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Abstract

Two-dimensional transom waves are computed using inviscid and viscous
free-surface boundary conditions at model- and full-scale ship Reynolds num-
bers. The computations are carried out solving the steady Euler or RaNS
equations with the Navier-Stokes solver, FINFLO. The viscous free-surface
boundary conditions are obtained from a flat-surface approximation. Dif-
ferent numerical schemes used when evaluating the free-surface deformation
are presented. Their effect on the evaluated transom waves and the flow
field is discussed at model and full scale. Further, computations of turbulent
free-surface flows carried out at full-scale ship Reynolds numbers using the
moving-grid technique and no wall functions are presented and discussed.
An improved extrapolation method combining model testing and CFD is
proposed.

The simulations in this work demonstrate the significant effect of the nu-
merical realization of the free-surface boundary conditions and the decreasing
Froude number on the computed transom waves, the flow field and the total
resistance. At full-scale ship Reynolds numbers, multigridding will speed up
the convergence. The free-stream dissipation of the turbulent kinetic energy
has to be treated like a material property when using Chien’s low-Reynolds
number k-ε turbulence model. The scaling of the computed results is in
excellent agreement with the modified ITTC-78 method. The convected tur-
bulent kinetic energy is amplified by the transom waves. At the vicinity of
the transom, a significant increase of the nondimensional vorticity is obtained
at full scale.

Key words: FINFLO, transom waves, free-surface boundary conditions,
Reynolds-averaged Navier-Stokes equations, Euler equations, full scale, scal-
ing.
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Nomenclature

A wetted surface, reference area
A+ Van Driest damping constant
B width of the model slice
C, C1, C2, C3, Cµ empirical coefficients
CD, CT drag coefficient, total resistance coefficient
CF mean skin friction coefficient
Cf local skin friction coefficient
CP pressure resistance coefficient
CR residual resistance coefficient
CTM measured total resistance coefficient of the model
CTMC computed total resistance coefficient of the model
CTS total resistance coefficient of the ship
CTSC computed total resistance coefficient of the ship
Cv viscous resistance coefficient
∆CF difference of the mean skin friction coefficient
d thickness of a cell
DTWMAX dimensional Courant number in the free-surface

evaluation
F , G, H flux vectors in the x-, y- and z-directions
FKleb Klebanoff intermittency function
Fmax maximum of the turbulence function, F
FnT Froude number based on the draught of the transom
g gravitational constant
I∞ free-stream turbulence level
~i, ~j, ~k unit vectors in the x-, y- and z-directions
K curvature of the free surface
k turbulent kinetic energy, form factor
K-EPS k-ε turbulence model
L length overall
lmix mixing length
Lpp length between perpendiculars
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n, t referred to the normal and tangential directions
on the free surface

n number of control volumes
~n, ~t normal and tangential vectors on the free surface
ni, ti components of the normal and tangential vectors

on the free surface
nx x-component of the normal unit vector on the hull
P production of turbulent kinetic energy
p pressure
Q source term
R radius of bow
Rel Reynolds number
Rex local Reynolds number
ReT turbulence Reynolds number
ReΘ Reynolds number based on the boundary-layer momentum thickness
RP pressure resistance
RT total resistance
T stress tensor, depth of transom
t time
tx x-component of the tangential unit vector on the hull
U vector of conservative variables
u, v, w velocity components in the x-, y- and z-directions
uτ friction velocity
U∞ free-stream velocity
u+ nondimensional velocity component in the x-direction
~V velocity vector
VT mean velocity in direction tangential to the wall
VT,diff difference between the maximum and minimum tangential velocity

in the velocity profile
WH wave height
X distance from the transom
x, y, z coordinate directions of a Cartesian coordinate system
yn, y+ dimensional and nondimensional normal distances from the wall
yn,max distance from the wall where F = Fmax
ym inner/outer-layer matching point of the Baldwin-Lomax model
|z|, |z|+ dimensional and nondimensional distance from the wall
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α closure coefficient
β local wave elevation
~γ vorticity vector
γ∗ nondimensional vorticity
∆ residual
δ boundary-layer thickness
δij Kronecker delta
ε dissipation of turbulent kinetic energy
κ Kármán constant
λ wave length, scale
∆λ difference of the wave length
µ molecular viscosity
µT turbulent viscosity
µT i turbulent viscosity of the Baldwin-Lomax model in the inner layer
µTo turbulent viscosity of the Baldwin-Lomax model in the outer layer
µk diffusion coefficient
µε diffusion coefficient
ν kinematic viscosity
ρ density of the fluid

−ρu′iu′j Reynolds stresses
σ surface tension
σk, σε turbulent Prandtl numbers for k and ε
τ stress
Φ flow quantity
‖Φ‖2 L2-norm of a quantity, Φ
ψ piezometric pressure
∇ nabla operator
ω vorticity
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Superscripts:

T transpose of a vector

Subscripts:

air referred to air
Blasius referred to Blasius
FS free surface
Fullyturb. referred to a from the beginning fully turbulent flow
i, j grid-coordinate directions
i, j, k cell centre
liquid referred to fluid
max maximum
true true value
v viscous
wall value on the wall
White referred to White
xx, yy, zz indicate normal stresses
xy, xz, yz indicate shear stresses
1, 2, 3 x-, y- and z-components
∞ referred to free-stream values

Abbreviations:

BC boundary condition
BL1, BL2, BL3, BL4 blocks of the computational domain
CFD computational fluid dynamics
CPU central processing unit
DDADI diagonally dominant alternating direction implicit
FINFLO finite-volume-based Reynolds-averaged Navier-Stokes solver

developed at Helsinki University of Technology
FSC full scale
GB gigabyte
ITTC International Towing Tank Conference
MB megabyte
Mflop megaflop
MSC model scale
RaNS Reynolds-averaged Navier-Stokes
SST shear-stress transport
2-d two-dimensional
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1 Introduction

1.1 General

A ship moving in water always creates a wave system. In the computational
analysis of such a wave system, the kinematic and the dynamic boundary con-
ditions are required for the free surface. Usually, several simplifications are
introduced in viscous flow simulations leading to the same free-surface bound-
ary conditions as in potential flow simulations. However, there is vorticity at
the free surface, Choi and Stern (1993), Dabiri and Gharib (1997), Longuet-
Higgins (1997), Lundgren and Koumoutsakos (1999), Ohkusu (1996). In con-
sequence, the velocity gradients are non-zero. Also, the pressure is non-zero
due to the viscous terms appearing in the dynamic boundary condition in the
normal direction to the free surface. The error associated with the application
of the inviscid free-surface boundary conditions may be unacceptable, Stern
et al. (1996). The application of the physically correct viscous free-surface
boundary conditions seems to be desirable. Even for identical analytical
formulation of the free-surface boundary conditions, computed wave profiles
differ depending on the numerical scheme used. Publications usually give the
analytical formulation, but, unfortunately, the numerical scheme employed
is seldom presented or discussed.

There are a few publications on ship flow computations using the vis-
cous free-surface boundary conditions, Lilek (1995,1996), Alessandrini and
Delhommeau (1994,1997), Liu and Kodama (1993), Cowles and Martinelli
(1999), Jeong and Doi (1995), Dong and Huang (1999), Gentaz et al. (2000),
Vogt (1998). Comparative studies of the influence of the viscous and inviscid
free-surface boundary conditions on ship flows are very rare. The viscous
free-surface boundary conditions give results of improved or at least of equal
accuracy compared to the inviscid ones. So far, detached transom flows over

11
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a large range of Reynolds numbers up to full scale have not been treated
using the viscous free-surface boundary conditions including the influence of
turbulence. Most ships have a transom, and the stern induced resistance
is significant, Saisto (2000). Vanden-Broek (1980) and Saisto (1995,2000)
investigated 2-d detached transom flows as potential flow past a semi-infinite
flat-bottomed body. Respective viscous flow evaluations are given in Ta-
hara and Iwasaki (1998), Funeno and Yamano (2001) and Yamano et al.
(2000,2001). In transom flows, the boundary layer of the hull is convec-
ted into the transom waves. There, the velocity gradients and vorticity are
stronger compared with the case where the boundary layer is not taken into
account. Therefore, in such cases, the application of the viscous free-surface
boundary conditions seems to be appropriate.

Usually, numerical investigations of turbulent free-surface flows are car-
ried out at Reynolds numbers of a model-scale ship. The results obtained
must be scaled to full scale, which might cause errors in the case of new
vessel types where the scaling mechanisms are not known. Computations of
full-scale ships are attractive as no scaling is necessary, and the allowances
may be reduced. The shape of the hull and the propeller may be optimized
with respect to the proper flow around the ship. Additionally, computations
of full-scale ships will serve as supplement to model testing as more insight
in the scaling mechanisms is obtained. Computations of turbulent flows solv-
ing the RaNS equations at full-scale ship Reynolds numbers are presented
in the following references: Ju and Patel (1991,1994), Tzabiras (1992,1993),
Ishikawa (1994), Schmitt (1997), Eca and Hoekstra (1997,2000), Schweig-
hofer (1997), Dolphin (1997), 6 from Larsson et al. (2000), Chen et al.
(2001), Starke (2001), Chao (2001). In only one of these publications, Chen
et al. (2001), turbulent free-surface flows have been computed at full-scale
ship Reynolds numbers. Chen et al. (2001) used a fixed-grid technique
and wall functions. The results were significantly affected by the grid res-
olution, Chen (2001). The computed waves showed a slight dependence on
the Reynolds number, Chen (2001). Yamano et al. (2001) investigated the
scale effect on the stern-wave resistance, and they presented results up to
the Reynolds number of a full-scale ship. Nevertheless, they did not solve
the RaNS equations. Instead, they used empirical relations for the velocity
and boundary-layer thickness at the stern, and the waves and the flow lines
below the free surface were approximated by trochoids.

At full-scale ship Reynolds numbers, turbulent free-surface flows have not
been computed using the moving grid-technique without the use of wall func-
tions. Compared with the fixed-grid techniques, the moving-grid technique
has several advantages. The conservation of mass and momentum can easily
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be fulfilled on the free surface, and the application of the free-surface bound-
ary conditions is easy to carry out, Lilek (1996). Applying wall functions to
full-scale computations of turbulent ship flows, the amount of grid cells may
be kept fairly small. Therefore, the computational times can be kept short.
Nevertheless, it is difficult to define a wall function applicable to different
geometries. Physically more correct and of more general validity is the com-
putation of the entire boundary layer until the wall instead of the use of a
predetermined nondimensional velocity profile.

1.2 Scope of the Work

This work focusses on two tasks related to each other. The first one is to
carry out a comparative study of the influence of the viscous and inviscid
free-surface boundary conditions on two-dimensional detached transom flow
at model-scale and full-scale ship Reynolds numbers. The second one is to
discuss computations of turbulent free-surface flows using the moving-grid
technique and no wall functions at full-scale ship Reynolds numbers. In
particular, the following items are considered in this work:

• Different free-surface boundary conditions and their numerical realiza-
tions are presented. Their effect on the evaluated transom waves and
the flow field at model-scale and full-scale ship Reynolds numbers is
discussed.

• Using the moving-grid technique, the computations of the turbulent
flow are conducted without the application of wall functions at different
Reynolds numbers of a ship corresponding to model scale and full scale.

• The efficiency of multigridding at the full-scale Reynolds number of a
ship is discussed.

• The influence of the free-stream turbulence quantities on the turbulent
boundary-layer flow is evaluated at the Reynolds number of a full-scale
ship.

• The influence of the boundary layer on the transom waves is discussed.

• The scaling of the pressure and skin friction resistance is evaluated and
compared with the ITTC-57 and ITTC-78 extrapolation methods.

• An improved extrapolation method combining model testing and CFD
is proposed.
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The Reynolds-averaged Navier-Stokes equations or the Euler equations are
iteratively solved by the FINFLO code until the steady state is reached.
A cell-centered finite-volume method is applied. No wall functions are used.
Turbulence is treated by Chien’s low-Reynolds number k-ε turbulence model.
Further, the Baldwin-Lomax model is used for the investigation of multigrid-
ding at the full-scale ship Reynolds number. Incompressibility of the flow is
considered by an artificial-compressibility approach. The free-surface is eval-
uated by a moving-grid technique.

Following the primary suggestions of PhD. Tinqui Li, the viscous free-
surface boundary conditions are implemented into the FINFLO code in two
dimensions. A flat-surface approximation is used. The implementation is
carried out in Cartesian coordinates. The free-surface boundary conditions
and the continuity equation are applied directly on the free surface. Nev-
ertheless, the necessary velocity gradients are calculated from the velocit-
ies at the cell centres below the free surface. Further, alternative inviscid
free-surface boundary conditions are investigated, which are implemented
also in two-dimensions. Numerous computations of the two-dimensional flat-
bottomed model, Ile, are conducted at the Froude numbers, 2.1, 2.2, 2.3 and
2.8 and the Reynolds numbers, 2.8×106, 2.933×106, 3.066×106, 3.732×106

and 9.442×108. The appearance of the bow wave is suppressed. At the
transom, the wave-height is set equal to the depth of the transom.

The investigations are performed in two dimensions to keep CPU times
reasonably short. This simplifies the problem, allowing to evaluate the pure
influence of the free-surface boundary conditions on the computed transom
waves. The conclusions should be valid also for three dimensions. In the
future, the obtained knowledge will concretely contribute to full-scale com-
putations of ships.

The simulations of this work demonstrate the significant effect of the
numerical realization of the free-surface boundary conditions on the com-
puted transom waves. Further, at the investigated Froude numbers lower
than 2.8, it makes physically a difference whether the inviscid irrotational
or the Reynolds-stress free-surface boundary conditions are used. Multi-
gridding at full-scale ship Reynolds numbers will speed up the convergence.
The free-stream dissipation of the turbulent kinetic energy has to be treated
like a material property when using Chien’s low-Reynolds number k-ε tur-
bulence model. For detached transom flows over a flat bottom at the two
higher Reynolds numbers, the boundary layer has very little influence on the
appearing transom waves, and the pressure resistance coefficient is almost
independent of the Reynolds number. The scaling of the computed results
is in excellent agreement with the modified ITTC-78 method. The ITTC-57
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extrapolation method overestimates slightly the total resistance coefficient.
The form factor with respect to the skin friction line of a flat plate remains
constant. If no wave breaking occurs, then the Boussinesq approximation will
have no influence on the evaluated waves through the dynamic free-surface
boundary condition with respect to the normal stresses on the free-surface.
For the investigated case at the highest Froude number, the influence of the
turbulent viscosity on the transom waves through the dynamic free-surface
boundary conditions can be neglected at model and full scale. The convected
turbulent kinetic energy is amplified by the transom waves. At the vicinity
of the transom, the increase of the Reynolds number causes a significant
increase of the nondimensional vorticity.

The results shown demonstrate that free-surface computations of turbu-
lent ship flows are possible at full-scale ship Reynolds numbers using the
moving-grid technique and no wall functions.



2 Numerical Method

The computations below are carried out using the Navier-Stokes solver, FIN-
FLO, originally developed in the Laboratory of Aerodynamics of Helsinki
University of Technology, Kaurinkoski and Hellsten (1998), Siikonen et al.
(1990), Siikonen (1995), Siikonen (1996). The work of Siikonen is associated
with the the development of the largest part of FINFLO. In the past six years,
in the Ship Laboratory of the Helsinki University of Technology, this flow
solver has been further developed for the treatment of ship flows, Li (2000),
Mikkola (1999), Sundell (1997). The Reynolds-averaged Navier-Stokes equa-
tions are iteratively solved by a cell-centered finite-volume method until a
steady state is reached. Incompressibility of the flow is considered by an ar-
tificial compressibility approach, Rahman et al. (1997). An upwind-type spa-
tial discretization of third-order accuracy without flux limitation is applied
to the approximation of the convective terms. Incompressible flux-difference
splitting is used as flux-splitting method, Rahman (1997), Rahman (2000).
The viscous fluxes are evaluated according to a thin-layer approximation
which is activated in all coordinate directions. Here, the central differencing
scheme is used for the calculation of the velocities at the cell surfaces. The
solution of the discretized equations is obtained using a diagonally dominant
alternating direction implicit (DDADI) time integration method, Lombard et
al. (1983), with local time stepping. The turbulence is treated by Chien’s
low-Reynolds number k-ε turbulence model. The computations are carried
out without the application of multigridding. Nevertheless, at the full-scale
ship Reynolds number, the efficiency of multigridding is evaluated using the
Baldwin-Lomax turbulence model. The free surface is evaluated by a moving-
grid technique, Lehtimäki (2000), Li (2000), Mikkola (1999), Sundell (1997).

16



Numerical Method 17

2.1 Governing Equations

The computations are carried out using an incompressible fluid as medium.
Therefore, the following theory is explained for incompressible flows. Nev-
ertheless, it should be kept in mind that FINFLO is a Navier-Stokes solver
for compressible flows. Incompressibility of the flow in question is taken into
account by the above mentioned features.

In a right-handed Cartesian coordinate system, the Reynolds-averaged
Navier-Stokes equations for incompressible flow and the equations for the
turbulent kinetic energy, k, and the dissipation of the turbulent kinetic en-
ergy, ε, can be written in the following form:

∂U

∂t
+
∂ (F − Fv)

∂x
+
∂ (G−Gv)

∂y
+
∂ (H −Hv)

∂z
= Q , (2.1)

where U = (ρ, ρu, ρv, ρw, ρk, ρε)T , and t is the time. The inviscid fluxes, F ,
G and H, are

F =




ρu
ρu2 + ψ
ρvu
ρwu
ρuk
ρuε




, G =




ρv
ρuv

ρv2 + ψ
ρwv
ρvk
ρvε




, H =




ρw
ρuw
ρvw

ρw2 + ψ
ρwk
ρwε




. (2.2)

U is the vector of the conservative variables. ρ is the density of the fluid. The
velocity is ~V = u~i+v~j+w~k, where u, v and w are the velocity components in
the x-, y- and z-directions, respectively. ψ is the piezometric pressure which
is defined as

ψ = p+ ρgz . (2.3)

p is the static pressure, g is the gravitational constant, and z is the z-
coordinate of the location of interest. The z-axis is directed upwards from
the free surface (Fig. 3.1). The viscous fluxes are

Fv =




0
τxx
τxy
τxz

µk
(
∂k
∂x

)

µε
(
∂ε
∂x

)




, Gv =




0
τxy
τyy
τyz

µk
(
∂k
∂y

)

µε
(
∂ε
∂y

)




, Hv =




0
τxz
τyz
τzz

µk
(
∂k
∂z

)

µε
(
∂ε
∂z

)




. (2.4)
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Because of the incompressibility of the flow, the term, ∇ · ~V , is equal to
zero, which is consistent with the continuity equation. Therefore, the stress
tensor, τij, may be given as

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− ρu′iu′j . (2.5)

The Boussinesq approximation, Anderson et al. (1984),

−ρu′iu′j = µT

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
ρkδij , (2.6)

is applied to the Reynolds stresses, −ρu′iu′j. µ and µT are the molecular and
the turbulent viscosities, respectively, and δij is the Kronecker delta. (u1, u2,
u3) = (u, v, w) and (x1, x2, x3) = (x, y, z).

The source term, Q, and the diffusion coefficients of the turbulence quant-
ities, µk and µε, are given in the following section.

2.2 Turbulence Models

2.2.1 Chien’s Low-Reynolds Number k-ε Turbulence
Model

In Eq. (2.6), the Reynolds stresses, −ρu′iu′j, are calculated using the tur-
bulent viscosity, µT . The turbulent viscosity is derived from Chien’s low-
Reynolds number k-ε turbulence model, Chien (1982), Wilcox (1993), Sch-
weighofer (1997), where two transport equations for the turbulent kinetic
energy, k, and the dissipation of the turbulent kinetic energy per unit mass,
ε, are solved (Eqs. 2.1, 2.2, 2.4 and 2.7). In further consequence, the turbu-
lent viscosity is calculated as a function of k and ε.

The task of this investigation is not the development of a new turbulence
model with respect to free-surface flows. The available turbulence models
in association with the Boussinessq approximation are Chien’s low-Reynolds
number k-ε turbulence model, the Baldwin-Lomax turbulence model, Bald-
win and Lomax (1978), Wilcox (1993), Schweighofer (1997), and Menter’s k-
ω SST turbulence model, Menter (1993), Schweighofer (1997). The Baldwin-
Lomax model is not able to reproduce the turbulent viscosity in the transom
waves to be computed as it depends only on the local instantaneous flow con-
dition and no turbulence is convected into the waves. The turbulent viscosity
can be calculated only within the boundary layer close to the wall, but not
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within the transom waves. Menter’s k-ω SST turbulence model would be a
promising alternative. It has been implemented into the code, Brandt (2000),
but at this stage, it has not been tested sufficiently. Therefore, the only ap-
propriate choice is Chien’s low-Reynolds number k-ε turbulence model. At
model scale, it has been applied to ship flows by Saisto and Sundell (1996)
giving an accuracy of less than five percent for the total resistance coeffi-
cient. Schweighofer (1997) proved its applicability to turbulent flows over a
flat plate for Reynolds numbers up to full-scale ship Reynolds numbers. The
turbulence is convected from the boundary layer at the wall into the waves,
and the influence of the free-surface on the turbulence can be taken into ac-
count by the production of the turbulent kinetic energy, which is determined
from the turbulent viscosity and the appearing velocity gradients. The pres-
sure gradients are expected to be small as the ratio of the length between
the perpendiculars and the draught of the model, Lpp/T , is equal to fifteen,
and no complicated separation with back flow is expected to occur, which
is concluded from the measurements of Saisto (1995). Therefore, Chien’s
low-Reynolds number k-ε turbulence model is assumed to be sufficient for
the investigation to be performed. The Boussinesq approximation gives sat-
isfactory results for ship flows without a free surface, Saisto and Sundell
(1996), Schweighofer (1997). Nevertheless, the evaluated free surface might
be influenced through the dynamic free-surface boundary conditions by the
turbulent viscosity and the Boussinesq approximation. One task of this work
is the evaluation of this influence and the applicability of the Boussinesq ap-
proximation to free-surface computations.

In Chien’s k-ε turbulence model, no wall-function approach is used. The
solution is extended to the wall, the whole computational domain is treated
with the same scheme, and the wall-reflection terms vanish further away from
solid surfaces. The source term, Q, is given as

Q =




0
0
0
0

P − ρε− 2µ k
y2
n

C1
ε
k
P − C2

ρε2

k
− 2µ ε

y2
n
e−y

+/2




, (2.7)

where yn and y+ are the dimensional and the nondimensional normal dis-
tances from the wall, respectively. The nondimensional distance from the
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wall, y+, is obtained from

y+ = yn
ρuτ
µ

= yn

√
ρτwall
µ

= yn


ρ|∇ × ~V |

µ




1/2

wall

. (2.8)

uτ and τwall are the friction velocity and the wall-shear stress, respectively.
In Eq. (2.7), ε is a modified dissipation per unit mass. The true dissipation
per unit mass, εtrue, is derived from

εtrue = ε + 2
µk

ρy2
n

. (2.9)

Using Eq. (2.6) for the Reynolds stresses, −ρu′iu′j, the production of turbu-
lent kinetic energy, P , is modelled as

P = −ρu′iu′j
∂ui
∂xj

=

[
µT

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
ρkδij

]
∂ui
∂xj

. (2.10)

In certain cases, the turbulent viscosity, µT , may become unphysically high,
e.g. close to the stagnation point. In order to avoid this phenomena, the
production of turbulent kinetic energy, P , is limited as suggested by Menter
(1993)

P = min (P, 20ρε) . (2.11)

The turbulent viscosity, µT , is calculated from

µT = Cµ
ρk2

ε
. (2.12)

In Eqs. (2.7, 2.12, 2.15 and 2.16), several empirical coefficients appear. These
are

C1 = 1.44 ,

C2 = 1.92
(
1− 0.22e−Re

2
T /36

)
,

Cµ = 0.09
(
1− e−0.0115y+

)
, (2.13)

σk = 1.0 ,

σε = 1.3 ,

where ReT is the turbulence Reynolds number. It is obtained from

ReT =
ρk2

µε
. (2.14)
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In the expressions for C1 and C2, the constants, 1.44 and 1.92, are the same as
in the standard k-ε model, Wilcox (1993). In Chien’s original model, slightly
different constants are used, namely 1.35 and 1.80.

Finally, the diffusion coefficients of the turbulence quantities are derived
from

µk = µ+
µT
σk

, (2.15)

µε = µ+
µT
σε

, (2.16)

where σk and σε are the appropriate turbulent Prandtl numbers for k and ε.

2.2.2 The Baldwin-Lomax Turbulence Model

For the evaluation of the efficiency of multigridding at the full-scale ship
Reynolds number, the Baldwin-Lomax turbulence model is used, Baldwin
and Lomax (1978), Wilcox (1993), Schweighofer (1997). In the beginning of
the respective investigation at full scale, Chien’s k-ε turbulence model gives
false results with respect to the turbulence quantities which are due to certain
limitations within the code (see also Section 4.1.2). Therefore, at this stage,
the use of Chien’s k-ε turbulence model is not appropriate. Further, the
results obtained with the Baldwin-Lomax model may be used as additional
reference for the evaluation of the reliability of the full-scale results later
obtained with the corrected code, input and Chien’s k-ε turbulence model.

The Baldwin-Lomax turbulence model is a two-layer model. The tur-
bulent viscosity, µT , is given by separate expressions in each layer, and the
turbulent viscosity is

µT =

{
µT i for yn ≤ ym ,
µTo for yn > ym ,

(2.17)

ym is the smallest value of the perpendicular distance, yn, from the wall at
which the formulas give the same value. The minimum of these values is
taken to be valid.

The turbulent viscosity in the inner layer is obtained from the Prandtl-van
Driest formulation:

µT i = ρl2mix|
∂VT
∂yn
| , (2.18)

where VT is the mean velocity in direction tangential to the wall. lmix is the
mixing length given by

lmix = κyn
(
1− e−y+/A+

)
, (2.19)
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where the constants, κ and A+, are 0.4 and 26, respectively.
The turbulent viscosity in the outer layer is obtained from either

µTo = αC1FKlebyn,maxFmaxρ , (2.20)

or
µTo = αC1FKlebC2V

2
T,diff

yn,max
Fmax

ρ , (2.21)

with α = 0.0168, C1 = 1.6 and C2 = 0.25. The smallest alternative is taken.
Fmax is determined from the function

F = yn|
∂VT
∂yn
|(1− e−y+/A+

) .

Fmax is the maximum value of F in the velocity profile. The corresponding
distance from the wall is denoted by yn,max. VT,diff is the difference between
the maximum and minimum tangential velocity in the velocity profile. For
walls, the minimum velocity is zero. The intermittency function is given by

FKleb =
1

1 + 5.5(C3yn/yn,max)6
, (2.23)

where C3 = 0.3.
In the RaNS equations, the turbulent kinetic energy and the dissipation

of the turbulent kinetic energy are not used anymore. Therefore, the fluxes
consist only of four lines instead of six ones, and the respective source term
is

Q =




0
0
0
0


 . (2.24)

2.3 Boundary Treatment

The computational domain is limited by different boundaries where differ-
ent boundary conditions are applied. In the conducted computations, the
following boundary conditions are used: external, mirror, solid wall and free
surface.

At an external boundary, the flow quantities are simply set to their free-
stream values.

On symmetry planes, usually the mirror condition is applied. Here, the
flow quantities are mirrored from the computational domain to the ghost
cells on the other side of the plane.
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Solid walls may be defined as inviscid or viscous solid walls. Solving the Euler
equations, inviscid solid walls are used allowing only tangential velocities at
the surface.

Viscous solid walls are employed for the solution of the Reynolds-averaged
Navier-Stokes equations. The no-slip condition on the wall is fulfilled by
setting the velocities on the surface equal to zero. In this way, the only
contribution to the inviscid fluxes arises from the pressure terms in the mo-
mentum equations. The pressure on the wall, ψwall, is evaluated from the
pressure values of the computational domain using a second order extrapol-
ation, Siikonen (1996),

ψwall =
3

2
ψ1 −

1

2
ψ2 . (2.25)

ψ1 and ψ2 are the pressure values in the first and the second cell from the wall,
respectively. In the calculation of the inviscid fluxes at the solid boundary,
flux-difference splitting is not used.

The viscous fluxes are calculated using the following equation for the
appearing derivatives perpendicular to the solid wall, Siikonen (1996):

(
∂Φ

∂yn

)

wall

=
9Φ1 − Φ2 − 8Φwall

3dwall
, (2.26)

where Φ1 and Φ2 denote the values of the flow quantity, Φ, in the first and
second cell from the wall, respectively. Φwall is the value of the flow quantity,
Φ, at the wall, and dwall is the thickness of the first cell above the surface. At
the wall, the viscous fluxes for k and ε are set to zero, and the corresponding
diffusion coefficients are obtained from a formula similar to Eq. (2.25). In
this way, there is no need to specify the surface values of the turbulence
quantities.

This work is focussed on the treatment of the free surface. Therefore, the
treatment of the free surface is described in a separate section which is given
in the following.

2.4 Free Surface

The free surface is evaluated using a moving-grid technique where the grid is
deformed in order to fit the free surface at any time. This technique follows
the principles of the so-called interface-tracking method.

On the free surface, the kinematic and dynamic boundary conditions are
applied determining its shape.
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The kinematic boundary condition states that a fluid particle remains on the
free surface for all times. Through the free surface, no mass flow is allowed
to appear. Therefore, the velocity components of the fluid particles normal
to the free surface must be equal to zero. The kinematic boundary condition
is fulfilled when, Ferziger and Perić (1999),

dβ

dt
= w =

∂β

∂t
+ u

∂β

∂x
+ v

∂β

∂y
, (2.27)

where β (x, y, t) is the local wave elevation. The kinematic boundary condi-
tion does not contain any approximations. It gives the rate of change of the
wave height, β, provided the slope and the velocities on the free surface are
known. Integration of Eq. (2.27) with respect to time gives the shape of the
free surface. Having reached the steady state, ∂β

∂t
will be equal to zero.

The dynamic boundary condition states that the normal and tangential
stresses must be equal on both sides of the free surface. Generally, it may be
written as, Ferziger and Perić (1999),

(Tliquid · ~n)~n = (Tair · ~n)~n + σK , (2.28)

(Tliquid · ~n)~t = (Tair · ~n)~t +
∂σ

∂t
. (2.29)

Tliquid and Tair are the stress tensors for the fluid and air. ~n = (n1, n2, n3)T

is the unit normal vector on the free surface directed outwards from it. n1,
n2 and n3 are the corresponding vector components in the x-, y- and z-
directions. Similarly, ~t = (t1, t2, t3)T is the unit tangential vector on the free
surface. σ is the surface tension, and K is the curvature of the free surface.
∂σ
∂t

is the local change of the surface tension in the tangential direction. The
shear stresses of the air and the surface tension on the free surface are very
small. Therefore, they are neglected. Using the tensor notation, the dynamic
boundary condition may be rewritten as

(Tijnj)ni = 0 , (2.30)

(Tijnj)ti = 0 , (2.31)

where Tij = Tliquid. The stress tensor, Tij, is defined as

Tij = −pδij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− ρu′iu′j . (2.32)

The Reynolds stresses, −ρu′iu′j, are obtained from Eq. (2.6), resulting in

Tij = −pδij + (µ+ µT )

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
ρkδij . (2.33)



Numerical Method 25

2.4.1 Inviscid Free-Surface Boundary Conditions

For inviscid flow, the molecular viscosity, µ, and the Reynolds stresses are
equal to zero. The dynamic boundary condition becomes simply

p = pair = 0 . (2.34)

The corresponding piezometric pressure is

ψ = ρgβ . (2.35)

For the calculation of the velocities on the free surface and in the ghost cells,
a zero-gradient condition is applied

∂u

∂n
=
∂v

∂n
=
∂w

∂n
= 0 , (2.36)

where n is referred to the normal direction on the free surface. The piezomet-
ric pressure in the ghost cells is calculated according to a linear extrapolation
from the pressure values of the computational domain. The flow quantities
in the ghost cells are needed for the bulk-flow solution.

For viscous flow, it is common to use the same free-surface boundary con-
ditions as for inviscid flow. Here, additional ones for the turbulence quantities
must be introduced. For the turbulent kinetic energy, k, and the dissipation
of the turbulent kinetic energy, ε, also a zero-gradient condition is applied

∂k

∂n
=
∂ε

∂n
= 0 . (2.37)

Eqs. (2.27, 2.34 up to 2.37) are denoted as inviscid free-surface boundary
conditions.

2.4.2 Viscous Free-Surface Boundary Conditions

The investigation of the influence of viscous free-surface boundary condi-
tions on the flow, particularly on wave making, is the central topic of this
work. The investigation is carried out for a two-dimensional case (Fig. 3.1).
Therefore, the implementation of the respective boundary conditions is done
in two dimensions. Here, the appearing flow quantities are only dependent
on the time and the x- and z-coordinates. The velocity components in the
y-direction are equal to zero. The kinematic boundary condition is given
by Eq. (2.27). In this work, the viscous free-surface boundary conditions
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are called the tangential-stress and the Reynolds-stress free-surface bound-
ary conditions. On the free surface, the flat-surface approximation is applied
giving

~n ≈




0
0
1


 , ~t ≈




1
0
0


 . (2.38)

Tangential-Stress Free-Surface Boundary Conditions

The tangential-stress free-surface boundary conditions are obtained from Eqs.
(2.31, 2.33 and 2.38). The tangential stresses on the free surface are set equal
to zero giving

∂u

∂z
= −∂w

∂x
. (2.39)

Using the continuity equation, the derivative of the velocity component, w,
in the z-direction may be calculated from

∂w

∂z
= −∂u

∂x
. (2.40)

The pressure, p, is set equal to zero, and the piezometric pressure, ψ, is
obtained from Eq. (2.35). To the turbulence quantities, Eq. (2.37) is applied.

Eqs. (2.27, 2.34, 2.35, 2.37, 2.39 and 2.40) are denoted as tangential-stress
free-surface boundary conditions.

Reynolds-Stress Free-Surface Boundary Conditions

The Reynolds-stress free-surface boundary conditions are obtained from Eqs.
(2.30, 2.31, 2.33 and 2.38). Here, the tangential and normal stresses are set
equal to zero on the free surface. The velocity derivatives in the z-direction
are calculated from Eqs. (2.39 and 2.40).

The pressure on the free surface is not equal to zero anymore. It contains a
contribution resulting from the molecular viscosity and the Reynolds stresses.
The order of magnitude of the appearing Reynolds number is 106. Therefore,
in the dynamic boundary condition, the influence of the molecular viscosity
is assumed to be very small. Neglecting the molecular viscosity, the pressure,
p, is calculated from

p = 2µT
∂w

∂z
− 2

3
ρk

= −2µT
∂u

∂x
− 2

3
ρk . (2.41)
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The corresponding piezometric pressure, ψ, is

ψ = p+ ρgβ

= −2µT
∂u

∂x
− 2

3
ρk + ρgβ . (2.42)

Eqs. (2.27, 2.37, 2.39 up to 2.42) are denoted as Reynolds-stress free-surface
boundary conditions.

2.4.3 Alternative Inviscid Free-Surface Boundary Con-
ditions

The currently implemented inviscid mirror free-surface boundary conditions
(see Section 2.4.4) give a dampened wave profile, which is physically not
correct. Therefore, three alternative approaches regarding the inviscid free-
surface boundary conditions are implemented and investigated. As in the
case of the viscous free-surface boundary conditions, the implementation is
carried out in two dimensions.

Inviscid Irrotational Free-Surface Boundary Conditions

Considering Eq. (2.36), it may be concluded that the flow at the free surface
is irrotational. For irrotational flow, the vorticity vector, ~γ, must be equal
to a zero vector. This is the case when

~γ = ∇× ~V = ~0 , (2.43)

where ∇ is the nabla operator. In the given two-dimensional x-z-coordinate
system, the flow is irrotational when

∂u

∂z
=
∂w

∂x
. (2.44)

In this work, Eqs. (2.27, 2.34, 2.35, 2.37, 2.40 and 2.44) are denoted as
inviscid irrotational free-surface boundary conditions, which are consistent
with the ones for potential flow.

Inviscid Flat Free-Surface Boundary Conditions

Using a flat free-surface approximation and the assumption that the normal
and tangential gradients of the normal velocity are negligible, the inviscid
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flat free-surface boundary conditions are obtained, Choi and Stern (1993).
The velocity gradients in the z-direction are simply set to zero giving

∂u

∂z
=
∂w

∂z
= 0 . (2.45)

In this work, Eqs. (2.27, 2.34, 2.35, 2.37 and 2.45) are denoted as inviscid
flat free-surface boundary conditions.

Inviscid Flat-Continuity Free-Surface Boundary Conditions

Taking the continuity equation into consideration, a physically more cor-
rect relation for the inviscid flat free-surface boundary conditions may be
obtained, Stern et al. (1996). This gives

∂u

∂z
= 0 , (2.46)

and
∂w

∂z
= −∂u

∂x
. (2.47)

In this work, Eqs. (2.27, 2.34, 2.35, 2.37, 2.46 and 2.47) are denoted as
inviscid flat-continuity free-surface boundary conditions.

2.4.4 Implementation of the Free-Surface Boundary Con-
ditions

Implementation of the Inviscid Mirror Free-Surface Boundary Con-
ditions

In the current version of FINFLO, Eq. (2.36) has been already implemented
by Tom Sundell, Mikkola (1999), in the following way:

uFS =
9uk − uk−1

8
, vFS =

9vk − vk−1

8
, wFS =

9wk − wk−1

8
, (2.48)

where uFS, vFS and wFS are the velocity components in the x-, y- and z-
directions on the free surface. The subscribts, k and k − 1, are referred to
the centres of the the first and second cells below the free surface (Fig. 2.1).
The indices, i and j, have been dropped for simplicity, e.g. ui,j,k = uk. Eq.
(2.48) is obtained from Eq. (2.26) by setting (∂Φ/∂yn)wall equal to zero.

Knowing the free-surface velocities, the new wave height, β, may be cal-
culated from Eq. (2.27). Eq. (2.35) is applied to the calculation of the
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computational domai n

ghost cells

x
z

Fig. 2.1: Naming of the cells associated with the free surface in a two-
dimensional coordinate system.

piezometric pressure on the free surface. The piezometric pressure in the
ghost cells is set according to a linear extrapolation giving:

ψk+1 = 2ρgβ − ψk , (2.49)

ψk+2 = 2ψk+1 − ψk , (2.50)

where the subscripts, k + 1 and k + 2, are referred to the centres of the first
and second cells above the free surface (Fig. 2.1). These cells are called ghost
cells. Eqs. (2.49 and 2.50) are obtained from a Taylor-series expansion.

Having linearly extrapolated the piezometric pressure from the computa-
tional domain to the ghost cells, the respective velocities in the ghost cells
are set according to

uk+1 = uk , vk+1 = vk , wk+1 = wk , (2.51)

uk+2 = uk−1 , vk+2 = vk−1 , wk+2 = wk−1 . (2.52)
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Similarly, the respective values for the turbulence quantities, k and ε are set
according to

kk+1 = kk , εk+1 = εk , kk+2 = kk−1 , εk+2 = εk−1 . (2.53)

Implementation of the Tangential-Stress Free-Surface Boundary
Conditions

The tangential-stress free-surface boundary conditions are realized in the
following way.

Using Eq. (2.39), the velocity component in the x-direction on the free
surface is derived from

uFS = ui,k −
(wi,k − wi−1,k)

(xi,k − xi−1,k)

(zi,k+1 − zi,k)
2

, (2.54)

where x and z are the x- and z-coordinates of the respective cell centre. The
subscripts are referred to the cell centres according to Fig. 2.1.

Using Eq. (2.40), the velocity component in the z-direction on the free
surface is derived from

wFS = wi,k −
(ui,k − ui−1,k)

(xi,k − xi−1,k)

(zi,k+1 − zi,k)
2

. (2.55)

In Eqs. (2.54 and 2.55), a two-point upwind scheme of first-order accuracy
is applied to the calculation of the velocity derivatives in the x-direction. It
is obtained from a Taylor-series expansion. One computation is carried out
using a central-difference scheme of second-order accuracy for the calculation
of the velocity derivatives in the x-direction. This scheme is obtained again
from a Taylor-series expansion. Eqs. (2.54 and 2.55) become

uFS = ui,k −
(wi+1,k − wi−1,k)

(xi+1,k − xi−1,k)

(zi,k+1 − zi,k)
2

, (2.56)

wFS = wi,k −
(ui+1,k − ui−1,k)

(xi+1,k − xi−1,k)

(zi,k+1 − zi,k)
2

. (2.57)

Both schemes give results of the same accuracy (Fig. 4.12). Therefore, the
two-point upwind scheme is applied to all computed cases.

The piezometric pressure and the turbulence quantities in the ghost cells
are set according to Eqs. (2.49, 2.50 and 2.53).

The velocities in the ghost cells are obtained from a linear extrapolation
given by

ui,k+1 = 2uFS − ui,k , wi,k+1 = 2wFS − wi,k , (2.58)

ui,k+2 = 2ui,k+1 − ui,k , wi,k+2 = 2wi,k+1 − wi,k . (2.59)
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Implementation of the Reynolds-Stress Free-Surface Boundary Con-
ditions

Using Eq. (2.42) and a linear extrapolation, the piezometric pressure in the
ghost cells is set to

ψi,k+1 = 2

(
−2µT

(ui,k − ui−1,k)

(xi,k − xi−1,k)
− 2

3
ρk + ρgβ

)
− ψi,k , (2.60)

ψi,k+2 = 2ψi,k+1 − ψi,k . (2.61)

The velocities on the free surface and in the ghost cells are calculated from
Eqs. (2.54, 2.55, 2.58 and 2.59).

To the turbulence quantities, Eq. (2.53) is applied.

Implementation of the Inviscid Irrotational Free-Surface Boundary
Conditions

Using Eq. (2.44), the velocity component in the x-direction on the free
surface is calculated as

uFS = ui,k +
(wi,k − wi−1,k)

(xi,k − xi−1,k)

(zi,k+1 − zi,k)
2

. (2.62)

The velocity component in the z-direction on the free surface is derived from
Eq. (2.55). The velocity components in the ghost cells are set according
to Eqs. (2.58 and 2.59). To the piezometric pressure and the turbulence
quantities in the ghost cells, Eqs. (2.49, 2.50 and 2.53) are applied.

Implementation of the Inviscid Flat Free-Surface Boundary Con-
ditions

In FINFLO, Eq. (2.45) is realized as follows:

uFS = ui,k , wFS = wi,k . (2.63)

In the ghost cells, the velocity components, the piezometric pressure and the
turbulence quantities are set according to Eqs. (2.58, 2.59, 2.49, 2.50 and
2.53).

Implementation of the Inviscid Flat-Continuity Free-Surface Bound-
ary Conditions

Using Eqs. (2.46 and 2.47), the velocity components on the free surface are
obtained from

uFS = ui,k , (2.64)
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wFS = wi,k −
(ui,k − ui−1,k)

(xi,k − xi−1,k)

(zi,k+1 − zi,k)
2

. (2.65)

In the ghost cells, the velocity components, the piezometric pressure and the
turbulence quantities are set according to Eqs. (2.58, 2.59, 2.49, 2.50 and
2.53).



3 Computations

The computations are carried out on the Silicon Graphics Origin 2000/128
computer of the Center for Scientific Computing, Fagerholm and Haataja
(1999). It consists of 128 MIPS R12000 processors. The theoretical per-
formance power of one processor is 600 Mflop/s. The central memory of the
computer accounts for 160 GB.

For the computations, the maximum memory request is about 170 MB
of the central memory. At model scale, the solution is converged after about
75000 iterations. At full-scale, the computations are carried out in three
stages. First, the first two crests of the transom wave are computed in the
same way as at model scale. Due to difficulties associated with Chien’s
turbulence model and oscillations of the free surface at the transom, the
computations are terminated. In the second stage, using the obtained grid
(Fig. 3.4), the computations are started from the beginning, and the free
surface is kept fixed. The respective solution is converged after about 100000
iterations. In the third stage, the free surface is allowed to deform giving a
converged solution after further 50000 iterations. In this way, no oscillations
of the free surface close to the transom appear, and a rather large time step
may be used in order to get the entire wave pattern within a reasonable time.

At model scale, using the coarser grids, it takes about 7.5 CPU-seconds
for one iteration cycle. For the finest grid and the investigation of the side
influence on the results, it takes about 17 CPU-seconds for one iteration
cycle. At full scale, using the grid, ROUGHFSC, it takes about 2 CPU-
seconds for one iteration cycle. For the grid, FINEFSC, it takes about 11
CPU-seconds for one iteration cycle.

3.1 Computed Case

The computed cases are numerical simulations of inviscid and viscous flows
around the model, Ile. The geometry of this model is given in Fig. 3.1.

33
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The model is assumed to be infinitely wide in the y-direction. Therefore,
the appearing flow may be considered as two-dimensional. The shape of
the bow is a circle segment with radius, R, and the bottom is flat. The
transom is located at the origin of the global Cartesian coordinate system.
Its x-axis, determining the still water level, is directed from the transom
in flow direction. The z-axis is directed upwards from the still water level.
The direction of the y-axis is given by the right-hand rule. At the bow, the
formation of the bow wave is suppressed. At the transom, the wave height of
the free surface is set equal to the draught, T . Downstream of the transom,
the free surface may be deformed arbitrarily. The appearance of sinkage and
trim is suppressed.

At model scale, the geometrical dimensions of the investigated model are:

• Length overall, L = 2.000 m

• Radius, R = 1.450 m

• Draught, T = 0.100 m

In the cases, LONG1 and LONG2, the length of the flat bottom is increased
to 4.479 m and 7.959 m, respectively. The other geometrical dimensions
remain unchanged.

At full scale, the geometrical dimensions of the investigated model are:

• Length overall, L = 80.000 m

• Radius, R = 58.000 m

• Draught, T = 4.000 m

• Scale, λ = 40

The length of the flat plate (FLATR, FLATF and FLATFST) is equal to
the length between the perpendiculars, Lpp, at full scale. At full scale, Lpp =
61.16 m.

The computations are carried out at four Froude numbers based on the
draught, T , of the model. The Froude numbers are defined as

FnT =
U∞√
gT

, (3.1)

where U∞ is the free stream velocity. They account for 2.1, 2.2, 2.3 and 2.8,
respectively.
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The wave formation behind the model, Ile, has been investigated by Saisto
(1995 and 2000). He solved the potential flow in two dimensions using the
boundary element method. In his work, he carried out also several model
tests at different Froude numbers in order to measure the transom wave. The
resistance coefficient of the model has been evaluated by Aho and Schweig-
hofer (1995) in a laboratory exercise. There, the forces acting on a moving
slice of the model (Fig. 3.1) were measured. The width of the slice was
B = 0.370 m. In the model tests, the model was kept fixed on an even
keel. These results are used in the validation of the computations and the
discussion of the computed resistance coefficient.
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Fig. 3.1: Computed case, Ile. Top: Used coordinate systems. Subdivision
of the computational domain into four blocks: BL2, BL3, BL4 and BL1.
Bottom: Experimental arrangement.
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3.2 Grid

Fig. 3.2: The grid, FINE, of the computed case, Ile. Region around the
model.

In order to get appropriate grids for the computations, numerous gener-
ated grids must be tested. The shape of the calculated case may be de-
scribed analytically. Therefore, a separate code is written for the grid gen-
eration. The high resolution of the grids close to the free surface causes
the appearance of negative cells when the grid starts to move from the ini-
tial position. Generally, the volume of the cells is calculated from the co-
ordinates of their corner and centre points using the vector analysis. In
cases of strong deformations of the cells, the appearing vector products, and
therefore also the volumes, may become negative resulting in unstable solu-
tions and a terminated computation. In the beginning of this investigation,
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Fig. 3.3: Zoomed grid, FINE, of the computed case, Ile. Left: Bow region.
Right: Transom region.

the negative volumes are due to the extremely thin cells at the free surface
which merge into one at certain locations. Stable solutions are obtained
with the grids: FINE, FINETRANSOM, LONG1, LONG2, SIDE, FINEST,
FINEFSC and ROUGHFSC. At full scale, the grids are manually manip-
ulated using the commercial grid-generation software, IGG 3.7, NUMECA
INTERNATIONAL (1999).

3.2.1 FINE

The grid, FINE, consists of four blocks (Figs. 3.1 and 3.2). The block, BL2, is
composed of 64 × 1 × 64 cells in the i-, j- and k-directions, respectively. Side
one is located at 20.00 m upstream from the origin of the global Cartesian
coordinate system. Therefore, the length of the inflow region is about 9L.
The width of the block, BL2, accounts for 1 m, and its draught from the
still-water level is 5L = 10 m. The expected wave length is about 2.5L.
Therefore, the draught should be sufficient in order to avoid the appearance
of shallow water effects. In order to capture the pressure peak at the bow,
the grid is very fine there. In the computed cases, the blocks are connected
to each other exactly node by node (Fig. 3.3). Therefore, the fine resolution
of the grid in the boundary layer is continued in the block, BL2, close to the
still-water level. The length of the first cell at the bow is 0.0002 m, and its
height is 8×10−6 m. In this way, the nondimensional distance of the first node
from the wall, y+, remains always below the value, four. Almost everywhere



Computations 39

at the wall, the nondimensional distance of the first node, y+, accounts for
about 0.7. This holds for the Froude numbers, FnT , equal to 2.1, 2.2, 2.3
and 2.8 of the investigations. Starting from the bow in upstream direction
and the still-water level in negative z-direction, the length and height of the
cells are increased by not more than 30 percent until an equal distribution of
the remaining cells is obtained. The block, BL3, consists of 48 × 1 × 64 cells
in the i-, j- and k-directions, respectively. The length of the first cell at the
bow is equal to the one of the adjacent cell in the block, BL2. The nodes on
the left and the right sides of block, BL3, are connected by circle segments
with increasing radii, R. Apart from this feature, the block, BL3, is built up
in the same manner as the block, BL2. The block, BL4, is composed of 48
× 1 × 64 cells in the i-, j- and k-directions, respectively. At the transom,
turbulence and bigger changes of the velocity and the pressure might appear.
Therefore, the mesh is quite fine there. The length of the first cell at the
transom is equal to 0.002 m. Also, the block, BL4, is composed in the same
manner as the block, BL2. Here, the length of the first cell at the shoulder
is equal to the one of the adjacent cell in the block, BL3. The block, BL1,
consists of 384 × 1 × 64 cells in the i-, j- and k-directions, respectively. The
length of the first cell at the transom is equal to the one of the adjacent
cell in the block, BL4. The length of the following cells is increased by not
more than 30 percent in the flow direction until an equal distribution of
the remaining cells is obtained. Side six of the block, BL1, is located at 40
m downstream from the origin of the global Cartesian coordinate system.
Therefore, the length of the wake region accounts for 20 L. For the Froude
numbers, FnT = 2.1, 2.2, 2.3 and 2.8, the waves are resolved by at least 24,
27, 30 and 45 equally distributed cells per wave length, respectively. The
resolution of the boundary layer is continued in the block, BL1. In this
way, the influence of the convected boundary layer on the appearing transom
waves may be captured. Nevertheless, farther downstream the grid becomes
coarser. On side six, the cells are equally distributed from the still-water
level in the negative z-direction. The nodes on the left and the right sides of
the block, BL1, are connected to each other by straight lines.

3.2.2 FINETRANSOM

The grid, FINETRANSOM, is identical with the grid, FINE. Only the res-
olution at the transom is higher. The length of the first cell at the transom
in the blocks, BL4 and BL1, is 0.00053 m.
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3.2.3 LONG1 and LONG2

The grids, LONG1 and LONG2, are also identical with the grid, FINE. Only
the block, BL4, is different in the way that it is 4.479 m and 7.959 m long,
respectively. The length of the block, BL4, is increased by adding a certain
amount of cells with constant length to the original block. The block, BL4, of
the grid LONG1, consists of 176 × 1 × 64 cells in the i-, j- and k-directions,
respectively. The one of the grid, LONG2, is composed of 304 × 1 × 64 cells
in the i-, j- and k-directions, respectively. The blocks, BL2 and BL3, are
shifted in the upstream direction.

3.2.4 SIDE

The grid, SIDE, is identical with the grid, LONG2. Only, in the negative z-
direction, 64 cells of constant height are added to the ones of LONG2, giving
128 cells in the k-direction. Side seven is shifted to 34.357 m below the still
water level, which accounts for about 14L.

3.2.5 FINEST

The grid, FINEST, is composed in the same manner as the grid, FINE.
The geometrical main dimensions of the computational domain remain un-
changed. The grid, FINEST, consists of 1× 96 cells in the j- and k-directions,
respectively. In the i-direction, the blocks, BL2, BL3, BL4 and BL1, are built
up of 96, 72, 96 and 576 cells, respectively. The length of the first cell at the
bow is reduced to 0.0001 m. At the transom, it accounts for 0.001 m. The
height of the first cell at the wall is the same as in the grid, FINE. For the
Froude number, FnT = 2.8, the waves are resolved by at least 70 equally
distributed cells per wave length.

3.2.6 FINEFSC and ROUGHFSC

The grid, FINEFSC, consists of 1 × 96 cells in the j- and k-directions,
respectively. In the i-direction, the blocks, BL2, BL3, BL4 and BL1, are
built up of 64, 48, 48 and 384 cells, respectively. It is obtained from the
grid, FINE, by scaling. The scale, λ, is equal to 40. The resolution in the
i-direction is the same as in the grid, FINE. Nevertheless, in the k-direction,
the resolution is different due to the thinner boundary layer with respect to
the draught and the requested distance of the first node from the wall. The
distance of the first node from the wall is 4.2 × 10−6 m. In this way, the
nondimensional distance of the first node from the wall, y+, remains below
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the value, 2.5. Almost everywhere at the wall, the nondimensional distance of
the first node, y+, accounts for about 2.0. In the block, BL1, two wave crests
are presented (Fig. 3.4). They are obtained from laborious, time consuming
computations, where the upper boundary of the block, BL1, was a flat plane
in the beginning, similar to the ones at model scale. The different resolution
in the k-direction and the slightly different structure cause a higher degree of
the nonorthogonality in the grid, FINEFSC, compared with the grid, FINE.
The resolution of the waves is the same as for the the grid, FINE.

The grid, ROUGHFSC, corresponds to the second level of the grid, FINE-
FSC. In the i-direction, the length of one cell is equal to the one of two
adjacent cells of the grid, FINEFSC. Similarly, in the k-direction, the height
of one cell is equal to the one of two adjacent cells of the grid, FINEFSC.
The grid, ROUGHFSC, consists of 1 × 48 cells in the j- and k-directions,
respectively. In the i-direction, the blocks, BL2, BL3, BL4 and BL1, are
built up of 32, 24, 24 and 192 cells, respectively. The waves are resolved by
at least 23 equally distributed cells per wave length.

3.2.7 FLATR, FLATF and FLATFST

At full scale, the validation is performed by computing the turbulent flow
over a flat plate. The used grids are FLATR, FLATF and FLATFST in the
order of their coarseness.

FLATR ist the coarsest grid. In the same manner as the grid, FINE,
the computational domain is subdivided into the blocks, BL2, BL3, BL4 and
BL1. It consists of 1 × 48 cells in the j- and k-directions, respectively. In
the i-direction, the blocks, BL2, BL3, BL4 and BL1, are built up of 32, 24,
24 and 192 cells, respectively. The grid, FLATR, corresponds to the second
level of the grid, FLATF. In the i-direction, the length of one cell is equal to
the one of two adjacent cells of the grid, FLATF. Similarly, in the k-direction,
the height of one cell is equal to the one of two adjacent cells of the grid,
FLATF.

The grid, FLATF, consists of 1 × 96 cells in the j- and k-directions,
respectively. In the i-direction, the blocks, BL2, BL3, BL4 and BL1, are
built up of 64, 48, 48 and 384 cells, respectively. In the i-direction, the
resolution is exactly the same as the one of the grid, FINEFSC. Also the
dimensions of the computational domain are exactly the same. The flat
plate is located at the still-water level where the z-coordinate is equal to
zero. Naturally, the upper boundary of the block, BL1, is a plane at the still-
water level. Therefore, in the k-direction, the resolution is slightly different
from the one of the grid, FINEFSC. The distance of the first node from the
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Fig. 3.4: The grid, FINEFSC, of the computed case, Ile. Region around
the model.

wall is 4.2 × 10−6 m. In this way, the nondimensional distance of the first
node from the wall, y+, remains below the value, 3.7. Almost everywhere
at the wall, the nondimensional distance of the first node, y+, accounts for
about 2.0.

The grid, FLATFST, is the finest grid (Fig. 3.5). It consists of 1 × 192
cells in the j- and k-directions, respectively, giving an significantly improved
resolution of the boundary layer. In the i-direction, the blocks, BL2, BL3,
BL4 and BL1, are built up of 64, 48, 48 and 128 cells, respectively. The
dimensions of the computational domain are the same as the ones of the grid,
FLATF. The distance of the first node from the wall is 5.0× 10−6 m. In this
way, the nondimensional distance of the first node from the wall, y+, remains
below the value, 4.2. Almost everywhere at the wall, the nondimensional



Computations 43

distance of the first node, y+, accounts for about 2.2.

Fig. 3.5: The grid, FLATFST, used for the flat-plate computations at the
full-scale ship Reynolds number. Region around the flat plate.
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3.3 Initial Values and Boundary Conditions

3.3.1 Model-Scale Computations

For the Froude numbers, FnT = 2.1, 2.2, 2.3 and 2.8, the corresponding
Reynolds numbers of the computations, Rel = U∞ × Lpp/ν, account for
2.8× 106, 2.933× 106, 3.066× 106 and 3.732× 106, respectively. The length
between the perpendiculars, Lpp, is 1.529 m. The free-stream velocity, U∞,
is set to 2.080 m/s, 2.179 m/s, 2.278 m/s and 2.773 m/s with respect to the
respective Froude number. The reference area is used in the calculation of
the drag coefficient, CD. It is equal to 1.541 m2. The Mach number is equal
to zero, and the density is 999.4 kg/m3. The initial values of the turbulence
level and the nondimensional turbulence coefficient, µT/µ, are set to 0.02 and
10.00 in the input. The free-stream turbulence level and the nondimensional
free-stream turbulence coefficient, µT∞/µ, are set to 0.001 and 0.01, respect-
ively. The maximum nondimensional turbulence coefficient is set to the very
high value of 5000. Therefore, the nondimensional turbulence coefficient may
be regarded as unrestricted. The turbulence coefficients are made nondimen-
sional by referring them to the molecular viscosity. The Courant number is
set to either three or five. The lower value is used for the computations at
the Froude number, 2.1. In the free-surface evaluation, the maximum time
step is calculated from

∆tmax =
DTWMAX

|~V |
, (3.2)

where DTWMAX accounts for 0.0005 for the computations at the Froude
numbers, 2.2, 2.3 and 2.8. For the grid, FINETRANSOM, DTWMAX must
be reduced to 0.0003 in order to obtain a converged solution. At the Froude
number, 2.1, DTWMAX must further be reduced to 0.0001 in the beginning
and to 0.00005 in the end. ~V is the velocity vector consisting of the velocity
components at the respective cell centres of the first cell row below the free
surface.

A brief explanation of the used boundary conditions is given in Sections
2.3 and 2.4. They are applied on the boundaries of the computational domain
described in Fig. 3.1. The sides, one and six, are defined as inflow and outflow
boundaries. Here, the external boundary condition is applied. The sides, two
and seven, as well as the sides normal to the y-axis are defined as symmetry
planes. Here, the mirror boundary condition is applied. The sides, three and
four, are defined as solid walls, and the side, five, is defined as free surface.
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3.3.2 Full-Scale Computations

The full-scale computations are performed at the Froude number, FnT = 2.8,
and the full-scale ship Reynolds number, Rel = 9.442 × 108. The length
between the perpendiculars, Lpp, is 61.16 m. The free-stream velocity, U∞,
is set to 17.538 m/s. The reference area is equal to 2465.6 m2. The Mach
number is equal to zero, and the density is 999.4 kg/m3. The intial values
of the turbulence level and the nondimensional turbulence coefficient, µT/µ,
are set to 0.02 and 10.00 in the input. The free-stream turbulence level
and the nondimensional free-stream turbulence coefficient, µT∞/µ, are set
to 0.001 and 16.5, respectively. The maximum nondimensional turbulence
coefficient is set to 5000000 in order to avoid any restrictions of the turbulence
coefficient. The free-stream dissipation of the turbulent kinetic energy is the
same as the one at model scale within a range of about two percent. The
Courant number is set either to two or three. The lower value is applied for
the computations using the grid, ROUGHFSC, and the higher one is applied
for the computations using the grid, FINEFSC. The maximum time step,
DTWMAX, accounts for 0.01 in the beginning and for 0.0001 in the end.

On the boundaries of the computational domain, the same boundary
conditions are applied as at model scale.

The investigation of the efficiency of multigridding at full scale is conduc-
ted under the same conditions as the full-scale computations of the model,
Ile. Nevertheless, the Courant number on the finest level is set to 5, and the
one on the coarser level is set to 7.5. The side, five, of the grid, FINEFSC, is
not defined as free-surface anymore (Figs. 3.1 and 3.4). It is kept fixed, and
the mirror boundary condition is applied there.

3.3.3 Flat-Plate Computations

The computations of the turbulent flow over the flat plate are carried out
under the same conditions as the full-scale computations of the model, Ile.
Nevertheless, the nondimensional free-stream turbulence coefficient, µT∞/µ,
is set alternatively to 0.01, 1 and 16.5, and the free-stream turbulence level
is set to 0.001. Additionally, one computation is performed where the nondi-
mensional free-stream turbulence coefficient and the free-stream turbulence
level are set to 0.01 and 0.000157, respectively. The side, five, is defined as
symmetry plane, where the mirror boundary condition is applied. For the
grids, FLATR, FLATF and FLATFST, the Courant numbers are set to two,
five and four, respectively. The reference area is equal to 2446.4 m2.



4 Results

In this chapter, the computed results for the test case, Ile, are presented. In
the beginning, the validation of the numerical method is carried out followed
by the analysis. The ITTC - Quality Manual (1999) distinguishes between
verification and validation. Verification is a process where the numerical
error of the respective simulation due to the grid and the convergence is
estimated. Knowing the numerical and experimental errors, the validation
may be carried out by comparing the results of the simulations with the ones
of experiments giving the modelling error. In this work, the applicability
of the experimental results is considered as limited due to the code, the ex-
perimental arrangement and the appearing full-scale ship Reynolds number.
Therefore, also theoretical and computational results obtained by different
authors in association with qualitative observations are used for validation
purposes. Nevertheless, experimental results are used as far as possible.

4.1 Validation

In this investigation, several approaches with respect to the evaluation of the
free surface are implemented into the incompressible version of the Navier-
Stokes solver, FINFLO. The code has been widely validated for turbulent ship
flows at model scale, Järvinen (2000), Li (2002), Mikkola (2002), Niittymäki
(2001). The first time, computations are carried out at full-scale ship Reyn-
olds numbers. Therefore, the validation has to be performed with respect to
the evaluation of the free surface and full-scale computations.

4.1.1 Free Surface

Regarding the evaluation of the free surface, the validation is performed using
the analytical wave length of a wave in deep water, the results presented by

46
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Vanden-Brock (1980) and the ones obtained from model tests and potential-
flow computations, Saisto (1995 and 2000).

Analytical Wave Length

According to the linear wave theory, the length of a two-dimensional wave in
deep water, λ, may be given by, The Society of Naval Architects and Marine
Engineers (1988),

λ =
2πU2

∞
g

. (4.1)

Here, the flow is assumed to be incompressible and inviscid. The motion
of the fluid particles is characterized by an appropriate velocity potential
resulting in sinusoidal waves. Eq. (4.1) holds also for the transversal waves
at a distance of about two wave lengths behind a ship. Closer to the stern
they become little shorter.

A more accurate theoretical relation for the wave length of nonlinear
transom waves is given by Vanden-Brock (1980). There, the flow is assumed
to be incompressible, inviscid and irrotational. The waves are not sinusoidal
anymore.

Due to three-dimensional influences, the length of the measured wave
profile cannot be used.

In Table 1, the wave lengths of the computed transom waves are compared
with the ones obtained from Eq. (4.1) and given by Vanden-Broeck (1980).
The results of Vanden-Broeck are taken as reference wave-lengths.

The analytical solution according to Eq. (4.1) gives a greater wave length
than the one obtained by Vanden-Broeck. This may be traced to the circum-
stance that the analytical solution is based on the assumption of sinusoidal
waves, and the linearized free-surface boundary conditions are applied on the
still-water level.

For the Froude number, FnT = 2.8, the wave-length solutions are almost
independent of the grid resolution. Solving the Euler equations with the
inviscid mirror free-surface boundary conditions gives the greatest deviation
compared with the result of Vanden-Broeck. Using the inviscid irrotational
and viscous free-surface boundary conditions, the results are almost exactly
the same as the one of Vanden-Broeck.
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Table 1: Wave length, λ, obtained from the wave theory and the computa-
tions for the Froude numbers, 2.3 and 2.8. For the grids, FINE and FINEST,
the computations were performed using Chien’s k-ε turbulence model and the
inviscid and viscous free-surface boundary conditions.

Grid FINE FINEST
FnT 2.3 2.8 2.8
Analytical, λ [m] 3.324 4.925 4.925
Vanden-Broeck, λ [m] 2.974 4.802 4.802
Euler, inviscid mirror BC, λ [m] 3.333 4.875 4.858
∆λ [%] 12 1.5 1.2
k-ε, inviscid mirror BC, λ [m] 3.250 4.775 4.775
∆λ [%] 9.3 0.6 0.6
k-ε, inviscid irrotational BC, λ [m] 3.080 4.792
∆λ [%] 3.6 0.2
k-ε, tang.-str. BC, λ [m] 3.167 4.792 4.792
∆λ [%] 6.5 0.2 0.2
k-ε, Reyn.-str. BC, λ [m] 3.167 4.792 4.792
∆λ [%] 6.5 0.2 0.2

For the Froude number, FnT = 2.3, the wave lengths are presented for
the grid, FINE. Also here, the Euler solution gives the greatest deviation
from the wave length of Vanden-Broeck. The viscous free-surface boundary
conditions give again a closer result. The closest result is obatined with the
inviscid irrotational free-surface boundary conditions.

Compared with the results for FnT = 2.8, the greater deviations from
the result of Vanden-Broeck are due to the coarse resolution of the transom
waves which become shorter with decreased Froude numbers.

Experiment and Potential-Flow Computations

The case examined in this work has already been investigated by Saisto.
He carried out measurements, Saisto (1995), and potential-flow computa-
tions, Saisto (2000), of the wave profile behind the transom at different
Froude numbers. His results show excellent agreement with the ones given
by Vanden-Broeck (1980). In his numerical investigation, the appearance of
the bow wave was suppressed. The bottom was flat and semi-infinitely long.
The following computations are carried out for the Froude number, 2.8, us-
ing the inviscid mirror and the inviscid irrotational free-surface boundary
conditions.
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Figure 4.1: Wave profiles behind the transom of the model, Ile. Comparison
of the computed results with the ones obtained from potential-flow computa-
tions, Saisto (2000), and the experiment, Saisto (1995). The computations
were carried out solving the Euler equations with the inviscid mirror and the
inviscid irrotational free-surface boundary conditions. The used grids were
FINE, LONG2 and SIDE. FnT = 2.8.

For the grid, FINE, the solution of the Euler equations gives a significant
deviation of the transom wave from the potential-flow solution and the ex-
perimental result (Fig. 4.1). The height and the steepness of the computed
wave profile are much smaller. This deviation is mainly caused by the ex-
istence of a low-pressure region at the bow shoulder. Saisto’s computations
were carried out without the presence of the bow shoulder. The bottom was
only flat. Therefore, at the shoulder region, the flow situations are differ-
ent in the compared computations resulting in different wave profiles. In
the experiment, the bow wave and the shoulder were present. In this case,
they seem to equalize their influences on the transom wave. The steepness
of the wave is quite close to the one obtained from Saisto’s computations.
Nevertheless, the wave height of the experimental result is much lower be-
cause of viscosity and three-dimensional effects. In the experiment, the wave
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pattern was already three-dimensional at a distance of about 2.7 meters be-
hind the transom. Generally, either the shoulder influence or the bow-wave
influence on the transom wave is dominant, which would give a wave profile
different from the one derived by Saisto. Only for a very long model, these
influences on the transom wave will become negligible. Therefore, using the
experimental result for validation purposes might be somehow questionable.
Nevertheless, it may be used for a qualitative evaluation at least.

In order to get rid of the shoulder influence, the grid, FINE, is made
longer by adding a certain amount of cells to the flat bottom. Their length
is constant. In this way, the flat bottom becomes significantly longer, and
the rest of the computational domain remains identical with the grid, FINE.
Two cases, LONG1 and LONG2, are investigated. LONG1 has a many
meters shorter flat bottom than LONG2. The wave profile obtained with the
grid, LONG2, shows only a very slight change in comparison with the one
obtained with the grid, LONG1. Therefore, the grid, LONG2, is consistent
with a semi-infinitely long grid. Using the grid, LONG2, the computation
gives a result close to the ones obtained from the potential-flow computation
and the experiment (Fig. 4.1). This clarifies also the remarkable influence of
the shoulder on the results.

Using the grid, SIDE, the influence of the depth of the computational
domain on the results is evaluated. The grid, SIDE, is consistent with the
grid LONG2, but it possesses a significantly greater depth. For the grid,
SIDE, almost no change of the wave profile is obtained (Fig. 4.1). Therefore,
the water depth may be assumed as sufficiently large.

Using the grid, LONG2, and the inviscid irrotational free-surface bound-
ary conditions, an improved solution is obtained. The wave profile is close to
the one obtained from the potential-flow computation, particularly farther
downstream, and it is almost not dampened, which is physically correct.

In Fig. 4.2, the influence of the resolution at the transom on the wave
profile is investigated. The grid, FINETRANSOM, possesses an at least three
times higher resolution at the transom than the grid FINE. The computations
using the grids, FINE and FINETRANSOM, give no difference. Therefore,
the resolution at the transom may be assumed as sufficient.

In Fig. 4.3, the influence of the resolution of the grid on the wave profile
is evaluated. At the transom, almost no grid influence is apparent. Farther
away, it is significant.

According to Figs. 4.1 up to 4.3, it may be concluded that the wave profile
at the transom obtained for the case, LONG2, is the solution of the Euler
equations with application of the inviscid irrotational free-surface boundary
conditions. Here, the flat bottom is semi-infinitely long. The difference
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between the Euler and potential-flow solutions is due to the fact that the
Eulerian flow is rotational, and the potential flow is irrotational. A similar
result was obtained by Farmer (1993). The application of the inviscid mirror
free-surface boundary conditions gives a significantly dampened wave profile.
The reason for this will be clarified in the section, 4.3. Comparing the results
obtained for the grid, FINE, and from the experiment (Fig. 4.1), it may be
concluded that the appearance of the bow wave has a significant influence on
the transom wave. The experiment includes shoulder and bow-wave effects.
The grid, FINE, includes only shoulder effects. Close to the transom, the
area of interest, the grids, FINE and FINEST, are sufficient for the further
analysis.
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Figure 4.2: Influence of the resolution at the transom on the wave profile
of the model, Ile. Comparison of the computed results obtained for the
grids, FINE and FINETRANSOM. The computations were carried out using
Chien’s k-ε turbulence model and the inviscid mirror free-surface boundary
conditions. FnT = 2.8.
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4.1.2 Flat Plate at the Full-Scale Ship Reynolds Num-
ber, Rel = 9.442× 108

In a former investigation, it has been shown that the FINFLO code is able
to deal with high-Reynolds-number flows without pressure gradient up to
ship scale, Schweighofer (1997). There, the fully turbulent flow over a flat
plate for a large range of Reynolds numbers was investigated using the two-
dimensional, compressible version of FINFLO, FINF2D, Hellsten (1996),
Hoffrén and Siikonen (1992). The three-dimensional, incompressible ver-
sion of FINFLO used in this work has not been tested for turbulent flows at
full-scale ship Reynolds numbers so far. Therefore, using Chien’s low Reyn-
olds number k-ε turbulence model, the fully turbulent flow over a flat plate
is computed at the full-scale ship Reynolds number, Rel = 9.442× 108. The
computations are described in the chapter, three. The validation is carried
out with respect to the skin friction, the nondimensional velocity profile and
the nondimensional turbulent viscosity.

Influence of the Free-Stream Turbulence Quantities on the Turbu-
lent Boundary Layer

The appearing free-stream turbulence quantities are the turbulent kinetic
energy, k∞, the turbulence level, I∞, the nondimensional turbulent viscosity,
µT∞/µ, and the dissipation of the turbulent kinetic energy, ε∞. Their relation
to each other is given in the following.

In the input, the turbulence level, I∞, and the nondimensional turbulent
viscosity, µT∞/µ, are given. Using the free-stream velocity, U∞, the free-
stream turbulent kinetic energy, k∞, is obtained from

k∞ =
3

2
(I∞U∞)2 .

The dissipation of the turbulent kinetic energy, ε∞, is obtained by rearranging
Eq. (2.12) to

ε∞ = 0.09
ρk∞2

µT∞
.

The turbulence level, I∞, is set to the same value as at model scale. It
accounts for 0.001, which corresponds to the lower limit of a normal wind
tunnel, Schlichting (1979).

In the first case, the nondimensional turbulent viscosity, µT∞/µ, is set
to 0.01 corresponding to the respective value at model scale. The molecu-
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lar viscosity is a property of the fluid remaining unchanged. Therefore, the
free-stream turbulent viscosity remains also unchanged. Due to the increased
free-stream velocity and the constant turbulence level, the free-stream tur-
bulent kinetic energy is increased at full-scale giving a significantly increased
dissipation of the turbulent kinetic energy, ε∞. This causes a strong dissipa-
tion of the turbulent kinetic energy in the boundary layer. The development
of the turbulent boundary layer is partly prevented. The turbulent kinetic
energy and the turbulent viscosity remain too low (Figs. 4.4 and 4.5). In
Table 2, the computed mean skin friction coefficient is presented. It is defined
as

CF =

∫
A τwalldA

0.5ρU2
∞A

, (4.6)

where A is the wetted surface of the flat plate. The deviation from the value
of the semi-empirical Engineering Sciences Data (ESD), Royal Aeronautical
Society (1968), is with about 1.5 percent quite low. The Engineering Sciences
Data are based on experiments conducted at Reynolds numbers up to 5×108.
Nevertheless, in the case of a proper solution, the result should be close to
the one obtained using FINF2D with Chien’s low Reynolds number k-ε tur-
bulence model, Schweighofer (1997). The result in Table 2 is obtained using
the finest grid, FLATFST. The coarser grid, FLATF, gives a result more
than 20 percent lower than the one of the ESD.

Table 2: Comparison of the computed mean skin friction coefficients, CF ,
with the ones of the semi-empirical Engineering Science Data (ESD) and an
estimation based on a former computation Schweighofer (1997). The compu-
tations were performed using the grid, FLATFST, and Chien’s low Reynolds
number k-ε turbulence model.

µT∞/µ 0.01 16.5 Schweighofer, 1997 ESD
CF × 103 1.536 1.650 1.660 1.560
Error, ∆CF [%] -1.5 5.8 6.4

In the second case, the nondimensional turbulent viscosity, µT∞/µ, is set to
16.5 giving almost the same free-stream dissipation of the turbulent kinetic
energy, ε∞, as at model scale. The dissipation of the turbulent kinetic energy
is assumed to be a material property, which remains unchanged. The com-
putation gives a fully developed boundary layer as it should be (Figs. 4.4
and 4.5). The results with respect to the nondimensional turbulent viscosity
and the mean skin friction coefficient are in very good agreement with the
ones presented in Schweighofer (1997). Almost exactly the same result is
obtained by leaving µT∞/µ equal to 0.01 and setting I∞ equal to 0.000157
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giving the same free-stream dissipation of the turbulent kinetic energy, ε∞,
as at model scale.

In the third case, the nondimensional turbulent viscosity, µT∞/µ, is set
to 1.0 giving a little increased free-stream dissipation of the turbulent kinetic
energy, ε∞, compared with the one at model scale. The results are almost
exactly the same as in the second case.

Using µT∞/µ equal to 16.5 and I∞ equal to 0.001, the verification and
further validation is carried out in the following.
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Figure 4.4: Top: Computed kinetic energy of turbulence, ρk, within the
boundary layer of the flat plate for µT∞/µ = 0.01. Bottom: Computed
kinetic energy of turbulence, ρk, within the boundary layer of the flat plate for
µT∞/µ = 16.5. The computations were performed using the grid, FLATFST,
and Chien’s low Reynolds number k-ε turbulence model.
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Figure 4.5: Top: Computed turbulent viscosity, µT/µ, within the boundary
layer of the flat plate for µT∞/µ = 0.01. Bottom: Computed turbulent
viscosity, µT/µ, within the boundary layer of the flat plate for µT∞/µ = 16.5.
The computations were performed using the grid, FLATFST, and Chien’s
low Reynolds number k-ε turbulence model.
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Skin Friction

The verification meaning the estimation of the discretisation error is carried
out using the mean skin friction coefficient. In Table 3, the mean skin friction
coefficients obtained with the grids, FLATR, FLATF and FLATFST, are
given. They are referred to the value of the Engineering Sciences Data (ESD).
The coarsest grid, FLATR, and the finer grid, FLATF, give results with a
difference of about 6 percent. The difference between the results derived
with the fine grid, FLATF, and the finest one, FLATFST, is less than 0.5
percent. Therefore, the solutions on the grids, FLATF and FLATFST, may
be regarded as independent of the grid resolution.

The result derived with the grid, FLATFST, agrees very well with the
one of Schweighofer (1997). With respect to the Engineering Sciences Data
(ESD), the result is about six percent too high. Nevertheless, due to a better
grid resolution, it is very little improved compared with the one of Schweig-
hofer (1997).

Table 3: Comparison of the computed mean skin friction coefficients, CF ,
with the one of Schweighofer, (1997), and the semi-empirical Engineering
Science Data (ESD).

FLATR FLATF FLATFST Schw., 1997 ESD
CF × 103 1.747 1.655 1.650 1.660 1.560
Error, ∆CF [%] 12.0 6.1 5.8 6.4

In Fig. 4.6, the local skin friction coefficient obtained from the computation
using the grid, FLATFST, and Chien’s low Reynolds number k-ε turbulence
model is given along the flat plate. The computed local skin friction coeffi-
cient is defined as

Cf =
τwall(x)

0.5ρU2
∞
, (4.7)

and Rex = U∞x/ν is the local Reynolds number, where x is the distance
from the leading edge measured in flow direction. With the exeption of the
local Reynolds number, in this work, x is always regarded as coordinate of
the defined coordinate system (Fig. 3.1). Compared with the semi-empirical
Engineering Sciences Data (ESD), the local skin friction coefficient is little
overestimated. Compared with the computation of Schweighofer, (1997),
the result is improved due to the better resolution of the boundary layer.
Nevertheless, over almost the entire length of the plate, the results of both
computations deviate from each other by not more than about two percent.
The agreement is very good. Close to the local Reynolds number, Rex = 109,



Results 59

the result obtained with the grid, FLATFST, shows a sudden increase of the
local skin friction coefficient caused by the application of the mirror boundary
condition on the side, five, of the block, BL1 (Figs. 3.1. and 3.5).
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Schweighofer, 1997

Figure 4.6: Computed local skin friction coefficient (FLATFST), Cf , com-
pared with the semi-empirical Engineering Sciences Data, ESD, and a former
computation with the two-dimensional Navier-Stokes solver for compressible
flows, FINF2D, Schweighofer (1997). The computations were performed us-
ing Chien’s low Reynolds number k-ε turbulence model.
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Nondimensional Velocity Profile

The validation of computations at full-scale ship Reynolds numbers is only
to a certain degree possible as sufficient experimental results are very rare.
For example, measurements of the mean skin friction coefficient have been
carried out only for Reynolds numbers not exceeding the value of 5× 108.

Regarding the nondimensional velocity profile of a smooth, flat plate in
incompressible flow, Fernholz and Finley (1996) have shown that the law of
the wall and the law of the wake are universal and independent of the Reyn-
olds number for ReΘ ≥ 500, where ReΘ is the Reynolds number based on the
boundary-layer momentum thickness. Therefore, with respect to the nondi-
mensional velocity profile, the validation is expected to be fairly reliable.

The nondimensional velocity, u+, is obtained from

u+ =
u

uτ
, (4.8)

and the nondimensional distance from the wall, |z|+, is given by

|z|+ =
uτ |z|
ν

. (4.9)

|z| is the dimensional distance from the wall. The absolute value is used as
z is negative with respect to the used coordinate system (Fig. 3.1).

In the sublayer extending from the wall to |z|+ = 5, the velocity profile
of a flat plate is linear, White (1991), and

u+ = |z|+ . (4.10)

The velocity profile is logarithmic for |z|+ ≥ 30, White (1991). There, the
law of the wall is valid, which is given by

u+ =
1

κ
ln(|z|+) + C , (4.11)

where κ = 0.4 is the Kármán constant and C = 5.1 an empirical constant.
Using these empirical constants, the law of the wall gives excellent agreement
with the measurements of Winter and Gaudet (1973), Bruns et al. (1992),
Fernholz et al. (1995) and Petrie et al. (1990).

In Fig. 4.7, the computed nondimensional velocity profiles (FLATFST)
are compared with the computed results of Schweighofer (1997), the theory
(sublayer, law of the wall) and the measurements of Winter and Gaudet
(1973). The agreement with the results of Schweighofer (1997) is very good.
The sublayer is very well reproduced. A moderate deviation from the law
of the wall and the measurements of Winter and Gaudet (1973) is obtained.
All in all, the obtained result is very satisfactory.
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Figure 4.7: Development of the nondimensional velocity, u+ = u/uτ , along
the nondimensional distance from the wall, |z|+ = uτ |z|/ν, in inner-law scal-
ing. Comparison of the computed results (FLATFST) at the local Reyn-
olds numbers, Rex = 9.453 × 107 and Rex = 9.010 × 108, with the results
of a former computation using air as medium at Rex = 8.872 × 107 and
Rex = 1.296×109, Schweighofer (1997), the theory (sublayer, law of the wall)
and the measurements of Winter and Gaudet (1973), at Rex = 8.872× 107.
The computations were performed using Chien’s low Reynolds number k-ε
turbulence model.
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Nondimensional Turbulent Viscosity

Regarding the turbulence, a general correlation cannot be found for the fluc-
tuating velocities, Fernholz and Finley (1996). As the turbulent viscosity
appears in the Reynolds-stress free-surface boundary conditions (Eqs. 2.41
and 2.42), it should be reproduced with reasonable accuracy.

For the estimation of the correct reproduction of the turbulence, the com-
puted nondimensional turbulent viscosity is used. In Fig. 4.8, it (FLATFST)
is compared with the one of the computation of Schweighofer (1997), which
has been validated as far as possible giving a good result regarding the re-
production of the turbulence of the flow over a flat plate. The comparison is
performed at the local Reynolds numbers, Rex = 9.453×107 and 4.226×108.
In the vicinity of the wall, the results are in very good agreement. In the
outer half of the boundary layer, the computation (FLATFST) gives little
higher values for the nondimensional turbulent viscosity than the one of Sch-
weighofer (1997). This is due to the different local Reynolds numbers of the
comparison and the better resolution of the boundary layer using the grid,
FLATFST.

The result of the entire validation with respect to the turbulent flow over
a flat plate can be summarized as very good. The agreement of the com-
puted results with the measurements is satisfactory. The computed results
(FLATFST) are almost exactly the same as the ones of a former computa-
tion of Schweighofer (1997). The incompressible version of FINFLO, used
in this work, is able to deal with turbulent flows without a pressure gradient
at full-scale ship Reynolds numbers giving fairly accurate results. In the x-
direction (Fig. 3.1), the model, Ile, of the investigation is flat over a large
part. In the z-direction (Fig. 3.1), it may be regarded as very thin. The
ratio of the length between the perpendiculars and the draught is about 15,
giving a weak pressure gradient. The skin friction and the structure of the
turbulence are assumed to be of similar nature as for the plate. Therefore,
the incompressible version of FINFLO is suitable for the investigation at full-
scale. Nevertheless, a validation of the turbulence below the free-surface is
not carried out. As the pressure gradient is weak and no separation with re-
circulating flow appears, it is assumed that Chien’s low Reynolds number k-ε
turbulence model is sufficient for an approximate treatment of the appearing
turbulence within the waves.
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Figure 4.8: Distribution of the nondimensional turbulent viscosity, µT/µ,
within the boundary layer with the thickness, δ. Comparison of the computed
results (FLATFST) at the local Reynolds numbers, Rex = 9.453 × 107 and
Rex = 4.226 × 108, with the results of a former computation using air as
medium at Rex = 8.872× 107 and Rex = 4.126× 108, Schweighofer (1997).
The computations were performed using Chien’s low Reynolds number k-ε
turbulence model.
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4.2 Multigridding at the Full-Scale Ship Reyn-

olds Number, Rel = 9.442× 108

The convergence of the computations may be improved by the application
of multigridding. The achieved acceleration ranges from 10 to 100 when five
grid levels are used, Ferziger and Perić (1999). For diffusion dominated flows
where viscostity effects are significant, the biggest savings may be obtained.
For convection dominated flows where the Euler equations are solved, the
savings are smallest, Ferziger and Perić (1999).

At full-scale ship Reynolds numbers, the influence of viscosity is less pro-
nounced than at model scale, and the flow is closer to the solution of the
Euler equations. Therefore, with respect to multigridding, the savings are
also smaller. As the application of multigridding may increase the CPU-time
for one iteration, the final computational time might be even increased in or-
der to get a converged solution. Regarding multigridding, a huge amount of
publications can be found. Nevertheless, in Chapter 1, a summary of existing
publications concerning computations at full-scale ship Reynolds numbers is
given. These publications give no information about the efficiency of multi-
gridding at full-scale ship Reynolds numbers. In this work, a first estimation
of the efficiency and meaningfulness of multigridding at full-scale ship Reyn-
olds numbers is given.

Apart from the general interest in this matter, the investigation is carried
out because of practical reasons. Using the current Navier-Stokes solver,
FINFLO, the application of multigridding demands a grid consisting of at
least two cells in the y-direction. Without multigridding, a grid consisting of
only one cell in the y-direction may be used. The application of multigridding
will give a lower number of iterations for a converged solution, but the CPU-
time for one iteration may be increased due to more operations and the
increased number of cells. Further, the free-surface has to be manipulated
manually several times increasing the time in order to get a final solution.

The computations are carried out using the grid, FINEFSC, and the
Baldwin-Lomax turbulence model under the same conditions as the full-scale
computations described in Section 3.3.2. For the application of multigridding,
the grid, FINEFSC, consists of two cells in the y-direction. For no application
of multigridding, only one cell is needed. In the beginning of the investigation
at full scale, Chien’s low Reynolds number k-ε turbulence model gave false
results and instability caused by certain restrictions of the code. Therefore,
the investigation of the efficiency of multigridding at full-scale ship Reynolds
numbers is carried out using the Baldwin-Lomax turbulence model. The
free-surface is kept fixed, and the mirror boundary condition is applied there
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(Figs. 3.1 and 3.4). For multigridding, two grid levels with a simple V-cycle
are used.

A comprehensive desrciption of the multigrid method used in FINFLO
may be found in Siikonen (1994), Siikonen (1996) and Siikonen et al. (1990).
The multigrid algorithm follows the method of Jameson and Yoon (1986).
First, the solution and the respective residual is computed on the finest
grid level giving a first approximation for the solution on the next coarser
grid level. Then, the solution and respective residual are computed on the
coarser grid level at a reduced cost. On the coarser grid level, the number
of cells is lower giving a shorter time for one iteration. The applied spatial
discretization is of first-order accuracy allowing the use of higher Courant
numbers, and the cell dimensions are larger. Therefore, the time step of
the computations is increased resulting in an accelerated solution. Once
the solution and the respective residual are known on the coarser grid level,
they are used as an improved approximation of the solution on the finer grid
level, and the respective corrections are carried out when going from the
coarser level to the finest one. Apart from the application of the first-order
discretization scheme on the coarser level, the computations are performed in
exactly the same way on all grid levels. The turbulent viscosity is computed
only on the finest grid level, and it is kept unchanged on the coarser grid
levels.

In Figs. 4.9 and 4.10, the convergence histories of the drag coefficient
and the L2-norms of the residuals regarding the density and the momentum
are presented. In FINFLO, the L2-norm of a quantity, Φ, is calculated as,
Rahman (1999),

‖Φ‖2 =

√
Σn
i=1Φ2

i

n
, (4.12)

where n is the number of control volumes of the computational domain. The
drag coefficient is defined as

CD =
RT

0.5ρU2
∞A

, (4.13)

where RT is the total resistance, and A is the wetted surface (see Section
3.3.2).

Using multigridding, the computed drag coefficient is 7.701 × 10−3. No
multigridding gives 7.641 × 10−3. The difference between both solutions is
less than one percent. Therefore, the obtained solutions converge to the
same value as it is requested. The application of multigridding gives a con-
verged solution after about 13000 iterations whereby one iteration takes 10.53
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seconds. The solution is converged after about 136890 seconds. No multi-
gridding gives a converged solution after about 30000 iterations, and the
CPU-time per iteration is 6.86 seconds giving a converged solution after
about 205800 seconds. The application of no multigridding increases the
time for a converged solution by the factor 1.5. Therefore, for computations
with a frozen free surface, the use of the multigridding method can be re-
commended. Nevertheless, in this work, the evaluation of the fully developed
free-surface demands a certain amount of iterations being roughly independ-
ent of the bulk flow. The application of multigridding increases the time
for one iteration significantly, and much time has to be used for the manual
manipulation of the grid. The gain due to the little faster bulk-flow solution
is too small in order to compensate for the increased time required by the
evaluation of the free surface. Therefore, in this work, the computations are
carried out without the application of multigridding.

Generally, in a three-dimensional case where the amount of cells is the
same for the application of multigridding and no multigridding, multigridding
will give an at least three times faster convergence. Using more grid levels,
the improvement may be even more significant. This holds for viscous flows
without the evaluation of the free-surface at full-scale ship Reynolds numbers.
In cases where the evaluation of the free-surface is clearly faster than the
one of the bulk flow, the application of multigridding will give an improved
convergence at full-scale ship Reynolds numbers.
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Figure 4.9: The influence of multigridding on the convergence at the full-
scale ship Reynolds number, Rel = 9.442×108 . Convergence histories of the
drag coefficient, CD, and the L2-norm of the residual of the density, ρ. The
computations were performed using the grid, FINEFSC, and the Baldwin-
Lomax turbulence model with and without the application of multigridding.
The free surface was kept frozen.
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Figure 4.10: The influence of multigridding on the convergence at the full-
scale ship Reynolds number, Rel = 9.442 × 108 . Convergence histories of
the L2-norms of the residuals of the x-momentum, ρu, and the z-momentum,
ρw. The computations were performed using the grid, FINEFSC, and the
Baldwin-Lomax turbulence model with and without the application of mul-
tigridding. The free surface was kept frozen.
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4.3 Froude Number, FnT = 2.8

In this section, the computed results for the transom wave, the drag coef-
ficient and the convergence are presented for the Froude number, 2.8. The
computations were performed solving the Euler and the RaNS equations
using Chien’s k-ε turbulence model and the inviscid mirror and viscous free-
surface boundary conditions. Additionally, the wave profiles obtained with
the inviscid irrotational, the inviscid flat and the inviscid flat-continuity
free-surface boundary conditions are presented. The computations were per-
formed at the Reynolds numbers, Rel = 3.732 × 106 and 9.442 × 108. The
used grids were FINE, FINEST, RUOGHFSC and FINEFSC.

4.3.1 Wave Profile, Reynolds Number, Rel = 3.732×106

In Fig. 4.11, the computed wave profiles behind the transom of the model,
Ile, are presented. The used grid was FINEST.

Compared with the viscous free-surface boundary conditions, the applic-
ation of the inviscid mirror free-surface boundary conditions gives an about
4 percent smaller wave height at the transom and a much stronger damp-
ing of the waves farther downstream. Using the inviscid mirror free-surface
boundary conditions, the solutions of the Euler and RaNS equations show
only little difference. The viscosity of the flow causes only a slight phase shift
and almost no damping of the waves behind the transom. The solutions of
the RaNS equations using the tangential- and Reynolds-stress free-surface
boundary conditions are almost identical. Therfore, the inclusion of the
Reynolds stresses into the pressure equation (Eqs. 2.41 and 2.42) has almost
no influence on the solution. This is in good agreement with the measure-
ments of Saisto (1995). There, only very small oscillations of the free surface
was observed for the Froude number, 2.8., and the draught, 0.1 m. If the
Reynolds-stress free-surface boundary conditions gave a significant deviation
from the result obtained with the tangential-stress free-surface boundary
conditions, this would mean that the Reynolds-stresses in the z-direction
are large, and therefore, a remarkable oscillation of the wave profile, as the
breaking of waves, should be observed. The application of the Boussinesq
approximation seems to work in this particular case.

Influence of the Numerical Scheme Applied to the Calculation of
the Velocity Derivatives on the Wave Profile

In Fig. 4.12, the influence of the calculation of the velocity derivatives at the
free surface on the wave profile is investigated. The velocity derivatives are
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computed according to a two-point upwind scheme of first-order accuracy in
the first case and a central difference scheme of second-order accuracy in the
second case (see Section 2.4.4). Here, the used schemes for the computation
of the velocity derivatives at the free surface give no difference. Therefore, the
two-point upwind scheme is accurate enough for the solution of the problem.
In all following presented results, it has been applied in association with the
additional inviscid and viscous free-surface boundary conditions.
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Figure 4.11: Computed wave profiles behind the transom of the model, Ile.
The computations were carried out solving the Euler and the RaNS equations
using Chien’s k-ε turbulence model and the inviscid mirror and viscous free-
surface boundary conditions. The used grid was FINEST. FnT = 2.8. Rel =
3.732× 106.
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Figure 4.12: Computed wave profiles behind the transom of the model, Ile.
The computations were carried out solving the RaNS equations using Chien’s
k-ε turbulence model and the tangential-stress free-surface boundary condi-
tion. The velocity derivatives at the free surface were calculated according
to a two-point upwind and a central-difference scheme. The used grid was
FINE. FnT = 2.8. Rel = 3.732× 106.
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Additional Computations of the Wave Profile

In order to clarify the reason for the deviation of the results associated with
the inviscid mirror and viscous free-surface boundary conditions, additional
computations are carried out (Fig. 4.13).

In the first case, the Euler equations are solved using the tangential-stress
free-surface boundary conditions. In order to obtain a stable solution, the
Courant number and DTWMAX are reduced to 3.0 and 0.0003, respectively.
Applying the tangential-stress free-surface boundary conditions, the solution
of the Euler and RaNS equations gives only a small difference. It can be
conducted that the damping of the waves due to the viscosity of the flow is
very small. This is consistent with the results obtained for the inviscid mirror
free-surface boundary conditions. Therefore, the damping of the waves is
caused mainly by the inviscid mirror free-surface boundary conditions.

This is confirmed by the second investigated case (Tang.-Str., Zero Grad.
BC) where the tangential-stress free-surface boundary conditions are ap-
plied (Eqs. 2.54 and 2.55). Here, additionally, the velocity components
are mirrored from the computational domain to the ghost cells according to
Eqs. (2.51 and 2.52). Close to the transom, the computed wave profile is
almost identical with the one obtained using the inviscid mirror free-surface
boundary conditions. Also the damping behaviour is quite similar. There-
fore, the calculation of the free-surface velocity components according to the
expressions for the tangential free-surface boundary conditions has no influ-
ence on the damping behaviour of the waves. The damping is caused by the
different velocities in the ghost cells with respect to the different free-surface
boundary conditions.

In the third case, the continuity equation was applied for the extrapol-
ation of the velocity component in the z-direction to the free-surface and
the ghost cells (Eqs. 2.55, 2.58 and 2.59). The velocity component in the
x-direction was extrapolated according to a zero-gradient condition to the
free-surface and the ghost cells (Eqs. 2.48, 2.51 and 2.52). The computa-
tion gives an unphysical behaviour of the transom wave. Beginning from the
transom, it becomes increasingly higher, which might be a result of contra-
dictionary boundary conditions.

Influence of the Alternative Inviscid Free-Surface Boundary Con-
ditions on the Wave Profile

A physically correct solution for the transom wave in viscous flow is char-
acterized by a constant wave steepness and almost no damping of the wave
profile. The wave height and the wave length will remain almost constant
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Figure 4.13: Computed transom-wave profiles of the model, Ile. The Euler
and the RaNS equations were solved using Chien’s k-ε turbulence model
and the inviscid mirror and viscous free-surface boundary conditions. The
continuity equation and the tangential-stress boundary condition with a zero-
gradient condition for the free-surface velocities were used as additional free-
surface boundary conditions. Grid, FINE. FnT = 2.8. Rel = 3.732× 106.
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away from the intermediate neighborhood of the transom. Qualitatively, this
is shown in Gentaz et al. (2000) where a proceeding wave is not dampened in
a two-dimensional wave tank until it is enforced. The potential-flow solutions
indicate the same behaviour. Also, the computations show that the influence
of the viscosity on damping is very little. Therefore, the flow away from the
transom should show an inviscid behaviour, which means no damping is
expected to occur.

The viscous free-surface boundary conditions give a physically correct
solution for the wave profile. The currently applied inviscid mirror free-
surface boundary conditions give a solution which is physically not correct.
The differences between both solutions are only due to the free-surface bound-
ary conditions. Using the inviscid mirror free-surface boundary conditions,
there is a contradiction between the obtained dampened result for the wave
profile and the ones given in Refs., Kuk-Jin (1996) and Vogt (1998). In
the mentioned references, the computed wave profile was not dampened al-
though inviscid free-surface boundary conditions were used. The reason for
this contradiction may be traced to the different ways of the realization of
the inviscid free-surface boundary conditions in the respective code.

In order to get a physically correct solution for the computed wave profile,
three alternative inviscid free-surface boundary conditions are implemented
into FINFLO and investigated. A detailed describtion of the alternative
inviscid free-surface boundary conditions is given in Section 2.4.

In Fig. 4.14, the computed wave profiles behind the transom of the model,
Ile, are presented. The RaNS equations are solved using Chien’s k-ε tur-
bulence model and the inviscid mirror and viscous free-surface boundary
conditions. Additionally, the inviscid irrotational, the inviscid flat and the
inviscid flat-continuity free-surface boundary conditions are used (see Section
2.4). The used grid is FINE.

The viscous, the inviscid irrotational and the inviscid flat-continuity free-
surface boundary conditions give almost no difference with respect to the
wave profile. The solutions are physically correct. Therefore, the solutions
obtained for these inviscid boundary conditions are assumed to be correct.

The inviscid flat free-surface boundary conditions give an even more pro-
nounced damping for the wave profile than the inviscid mirror ones, which
is physically not correct.
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Figure 4.14: Computed wave profiles behind the transom of the model, Ile.
The RaNS equations were solved using Chien’s k-ε turbulence model and the
inviscid mirror and viscous free-surface boundary conditions. Additionally,
the inviscid irrotational, the inviscid flat and the inviscid flat-continuity free-
surface boundary conditions were used. The used grid was FINE. FnT = 2.8.
Rel = 3.732× 106.
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The only difference between the tangential-stress and inviscid irrotational
free-surface boundary conditions is given by the way how the derivative,
∂u/∂z, is calculated. Using the tangential-stress free-surface boundary condi-
tions, ∂u/∂z = −∂w/∂x. Using the inviscid irrotational free-surface bound-
ary conditions, ∂u/∂z = ∂w/∂x. For both free-surface boundary condi-
tions, the results are almost identical. This can be the case only when
∂u/∂zdz = −∂w/∂xdz ≈ ∂w/∂xdz are very small with respect to the velo-
city, u, close to the free surface. dz is the distance between the centre points
of the cells immediately below and above the free surface, respectively.

The inviscid flat and the inviscid flat-continuity free-surface boundary
conditions are different only with respect to the calculation of the derivative,
∂w/∂z. In the first case, ∂w/∂z is set equal to zero. In the second case,
it is calculated from the continuity equation giving ∂w/∂z = −∂u/∂x. The
difference between the obtained solutions is caused by the calculation of the
derivative, ∂w/∂z. Due to the strongly dampened solution obtained with the
inviscid flat free-surface boundary conditions, the assumption of ∂w/∂z = 0
seems to be incorrect. The inviscid flat-continuity free-surface boundary con-
ditions give a physically correct solution. Therefore, it may be assumed that
∂w/∂z = −∂u/∂x 6= 0. Similarly to the inviscid flat free-surface bound-
ary conditions, the inviscid mirror free-surface boundary conditions give also
∂w/∂z = 0. Therefore, the solution is dampened. Nevertheless, the dampen-
ing is not as strong as for the inviscid flat free-surface boundary conditions
anymore. This is caused by the different values of the velocity components
in the second ghost-cell row above the free surface, which modify the flow
field close to the free surface.

Influence of the Grid Resolution on the Wave Profile

In Fig. 4.15, the influence of the grid resolution on the wave profile is evalu-
ated. The solution for the viscous free-surface boundary conditions is widely
grid independent. The numerical dissipation caused by the discretization
error is very little. The inviscid mirror free-surface boundary conditions
give a solution which is still clearly dependent on the resolution of the grid.
The amount of numerical dissipation is also higher than in the viscous case.
Therefore, a grid-independent solution can be obtained with less computa-
tional cells per wave length using the viscous free-surface boundary conditions
instead of the inviscid mirror ones. This may result in less computational ef-
fort and CPU-time. Nevertheless, close to the transom, the solution obtained
with the inviscid mirror free-surface boundary conditions is independent of
the grid resolution. Therefore, the dampened solution, there, is due to the
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influence of the inviscid mirror free-surface boundary conditions on the flow
field.
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Figure 4.15: Computed wave profiles behind the transom of the model,
Ile. The computations were carried out solving the Euler and the RaNS
equations using Chien’s k-ε turbulence model and the inviscid mirror and
tangential-stress free-surface boundary conditions. The used grids were FINE
and FINEST. FnT = 2.8. Rel = 3.732× 106.

For the investigated case, it may be concluded that the computed wave profile
is not affected by the physics associated with the viscous free-surface bound-
ary conditions. The respective inviscid and viscous free-surface boundary
conditions give almost the same result for the wave profile. Nevertheless, it
makes a significant difference in which way the inviscid free-surface boundary
conditions are realized. Regarding the calculation of the derivative, ∂w/∂z,
the assumption, ∂w/∂z = 0, should be avoided, and the application of the
continuity equation is recommended. The strongly dampened solution ob-
tained with the inviscid mirror free-surface boundary conditions and the in-
viscid flat free-surface boundary conditions is caused by the modification of
the flow field close to the free-surface and the strong numerical dissipation
due to the discretization error.
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The expressions associated with the viscous free-surface boundary conditions
are not much more complicated than the ones associated with the respective
inviscid free-surface boundary conditions giving a physically correct solution.
By nature, it is physically more correct to use the viscous free-surface bound-
ary conditions instead of the inviscid ones, and in certain cases, the accuracy
of the solution might be improved. Therefore, with respect to the compu-
tation of the wave profile, the implementation of the viscous free-surface
boundary conditions is justified. Nevertheless, the application of the viscous
free-surface boundary conditions causes almost no or very little damping of
the waves, which is not always a desired result. In order to avoid the reflec-
tion of the waves from the boundaries, it might be necessary to introduce
artifical damping zones provided the numerical dissipation due to the grid
resolution is not sufficient enough.

4.3.2 Wave Profile, Reynolds Number, Rel = 9.442×108

In Fig. 4.16, the computed wave profiles behind the transom of the model,
Ile, are presented. The used grid was FINEFSC. The computations were
performed using Chien’s k-ε turbulence model and the inviscid irrotational,
the Reynolds-stress and the inviscid mirror free-surface boundary conditions
at the full-scale ship Reynolds number, Rel = 9.442× 108.

The results are very similar to the ones at model scale. The inviscid
irrotational and the Reynolds-stress free-surface boundary conditions give
almost identical results. Therefore, the flow is almost irrotational close to
the free surface, and the significantly increased turbulent viscosity has no
influence on the wave profile through the free-surface boundary conditions.
The inviscid mirror free-surface boundary conditions give again a strongly
dampened solution.

Influence of the Grid Resolution on the Wave Profile

In Fig. 4.17, the influence of the grid resolution on the wave profile is estim-
ated. The computations were carried out using the coarse grid, ROUGHFSC,
and the fine grid, FINEFSC.

Using the grid, FINEFSC, the inviscid irrotational and the Reynolds-
stress free-surface boundary conditions give a solution being approximately
independent of the grid resolution. Close to the transom, the results obtained
with the grids, ROUGHFSC and FINEFSC, differ only by less than three
percent. Therefore, a further refinement of the grid, FINEFSC, will improve
the result only very little. Using the grid, FINEFSC, the inviscid mirror
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free-surface boundary conditions give a result being still dependent on the
grid resolution. Close to the transom the results obtained with the two grids
differ only by less than three percent. Therefore, there, the grid resolution
of the grid, FINEFSC, may be assumed as sufficient.

Influence of the Reynolds Number on the Wave Profile

In Fig. 4.18, the wave profiles obtained at the Reynolds numbers, Rel =
3.732× 106 (MSC) and 9.442× 108 (FSC), are presented. The wave height,
WH, and the distance from the transom in the positive x-direction, X, are
made nondimensional by referring the respective dimensional value to L/2
where L is the length overall. L/2 is 1 m and 40 m at Rel = 3.732× 106 and
9.442× 108, respectively.

For the full-scale ship Reynolds number, Rel = 9.442× 108, the solutions
are slightly dampened for all presented free-surface boundary conditions com-
pared with the results regarding Rel = 3.732×106. Close to the transom, the
difference accounts for about five percent. Therefore, the dampened solution
is not due to the free-surface boundary conditions. It is either a result of
the different flow situation because of the increased Reynolds number or it
is due to the different grids, FINE and FINEFSC. In Figs. 4.11, 4.13 and
4.29, it is shown that the viscosity of the flow has only very little influence
on the wave profile close to the transom. The solutions of the RaNS and
Euler equations are very close. At full scale, the influence of viscosity is less
pronounced than at model scale, and the solution of the RaNS equations
is expected to be closer to the one of the Euler equations. Therefore, the
computed wave profiles should be very similar to the ones of the model-scale
computations at FnT = 2.8. The difference between the solutions at model
and full scale is caused by the different used grids. The grid resolution will
cause only a difference of one or two percent with respect to the computed
wave height close to the transom. This is not sufficient in order to provide an
entire explanation for the obtained difference. The block, BL1, of the grid,
FINEFSC, is to a higher degree nonorthogonal than the one of the grid,
FINE. In BL1 of FINEFSC, the maximum deviation from the orthogonality
is about twenty degrees. In FINE, it is only about ten degrees. The deviation
of the nonorthoganility causes a numerical error and, therefore, a different
solution. Saisto and Sundell (1996), computed the turbulent flow over the
HSVA-1 tanker using two grids of different orthogonality. With Chien’s k-ε
turbulence model, regarding the resistance coefficient, the results were by
about 4 percent different from each other showing the significance of the grid
orthogonality on the results.
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In Fig. 4.19, the computed transom waves obtained with the grid, FINE,
at model scale, the grid, FINEFSC, and the improved grid, FINEFSC, at
full scale are compared with each other. The grid, FINEFSC, was improved
with respect to the orthogonality of BL1. The maximum deviation from
the orthogonality accounts only for about ten percent similarly to the grid,
FINE. The computations were performed using Chien’s k-ε turbulence model
and the inviscid irrotational free-surface boundary conditions. Close to the
transom, the wave height is increased by about two percent using the im-
proved version of the grid, FINEFSC. Taking into account the influence of
the grid resolution on the computed wave profiles, close to the transom, the
difference between the results at model and full scale is between one or two
percent. Farther away from the transom, an estimation of the deviation is
more difficult as the grids differ much from each other there. Summarized it
may be concluded that the wave profiles are almost the same at model and
full scale. In this case, the Reynolds number has a negligible effect on the
transom wave close to the stern.
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Figure 4.16: Computed wave profiles behind the transom of the model,
Ile. The computations were carried out solving the RaNS equations using
Chien’s k-ε turbulence model and the inviscid irrotational, the Reynolds-
stress and the inviscid mirror free-surface boundary conditions. The used
grid was FINEFSC. FnT = 2.8. Rel = 9.442× 108.
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Figure 4.17: Computed wave profiles behind the transom of the model, Ile.
The RaNS equations were solved using Chien’s k-ε turbulence model and the
inviscid irrotational, the Reynolds-stress and the inviscid mirror free-surface
boundary conditions. The used coarse grid was ROUGHFSC, and the finer
one was FINEFSC. FnT = 2.8. Rel = 9.442× 108.
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Figure 4.18: Computed wave profiles behind the transom of the model, Ile,
at model scale (MSC, Rel = 3.732× 106) and full scale (FSC, Rel = 9.442×
108). The computations were carried out solving the RaNS equations using
Chien’s k-ε turbulence model and the inviscid irrotational, the Reynolds-
stress and the inviscid mirror free-surface boundary conditions. FnT = 2.8.
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Figure 4.19: Computed wave profiles behind the transom of the model,
Ile, at model scale (MSC, Rel = 3.732 × 106) and full scale (FSC, Rel =
9.442×108). The computations were carried out solving the RaNS equations
using Chien’s k-ε turbulence model and the inviscid irrotational free-surface
boundary conditions. The grid, FINEFSC, was improved with respect to its
orthogonality. FnT = 2.8.
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Influence of the Reynolds Number on the Flow Field

In Figs. 4.20 up to 4.25, quantities of the flow field close to the transom are
given for the Reynolds numbers, Rel = 3.732 × 106 and 9.442 × 108. The
computations were conducted solving the RaNS equations using Chien’s k-ε
turbulence model, the Reynolds-stress free-surface boundary conditions and
the grids, FINE and FINEFSC. The momentum, ρ|~V |, the turbulent kinetic
energy, ρk, and the vorticity, ∂u/∂z − ∂w/∂x, are made nondimensional by
referring them to ρU∞, ρU2

∞ and U∞/0.5L, respectively.
The results with respect to the nondimensional momentum (Fig. 4.20)

show no significant difference. At full scale, the boundary layer at the
transom is clearly thinner than the one at model scale, and the extension
of low-velocity regions is less pronounced.

The nondimensional turbulent kinetic energy is significantly increased at
model scale (Fig. 4.21). It is convected from the boundary layer of the model,
Ile, into the waves behind the transom. Due to the velocity gradient and the
convected turbulence, the waves cause a production of the turbulent kinetic
energy according to Eq. (2.10). Therefore, the convected turbulent kinetic
energy is amplified below the wave crest. At full scale, in the transom wave,
the dimensional value of the turbulent kinetic energy is increased by 10 to
15 times compared with the one at model scale. In association with a lower
surface tension, this might be one cause for small instabilities at full scale
resulting in an breaking wave which does not appear at model scale.

The nondimensional turbulent viscosity, µT/µ, is significantly increased
in the waves both at model and full scale (Fig. 4.23) compared with the one
in the boundary layer at the wall of the model, Ile. Its maximum value is not
located there where the turbulent kinetic energy is highest. As the turbulent
viscosity is also dependent on the dissipation of the turbulent kinetic energy,
its maximum value is located there where k2/ε is highest.

The nondimensional vorticity distributions are quite similar at model and
full scale (Fig. 4.24). At model scale, due to the increased influence of the
viscosity on the flow, the extension of the nondimensional vorticity is little
larger than at full scale. A significant difference is observed at the immediate
vicinity of the transom (Fig. 4.25). There, at full scale, the nondimensional
vorticity is about 100 times higher than the one at model scale, which is
a result of the very high velocity gradient at the wall. Therefore, in this
region, an oscillating behaviour of the flow might be possible at full scale
which would not appear in model scale.



Results 87

Figure 4.20: Computed nondimensional momentum behind the transom
of the model, Ile, at model scale (Rel =3.732×106, top) and full scale
(Rel =9.442×108, bottom). The computations were carried out solving the
RaNS equations using Chien’s k-ε turbulence model and the Reynolds-stress
free-surface boundary conditions. FnT = 2.8. The pictures were compressed
in the horizontal direction.
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Figure 4.21: Computed nondimensional turbulent kinetic energy,
ρk/(ρU2

∞), behind the transom of the model, Ile, at model scale
(Rel =3.732×106, top) and full scale (Rel =9.442×108, bottom).
The computations were carried out solving the RaNS equations using
Chien’s k-ε turbulence model and the Reynolds-stress free-surface boundary
conditions. FnT = 2.8. The pictures were compressed in the horizontal
direction.
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Figure 4.22: Computed turbulent kinetic energy, ρk, behind the
transom of the model, Ile, at model scale (Rel =3.732×106, top) and full
scale (Rel =9.442×108, bottom). The computations were carried out
solving the RaNS equations using Chien’s k-ε turbulence model and the
Reynolds-stress free-surface boundary conditions. FnT = 2.8. The pictures
were compressed in the horizontal direction.
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Figure 4.23: Computed nondimensional turbulent viscosity, µT/µ,
behind the transom of the model, Ile, at model scale (Rel =3.732×106, top)
and full scale (Rel =9.442×108, bottom). The computations were carried
out solving the RaNS equations using Chien’s k-ε turbulence model and the
Reynolds-stress free-surface boundary conditions. FnT = 2.8. The pictures
were compressed in the horizontal direction.
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Figure 4.24: Computed nondimensional vorticity, γ∗, behind the
transom of the model, Ile, at model scale (Rel = 3.732× 106, top) and full
scale (Rel = 9.442 × 108, bottom). The computations were carried out
solving the RaNS equations using Chien’s k-ε turbulence model and the
Reynolds-stress free-surface boundary conditions. FnT = 2.8. The pictures
were compressed in the horizontal direction.
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Figure 4.25: Computed nondimensional vorticity, γ∗, at the transom
of the model, Ile, at model scale (Rel = 3.732 × 106, top) and full scale
(Rel = 9.442×108, bottom). The computations were carried out solving the
RaNS equations using Chien’s k-ε turbulence model and the Reynolds-stress
free-surface boundary conditions. FnT = 2.8. The pictures were compressed
in the horizontal direction.
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4.3.3 Resistance

In Table 4, the computed drag, the pressure resistance and the mean skin
friction resistance coefficients are presented for the Reynolds number, Rel =
3.732 × 106 . The respective Froude number, FnT , is equal to 2.8. The
measured drag coefficient, Aho and Schweighofer (1995), is given in the last
row.

The drag coefficient is defined as

CD =
RT

0.5ρU2
∞A

, (4.14)

where RT is the total resistance, and A is the wetted surface. In naval ap-
plications, the drag coefficient, CD, is denoted as total resistance coefficient,
CT . The pressure coefficient is defined as

CP =
RP

0.5ρU2
∞A

=

∫
A−pwallnxdA

0.5ρU2
∞A

, (4.15)

where RP is the pressure resistance of the model. pwall is the pressure acting
on the wall, and nx is the x-component of the unit normal vector pointing
from the wall into the computational domain. The computed mean skin
friction coefficient is defined as

CF =
RF

0.5ρU2
∞A

=

∫
A τwalltxdA

0.5ρU2
∞A

, (4.16)

where RF is the mean skin friction resistance of the model. tx is the x-
component of the tangential unit vector on the hull pointing backwards from
the bow to the stern.

The computed total, pressure and skin friction coefficients obtained with
different free-surface boundary conditions at model scale are given for the
coarse grid, FINE, and the finer one, FINEST (Table 4). In Table 5, the
respective full-scale results for Rel = 9.442×108, are given for the coarse grid,
ROUGHFSC, and the finer one, FINEFSC. In the following, the influence of
the grid resolution on the results is evaluated, and the effect of the different
free-surface boundary conditions on the resistance coefficients is discussed.

At model scale, the resistance coefficients obtained from the computa-
tions for the grids, FINE and FINEST, do not differ more than about one
percent (Table 4). Therefore, these resistance coefficients may be regarded as
independent of the grid resolution. The computed total resistance coefficents
obtained with Chien’s k-ε turbulence model are about 60 percent lower than
the experimental one, Aho and Schweighofer (1995). The reason for this re-
markable difference is given by the fact that in the experiment the bow wave
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was present and in the computations not. This confirms again the significant
influence of the bow wave on the results. The viscous and inviscid irrota-
tional free-surface boundary conditions give a very small difference between
the computed resistance coefficients. Comparing the results for the viscous
and inviscid irrotational free-surface boundary conditions with the ones for
the inviscid mirror ones, a moderate difference of three percent is obtained.

At full scale, the mean skin friction resistance coefficients, CF , obtained
from the computations for the grids, ROUGHFSC and FINEFSC, do not
differ more than about five percent (Table 5). The grid, FINEFSC, is very
similar to the grid, FLATF, of the flat-plate computations (Section 4.1.2).
The grid, FLATF, was already sufficient for a grid independent solution.
Therefore, it may be expected that a refinement of the grid, FINEFSC, will
have a negligible effect on the computation of the mean skin friction coef-
ficient. The pressure resistance coefficients, CP , obtained from the compu-
tations for the grids, ROUGHFSC and FINEFSC, do not differ more than
by about seven percent (Table 5). Close to the transom, the computed wave
profile may be assumed as independent of the grid resolution for the grid,
FINEFSC (Fig. 4.17). The pressure along the hull is mainly determined
by the convection terms of the RaNS equations. The convection terms are
discretized by a scheme of third-order accuracy. Therefore, a refinement of
the grid, FINEFSC, will cause a very small change of the pressure resist-
ance coefficient. All in all, the resistance coefficients obtained for the grid,
FINEFSC, may be regarded as almost independent of the grid resolution.
The viscous and the inviscid irrotational free-surface boundary conditions
give almost the same results. The difference between these boundary condi-
tions and the inviscid mirror ones accounts for about three percent, similarly
to the computations at model scale.
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Table 4: Resistance coefficients obtained from the computations for the
grids, FINE and FINEST. The computations were performed using Chien’s k-
ε turbulence model and the inviscid and viscous free-surface boundary condi-
tions. The experimental value was taken from Aho and Schweighofer (1995).
FnT = 2.8. Rel = 3.732× 106.

Case FINE FINEST
Resistance coeff., ×103 CD CP CF CD CP CF
Euler, inviscid mirror BC 5.865 5.865 5.875 5.875
Euler, tang.-str. BC 6.038 6.038
k-ε, inviscid mirror BC 10.13 6.143 3.986 10.205 6.228 3.978
k-ε, inviscid irrot. BC 10.454 6.466 3.988
k-ε, tang.-str. BC 10.443 6.455 3.988 10.456 6.475 3.982
k-ε, Reyn.-str. BC 10.417 6.420 3.997 10.424 6.456 3.968
Experiment 27.72 27.72

Table 5: Resistance coefficients obtained from the computations for the
grids, ROUGHFSC and FINEFSC. The computations were performed using
Chien’s k-ε turbulence model and the inviscid and the Reynolds-stress free-
surface boundary conditions. Rel = 9.442× 108.

Case ROUGHFSC FINEFSC
Resistance coefficient, ×103 CD CP CF CD CP CF
k-ε, inviscid mirror BC 8.560 6.510 2.050 7.961 6.019 1.942
k-ε, inviscid irrot. BC 8.765 6.717 2.047 8.145 6.203 1.942
k-ε, inv. irrot. BC, improv. 8.192 6.251 1.940
k-ε, Reyn.-str. BC 8.665 6.617 2.048 8.112 6.168 1.943

Comparison of the Computed Resistance with the ITTC-57 Extra-
polation Method

In Table 6, the computed resistance coefficients are compared with the ones
of the ITTC-57 extrapolation method, The Society of Naval Architects and
Marine Engineers (1988). The computations were performed using Chien’s
k-ε turbulence model and the inviscid irrotational free-surface boundary con-
ditions at Rel = 3.732× 106 (MSC) and 9.442× 108 (FSC). As the inviscid
irrotational free-surface boundary conditions gave almost the same result as
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the Reynolds-stress free-surface boundary conditions, and the numerical er-
ror is the smallest for the improved version of the grid, FINEFSC, these
results may be used for the evaluation of the scaling process. The grids,
FINE and FINEFSC, were used because of their similar resolutions in the
x-directions giving the same accuracy for the computation of the pressure
distribution along the hull. At model scale, the total resistance coefficient,
CD, of the ITTC-57 extrapolation method is equal to the computed total
resistance coefficient. The mean skin friction coefficient according to the
ITTC-57 model-ship correlation line, The Society of Naval Architects and
Marine Engineers (1988), is calculated from

CF,ITTC−57 =
0.075

(lgRel − 2)2
. (4.17)

Using the computed total resistance coefficient, CD, and the calculated mean
skin friction coefficient, CF,ITTC−57, the residual resistance coefficient, CR, of
the ITTC-57 extrapolation method is calculated as

CR = CD − CF,ITTC−57 . (4.18)

CR is the same at model and full scale. At full scale, the total resistance
coefficient of the ITTC-57 extrapolation method is calculated as

CD = CR + CF,ITTC−57 . (4.19)

In the following, the first two lines of Table 6 are considered. At full scale, the
total resistance coefficient, CD, is overestimated by only two percent using
the ITTC-57 extrapolation method. The agreement with the computed result
is very good. Nevertheless, this result must be taken with caution.

At model scale, the flow was laminar over a range of about 2.5 percent
of the model length, and transition took place within a region of 2.5 percent
and 10.5 percent of the model length measured from the fore perpendicular
in the positive x-direction. Generally, when using the ITTC-57 extrapolation
method, the flow has to be fully turbulent at model and full scale. Therefore,
at model scale, the computed result has to be corrected with respect to a fully
turbulent flow. For the evaluation of the necessary correction with respect
to a from the fore perpendicular fully turbulent flow, the local skin friction
curves of White (1991), Schweighofer (1997), and Blasius, White (1991),
Schweighofer (1997), are used. The curve of White is related to the fully
turbulent flow over a smooth flat plate. The one of Blasius is related to the
laminar flow over a smooth flat plate. Using these curves, the increase of the
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the computed mean skin friction coefficient is obtained from

∆CF =

∫ 0.065Lpp
0 (Cf,White − Cf,Blasius)dx

Lpp
= 0.32× 10−3 , (4.20)

and the corrected total and mean skin friction resistance coefficients become

CD,Fullyturb. = CD + ∆CF (4.21)

and
CF,Fullyturb. = CF + ∆CF , (4.22)

respectively. The corrected results are presented in the third line of Table
6. In the last line, the full-scale results with respect to the corrected model-
scale results are presented. There, the ITTC-57 extrapolation method gives
a total resistance coefficient, CD, being overestimated by about 6.5 percent
compared with the one of the full-scale computation.

Recognizable differences are obtained for the computed pressure and
mean skin friction resistance coefficients compared with the residual and
mean skin friction resistance coefficients of the ITTC-57 extrapolation method.
At model scale, in the partly laminar case, the residual resistance coefficient,
CR, is about five percent greater than the computed pressure resistance coef-
ficient, CP (first line of Table 6). The value for the fully turbulent case is
even about eleven percent greater (third line of Table 6). At full scale, the
differences are more pronounced. With respect to the partly laminar case at
model scale, it is about ten percent (second line of Table 6). With respect to
the fully turbulent case at model scale, it is about fifteen percent (last line
of Table 6). Therefore, the residual resistance coefficient includes a certain
amount of viscosity effects, which are little more pronounced at full scale
than at model scale.

The skin friction coefficient of the ITTC-57 model-ship correlation line is
of a smaller value than the computed ones, and, at model scale, it is about
four percent greater than the one of a flat plate. At full scale, its deviation
from the value of a flat plate is about one percent.

The pressure resistance coefficient of the computations, CP , changes very
little with the Reynolds number. The difference is about three percent. It
is explained partly by the influences of the different grids. Another reason
is given by the boundary-layer effect, Schlichting (1979), which causes a less
pronounced pressure peak at the shoulder at model scale. At full scale and
particularly for the solution of the Euler equations (see Table 4), the pressure
reaches a greater negative value at the shoulder. Therefore, the pressure
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resistance coefficient is also smaller compared with the one at model scale,
which is physically correct.

Table 6: Resistance coefficients obtained from the computations for the grid,
FINE, and the improved grid, FINEFSC. Further, the resistance coefficients
with respect to the ITTC-57 extrapolation method are given. The compu-
tations were performed using Chien’s k-ε turbulence model and the inviscid
irrotational free-surface boundary conditions. Rel = 3.732× 106 (MSC) and
9.442× 108 (FSC). At model scale, the computed result was corrected with
respect to a fully turbulent flow (Fully turb., comp., MSC). The respective
results are given in the last two rows.

Case Computation ITTC-57
Resistance coeff., ×103 CD CP CF CD CR CF
k-ε, inv. BC, MSC 10.454 6.466 3.988 10.454 6.866 3.588
k-ε, inv. BC, imp., FSC 8.192 6.251 1.940 8.408 6.866 1.542
Fully turb., comp., MSC 10.774 6.466 4.308 10.774 7.186 3.588
k-ε, inv. BC, imp., FSC 8.192 6.251 1.940 8.728 7.186 1.542

Comparison of the Computed Resistance with the ITTC-78 Extra-
polation Method

In Table 7, the computed resistance coefficients are compared with the ones
of the ITTC-78 extrapolation method, The Society of Naval Architects and
Marine Engineers (1988). The computed results are the same as the ones of
the discussion with respect to the ITTC-57 extrapolation method. At model
scale, the resistance coefficients of the ITTC-78 extrapolation method are
equal to the ones of the partly laminar computation (first line of Table 7)
and the corrected computation with respect to a fully turbulent flow (third
line of Table 7). The viscous resistance coefficient,

Cv = (1 + k)CF,ITTC−57 , (4.23)

of the ITTC-78 extrapolation method is replaced by the skin friction resist-
ance coefficient,

CF = (1 + k)CF,ITTC−57 . (4.24)

The form factor, k, takes into account the influence of the hull form on the
frictional resistance only. This is not exactly in agreement with the ITTC-78
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extrapolation method of The Society of Naval Architects and Marine Engin-
eers (1988). There, also the form influence on the pressure resistance due to
the viscosity of the flow is taken into account by the form factor determined
by several model tests. Nevertheless, it was not possible to carry out reliable
computations at very low Froude numbers. Therefore, an estimation of the
form factor according to the rules is not possible, and instead, the deviation
of the computed skin friction resistance coefficient from the ITTC-57 model-
ship correlation line is used for the estimation of the form factor. The form
factor, k, is obtained from

k =
CF

CF,ITTC−57

− 1 , (4.25)

where CF is the computed mean skin friction coefficient, and CF,ITTC−57 is
the mean skin friction coefficient according to the ITTC-57 model-ship cor-
relation line, The Society of Naval Architects and Marine Engineers (1988),
given by Eq. (4.17). As the total resistance and the mean skin friction resist-
ance coefficients of the computation and the ITTC-78 extrapolation method
are the same at model scale, the residual resistance coefficient, CR, is equal
to the pressure resistance coefficient, CP , of the computations. Therefore,
very little viscosity influences are contained in the residual resistance coeffi-
cient. The residual resistance coefficient is the same at model and full scale.
In the partly laminar case, the form factor, k, accounts for 0.111 (first line
of Table 8), and it is the same at model and full scale. The correction for a
from the fore pendicular fully turbulent flow gives the form factor, k = 0.201
(second line of Table 8). At full scale, the total resistance coefficient, CD, of
the ITTC-78 extrapolation method is obtained from

CD = CR + CF , (4.26)

where CR is the residual resistance coefficient of the model, and CF is calcu-
lated from Eq. (4.24) using the form factor, k, of the model. The obtained
total resistance coefficient, CD, is almost exactly the same as the one of the
computation. The corrected value is about 1.5 percent greater than the one
of the computation (last line of Table 7). At full scale, the residual resistance
coefficient is about three percent greater than the computed pressure coef-
ficient (last line of Table 7). Therefore, a very small amount of additional
viscosity influences are included in the residual resistance coefficient. For the
fully turbulent case, the computed mean skin friction coefficient and the one
of the ITTC-78 extrapolation method are with about 4.5 percent very close
to each other (last line of Table 7).
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In Table 8, the form factors with respect to the ITTC-57 model-ship correla-
tion line, The Society of Naval Architects and Marine Engineers (1988), and
the mean skin friction curve of a fully turbulent flow over a flat plate (ESD),
Royal Aeronautical Society (1968), are given. Using the ITTC-57 model-
ship correlation line for the evaluation of CF,ITTC−57 in Eq. (4.25), the form
factor is different at model and full scale. The laminar flow at the bow is
one cause for the obtained difference (first line of Table 8). Having corrected
the result for a fully turbulent flow (second line of Table 8), the form factors
at model and full scale are quite close to each other. The remaining dif-
ference is caused by the nature of the ITTC-57 model-ship correlation line,
which includes already a certain form factor at model scale. Therefore, at
model scale, the form factor is little smaller than the one at full scale. This
is confirmed by the obtained results with respect to the mean skin friction
curve of a flat plate. There, the respective mean skin friction coefficients of
the ESD were used in Eq. (4.25) instead of CF,ITTC−57. The obtained form
factor is almost exactly the same at model and full scale (second row and
last two lines of Table 8). Again, the influence of the laminar region at the
bow causes a smaller mean skin friction coefficient and, therefore, a smaller
form factor (second row and first line of Table 8).

For the full-scale ship, the agreement of the computed total resistance
coefficient with the one of the modified ITTC-78 extrapolation method is
excellent. The ITTC-57 extrapolation method gives a slightly overpredicted
value. Taking into account that the computed result will be little increased
when the grid influences vanish, the computed result is improved with respect
to the used extrapolation methods. The used extrapolation methods are
assumed to work well for simple cases. The computed case is simple as no
flow separation with backflow occurs. Also, the hull is rather thin in the
z-direction, and the influence of the viscosity on the pressure resistance is
very small. Therefore, the used extrapolation methods may be assumed
to be appropriate for this particular case, and the scaling of the resistance
coefficients may be assumed as quite well reproduced.
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Table 7: Resistance coefficients obtained from the computations for the grid,
FINE, and the improved grid, FINEFSC. Further, the resistance coefficients
with respect to the ITTC-78 extrapolation method are given. The compu-
tations were performed using Chien’s k-ε turbulence model and the inviscid
irrotational free-surface boundary conditions. Rel = 3.732× 106 (MSC) and
9.442× 108 (FSC). At model scale, the computed result was corrected with
respect to a fully turbulent flow (Fully turb., comp., MSC). The respective
results are given in the last two rows.

Case Computation ITTC-78
Resistance coeff., ×103 CD CP CF CD CR CF
k-ε, inv. BC, MSC 10.454 6.466 3.988 10.454 6.466 3.988
k-ε, inv. BC, imp., FSC 8.192 6.251 1.940 8.179 6.466 1.713
Fully turb., comp., MSC 10.774 6.466 4.308 10.774 6.466 4.308
k-ε, inv. BC, imp., FSC 8.192 6.251 1.940 8.317 6.466 1.851

Table 8: The form factor, k, with respect to the ITTC-57 model-ship cor-
relation line, The Society of Naval Architects and Marine Engineers (1988)
and the mean skin friction line of a flat plate (ESD), Royal Aeronautical
Society (1968). The computations were performed using Chien’s k-ε turbu-
lence model and the inviscid irrotational free-surface boundary conditions.
Rel = 3.732×106 (MSC) and 9.442×108 (FSC). At model scale, the computed
result was corrected with respect to a fully turbulent flow (Fully turbulent,
comp., MSC).

Form factor, k
Reference ITTC-57 Flat plate, ESD
k-ε, inv. irrot. BC, MSC 0.111 0.156
Fully turbulent, comp., MSC 0.201 0.249
k-ε, inv. irrot. BC, imp., FSC 0.258 0.244
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4.3.4 Convergence

In Figs. 4.26 and 4.27, the convergence histories of the computations as-
sociated with the inviscid mirror and Reynolds-stress free-surface boundary
conditions are presented. The computations were carried out at model scale.
Considering the drag coefficient, CD, and the L2-norms of the turbulence
quantities, no difference in the convergence duration can be observed. For the
L2-norms of the density, the x-momentum and the z-momentum, the inviscid
mirror free-surface boundary conditions give a faster convergence than the
Reynolds-stress free-surface boundary conditions. The ship hydrodynamicist
is mainly interested in the converged result for the drag coefficient. There-
fore, concerning the convergence, it makes no difference whether the inviscid
mirror or the viscous free-surface boundary conditions are used. This holds
also for the inviscid irrotational free-surface boundary conditions.

At full scale, the change of the drag coefficient shows no change anymore.
The L2-norms of the density, the x-momentum and the z-momentum are
reduced to 1×10−5, 3×10−7 and 1×10−7, respectively. The L2-norms of the
turbulent kinetic energy and the dissipation of the turbulent kinetic energy
are reduced to 4× 10−8 and 1× 10−4, respectively. The maximum change of
the pressure in the flow field is reduced from 1.5× 106 to 4× 10−1.
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Figure 4.26: Convergence history for the model, Ile. The computation was
performed solving the RaNS equations using Chien’s k-ε turbulence model
and the inviscid mirror free-surface boundary conditions. The used grid was
FINEST. CD is the drag coefficient. The other quantities are the L2-norms of
the residuals of the density, ρ, the x-momentum, ρu, the z-momentum, ρw,
the turbulent kinetic energy, k, and the dissipation of the turbulent kinetic
energy, ε. FnT = 2.8. Rel =3.732×106.
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Figure 4.27: Convergence history for the model, Ile. The computation was
performed solving the RaNS equations using Chien’s k-ε turbulence model
and the Reynolds-stress free-surface boundary conditions. The used grid was
FINEST. CD is the drag coefficient. The other quantities are the L2-norms of
the residuals of the density, ρ, the x-momentum, ρu, the z-momentum, ρw,
the turbulent kinetic energy, k, and the dissipation of the turbulent kinetic
energy, ε. FnT = 2.8. Rel =3.732×106.
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4.4 Froude Number, FnT = 2.3

In this section, the computed results for the transom wave, the drag coef-
ficient and the convergence are presented for the Froude number, 2.3. The
computations were performed solving the Euler and the RaNS equations us-
ing Chien’s k-ε turbulence model and the inviscid and viscous free-surface
boundary conditions. The used grid was FINE. The Reynolds number was
3.066× 106.

4.4.1 Wave Profile

In Fig. 4.28, the computed wave profiles behind the transom of the model,
Ile, are presented. With the exception of the inviscid irrotational free-
surface boundary conditions, qualitatively, the results are similar to the
ones obtained for the Froude number, 2.8. Compared with the viscous
free-surface boundary conditions, the application of the inviscid mirror free-
surface boundary conditions gives an about 5 percent smaller wave height
at the transom and a much stronger damping of the waves farther down-
stream. The reduction of both the Froude number and the Reynolds number
increases the influence of the viscosity on the results. This can be observed
very well in the case of the inviscid mirror free-surface boundary conditions
(Figs. 4.28 and 4.29). There, the viscosity of the flow causes a higher and
steeper wave at the transom than the solution of the Euler equations. Also
the appearing phase shift and damping are more strongly pronounced. The
difference between the solutions of the RaNS equations with the viscous and
inviscid mirror free-surface boundary conditions and the solution of the Euler
equations with the inviscid mirror free-surface boundary conditions is caused
by the different boundary conditions and the viscous terms appearing in the
RaNS equations. For the Froude number, 2.8, the influence of the viscosity
terms was very small (Fig. 4.29).

The solutions of the RaNS equations using the tangential- and Reynolds-
stress free-surface boundary conditions are again almost identical. Therefore,
the inclusion of the Reynolds stresses into the pressure equation (Eqs. 2.41
and 2.42) has also in this case almost no influence on the solution.

For the Froude number, 2.8, the inviscid irrotational free-surface bound-
ary conditions gave almost exactly the same result as the viscous free-surface
boundary conditions (Fig. 4.29). For the Froude number, 2.3, a moderate
difference is obtained. The inviscid irrotational free-surface boundary condi-
tions give an about four percent higher wave profile at the transom than the
viscous ones, and the solution is less dampened farther downstream. The in-



Results 106

fluence of the viscosity through the free-surface boundary conditions on wave
making is obvious, and it makes a slight difference whether the free-surface is
treated as the free surface of an inviscid or viscous flow. The obtained result
is in agreement with the finding of Jeong and Doi (1995). They pointed
out that a high curvature of the bow wave will give a dampened wave when
the tangential stresses are set to zero on the free surface in comparison with
the zero-gradient condition. Hinatsu (1992) points out that the application
of the zero-stress condition is essential for waves at intermediate Reynolds
numbers. In Fig. 4.28, it is shown that it is essential at even relatively high
Reynolds numbers.

Influence of the Froude Number on the Wave Profile

In Figs. 4.29 and 4.30, the influence of the Froude number on the wave profile
is investigated.

A reduction of both the Froude number and the Reynolds number in-
creases the wave height and the steepness of the waves (Fig. 4.29). The
influence of the viscosity terms appearing in the RaNS equations becomes
more pronounced. From Eq. (4.1), it is obvious that a decreased Froude
number gives a shorter wave length. For both presented Froude numbers,
the computations are performed using the grid, FINE. Therefore, the resol-
ution of the wave is lower for the Froude number, 2.3, than for the Froude
number, 2.8. This causes also the stronger numerical damping of the solution
at the lower Froude number.

In Fig. 4.30, the computed transom waves are presented for the Froude
numbers, 2.1, 2.2, 2.3 and 2.8. The computations were performed solving
the RaNS equations using Chien’s k-ε turbulence model and the inviscid ir-
rotational and Reynolds-stress free-surface boundary conditions. The results
with respect to the Froude numbers 2.1 and 2.2 must be taken with caution
as the applied boundary condition at the transom is not correct anymore,
and the grid resolution is too poor. According to the measurements of Saisto
(1995), the wave height at the transom is not equal to the draught of the
transom anymore. For the Froude number 2.1, the entire wave pattern could
not be computed due to the appearance of instability at a certain stage of
the computations. Nevertheless, the results may be used for a qualitative
statement. The lower the Froude number is, the more significant is the dif-
ference between the results obtained with the different free-surface boundary
conditions. For the Froude number, 2.8, the viscosity has no influence on
the transom wave through the free-surface boundary conditions. For the
lower Froude numbers, the steepness and curvature of the transom waves
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are increased, and the influence of the viscosity on wave making through the
free-surface boundary conditions is already very obvious. Also the departure
of the sinus and trochoidal form of the waves in direction to an overturning
one may be clearly observed.
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Figure 4.28: Computed wave profiles behind the transom of the model,
Ile. The computations were carried out solving the Euler and the RaNS
equations using Chien’s k-ε turbulence model and the inviscid and viscous
free-surface boundary conditions. The used grid was FINE. FnT = 2.3.
Rel = 3.066× 106.
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Figure 4.29: Computed transom-wave profiles of the model, Ile. Froude
numbers, FnT = 2.8 and 2.3. Reynolds numbers, Rel = 3.732 × 106 and
3.066× 106. Grid, FINE. Top: Solution of the RaNS equations with Chien’s
k-ε turbulence model and the inviscid and viscous free-surface boundary con-
ditions. Bottom: Solution of the Euler and RaNS equations with Chien’s k-ε
turbulence model and the inviscid mirror free-surface boundary conditions.
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Figure 4.30: Computed wave profiles behind the transom of the model, Ile,
for the Froude numbers, FnT = 2.1, FnT = 2.2, FnT = 2.3 and FnT = 2.8,
and the respective Reynolds numbers, Rel = 2.8 × 106, Rel = 2.933 × 106,
Rel = 3.066 × 106 and Rel = 3.732 × 106. The computations were carried
out solving the RaNS equations using Chien’s k-ε turbulence model and the
inviscid irrotational and Reynolds-stress free-surface boundary conditions.
The used grid was FINE.

4.4.2 Influence of the Free-Surface Boundary Condi-
tions on the Flow Field

In Figs. 4.31 up to 4.36, the momentum, the momentum components in
the x- and z-directions, the turbulent kinetic energy, the nondimensional
turbulent viscosity and the nondimensional vorticity obtained from the com-
putations with the inviscid irrotational and the Reynolds-stress free-surface
boundary conditions are presented. The difference between the results with
respect to the inviscid and viscous free-surface boundary conditions is rather
small. Nevertheless, the turbulent kinetic energy is obviously stronger pro-
nounced by the inviscid irrotational free-surface boundary conditions than by
the Reynolds-stress ones. The height of the wave is greater, and its curvature
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is stronger in the case of the inviscid irrotational free-surface boundary condi-
tions . Therefore, the velocity gradients below the wave are also stronger, and
the production of the turbulent kinetic energy is increased. In consequence,
the increased turbulent kinetic energy causes also an increased turbulent
viscosity (Fig. 4.35).

In Fig. 4.34, the amplification of the convected turbulent kinetic energy
below the wave crest may be observed very clearly.
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Figure 4.31: Computed momentum, ρ|~V |, behind the transom of
the model, Ile. The computations were carried out solving the RaNS
equations using Chien’s k-ε turbulence model and the inviscid irrotational
(top) and Reynolds-stress (bottom) free-surface boundary conditions. The
used grid was FINE. FnT = 2.3. Rel = 3.066 × 106. The pictures were
compressed in the horizontal direction.
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Figure 4.32: Computed component of the momentum in the x-direction,
ρu, behind the transom of the model, Ile. The computations were carried
out solving the RaNS equations using Chien’s k-ε turbulence model and the
inviscid irrotational (top) and Reynolds-stress (bottom) free-surface bound-
ary conditions. The used grid was FINE. FnT = 2.3. Rel = 3.066 × 106.
The pictures were compressed in the horizontal direction.
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Figure 4.33: Computed component of the momentum in the z-direction,
ρw, behind the transom of the model, Ile. The computations were carried
out solving the RaNS equations using Chien’s k-ε turbulence model and the
inviscid irrotational (top) and Reynolds-stress (bottom) free-surface bound-
ary conditions. The used grid was FINE. FnT = 2.3. Rel = 3.066 × 106.
The pictures were compressed in the horizontal direction.
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Figure 4.34: Computed turbulent kinetic energy, ρk, behind the transom
of the model, Ile. The computations were carried out solving the RaNS
equations using Chien’s k-ε turbulence model and the inviscid irrotational
(top) and Reynolds-stress (bottom) free-surface boundary conditions. The
used grid was FINE. FnT = 2.3. Rel = 3.066 × 106. The pictures were
compressed in the horizontal direction.
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Figure 4.35: Computed nondimensional turbulent viscosity, µT/µ, behind
the transom of the model, Ile. The computations were carried out solving
the RaNS equations using Chien’s k-ε turbulence model and the inviscid
irrotational (top) and Reynolds-stress (bottom) free-surface boundary
conditions. The used grid was FINE. FnT = 2.3. Rel = 3.066 × 106. The
pictures were compressed in the horizontal direction.



Results 117

Figure 4.36: Computed nondimensional vorticity, γ∗, behind the transom
of the model, Ile. The computations were carried out solving the RaNS
equations using Chien’s k-ε turbulence model and the inviscid irrotational
(top) and Reynolds-stress (bottom) free-surface boundary conditions. The
used grid was FINE. FnT = 2.3. Rel = 3.066 × 106. The pictures were
compressed in the horizontal direction.
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4.4.3 Resistance

In Table 9, the computed drag coefficients are presented for the Froude num-
ber, FnT = 2.3. The viscous free-surface boundary conditions give an about
three percent higher value for the drag coefficient than the inviscid mirror
free-surface boundary conditions. This result is similar to the one obtained
for the Froude number, 2.8. Nevertheless, the inviscid irrotational free-
surface boundary conditions give an about three percent higher value for
the drag coefficient than the viscous free-surface boundary conditions. For
the Froude number, 2.8, no difference was obtained. The difference between
both inviscid free-surface boundary conditions is with six percent already not
negligible.

Table 9: Drag coefficient, CD, obtained from the computations for the grids,
FINE. The computations were performed using Chien’s k-ε turbulence model
and the inviscid and viscous free-surface boundary conditions. FnT = 2.3.

Case FINE
Euler, inviscid mirror BC, CD × 103 9.77
k-ε, inviscid mirror BC, CD × 103 14.3
k-ε, inviscid irrotational BC, CD × 103 15.09
k-ε, tang.-str. BC, CD × 103 14.66
k-ε, Reyn.-str. BC, CD × 103 14.63

4.4.4 Convergence

In Figs. 4.37 and 4.38, the convergence histories of the computations as-
sociated with the inviscid mirror and Reynolds-stress free-surface boundary
conditions are presented. Considering the drag coefficient, CD, and the L2-
norms of the turbulence quantities, no difference in the convergence duration
can be observed. For the L2-norms of the density, the x-momentum and
the z-momentum, the inviscid mirror free-surface boundary conditions give
a faster convergence than the Reynolds-stress free-surface boundary condi-
tions. Using a similar reasoning as for the Froude number, 2.8, with respect
to the convergence, it makes no difference whether the inviscid mirror or the
viscous free-surface boundary conditions are used. This holds also for the
inviscid irrotational free-surface boundary conditions.
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Figure 4.37: Convergence history for the model, Ile. The computation was
performed solving the RaNS equations using Chien’s k-ε turbulence model
and the inviscid mirror free-surface boundary conditions. The used grid was
FINE. CD is the drag coefficient. The other quantities are the L2-norms of
the residuals of the density, ρ, the x-momentum, ρu, the z-momentum, ρw,
the turbulent kinetic energy, k, and the dissipation of the turbulent kinetic
energy, ε. FnT = 2.3.
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Figure 4.38: Convergence history for the model, Ile. The computation was
performed solving the RaNS equations using Chien’s k-ε turbulence model
and the Reynolds-stress free-surface boundary conditions. The used grid was
FINE. CD is the drag coefficient. The other quantities are the L2-norms of
the residuals of the density, ρ, the x-momentum, ρu, the z-momentum, ρw,
the turbulent kinetic energy, k, and the dissipation of the turbulent kinetic
energy, ε. FnT = 2.3.



5 Discussion of the Results

The simulations in this work demonstrate the significant effect of the nu-
merical realization of the free-surface boundary conditions on the computed
transom waves. Depending on the numerical realization of the free-surface
boundary conditions, the computed transom wave is either very little or
significantly dampened. The main cause for the dampened solution is nu-
merical damping. The applied free-surface boundary conditions cause a little
modification of the flow field close to the free-surface resulting also in dif-
ferent wave profiles. Using the realization of the viscous and the inviscid
irrotational free-surface boundary conditions, the numerical damping is less
pronounced than in the case of the inviscid mirror free-surface boundary
conditions. Therefore, a grid-independent solution may be obtained with
less cells, and the computational time may be kept shorter. The inviscid
irrotational and the inviscid mirror free-surface boundary conditions have
the same physical meaning. Nevertheless, their numerical realizations are
different, and the obtained wave profiles show remarkable differences. The
strong damping associated with the inviscid mirror free-surface boundary
conditions is mainly due to the assumption on the free surface, ∂w/∂z = 0.
This assumption should be avoided, and it is recommended to calculate the
derivative, ∂w/∂z, from the continuity equation. At the Froude number 2.8,
the viscous and the inviscid irrotational free-surface boundary conditions give
a negligible difference between the computed wave profiles and the flow fields,
and the solution is physically correct. This holds also for the computations
at the full-scale ship Reynolds number. Therefore, in this particular case, it
makes no difference which of these boundary conditions is applied on the free
surface, and the influence of the turbulent viscosity on the transom waves
through the dynamic free-surface boundary condition regarding the normal
stresses on the free surface can be neglected at model and full scale. Fur-
ther, the application of the Boussinesq approximation to the evaluation of
the Reynolds stresses in the dynamic free-surface boundary conditions has
no influence on the evaluated waves. At the lower Froude numbers, where
the steepness of the waves and the curvature become more pronounced and
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the viscosity effects are increased, the Reynolds-stress free-surface boundary
conditions give a strongerly dampend wave profile and a less pronounced tur-
bulence within the transom wave compared with the results obtained with
the inviscid irrotational free-surface boundary conditions. Therefore, at the
lower Froude numbers, it makes physically a difference which free-surface
boundary conditions are applied, and the application of the Reynolds-stress
free-surface boundary conditions is recommended.

The computed transom waves amplify the turbulence convected from the
boundary layer into the wave system below the wave crest. The turbulent kin-
etic energy and the respective turbulent viscosity are significantly increased
with increasing wave steepness. Therefore, the appearance of waves along
the hull of a ship will be associated with an increased turbulent viscosity and
skin friction below the wave crests close to the free surface.

For the drag coefficient, a slight difference is obtained by the inviscid and
viscous free-surface boundary conditions. For the Froude numbers, 2.3 and
lower, this difference cannot be neglected anymore, and the application of
the Reynolds-stress free-surface boundary conditions is recommended.

Regarding the convergence, the investigated free-surface boundary con-
ditions give no significant difference.

For the Froude number, 2.8, the boundary layer of the model has a negli-
gible influence on the transom waves at model and full scale. For the Froude
number, 2.3, a clear influence is observed. Therefore, for sufficient high
model-scale ship Reynolds numbers and a transom wave of moderate steep-
ness, the boundary layer will have no influence on the transom waves at
model and full scale.

The computations at the full-scale ship Reynolds number show the re-
markable effect of the free-stream turbulence quantities on the boundary
layer of the hull when using Chien’s low-Reynolds number k-ε turbulence
model. Keeping the free-stream turbulence level and the nondimensional
free-stream turbulent viscosity constant will cause a very high free-stream
dissipation of the turbulent kinetic energy resulting in a prevented develop-
ment of the boundary layer and an underestimated skin friction resistance
coefficient. A correct development of the boundary layer is obtained by
keeping the free-stream dissipation of the turbulent kinetic energy constant,
similar to a material property, and either the nondimensional turbulent vis-
cosity or the free-stream turbulence level variable. For ship flows where the
fluid is basically at rest, it seems to be advisable to use a reduced free-stream
turbulence level and not an increased nondimensional free-stream turbulent
viscosity. The turbulent viscosity will alter the appearing Reynolds num-
ber, and partly laminar regions of the hull, e.g. at appendages, will become
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turbulent.
The application of multigridding at the full-scale Reynolds number im-

proves the convergence fairly. In a three-dimensional case where more grid
levels may be used, the improvement may be even increased. Therefore, the
application of multigridding at full-scale ship Reynolds numbers is justified.

At full scale, the computations give a significantly increased nondimen-
sional vorticity at the vicinity of the transom compared with the one at
model scale. The dimensional value of the turbulent kinetic energy is also
significantly increased at the free surface. At full scale, in association with a
lower surface tension than at model scale, this might result in the appearance
of ripples at the free surface and a breaking free surface, which would not
necessarily appear at model scale.

The computed pressure and mean skin friction coefficients are scaled to
full scale giving a total resistance coefficient, which is in in excellent agree-
ment with the one of the modified ITTC-78 method. The ITTC-57 extra-
polation method gives a little overestimated total resistance coefficient. The
form factor with respect to the mean skin friction line of a flat plate remains
constant. With respect to the ITTC-57 model-ship correlation line it is not
constant as the ITTC-57 model-ship correlation line deviates from the mean
skin friction line of a flat plate at model-scale ship Reynolds numbers. There-
fore, for similar computational cases, it may be assumed that the pressure
and mean skin friction resistance coefficients will be correctly scaled from
model to full scale by the respective computations.

5.1 An Improved Extrapolation Method

It has been shown that turbulent ship-flow computations including the eval-
uation of the free-surface are possible up to full-scale ship Reynolds numbers
whereby the accuracy of the results may be regarded as at least satisfactory.
Using the obtained skills, a new extrapolation method for the evaluation of
the total resistance of a ship may be proposed.

In the future, the final-power estimation of a full-scale ship may be car-
ried out using the traditional extrapolation methods, reference ships with
empirical correlation coefficients, computational methods with empirical cor-
relation coefficients, computational methods with model testing and compu-
tational methods of very high accuracy. Except the last two ones, all other
methods are based on empirical coefficients which are not known for novel
ships. Therefore, the final power prediction for the new vessel may be sig-
nificantly erroneous. Due to the approximative treatment of the turbulence
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and the grid influence on the results, a highly accurate estimation of the final
power seems to be not generally possible using only computational methods.

The proposed extrapolation method is based on the idea to use the model-
test results for calibration purposes. Further, it is assumed that the scaling
of the total resistance may be estimated fairly accurate using computational
methods. The new method makes no use of empirical correlation coefficients
anymore. It combines model testing with ship-flow computations at model-
scale and full-scale ship Reynolds numbers, and it is outlined in the following.

At the model-scale ship Reynolds number, the total resistance coefficient,
CTM , is obtained from the model test. Respective computations of the ship
are carried out at model-scale and full-scale ship Reynolds numbers giving
the total resistance coefficients, CTMC and CTSC, respectively. CTMC is the
computed total resistance coefficient at model scale, and CTSC is the one at
full scale. It is assumed that the scaling of the measured total resistance
coefficient obeys the following relation:

CTM
CTS

=
CTMC

CTSC
, (5.1)

where CTS is total resistance coefficient of the ship. Using the measured and
computed results, the total resistance coefficient of the ship is obtained from

CTS = CTM
CTSC
CTMC

. (5.2)

No engineering line and no empirical correlation coefficients are needed any-
more. The hull form influence on the pressure and skin friction resistance
coefficients is taken into account. Basically, the method is applicable also
for rough surfaces provided a suitable turbulence model is available. Having
measured the thrust at model scale, the same idea may be applied to the
estimation of the thrust at full scale by computations of the hull-propeller
interaction at model- and full-scale ship Reynolds numbers.



6 Conclusions

Considering the results of this work, the conclusions may be summarized as
presented in the following.

The numerical realization of the free-surface boundary conditions has a
significant effect on the computed transom waves. Depending on the nu-
merical realization of the free-surface boundary conditions, the computed
transom wave is either very little or significantly dampened. The damped
solution is caused by numerical damping and the modification of the flow field
close to the free surface. The assumption on the free surface, ∂w/∂z = 0,
causes a dampened wave profile, and it should be avoided. Using the viscous
and the inviscid irrotational free-surface boundary conditions, a solution in-
depended of the grid may be obtained with a rather low resolution of the
grid resulting in shorter computational times.

At the Froude number 2.8, it makes no difference whether the viscous or
the inviscid irrotational free-surface boundary conditions are applied to the
evaluation of the transom waves. This holds also for the computations at
the full-scale ship Reynolds number. The influence of the turbulent viscosity
on the transom waves through the dynamic free-surface boundary condition
with respect to the normal stresses can be neglected at model and full scale.
Further, the application of the Boussinesq approximation has no influence
on the evaluated waves through the dynamic free-surface boundary condition
with respect to the normal stresses.

At the lower Froude numbers, where the steepness of the waves and the
curvature become more pronounced and the viscosity effects are increased,
it makes physically a difference which free-surface boundary conditions are
applied, and the application of the Reynolds-stress free-surface boundary
conditions is recommended.

The appearance of waves will cause an amplification of the turbulent
kinetic energy and the respective turbulent viscosity below the wave crest,
and, therefore, the skin friction will be increased in this area.

For the drag coefficient, a slight difference is obtained by the inviscid and
viscous free-surface boundary conditions. For the Froude numbers, 2.3 and
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lower, it cannot be neglected anymore, and the application of the Reynolds-
stress free-surface boundary conditions is recommended.

Regarding the convergence, it makes no difference which one of the in-
vestigated free-surface boundary conditions is used.

For sufficient high Reynolds numbers and a transom wave of moderate
steepness, the boundary layer will have no influence on the transom waves at
model and full scale. The effect of the boundary layer on the transom waves
increases with decreasing Froude and Reynolds numbers.

When using Chien’s low-Reynolds number k-ε turbulence model at model
and full scale, the free-stream dissipation of the turbulent kinetic energy has
to be kept constant, similar to a material property, and either the nondimen-
sional free-stream turbulent viscosity or the free-stream turbulence level has
to be a variable.

The application of multigridding at full-scale ship Reynolds numbers will
improve the convergence.

At full scale, the nondimensional vorticity at the vicinity of the transom
will be significantly increased compared with the one at model scale. The
dimensional value of the turbulent kinetic energy will be also significantly
increased at the free surface. At full scale in association with a lower surface
tension than at model scale, this might result in the appearance of ripples
at the free surface and a breaking free surface, which would not necessarily
appear at model scale.

For similar computational cases as the ones presented in this investigation,
it may be assumed that the pressure, the mean skin friction and the total
resistance coefficients will be correctly scaled from model to full scale by the
respective computations.

Free-surface computations of turbulent ship flows are possible at full-
scale ship Reynolds numbers using the moving-grid technique and no wall
functions.

In the future, based on the results of this work, further research may be
conducted with respect to the following items:

• Investigation of the accuarcy of the proposed extrapolation method.

• Effect of a second-order extrapolation of the velocities to the free sur-
face on the waves.

• Departure from the flat-surface approximation and use of the exact
free-surface boundary conditions.

• Extension of the method to three-dimensional cases.
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• Investigation of the scaling of high-curvature free surfaces where vis-
cosity effects are evident.

Dealing with the inviscid irrotational and the viscous free-surface boundary
conditions presented in this work, little damping of the waves may appear.
Therefore, the creation of artificial damping zones might be necessary in order
to avoid the reflection of the waves from the boundaries of the computational
domain.
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