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Abstract

During the phase change in a phase-change material (PCM) storage system, the solid–liquid

interface moves away from the heat transfer surface and the surface heat flux decreases due to
the increasing thermal resistance of the molten or solidified medium. Heat-transfer enhance-
ment techniques such as fins and honeycombs have to be used to increase the heat-transfer

fraction in the store. The purpose of this paper is to develop a simplified analytical model
which predicts the solid–liquid interface location and temperature distribution of the fin in the
solidification process with a constant end-wall temperature in the finned two-dimensional

PCM store. The storage is initially in a liquid state and its temperature is greater than the
solidification temperature of the PCM. The analytical results are compared to the numerical
results calculated using the heat-capacity method. The results show that the analytical model
gives a satisfactory estimation for the fin temperature and the solid–liquid interface when the

length-to-height ratio (l) of the storage cell is smaller than 6.0 and the fin length is smaller
than 0.06 m. The error made in the fraction of solidified PCM is �10% when the analytical
model is used rather than the two-dimensional numerical model.

# 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In the late 19th century, J. Stefan formulated the solution for finding the tem-
perature distribution and freezing-front history of a solidifying slab of water. Since
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then, particularly in the last 30 years, the problem bearing his name has been
extended to include such complex phenomena as the solidification of alloy systems
and supercooling. Different materials and their material properties, especially the
latent heat of fusion, have been studied intensively to find out which materials can
be used for storing energy as latent heat rather than as sensible heat.
The most commonly used PCMs in storing energy are paraffins, salts and salt

hydrates and fatty acids. The PCM stores and releases large amounts of heat when

Nomenclature

cp heat capacity (J kg�1 K-1)
D half thickness of the fin (m)
h enthalpy (J)
k heat conductivity (W m�1 K-1)
l length (m)
L latent heat of fusion (J kg�1)
S location of the phase-change interface (m)
T temperature (�C)
�Tm solidification temperature-range (�C)
t time (s)

Greek symbols
� thermal diffusivity (m2 s�1)
� density (kg m�3)
� fraction of solidified PCM
l root of the transcendental equation
� ¼ Tf � T dimensionless temperature-distribution
� ks

Sy �cpð ÞfD

� ks
�cpð Þf

Subscripts and superscripts

eff effective
f fin
i initial
l liquid
m solidification
s solid
w wall
x x-direction
y y-direction
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changing its phase. The advantage of PCM storage compared to sensible heat-
storage systems, such as water storage, is its potential to store large amounts of heat
with only a small temperature swing. However, PCMs have some disadvantages,
such as the low heat-conductivity of the material. The heat-conductivity of paraffins
varies between 0.1 and 0.2 W m�1 K�1 and that of salt hydrates between 0.4 and 0.6
W m�1 K�1, depending on the material [1].
During phase change in PCM storage systems, the solid-liquid interface moves

away from the heat-transfer surface. During this process, the surface heat-flux
decreases due to the increasing thermal resistance of the molten or solidified med-
ium. The decreasing heat-transfer rate calls for the usage of heat-transfer enhance-
ment techniques. Some applications require heat to be charged at a faster rate while
others require heat to be discharged at a faster rate [2].
It is possible to enhance the internal heat-transfer of PCM storage with fins, metal

honeycombs, metal matrices (wiremesh), lessing rings, high-conductivity particles or
graphite [2,3]. Heat transfer during solidification in a store with internal fins has
been studied numerically and experimentally by many authors.
Heat-transfer enhancement in the solidification process in a finned PCM store

with a heat exchanger was studied numerically and experimentally by Stritih et al.
[4]. The enthalpy method was used as a numerical method to calculate the tem-
perature distribution of finned PCM storage. They concluded that the biggest influ-
ence on the heat transfer in the solidification process is the distance between the fins.
The thickness of the fin is not as influential.
Humphries et al. [5] studied numerically a rectangular phase-change store con-

taining fins used as a heat-transfer enhancement using the enthalpy method. The
data were generated over a range of realistic sizes, material properties and different
kinds of thermal boundary-conditions, resulting in a design handbook for phase-
change energy storage.
Enhanced heat-conduction in phase-change thermal-energy storage devices was

studied by Henze et al. [6]. They presented a simplified numerical model based on a
quasi-linear, transient, thin-fin equation, which predicts the location of the solid–
liquid interface as a function of time. In this work, the two-dimensional problem
was simplified to a one-dimensional problem.
The exact analytical solution for the solid–liquid interface location in two-dimen-

sional PCM store with internal fins is not found. However, Lamberg et al. simplified
the two-dimensional heat-transfer problem to a one-dimensional one and derived an
analytical solution for the melting process in a semi-infinite PCM store with internal
fins [7]. The initial temperature of the store was assumed to be the melting tem-
perature of the PCM. They found an exact solution for the temperature distribution
of the fin and for the solid–liquid interface location with a constant end-wall tem-
perature. The analytical results were compared to the numerical results and they
showed good agreement.
Lamberg et al. continued to study the solidification process with constant end-

wall temperature boundary-conditions in a finned PCM store [8]. Initially, the
store was at the PCM’s solidification temperature. The analytical results were
compared to the numerical results and they showed that the analytical model gives a
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good approximation for the temperature of the fin and the solid–liquid interface
location.
This paper continues the one-dimensional analytical approach of the two-dimen-

sional heat-transfer problem in finned PCM store in cases where the store is initially
at a higher temperature than the PCM’s solidification temperature. The analytical
model predicts the solid–liquid interface location and the temperature distribution
of the fins during the solidification process in a finned PCM store. In addition to the
one-dimensional analytical approach, the problem is also solved numerically in two-
dimensions using the effective heat capacity method. The calculation with the effec-
tive heat-capacity method is carried out using a program called FEMLAB, which is
a simulation package that solves systems and coupled equations through the finite-
element method in one-, two- and three-dimensions [9].
The main advantages of the analytical model are simplicity and short computation-

times. These features can be valuable in certain situations, such as in the pre-design
stage of the store. Absolute precision is not important in such a situation but the
speed of the calculation is, so enabling comparison of several alternatives to the
storage dimension within a reasonable time.

2. A finite PCM store with internal fins

In this work, the solidification process in a finite two-dimensional PCM store with
internal fins is studied (Fig. 1). The PCM store consists of a metal housing with
internal straight metal fins. The store is filled with a phase-change material. Initially
the store is at a uniform temperature Ti. The PCM is in the liquid phase and
its initial-temperature is higher than its solidification temperature (Ti > Tm). The

Fig. 1. The symmetry cell of PCM store with an internal fin.
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temperature of the end-walls of the store are instantaneously lowered and kept at
the temperature Tw (Tw <Tm).
The liquid PCM starts to cool down and releases heat; first as sensible heat in the

iquid PCM, then as latent heat of fusion during the phase change and finally as
sensible heat from the solid PCM until it reaches the temperature of the walls. The
amount of latent heat is large compared to the sensible heat of the material when the
temperature difference between the initial temperature and the end temperature of
the store is small.
The main heat-transfer mode is conduction in the solidification process. Initially,

natural convection exists in the liquid–solid interface due to the temperature differ-
ence in the liquid PCM. However, even very strong natural convection in the solid–
liquid interface has a negligible effect on the solid–liquid interface position com-
pared to the effect of heat conduction in the solid PCM [10]. Heat released during
cooling and the phase-change process transfers by conduction along the fins and
through the phase change material from the solid–liquid interface to the end-walls.
The PCM store is symmetrical in structure (Fig. 1). The dimensions of the store have
a significant effect on the speed of the cooling and the solidification of the material.
When the cells aspect ratio (the length of the fin divided by the height of the

cell)

l ¼
lf
lc

ð1Þ

is much smaller than unity (l<<1), the heat transfer occurs mainly in the
x-direction. When l is equal to unity, the heat transfers at the same rate in the
x-direction as in the y-direction and when l>>1, the heat transfer is dominant in
the y-direction.
The heat equation for the PCM and the enclosure with boundary and initial

conditions can be written as

@T

@t
¼

k

�cp

@2T

@x2
þ
@2T

@y2

� �
; t > 0 ð2Þ

T x; y; 0ð Þ ¼ Ti ð3Þ

T 0; y; tð Þ ¼ T lf ; y; tð Þ ¼ Tw ð4Þ

and the energy balance for the solid–liquid interface with the initial conditions is [11]:

k
@T

@y

� �
s

þ
@T

@y

� �
l

� �
1þ

@S

@x

� �2
" #

¼ �L
@S

@t

����
y¼S

; t > 0 ð5Þ

S x; 0ð Þ ¼ 0 ð6Þ
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where T is the temperature of the PCM or enclosure, t is time, cp heat capacity, �
density, k heat conductivity of the PCM or enclosure, L the latent heat of fusion,
S the location of the solid-liquid interface, Ti the initial temperature and Tm the
solidification temperature of the PCM. The subscript s denotes the solid PCM, l the
liquid PCM and f the fin.
The problem is a classical Stefan-type problem, whose basic feature is that the

regions in which the partial-differential equations apply are unknown and must be
found as part of the solution of the problem. This amounts to a non-linearity of
geometric nature even when the rest of the equations appear to be linear. Non-line-
arity is the source of difficulties and it destroys the validity of generally-used solving
methods such as the superposition method and the separation of variables method
[12]. Therefore, the analytical solution for this kind of two-dimensional heat-transfer
problem with a phase change has not yet been found. However, it is possible to solve
the problem quite easily with numerical methods such as the enthalpy method or the
effective heat-capacity method.

3. One-dimensional analytical approach

The PCM store is symmetrical in structure (Fig. 1). The symmetry cell is divided
into two regions. In region 1, the only heat sink is the constant temperature end-
wall. Here the fin does not influence the solidification process. In region 2, both the
wall and the fin transfer heat from the phase-change material to the environment.
Due to the non-linear, unsteady nature, several assumptions have been made to

simplify the two-dimensional heat-transfer problem. The assumptions are the
following:

� Initially the PCM is in a liquid state. Due the temperature difference and the
buoyancy effect in the liquid PCM, natural convection exists in the liquid
material. However, in a small PCM store, the effect of natural convection is
assumed to be negligible. The sole heat transfer mode is assumed to be
conduction.

� The solidification temperature (Tm) is assumed to be constant. In reality
a phase-change material has a wider solidification range (�Tm) in which
solidification occurs.

� The temperature distribution of the fin is considered to be one-dimensional in
the x-direction because the fin is thin and the conductivity of the fin material
is high.

� In region 1, heat transfer is one-dimensional only in the x-direction. The fin
does not have an effect on heat transfer in this region.

� In region 2, the solid–liquid interface moves only one-dimensionally in the
y-direction because the heat is mainly transferred through the fin to the
environment.

� When the thermal diffusivity a of the PCMapproaches zero (� ¼ k
�cp

	 0), it can
be assumed that @T

@t ¼ 0 and T(x,t)=Ti in the liquid PCM. The sensible heat
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of the liquid PCM is taken account in the enhanced latent heat term—
L þ cl Ti � Tmð Þ½ � which slows down the freezing front [12]. Thus, the initial
temperature of the PCM is the solidification temperature Tm instead of the
initial temperature Ti. The enhanced latent-heat term slows down the
freezing front which starts to move directly when t>0 s.

� The initial temperature of the fin is also assumed to be Tm instead of Ti. In
this approximation model, the solidification process is assumed to start
immediately when the walls are imposed at a lower temperature. Therefore,
the derived analytical model is limited to use for short, well-conductive fins in
which the temperature decreases quickly from the initial temperature to the
solidification temperature.

In region 1 the solidification can be handled as a one-dimensional single-phase
Stefan problem [12]. The cooling of the PCM before the solidification process is
taken into account in the enhanced latent-heat term— L þ cl Ti � Tmð Þ½ �. The heat
equation for a solid phase change material and for a solid–liquid interface with
initial and boundary conditions can be written as:

@Ts
@t

¼
k

�cp

� �
s

@2Ts
@x2

; ; t > 0 ð7Þ

��s L þ cl Ti � Tmð Þ½ �
@Sx

@t
¼ �ks

@Ts Sx; tð Þ

@x
; t > 0 ð8Þ

Sx 0ð Þ ¼ 0 ð9Þ

Ts Sx; tð Þ ¼ Tm ð10Þ

Ts 0; tð Þ ¼ Ts lf ; tð Þ ¼ Tw ð11Þ

where Sx is the location of the solid–liquid interface in the x-direction from the end
wall as a function of time.
In region 2, the movement of the solid–liquid interface is assumed to occur only in

the y-direction. The energy balance for the fin can be rewritten with the initial and
boundary conditions as:

�cp
� 	

f
D
@Tf
@t

¼ kfD
@2Tf
@x2

�
ks
Sy

Tf � Tmð Þ ; t > 0 ð12Þ

Tf x; 0ð Þ ¼ Tm ð13Þ

Tf 0; tð Þ ¼ Tw ð14Þ
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Tf lf ; tð Þ ¼ Tw ð15Þ

where Sy is the location of the solid–liquid interface in the y-direction from the fin.
The heat equation for the phase-change material and for a solid–liquid interface
with initial and boundary conditions can be written as:

@Ts
@t

¼
k

�cp

� �
s

@2Ts
@y2

; ; t > 0 ð16Þ

��s L þ cl Ti � Tmð Þ½ �
@Sy

@t
¼ �ks

@Ts Sy; t
� 	
@x

; t > 0 ð17Þ

Sy 0ð Þ ¼ 0 ð18Þ

Ts Sy; t
� 	

¼ Tm ð19Þ

Ts D; tð Þ ¼ Tf ð20Þ

To enable the solution of equations Eqs. (12)–(15) to be obtained, the following
dimensionless variables are introduced:

� ¼ Tf � Tm; � ¼
ks

Sy �cp
� 	

f
D
and � ¼

ks

�cp
� 	

f

:

Eqs. (12)–(15) are rewritten by using the dimensionless variables.

@�

@t
¼ �

@2�

@x2
� �� ; t > 0 ð21Þ

� �; 0ð Þ ¼ 0 ð22Þ

� 0; ð Þ ¼ 1 ð23Þ

� 1; ð Þ ¼ 1 ð24Þ

In region 1, Eqs. (7)–(11) are solved with the quasistationary approximation
method, which overestimates the location of the solidification front. However, the
overestimation will compensate for the fact that the problem is handled one-dimen-
sionally instead of two-dimensionally. The heat transfers much more slowly from

138 P. Lamberg /Applied Energy 77 (2004) 131–152



the storage to the environment in a one-dimensional case than in a two-dimensional
case. The method consists of replacing the heat conduction equation with a steady-
state equation @2T

@x2 ¼ 0. The distance of the solid–liquid interface from the end wall is
[12]

Sx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ks Tw � Tmð Þt

�� L þ cl Ti � Tmð Þð Þ

s
: ð25Þ

In region 2, the solution for the dimensionless temperature of the fin is [7,13]

� ¼
cosh xÞ

ffiffiffiffiffiffiffi
�=�

p� 	
cosh lf=2

ffiffiffiffiffiffiffi
�=�

p �

�
4

�e�t

X1
n¼0

�1ð Þ
ne�� 2nþ1ð Þ

2�2t= 2lfð ÞÞ

2n þ 1ð Þ 1þ �l2f = 2n þ 1ð Þ
2�2�

� 	� �� � cos 2n þ 1ð Þ�x=lfð Þ

ð26Þ

Tf ¼ Tm þ � TW � Tmð Þ: ð27Þ

Eqs. (16)–(20) are also solved with the quasistationary approximation method.
The distance of the solid–liquid interface from the fin is [12]

Sy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ks Tf � Tmð Þt

�� L þ cl Ti � Tmð Þð Þ

s
: ð28Þ

The temperature Tf of the fin and the distance Sy of the solid–liquid interface from
the fin are solved from Eqs. (25)–(28).

4. Two-dimensional numerical approach

4.1. The accuracies of different numerical methods

In reality in phase-change situations, more than one phase-change interface may
occur or the interfaces may disappear totally. Furthermore, the phase change
usually happens in a non-isothermal temperature range. In such cases, tracking the
solid-liquid interface may be difficult or even impossible. From the point of view of
calculations, it is advantageous that the problem is reformulated in such a way that
the Stefan condition is implicitly bound up in new forms of the equations and that
equations [Eqs. (2)–(6)] are applied over the whole fixed domain.
The most commonly used numerical methods are the effective heat-capacity

method and the enthalpy method. Lamberg et al. [14] have compared the numerical
results calculated using the effective heat-capacity method and the enthalpy method
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to experimental results achieved by using thermocouples mounted inside the PCM
store. Two different stores were built and modelled, one with internal fins and one
without fins. The PCM was initially in a solid state at a temperature of 10 �C in the
store. The store was heated up from 10 to 40 �C and when the PCM reached the steady
temperature, the store was cooled down back to 10 �C. The entire 10–40–10 �C cycle
took about 2.5–3 h and it was repeated at least five times for each measurement. For
each cycle, the temperature responses of either eight (storage with no fins) or 16 (finned
storage) thermojunctions were recorded at one-minute intervals. The store without fins
with the location of the measurement points are shown in Fig. 2.
The numerical calculations were performed using the effective heat-capacity

method and with the enthalpy method using the FEMLAB program. In the effective
heat-capacity method, two different solidification ranges �Tm =2 �C and 7 �C were
used.
In Fig. 3, the numerical and experimental results of the melting and solidification

processes in the PCM store are presented. Eff2 and Eff7 denote the effective heat-
capacity method with a solidification temperature range of between 2 �C and 7 �C,
where Ent equals the enthalpy method and Exp the experiments at measurement
point four (see Fig. 2) [14].
Firstly, the PCM starts to melt when the effective heat-capacity method with a

wide temperature range is used. However, quite soon, the effect of natural convec-
tion makes uniform the temperature development of the PCM in all the numerical
methods. All the numerical results follow quite well the experimental results for the
temperature of the PCM.
During the solidification process, all the numerical methods give uniform results

for the temperature of the PCM in the liquid state. When solidification begins, the
effective heat-capacity method with a wide temperature-range gives nearly the same
results as the enthalpy method, but differs from the results achieved with the effec-
tive heat-capacity method with a narrow phase-change range.
Lamberg et al. [14] concluded that the most precise numerical method is the

effective heat-capacity method with a narrow solidification temperature-range
�Tm=2 �C (eff2). Thus, in this paper, the analytical results are compared to the
numerical results calculated using the effective heat-capacity method with a narrow
temperature range �Tm =2 �C.

4.2. Effective heat-capacity method

The effective heat-capacity of the material (ceff) is directly proportional to the
stored and released energy during the phase change and also to the specific heat-
capacity. However, it is inversely proportional to the width of the solidification
temperature range, as can be seen in Eq. (29) [15]:

ceff ¼
L

T2 � T1ð Þ
þ cp ð29Þ

where T1 is the temperature where the solidification begins and T2 the temperature
where the material is totally solidified.
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The heat equation with initial and boundary conditions for the PCM and the fin is

@T

@t
¼

k

cp�

@2T

@x2
þ
@2T

@y2

� �
; t > 0 ð30Þ

T x; y; 0ð Þ ¼ Ti ð31Þ

Fig. 2. PCM storage with placement of the thermojunctions.
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T 0; y; tð Þ ¼ T lf ; y; tð Þ ¼ Tw ð32Þ

where

cp ¼

cs; T < T1

L

T2 � T1ð Þ
þ cp;T1 4T4T2

cl; T > T2

8>>><
>>>:

ð33Þ

The effective heat-capacity method is valid for the phase-change material and for
the fin except in Eq. (33). The latent heat term

�
L

T2�T1ð Þ
þ cp

	
is ignored when the fin

is taken into consideration. The numerical calculations are performed using the
FEMLAB program [16].

5. Results

5.1. Test cases

The temperature distribution in the fin and the location of the solid–liquid inter-
face is calculated using the derived one-dimensional analytical method and with the
two-dimensional numerical effective heat capacity method. The results are compared
with each other to find the accuracy and performance of the one-dimensional ana-
lytical approach and the solution.

Fig. 3. The numerical and experimental results of melting and solidification processes in the PCM store.
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Three test cases with different geometries are chosen. In the test cases the
initial temperature of the store is 40 �C and the PCM is in the liquid state. The
wall temperature is set at 10 �C. The phase-change material is paraffin and the
fin material aluminium. The peak solidification temperature of the PCM is 25 �C.
The physical properties of the phase change and the fin materials are shown in
Table 1 [17]. The heat conductivity and the density of the paraffin are assumed
to be constant.
The half thickness, D, of the fin has a constant value of 0.5 mm in all the test

cases. Otherwise, the geometry of the store is varied in the different cases. The width-
to-height ratio l ¼ Lf=Lc is given the values 0.2, 3.0 and 5.0.

5.2. The temperature of the fin

The temperature of the fin is calculated using the derived analytical solution in
Eqs. (25)–(28) and by using the effective heat-capacity method [Eqs. (30)–(33)]. In
Fig. 4 the results in test case 1 are shown at time steps t=200 s and 400 s.
When the fin is short, it achieves the end-wall temperatures quickly because of its

better heat conductivity compared to the conductivity of the phase-change material.
The temperature of the fin is a little higher in the analytical solution than in a
numerical solution. However, the error made is small, approximately 0.05 �C at
t=200 s and 0.07 �C t=400 s.
The temperature of the fin that was calculated using the analytical and numerical

solution in case 2 is presented in Fig. 5.
At t=200 s the temperature of the fin is higher in the numerical solution than in

the analytical solution. In the derived analytical model, it has been assumed that the
fin is initially at the same temperature as the PCM’s solidification temperature.
Therefore, at the beginning of the solidification process, it can be seen that the fin
cools down too quickly in the analytical solution. The temperature difference
between the analytical and the numerical solutions is 0.2 �C at t=200 s. When
t=400 s, it can be noticed that the temperature difference between the analytical and
the numerical solution diminishes and it is only 0.05 �C. Overall, the derived analy-
tical model gives a quite good estimation for the temperature of the fin when
compared to the numerical solution.

Table 1

Physical properties of the paraffin and the aluminium fin

Property Paraffin Aluminium fin

Density (�) (kg m�3) 770 2710

Heat conductivity (k) (Wm�1 K�1) 0.185 174

Heat capacity, liquid (cp) (J kg
�1 K�1) 2400 –

Heat capacity, solid (cp) (J kg
�1 K�1) 1800 935

Latent heat of fusion (L) (J kg�1) 124 098 –

Peak solidification temperature (Tm) (
�C) 25 –
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Fig. 6. presents the temperature of the fin in case 4 at t=300 s and t=900 s. The
time steps are chosen to be higher in case 3 than in cases 1 and 2 because the solid-
ification process takes more time when the fin is long.
The assumption that the fin is initially at the solidification temperature of the

PCM was made in the analytical model. It is also possible to see the effect of this
assumption in Fig. 6. The temperature of the fin is much smaller in the analytical
solution than in the numerical solution. The temperature difference between the

Fig. 5. The temperature of the fin in the PCM store in case 2 (l=3, lf=0.03 m, lc=0.01 m).

Fig. 4. The temperature of the fin in the PCM store in case 1 (l=0.2, lf=0.01 m, lc=0.05 m).
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analytical and the numerical results is 1.5 �C at t=300 s and 0.05 �C at t=900 s.
However, the temperature difference diminishes when the time increases.

5.3. The location of the solid–liquid interface

The solid–liquid interface in different cases is calculated using the derived analy-
tical solution [Eqs. (25)–(28)] and also by using the effective heat-capacity method
[Eqs. (30)–(33)]. In Fig. 7, the temperature distribution of the storage is shown and is
calculated using the effective heat-capacity method with the FEMLAB program in
cases 1, 2 and 3 at t=300 s.
The location of the solid–liquid interface is defined from the temperature distri-

bution of the store calculated using the effective heat capacity method by assuming
that the interface is located for the temperature Tm=25 �C.
In Fig. 8, the location of the solid–liquid interface in case 1 calculated using the

analytical and numerical methods at t=200 s and t=400 s are presented.
The derived analytical model is one-dimensional in both the x- and the y-direc-

tion. In reality, the two-dimensional heat-transfer in the storage accelerates the
solidification process. It is also possible to see this phenomenon in Fig. 8. The
interface in the one-dimensional analytical approach moves more slowly than in the
two-dimensional numerical approach. The quasistationary solution compensates to
a degree for the lack of two-dimensional heat-transfer in the derived analytical
method.
The difference in the solid–liquid interface calculated using the analytical and the

numerical model is 0.09 mm in the x-direction and 2.08 mm in the y-direction at the
time step t=200 s and 0.5 mm in the x-direction and 5.0 mm in the y-direction at
t=400 s. The location of the interface is more precise in the x-direction because the
heat is mainly transferred in the x-direction when l is smaller than unity.

Fig. 6. The temperature of the fin in the PCM store in case 3 (l=5, lf=0.05 m, lc=0.01 m).
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Fig. 8. The location of the solid–liquid interface computed using the analytical and the numerical

solutions in case 1 (l=0.2, lf=0.01 m, lc=0.05 m).

Fig. 7. The temperature distribution in the PCM store at t=300 s in cases 1–3 calculated with FEMLAB

by using the effective heat-capacity method.
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The solid–liquid interface locations calculated using the derived analytical and
numerical solutions at t=200 s and t=400 s in case 2 are presented in Fig. 9.
At t=200 s the difference in the solid–liquid interface location in the x-direc-

tion is 0.1 mm and 1.1 mm in the y-direction. The numerical solution gives a
rounder shape to the interface than the analytical solution because of the two-
dimensional heat transfer effect in the numerical model. At t=400s, the interface
moves more slowly in the x-direction in the derived analytical solution than in
the numerical solution. The x-directional difference between the interface loca-
tion in the derived analytical and numerical solution is 1.2 mm. When the fin
length increases, the assumption that the fin is initially at a lower temperature than
the PCM starts to affect to the results. The difference between the interfaces is 0.6
mm where the fin length is 0.015 mm and 0.3 mm where the fin length is 0.006 mm at
t=900 s.
However, the analytical solution still gives a satisfactory estimation of the solid–

liquid interface location.
The locations of the solid–liquid interfaces at t=300 s and t=900 s in case 3 are

shown in Fig. 10.
The location of the solid–liquid interface in the analytical solution moves

more slowly in the x-direction and more quickly in the y-direction than in
the numerical solution. At t=300s, the interface location difference between
the analytical and numerical solution in the x-direction is 0.75 mm and 0.86
mm in the y-direction. At t=900s, the interface location difference is 3.4 mm
in the x-direction and 0.6 mm in the y-direction. Overall, the derived analy-
tical solution still gives a good approximation for the solid–liquid interface
location.

Fig. 9. The location of the solid–liquid interface in analytical and numerical solutions in case 2 (l=3.0,

lf=0.03 m, lc=0.01 m).
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5.4. Fraction of solidified PCM

Lamberg et al. [7] presented a factor called the fraction of solidified PCM, which
describes how much of the storage is solidified after a certain time. The factor is
given values of between zero (the store is totally liquid) and unity (the store is totally
solid). The factor is defined as the volume of the solidified PCM related to the total
volume of PCM in the store:

" ¼
2Sx Lc � D � Sy

� 	
þ SyLf

Lc � Dð ÞLf
ð34Þ

where Sy is the average value of the solid–liquid interface location in the y-direction
along the fin length. The Sx and Sy can be calculated from Eqs. (25)–(28). The frac-
tions of solidified PCM calculated from the derived analytical and numerical results
in different test cases are shown in Table 2.
The error made in the fraction of solidified PCM, when using a derived one-

dimensional analytical solution instead of two-dimensional numerical solution, is
approximately �10%. In the analytical model, it has been assumed that the solidi-
fication begins directly when t>0 s. The sensible heat was taken into account in the
enhanced latent-heat term. Thus, it is obvious that the analytical model over-
estimated the solidification speed at the beginning of the solidification process.
Later, when the time increases, the assumption that the analytical model is
one-dimensional starts to affect the solidification speed and lowers it while the two-
dimensional heat-transfer accelerates the speed of the solidification in the store.
Nevertheless, the derived analytical model gives a good estimation for the solidifi-
cation of the PCM store and the model can be used when the geometry of the store

Fig. 10. The location of the solid–liquid interface in analytical and numerical solutions in case 3 (l=5.0,

lf=0.05 m, lc=0.01 m).
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is studied in order to find the most effective geometry for the PCM store with
internal fins.

6. Discussion

The assumption that the fin is initially at the solidification temperature and the
assumption that Eqs. (12)–(20) are valid when the solid–liquid interface location Sy

is larger than zero, means that the model is limited to being used with pre-defined
maximum fin-lengths. To find out the effect of the assumption, a numerical calcula-
tion using the effective heat-capacity method is carried out where l is given values
from 0.2 to 8.0. Fig. 11 presents the time in which the fin cools down from the initial
temperature to the solidification temperature. The cooling time is presented as a
function of the storage geometry.

Fig. 11. Time in which the temperature of the fin achieves the solidification temperature of the fin for

different geometries.

Table 2

The fraction of solidified PCM in different test cases

Time (s) Rate analytical,

"anal (–)

Rate numerical,

"num (–)

Error

"anal="num�100%

Case 1: l ¼ lf=lc ¼ 0:2 200 0.61 0.55 5.8

400 0.86 0.95 �9.1

Case 2. l ¼ lf=lc ¼ 3 200 0.44 0.39 5.1

400 0.74 0.64 �5.1

Case 3. l ¼ lf=lc ¼ 5 300 0.45 0.38 7.3

900 0.73 0.76 �3.3
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With small l values (l =0.3–3.0), the cooling of the fin from the initial tempera-
ture to the solidification temperature happens quickly. The cooling time is less than
3 s. When l increases, the cooling time increases exponentially. When l=6.0 and the
length of the fin is 0.06 m, the cooling time from the initial temperature to the
solidification temperature of the PCM is 21 s.
In region 2, Eqs. (12)–(20) are valid when the Sy>0. In Table 3, the solid–liquid

interface locations calculated using the analytical solution at time step t=1 s are
presented.
It can be seen from Table 3 that when l=6.0 and the length of the fin is 0.06 m,

the solid–liquid interface approaches the value zero. The conclusion is that the ana-
lytical model is valid when l<6.0 and the length of the fin is lf<0.06 m.

7. Conclusions

This paper presents a simplified analytical model based on a quasi-linear, tran-
sient, thin-fin equation which predicts the solid–liquid interface location and tem-
perature distribution of the fin in a solidification process with a constant end-wall
temperature in a finite PCM store.
The initial temperature of the fin and the PCM is assumed to be Tm instead of Ti

because in this simplified model the solidification process is assumed to start imme-
diately and sensible heat is taken into account in the enhanced latent-heat term—
L þ cl Ti � Tmð Þ½ �—which slows down the solidification front.
The following conclusions are made in relation to the accuracy of the one-dimen-

sional analytical model:

� The study showed that when the width to height ratio l <6.0 and the length lf
of the fin was <0.06 m, the derived analytical model is valid. The effect of the
assumption that the fin is initially at the solidification temperature of the
PCM on the results is small.

� At the beginning of the solidification process, the temperature of the fin is
smaller for the analytical than the numerical results. The temperature dif-
ference between the analytical and numerical results is greatest in the case

Table 3

The solid–liquid interface with different l values in analytical approach at t=1 s

l ¼ lf=lc Interface location, Sy (m)

0.2 0.00021

1.0 0.00020

2.0 0.00020

3.0 0.00010

4.0 0.00002

5.0 0.00001

6.0 ! 0.00000
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where l =5.0. The assumption that the fin is initially at the PCM’s solidifi-
cation temperature is the reason for this phenomenon. When the time
increases, the fin temperature difference between the analytical and numerical
results diminishes. Overall, the analytical model gives a satisfactory result for
the temperature of the fin.

� The geometry of the store has a big influence on the accuracy of the analytical
model. The analytical model gives more precise results for the solid–liquid
interface location in cases when l is much smaller than unity or much bigger
than unity. In these cases the heat transfer is mainly one-directional, as is the
case in the derived analytical model.

� The error made in the fraction of solidified PCM when using a derived one-
dimensional analytical solution instead of a two-dimensional numerical
solution is approximately �10%. The derived analytical model gives a good
estimation for the solid–liquid location in the finned PCM store and it is
suitable for use in the pre-design of the PCM store.
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