
the Larmor frequency ω0 = γB0 depends on the location (for details about
the NMR, see the next section). The surface layer is also very thin, so that
the absorption signal is weak and most likely covered by the signal caused
by the bulk vortices. The experimentally measured velocity where the phase
boundary becomes unstable is only slightly larger than the value where the
high-density texture becomes stable. The calculations were done near the
polycritical point, a region were T = Tc, p ≈ 21 bar and B = 0, and the re-
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Figure 4: High-density texture on the A phase side when Ly = 5ξd in the
coordinate system where vn = 0. The circulation is divided into two half-
quantum cores at the phase boundary bounded together by the remaining
one-quantum vortex in the vicinity of the phase boundary. The vortex cores
are denoted by shading. At the half-quantum cores l̂ = −x̂.

sults might change slightly if the correct experimental parameters were used.
At least for low rotational velocities the texture should be the low-density
one.

After the phase boundary becomes unstable and some of the vortices
penetrate into the B phase, one may calculate the number of penetrated
vortices by NMR. This number is observed to be a small random number and
it may be even or odd. When the number is odd it means that only one half of
an A-phase vortex has penetrated to the B phase. This appears to be realized
more easily with the low-density texture which has two separate one-quantum
vortices at the phase boundary and then only one of them penetrates through
the boundary. However, the penetration is a non-equilibrium process and
therefore considerable changes in texture may occur during this process.

2.2 Helical instability in 3He-A

In case of vanishing counterflow velocity the minimum free energy is achieved
with a uniform texture l̂ = d̂ ⊥ B, which corresponds to a minimum of
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Figure 5: Principle of the helical instability in 3He-A. The cones denote the
direction of the l̂ vector and the light strip describes the rotation of m̂ and
n̂ vectors around it.

all the energy terms (6), (7) and (8). This remains the minimum-energy
texture also in the presence of a small counterflow velocity v ⊥ B. Since
ρ⊥ > ρ‖, the l̂ vector is additionally fixed parallel to the flow. The superfluid
velocity, or the phase gradient, means that the vectors m̂ and n̂ start to
rotate around l̂ as illustrated in Fig. 5b. When the counterflow velocity
finally exceeds the first critical velocity vc1 the above constant texture no
longer corresponds to the minimum of the free energy. In many cases the
minimum-energy configuration is the so-called helical texture, where the l̂
vector, and due to dipole-dipole coupling also the d̂ vector, smoothly wind
around the direction of the flow as illustrated in Fig. 5c. For the nonuniform
l̂-texture the superfluid mass current is no longer a simple gradient of the
phase but given by

js = ρ⊥vs + (ρ‖ − ρ⊥)̂l(̂l · vs) + C∇× l̂− C0l̂(̂l · ∇ × l̂). (13)

In publication [P2] we analyze the stability of the helical texture both
analytically and numerically. The dependence on temperature and magnetic
field is analyzed. Previously most of the calculations were limited to the case
where B ‖ v (see publication [P2] for references). We consider a bit more
complicated case where B ⊥ v. In this case the magnetic field introduces
“hard” and “easy” directions for the variations of the d̂ vector. Therefore the
helix is elliptically distorted. This situation arises, for example, in a rotating
cylinder when the magnetic field is along the rotation axis, which is often
the most relevant orientation in the experiments.

11
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Figure 6: Stability analysis for the uniform and helical textures when F =
Au2 + 1

2Bu4. Left: Stable uniform texture (u = 0). Center: Stable helical
texture with amplitude u2 = −A

B . Right: Both textures are unstable.

Analytical solution is based on the Taylor expansion around the constant
configuration l̂ = d̂ = x̂ with respect to small fluctuations. At the energy
minimum the free energy may eventually be expressed by using a single
small parameter u. It describes the amplitude of the fluctuations around the
constant configuration. The free energy takes the form

F = F0 + Au2 +
1

2
Bu4, (14)

where the coefficients A and B depend on external parameters (temperature,
magnetic field, etc.). For A > 0 the uniform texture with u = 0 is stable. The
helical texture is stable for A < 0 and B > 0 when the minimum energy is
achieved for u2 = −A

B
. When both coefficients are negative both the uniform

and helical textures are unstable. All these cases are illustrated in Fig. 6.
In publication [P2] we generalize the results obtained by Lin-Liu et al.

in Ref. [22] at T = Tc to lower temperatures. At T = Tc, for example, the
helical texture is stable only for B < 2.5Bd, but the stability region is ex-
tended when the temperature is lowered. Finally when T < 0.8Tc, the helical
texture is stable at all fields. Unstable helical textures are again seen when
the temperature falls bellow 0.5Tc. In the numerical calculations one is not
limited to small-amplitude oscillations. Therefore one may analyze the tex-
ture at much larger counterflow velocities than vc1 and finally determine the
critical velocity vc2, the velocity where the helical texture becomes unstable.
Most likely this instability leads to formation of continuous vortices.
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3 NMR in 3He-A

3.1 Solitons in the A phase

Solitons are perhaps the simplest defects that can be observed in 3He-A.
They consist of a plane that separates two bulk configurations. For example,
for dipole-unlocked solitons, on one side of the soliton d̂ = l̂ and on the other
d̂ = −l̂. Both of these configurations correspond to minimum of the dipole
energy. In the simplest case the texture depends only on the coordinate
perpendicular to the soliton plane. Depending on the direction of the static
magnetic field relative to this plane, a soliton is called either a twist or a
splay soliton. In publication [P3] we analyze the structure of the composite
twist and splay solitons, where both d̂ and l̂ vectors are allowed to vary. The
structure of these solitons is illustrated in Fig. 7. For the twist soliton the
structure is analytically solvable [23], but the splay texture requires either a
variational ansatz [23,24] or a direct numerical solution as done in publication
[P3].

A useful method for determining the order-parameter texture in super-
fluid 3He is by using nuclear magnetic resonance (NMR), where in addition to
a static field B0 one has a weak oscillating rf-field Brf present. In the normal
state the resonance absorption occurs at the Larmor frequency ω0 = γB0.
Here the parameter γ is the gyromagnetic ratio of the 3He nucleus. In the
superfluid state the NMR response can be determined from the Leggett equa-
tions which couple the spin magnetization γS to the spin part of the order
parameter [25, 26].

Typically in the B phase the absorption spectrum can be obtained di-
rectly from the calculated texture, but for the A phase one must explicitly
solve the resulting eigenvalue equations. If we choose the large static mag-
netic field to be along the z-axis such that the equilibrium d̂, denoted by
d̂0 = x̂ cos θ + ŷ sin θ, is limited to the xy-plane and ignore the dissipation
effects, the resonance frequencies can be obtained from the Schrödinger-type
eigenvalue equations

(D + U‖)ψ‖ = α‖ψ‖ (15)

(D + U⊥)ψ⊥ = α⊥ψ⊥. (16)

Here the operator D is defined by

Df = −K6

λd

∇2f − K5 −K6

λd

∇ ·
[̂
l(̂l ·∇)f

]
(17)

and the potentials are given by

U‖ = 1− l2z − 2(̂l× d̂0)
2
z (18)
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B
0
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Figure 7: Structure of composite twist (left) and splay (right) solitons in
superfluid 3He-A in the absense of the flow. The darker arrows indicate the
l̂ vector and the lighter ones the d̂ vector. Both vectors are limited to the
plane perpendicular to the large static magnetic field B0.

U⊥ = 1− 2l̂2z − (̂l× d̂0)
2
z −

K6

λd

(∇θ)2 − K5 −K6

λd

(̂l ·∇θ)2. (19)

The resonance frequencies ω‖,k and ω⊥,k are related to the eigenvalues by

ω2
‖,k = Ω2α‖,k (20)

ω2
⊥,k = ω2

0 + Ω2α⊥,k, (21)

where Ω2 = µ0γ
2λd/χ is the longitudinal resonance frequency in the A phase.

Here χ is the susceptibility in the normal state and µ0 is the vacuum perme-
ability. Often the notation R2

⊥,‖ is used instead of parameters α⊥,‖. In the
bulk the lowest eigenvalues are given by α‖,b = α⊥,b = 1 and one may observe
only the bulk peak in the absorption spectrum. In case of dipole unlocking
also other eigenstates contribute to the power absorption. Typically there
exists only one bound state with α < 1. Since different textures usually give
different locations for these satellite peaks, the absorption spectrum may be
used as a tool to identify the textures. In Fig. 8 we have plotted the potential
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Figure 8: The lowest eigenstate for the transversal splay soliton at T = Tc.
The dashed line is the wave function and the horizontal line the corresponding
eigenvalue. The potential U⊥ is given by the solid curve.

and the lowest eigenfunction together with the corresponding eigenvalue in
the case of transversal splay soliton at T = Tc.

In publication [P3] we determine the location of the soliton satellite peak
as a function of temperature. We also analyze the effect of the different
parameters to the results. A good agreement with experiments [27–29] is
usually achieved by using bare weak-coupling values for the hydrostatic pa-
rameters Kb, Ks etc. and using measurements by Greywall [30, 31] for the
lowest Fermi-liquid parameters F s

1 and F a
1 . The higher Fermi-liquid param-

eters were omitted in our analysis since they are typically unknown and
usually make the analysis much more complicated. Especially the results
obtained for the longitudinal twist soliton support the prediction by Serene
and Rainer [32] that the deviation of the hydrostatic parameters from the
weak coupling values is small. The only essential difference between the
experiment and theory appears in case of transversal splay soliton. This
difference cannot be explained by uncertainties in different parameters but
some of it can be removed by taking into account dissipation, and especially
spin diffusion which is described in the following section.
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3.2 Dissipation

When we include dissipation the absorption spectrum is no longer a set of
delta peaks. In 3He there are several processes that may cause line broad-
ening. For transversal resonance, the inhomogeneity of the static magnetic
field causes the Larmor frequency and therefore also the resonance frequency
to depend on the location. This location dependence may also result from
the nonuniform texture. Another reason for the line broadening is the non-
equilibrium between normal and superfluid magnetizations, i.e., the so-called
Leggett-Takagi relaxation, which appears even in homogeneous superfluid
3He [26,33].

In publication [P3] we consider both the normal-superfluid relaxation and
spin diffusion which only exists in the presence of nonuniform textures. These
two mechanisms should be the main sources of dissipation in the A phase
near Tc when the magnetic field is homogeneous. In the analysis we omit a
very small temperature region below Tc, the so-called gapless region, where
the orbital relaxation dominates the spin diffusion [34].

Calculations in publication [P3] are based on theory developed by Leggett
and Takagi [26], where the spin polarization S = Sp + Sq consists of a su-
perfluid (pair) part Sp and a normal (quasiparticle) part Sq. Spin diffusion
is taken into account by simply adding a term κ∇2Sq into the equation of
motion for Ṡq (see below). The tensor nature for the spin diffusion coef-
ficient κ is omitted for simplicity. This should be appropriate at least for
temperatures near Tc [5]. The equations of motions are

Ṡq = γSq ×
(
B− µ0γ

F a
0

χ0

Sp

)
+

1

τ
[(1− λ)Sp − λSq] + κ∇2Sq (22)

Ṡp = γSp ×
(
B− µ0γ

F a
0

χ0

Sq

)
− 1

τ
[(1− λ)Sp − λSq]− d̂× δf

δd̂
(23)

˙̂
d = γd̂×

[
B− µ0γ

F a
0

χ0

Sq − µ0γ

(
F a

0

χ0

+
1

λχ0

)
Sp

]
. (24)

Above χ0 is the susceptibility in the absence of Fermi-liquid effects so that
χ/χ0 = 1/(1 + F a

0 ), where χ is the susceptibility in the normal state. Addi-
tionally f = fd +fg contains the dipole and gradient terms in the hydrostatic
energy density, defined by Eqs. (6) and (8) in the previous section. The func-
tion λ(T/Tc) is defined as the equilibrium fraction of the superfluid magne-
tization. Compared to the dissipationless case we now have two more time
scales appearing in the theory. One is the Leggett-Takagi relaxation time
τ which describes the relaxation of Sp and Sq to they equilibrium values.
The other is the spin diffusion time τD that is related to the spin-diffusion
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coefficient κ by [35]

κ =
1

3
v2

F(1 + F a
0 )τD, (25)

where vF is the Fermi velocity. In our calculations this relation is used also
in the superfluid state, even if it is actually derived for the normal state.

The Leggett-Takagi relaxation time τ can also be deduced from the
linewidth of the bulk peak. In publication [P3] we used the value τ =
0.22 × 10−6T−2 s mK2 that is measured for the normal state by Wheat-
ley [3] but differs only slightly from measurements by Gully et al. [36] for the
superfluid state. For the spin diffusion time τD there exist no accurate cal-
culations in the case of the A phase, but the magnitude in the normal state
should be of the same order as τ [37] and therefore we chose τD = τ . The
relative effect of these two dissipation mechanisms was analyzed by setting
τD = 0 or τ = 0 separately.

If we limit to linear deviations of d̂, Sp and Sq from their equilibrium
values and assume a soliton structure, where lz = 0, we obtain a linear
matrix eigenvalue problem of the form (see publication [P3] for details)

Aψ = ωψ (26)

for both longitudinal and transversal oscillations. The matrix A is obtained
from the soliton texture at discretized points and contains now the two new
timescales τ and τD. This eigenvalue problem is solved using standard library
routines and the power absorption spectrum is calculated from the resulting
eigenvectors ψ as described in publication [P3].

The only effect of the normal-superfluid relaxation seems to be line broad-
ening, also in the presence of the soliton. For the longitudinal resonance the
linewidth does not depend on magnetic field, but for the transversal case the
width is inversely proportional to the field. Note that this analysis is valid
when we consider the spectrum in the reduced frequencies α⊥ defined by
Eq. (21). Line broadening is not the only effect of spin diffusion. It also shifts
the resonance frequencies up. This can be seen especially in the transversal
case where the effective diffusion coefficient depends linearly on the magnetic
field. For that reason the effect for typical fields (about 5 mT) is about ten
times larger than for longitudinal resonance, where no such field dependence
exists. The spin diffusion can partly explain the differences between theory
and experiment for the transversal splay soliton at temperatures near Tc. In
that case the experimental points lie above the theoretical line calculated in
the absence of dissipation. However, the calculated temperature dependence
is too strong. The experimental dependence on the magnetic field, on the
other hand, is not reported in any of the publications.
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4 Impurities in 3He

4.1 Quasiclassical approach

Since 3He is naturally an ultra-pure liquid and its p-wave pairing state is well
understood, it is an ideal material for studying the effects of impurities on un-
conventionally paired systems. As an impurity one uses porous silica-aerogel
where typically 98%. . . 99.5% of the volume is empty. A sample photo on
aerogel is illustrated in Fig. 9. When filled with helium the aerogel strands
act as an impurity and scatter the helium quasiparticles. The average mean
free path of a quasiparticle in aerogel is estimated to be around 200 nm, de-
pending on the aerogel density. Impurity scattering results in a suppression
of the superfluid state [38]. For example, the critical temperature Tc, pair
amplitude ∆ and superfluid density ρs are smaller than those in bulk. Qua-
siclassical theory is a natural choice when one wants to examine the effects
of the impurities on 3He.

Figure 9: Photograph of aerogel samples (Photo courtesy of JPL Photolab
and Robert Brown).

Originally the quasiclassical theory was developed for superconductors,
but in its general form it can also be applied to other degenerate fermion
systems, for example to 3He and to neutron stars. The formulation presented
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below is based on the article by Serene and Rainer [39]. The main assumption
in the theory, required for the degeneracy, is that the temperature is much
smaller than the Fermi temperature (kBT � EF). This is well satisfied in
superfluid 3He where the Fermi temperature TF = EF/kB ≈ 1K. In its basic
form the theory is only applicable when the characteristic length scales are
much larger than the Fermi wavelength λF = 2π/kF. In superfluid 3He, the
characteristic length is the coherence length that is defined by

ξ0 = h̄vF/2πkB
Tc0, (27)

where Tc0 is the transition temperature in pure helium and vF is the Fermi
velocity. Depending on the pressures, ξ0 varies between 16 nm and 77 nm
but is always much larger than the Fermi wave length λF ≈ 0.7 nm.

In quasiclassical theory one does not consider strongly interacting helium
atoms, but weakly interacting quasiparticles with an effective mass m∗. This
is 3 to 6 times larger than the mass m3 of a 3He atom. Since the mean free
path of quasiparticles in pure helium is more than 1 µm, we may assume
that the quasiparticles scatter mainly from aerogel strands and work in the
weak coupling limit where quasiparticle-quasiparticle scattering is neglected.

Quasiclassical theory is formulated using a complex-valued 4× 4 matrix
Green’s function or propagator ğ(k̂, r, εm). In equilibrium the arguments are
the direction of the quasiparticle momentum k̂, position r, and the Matsubara
frequency εm = πkBT (2m − 1), where m is an integer. The propagator is
represented as

ğ =

(
g + g · σ (f + f · σ)iσ2

iσ2(f̃ + f̃ · σ) g̃ − σ2g̃ · σ σ2

)
. (28)

where σi:s are the 2 × 2 Pauli spin matrices and we have omitted the 2 × 2
identity matrices 1, for example, in front of f . The propagator satisfies the
Eilenberger equation and the normalization condition:

[iεmτ̆3 − σ̆, ğ] + ih̄vFk̂ · ∇rğ = 0

ğğ = −1, (29)

where [A,B] = AB−BA denotes a commutator, and τ̆i denote Pauli matrices
in the Nambu space; τ̆i = σi⊗ 1. Here the self energy matrix σ̆ = σ̆mf + σ̆imp

consists of mean field and impurity contributions. For 3He, where we have
spin-triplet pairing, the mean field part has the form

σ̆mf(k̂, r) =

(
ν(k̂, r) + ν(k̂, r) · σ ∆(k̂, r) · σiσ2

iσ2∆
∗(k̂, r) · σ ν(−k̂, r)− σ2ν(−k̂, r) · σ σ2

)
. (30)
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Here ∆ in the off-diagonal part is related to the order parameter Aµi by

∆µ = Aµik̂i and is determined by the self-consistency equation

∆(k̂, r) ln
T

Tc0

+ πkBT
∑
εm

[
∆(k̂, r)

|εm|
− 3

〈
(k̂ · k̂′)f(k̂′, r, εm)

〉
k̂′

]
= 0, (31)

where 〈. . .〉k̂ denotes the angular average with respect to direction k̂. In the
diagonal part the real-valued functions ν and ν are given by

ν(k̂, r) = πkBT
∑
εm

〈
As(k̂ · k̂′)g(k̂′, r, εm)

〉
k̂′

ν(k̂, r) = πkBT
∑
εm

〈
Aa(k̂ · k̂′)g(k̂′, r, εm)

〉
k̂′

(32)

and the functions As,a(x) may be expressed using Legendre polynomials Pl(x)
and Fermi liquid parameters F s,a

l by

As,a(x) =
∞∑
l=0

F s,a
l

1 + 1
2l+1

F s,a
l

Pl(x). (33)

In the presence of impurities we must take into account the impurity self
energy σ̆imp. It is related to the forward-scattering t-matrix by [40]

σ̆imp(k̂, r, εm) = n(r)t̆(k̂, k̂, r, εm), (34)

where n(r) is the impurity density. Normally this formula is applied for
constant n, but it should also be valid more generally if the impurity positions
are allowed to be uncertain on the scale of the Fermi wave length. The t-
matrix obeys the following integral equation

t̆(k̂, k̂′, r, εm) = v̆(k̂, k̂′) + πNF

〈
v̆(k̂, k̂′′)ğ(k̂′′, r, εm)t̆(k̂′′, k̂′, r, εm)

〉
k̂′′
. (35)

where 2NF =m∗kF/π
2h̄2 is the total density of states on the Fermi surface

and the effective mass m∗ is obtained from m∗/m3 = 1+F s
1 /3. The matrix v̆

is related to the scattering potential and for non-magnetic scattering v̆ = v1̆,
where a spherically symmetric potential v may be written as

v(k̂, k̂′) =
∞∑
l=0

2l + 1

4π
vlPl(k̂ · k̂′). (36)

The partial wave expansion coefficients, vl:s, are related to the scattering
phase shifts δl by vl = −(4/NF) tan δl. The quasiparticle mean free path is
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` = (nσ)−1 [41], where the normal-state transport cross section σ is given by
the scattering phase shifts as [42]

σ =
4π

k2
F

∞∑
l=0

(l + 1) sin2(δl+1 − δl). (37)

Within quasiclassical theory the mass supercurrent density is given by

js(r) = 2πmvFNFkBT
∑
εm

〈
k̂g(k̂, r, εm)

〉
k̂
, (38)

where g is obtained from the definition of the propagator in Eq. (28). This
is also the total flow, since we chose our coordinates such that vn = 0.

If one attempts to apply the quasiclassical theory of 3He to real aerogel
samples with quite complex structures, one soon notices that the task is, if not
impossible, at least numerically too demanding. One should therefore try to
extract only the essential features from the aerogel structure and calculate
the experimentally measurable quantities using some simplified model. In
the following sections we describe two simple scattering models and their
numerical implementations that were used in publications [P4], [P5] and
[P6].

4.2 Homogeneous Scattering Model

In publication [P4] we consider the homogeneous scattering model (HSM),
where the impurity density n is assumed constant. This is a standard model
used for impurities in metals and results from averaging over the impurity
locations [40]. The scattering is assumed to be isotropic and non-magnetic.
This model has been applied extensively on superconductors but also on
3He [43–54].

For homogeneous scattering the form of the order parameter in both
phases can be assumed to remain unchanged from the bulk forms [given by
Eqs. (1) and (2)]. Only the amplitude of the pairing potential ∆ is modified
due to impurities. For zero superfluid velocity all the position dependence
drops out and the solution may be obtained by choosing ν = 0, ν = 0 and
taking

σ̆imp(k̂, εm) = a(εm)1̆ + b(εm)τ̆3 + c(εm)∆̆(k̂), (39)

where ∆̆ denotes the off-diagonal part in σ̆mf . When we consider only s-wave
scattering we may set c = 0. The Eilenberger equation and the normalization
condition now imply that the propagator has the same form as in bulk,
namely

ğ =
−i(εm − b)τ̆3 + (1 + c)∆̆√
(εm − b)2 + (1 + c)2|∆|2

. (40)
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The numerical solution now reduces to finding b(εm), c(εm) and ∆ using the
t-matrix equation (35) and the gap-equation (31). Parameters a(εm) are of
no interest since they drop out and do not affect the quantities that we are
interested in. The numerical method is based on Newton iteration where the
equation F (x) = 0 is solved iteratively by

xn+1 = xn − F (xn)/F ′(xn). (41)

The precise equations solved can be found in publication [P4]. In order to
avoid complicated angular integrals, the effect of the higher partial waves
was only taken into account for the pair amplitude ∆ in the B phase. In the
A phase we limited to the s-wave scattering. For accurate results the number
of required Matsubara frequencies depends essentially on temperature and
becomes quite large at low temperatures. This is not a problem for the HSM
with the current computers, but may cause difficulties with more complicated
models as described below.

In case of the superfluid density defined by ρs = limvs→0 js/vs, we limit
to the s-wave scattering in both phases. We make a gradient expansion ğ =
ğ0 + ğ1 + . . . for the propagator, where ğ0(k̂, r, εm) is the solution above [given
by Eq. (40)], but with the order parameter ∆(k̂, r) = exp(iq · r)∆(k̂). This
corresponds to a superfluid velocity vs = h̄

2m3
q. The first-order correction ğ1

is linear in ∇rğ0 and can, after some algebra, be expressed using the values
b(εm) and ∆ calculated above. After this one may calculate the mass current
using Eq. (38) and the superfluid density from the above definition.

In the B phase ρs is simply a scalar but for the A phase there exist two
eigenvalues (ρ⊥ and ρ‖) for the superfluid density depending on the direction

of the superfluid velocity relative to anisotropy axis l̂. For the pairing am-
plitude there is no pressure dependence in the weak-coupling approximation,
and from the superfluid density the pressure dependence can be removed by
defining a pressure-independent bare superfluid density ρb

s as

ρb
s

ρtot

=

(
1 + 1

3
F s

1

)
(ρs/ρtot)

1 + 1
3
F s

1 (ρs/ρtot)
, (42)

where ρtot is the total density of the fluid. This is exact for the B phase,
but for the A phase, where similar equations exist for ρ⊥ and ρ‖, the relation
is valid only when ignoring the F s

l terms with l > 2. Since the aerogel
structure contains random strands, the l̂ vector is most likely also oriented
quite randomly. Therefore, for the A phase, the experimentally measured
value for the superfluid density is an average over all directions, and given
by ρave = (2ρ⊥ + ρ‖)/3.
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Due to the impurities, the superfluid transition temperature Tc, which
in the weak coupling limit is same for both phases, is suppressed relative to
the Tc0 for a clean system. The ratio Tc/Tc0 depends only on the value ξ0/`
through the condition

ln
Tc

Tc0

+ 2πkBTc

∑
εm>0

(
1

εm
− 1

εm + h̄vF/2`

)
. (43)

This suppression is plotted for example in Fig. 4 of publication [P6]. The
superfluidity becomes completely suppressed when ξ0/` = 0.28.

The suppression of the pair amplitude ∆ and the (bare) superfluid density
is analyzed in [P4] in detail. When considering the B-phase pairing potential
one already notices that all the essential features are captured when limiting
to s-wave scattering with sin2 δ0 = 0.5. The behavior of the suppression is
very similar in both phases also for the superfluid density. When compar-
ing the results with experiments the mean free path ` should be considered
almost pressure independent, since the structure of aerogel is almost pres-
sure independent and also the Fermi wave vector kF depends only slightly
on pressure. The critical temperatures can be fitted fairly well with experi-
ments [38,55–59], simply by choosing a suitable mean free path for the each
aerogel sample. Only at lower pressures, where ξ0 is largest, the fit becomes
somewhat poorer. For the pair amplitude and superfluid density, the mea-
sured values [55–58,60] are much smaller than predicted by the homogeneous
scattering model. The differences are too large to be explained by different
scattering parameters that appear in the model. These differences can be
partly explained by taking into account that the scattering is inhomoge-
neous. The model for inhomogeneous scattering is described in the following
section.

4.3 Isotropic Inhomogeneous Scattering Model

Since the homogeneous scattering model seems to be insufficient to explain
the experimentally measured critical temperatures and superfluid densities,
some other model should be considered. A natural way to explain the dif-
ferences between theory and experiments is to take into account that the
scattering is inhomogeneous. The isotropic inhomogeneous scattering model
(IISM) allows the impurity distribution to vary in space but at the same time
keeps the medium uniform and isotropic on a large scale [43].

In the IISM the impurity density is assumed to form a periodic lattice
where the unit cell can be approximated by a sphere with radius R. This
assumption is equivalent to using a spherical cell approximation for a Wigner-
Seitz unit cell in solid state physics [61]. Inside the spherical unit cell the
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n(r)

R

Figure 10: Sphere used to approximate the unit cell in the IISM. The shading
intensity denotes the impurity density n(r) and the dashed lines illustrate
the boundary condition where a quasiparticle exiting the sphere is equivalent
to another quasiparticle entering at the opposite point.

impurity density n is allowed to depend only on the radial coordinate r. The
boundary conditions may be chosen such that a quasiparticle exiting the
sphere is returned to the diametrically opposite point without changing its
momentum or spin, as illustrated in Fig. 10. For nonzero superfluid velocity
vs = h̄

2m3
q, which is well defined only on scales larger than R, the order

parameter is no longer strictly periodic in the lattice but has the Bloch form
Aµj(r) = A0

µj(r) exp(ir · q), where A0
µj(r) has the periodicity of the lattice.

This extra phase shift can be expressed using the Green’s function as

ğ(k̂, Rr̂, εm) = exp (iq ·Rr̂ τ̆3) ğ(k̂,−Rr̂, εm) exp (−iq ·Rr̂ τ̆3) . (44)

Since the scattering is now inhomogeneous, the A-phase or the B-phase
forms for the order parameter must be modified. However, no essentially new
phases are expected to appear [43]. Based on the symmetry arguments the
B phase order parameter for vs = 0 can be deduced to take the form

↔
A(r, φ, θ) = eiχ

↔
R
[
∆r(r)r̂r̂ + ∆a(r)(θ̂θ̂ + φ̂φ̂)

]
, (45)

in the spherical coordinates (r, φ, θ). Here the phase χ and the rotation

matrix
↔
R are arbitrary constants and the amplitudes ∆r(r) and ∆a(r) are

real and functions of r only. For the A-type phase the order parameter is
more complicated due to anisotropy. If we choose the cylindrical coordinates
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(ρ, φ, z) such that z is along the anisotropy axis l̂, then the order parameter
for zero superfluid velocity can be written as

↔
A(ρ, φ, z) = eiφd̂

[
∆ρ(ρ, z)ρ̂ + i∆φ(ρ, z)φ̂ + ∆z(ρ, z)ẑ

]
. (46)

Here d̂ is an arbitrary constant unit vector and the amplitudes ∆i are real
and depend on ρ and z. For nonzero superfluid velocity in the z-direction
the calculations are limited to the B-type phase where the order parameter
may be written as

↔
A(ρ, φ, z) = eiχ

↔
R
[
∆ρρρ̂ρ̂ + ∆φφφ̂φ̂ + ∆zzẑẑ + ∆ρzρ̂ẑ + ∆zρẑρ̂

]
. (47)

Now the terms ∆µi are complex and depend on ρ and z. Inside the sphere
the superfluid mass current js(r) has non-zero ρ and z components. The
experimentally measured value, which is an average of these over the sphere,
has only the z component left.

In order to keep the calculations simple we limit to s-wave scattering
and take into account only the lowest Fermi-liquid parameters. Limiting to
s-wave scattering only may sound too restrictive since even in the simplest
hard-sphere approximation for the impurity, most of the scattering takes
place via higher partial waves. However, as noted already in the HSM, most of
the essential features are captured using only s-wave scattering with random
phase shifts δ0 (i.e., essentially by using sin2 δ0 = 0.5).

For the impurity density n(r) we used two different types of profiles. In
the first profile the impurity is concentrated near the shell of the sphere.
This type of void profile can be considered to form a self-supporting struc-
ture but at the same time it forces the flow through the regions with high
impurity density. In the other profile the impurity is concentrated at the
center of the sphere. This cluster type profile allows the flow to go through
the low-impurity regions, but at the same time there exist trajectories near
the shell with very large mean free paths due to the periodic boundaries. In
real aerogel with quite randomly oriented strands, the scattering effect on
quasiparticles is probably somewhere between these two extremes.

4.4 IISM and numerics

The numerical solution for solving the Eilenberger equation is based on the
so-called ”multiplication trick” [62]. This trick makes use of the fact that the
product of two solutions is also a solution of the Eilenberger equation. When
using another parametrization for the propagator (see for example Ref. [62])
the Eilenberger equation separates into three disjoint sets of equations. One
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of these sets contains the correct physical solution that satisfies the symme-
try ğ = −τ̆2ğτ̆2 that is valid in the absence of the magnetic field. It is difficult
to find this correct physical solution by direct numerical integration of the
Eilenberger equation due to an instability towards one of the two exponen-
tial unphysical solutions. Fortunately, the correct physical solution can be
obtained as a commutator

ğ =
i[ğ≺, ğ�]

{ğ≺, ğ�}
, (48)

where ğ≺ and ğ� are the exponentially increasing and decreasing solutions
of the second set that contains unphysical propagators with the symmetry
ğ = +τ̆2ğτ̆2. They are normalized to zero (ğ≺

�
ğ≺
�

= 0) and have the form

ğ≺
�

=

(
c≺
�
· σ [a≺

�
+ b≺

�
]iσ2

iσ2[a≺� − b≺
�
] −σ2c≺� · σ σ2

)
. (49)

The exponentially increasing solution along one trajectory is obtained by
using the fourth order Runge-Kutta method. The decreasing solution is
obtained from other symmetries instead of reversing the direction in the
Runge-Kutta integration.

Since the Runge-Kutta integration is performed along some fixed tra-
jectory direction one cannot work only in cylindrical/spherical coordinates
but must also use cartesian “trajectory coordinates”. Therefore in the nu-
merical routine one frequently needs coordinate transformations between the
trajectory coordinates and spherical/cylindrical coordinates.

The main goal for the routine is to find the values for the fields Aµi,
σ̆imp and ν at discretized points (ρi, zj) (or at ri in case of B phase with no
supercurrent) inside the sphere for a given impurity profile n(r). At the be-
ginning of the calculation some initial guess is taken for the fields everywhere
and for the propagator at the beginning of the trajectory. Usually the exact
results from the HSM were used for this. These values are then converted
to the trajectory coordinates where the coordinate u is along the trajectory
and the two others (b and t) specify the position of the trajectory inside the
sphere. Next the Eilenberger equation is solved along the trajectory by using
the multiplication trick described above. This is repeated for all Matsubara
frequencies |εm| ≤ εNe and for all trajectories that are specified by the co-
ordinates b and t and the angle α between the trajectory and the z-axis.
For the B phase without the current the symmetries are higher and only the
coordinate b is needed to go through all the trajectories.

Next the propagator is converted back to the cylindrical/spherical coordi-
nates. The required angular averages are calculated and the self-consistency
equations are solved as described below. Now, with better estimates for
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the fields, the iteration is restarted. When solving the Eilenberger equation
again, the values for the exponential propagator at the previous step and the
boundary condition (44) is used. The iteration loop is then repeated until
convergence.

Typically only a few Matsubara frequencies are needed to obtain quite
accurate results for temperatures near Tc. However, at lower temperatures
the number of required frequencies increases. In order to reduce the number
of frequencies, we combined the general quasiclassical equations with the
equations from the Ginzburg-Landau (GL) theory that is valid for |Aµi| �
|εm| [46]. The most important self-consistency equation is the gap equation
(31) which now takes in cartesian coordinates the form

Aµi ln
T

Tc0

+ πTkB

∑
|εm|≤εNe

[
Aµi

|εm|
− 3

∫ d2k̂

4π
fµ(k̂, r, εm)ki

]
+ αAµi

+2β1AνjAνjA
∗
µi + 2β2AνjA

∗
νjAµi + 2β3AµjAνjA

∗
νi + 2β4AµjA

∗
νjAνi

+2β5A
∗
µjAνjAνi −K2∂j∂jAµi − (K1 +K3)∂i∂jAµj = 0. (50)

Here the summation over repeated indices is assumed. The term Ne is
the number of positive Matsubara frequencies calculated exactly. Ginzburg-
Landau approximation is achieved when Ne = 0. The parameters α, βi and
Ki are calculated in Refs. [43, 46] limiting to the s-wave scattering and ne-
glecting any strong coupling effects. These parameters contain infinite sums
that can be approximated using Euler-MacLaurin integral formulas

m2−1∑
n=m1

f(n+
1

2
) =

∫ m2

m1

dsf(s) +
1

24
[f ′(m1)− f ′(m2)] +O(f ′′′), (51)

where f ′ denotes the derivate. When applying this formula, for example for
the parameter α, one finds that

α =
M∑

m=Ne+1

y

(m− 1
2
)(m− 1

2
+ y)

+ ln(1 +
y

M
)− 1

24M2
+

1

24(M + y)2
. (52)

The term y(r) = h̄vF/4πT`(r) = ξ0Tc0/2`(r)T measures the local strength
of the scattering. The upper limit M in the summation may be chosen to
be of reasonable size since the error is of order O(M−4), or less. The order
parameter at each step is obtained from Eq. (50) simply by approximating
the βi- and Ki-terms by the values obtained in the previous step and solving
the remaining linear equation for Aµi.

Since we were assuming a random phase shift δ0, the impurity self-energy
matrix σ̆imp can be expressed simply using the angular averages of the propa-
gator. Therefore one does not need to solve the t-matrix equation iteratively.
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The high-energy corrections for the field ν can be obtained from the GL-form
for the superfluid mass current. The current is given in cartesian coordinates
by [5, 63]

js,i = 2m3vFNF

[
πkBT

∑
|εm|≤εNe

∫ d2k̂

4π
kig(k̂, r, εm)

+
2

3h̄vF

Im
(
K1A

∗
µi∂jAµj +K2A

∗
µj∂iAµj +K3A

∗
µj∂jAµi

) ]
. (53)

and since we were ignoring the Fermi-liquid parameters higher than F s
1 , the

field ν is simply given by

ν =
1

2m3vFNF

F s
1

1 + 1
3
F s

1

k̂ · js. (54)

In experiments the measured values correspond to an average value in-
side the sphere used in the IISM. The superfluid density, for example, can
be measured by folding a sample of aerogel around a vibrating wire and
measuring the resonance frequency of the wire. The same method is used
to determine the superfluid density in bulk helium, but without the aero-
gel sample. In publications [P5] and [P6] these average values are presented
using different impurity profiles and with various cell radii. The results are
compared with experiments [38,55–60]. Even if no exact fit with experiment
can be achieved, the results are much better than the ones obtained by using
the homogeneous model. This is a strong indication that the scattering in
aerogel is inhomogeneous.
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5 Discussion

In the above introduction I have briefly described the hydrodynamic and
quasiclassical theories which are commonly used to describe the behavior of
superfluid 3He. I have explained how the hydrodynamic theory was applied
to determine the vortex texture at the A-B phase boundary, determine the
NMR spectrum of solitons and the stability of the helical textures. The qua-
siclassical theory was used to analyze the effect of the impurities in superfluid
3He.

As a result of the hydrodynamic calculations, two new interface vortex
textures were found to appear at the A-B phase boundary. The stability anal-
ysis of the helical texture was extended to contain a wider parameter space
than previously. The exact structure of the splay soliton was determined
and the effect of dissipation on the absorbtion spectrum was calculated. For
the two dissipation mechanisms considered, the normal-superfluid relaxation
causes only line broadening, but the spin diffusion also shifts the soliton
satellite peak to higher frequencies.

The effect of aerogel on superfluid 3He was described by using both a
homogeneous scattering model (HSM) and an isotropic inhomogeneous scat-
tering model (IISM). Of these two the inhomogeneous model yields better
correspondence with the experiments. This indicates that the scattering of
helium quasiparticles from the aerogel strands is inhomogeneous.

The problems introduced in this thesis illustrate the richness of different
phenomena present in superfluid 3He. The relatively good agreement be-
tween theory and experiment indicate that the present theories are already
well developed. Nowadays computers and numerical algorithms provide a
powerful tool for solving a wide variety of previously unsolved problems.
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Abstracts of publications

[P1] We study a two-phase sample of superfluid 3He where vorticity exists in
one phase (3He-A) but cannot penetrate across the interfacial bound-
ary to a second coherent phase (3He-B). We calculate the bending of
the vorticity into a surface vortex sheet on the interface and solve the
internal structure of this new type of vortex sheet. The compression of
the vorticity from three to two dimensions enforces a structure which
is made up of 1

2
-quantum units, independently of the structure of the

source vorticity in the bulk. These results are consistent with our NMR
measurements.

[P2] We study theoretically the stability of flow in superfluid 3He-A. The
calculations are done using a one-dimensional model where the order
parameter depends only on the coordinate in the direction of the super-
fluid velocity vs. We concentrate on the case that the external magnetic
field H is perpendicular to vs, where only a few results are available
analytically. We calculate the critical velocity vc at which the super-
flow becomes unstable against the formation of continuous vortices.
The detailed dependence of vc on the temperature and on the form of
the underlying orbital texture l̂(r) is investigated. Both uniform and
helical textures of l̂(r) and two types of domain-wall structures are
studied. The results are partially in agreement with experiments made
in a rotating cylinder.

[P3] Superfluid 3He-A has domain-wall-like structures, which are called soli-
tons. We calculate numerically the structure of a splay soliton. We
study the effect of solitons on the nuclear-magnetic-resonance spec-
trum by calculating the frequency shifts and the amplitudes of the
soliton peaks for both longitudinal and transverse oscillations of mag-
netization. The effect of dissipation coming from normal-superfluid
conversion and spin diffusion is calculated. The calculations are in
good agreement with experiments, except a problem in the transverse
resonance frequency of the splay soliton or in magnetic field dependence
of reduced resonance frequencies.
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[P4] This work is motivated by recent experiments studying superfluid 3He
inside porous aerogel. Using the homogeneous scattering model, we
calculate the pairing amplitude and the superfluid density for the A
and B phases at all temperatures. At high temperatures the results are
in agreement with simpler calculations based on the Ginzburg-Landau
theory. We also study the effect of large impurities in the B phase. We
find that higher scattering channels give essentially the same results as
obtained by limiting to s-wave scattering.

[P5] When aerogel is filled with 3He the thin aerogel strands work as impu-
rities and scatter the helium quasiparticles. These impurities cause a
suppression in critical temperature, pair potential and superfluid den-
sity. The experimentally measured critical temperatures and superfluid
densities for 3He in aerogel can be fairly well explained by using an
isotropic inhomogeneous scattering model where the impurity density
is allowed to depend on location.

[P6] The standard treatment of impurities in metals assumes a homoge-
neous distribution of impurities. In this paper we study distributions
that are inhomogeneous. We discuss in detail the “isotropic inhomoge-
neous scattering model” which takes into account the spatially varying
scattering on the scale of the superfluid coherence length. On a large
scale the model reduces to a homogeneous medium with renormalized
parameter values. We apply the model to superfluid 3He, where porous
aerogel acts as the impurity. We calculate the transition temperature
Tc, the order parameter, and the superfluid density. Both A- and B-like
phases are considered. Two different types of behavior are identified for
the temperature dependence of the order parameter. We compare the
calculations with experiments on 3He in aerogel. We find that most of
the differences between experiments and the homogeneous theory can
be explained by the inhomogeneous model. All our calculations are
based on the quasiclassical theory of Fermi liquids. The parameters of
this theory for superfluid 3He in aerogel are discussed.
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