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Modelling of induction machines with skewed rotor

slots

A.Tenhunen and A.Arkkio

Abstract: A model permitting the simulation of induction machines with skewed rotor slot is
presented. The two-dimensional finite-element method is used for electromagnetic field analysis of the
induction machine. The skew effects are considered by coupling several discs cut by planes
perpendicular to the shaft. The solution of the resulting nonlinear time-dependent equation is
obtained using step-by-step numerical integration. The paper also presents a method to avoid the
singular matrices when rotor bar currents are solved from field and circuit equations. The model is
verified by comparing measured and computed results for a 37kW cage induction motor. Current and
voltage waveforms and torque-speed. curves are discussed. According to the results the model gives

good results when the slip value is under 0.9.

1 Introduction

Skewed rotor slots were originally used to provide starting
torque when the motors had equal numbers of stator and
rotor slots [1]. This technique was kept later even though
knowing that starting torque could be provided by choos-
ing a proper number of rotor slots. It was proved that
other negative influences such as asynchronous torque har-
monics, oscillating torque and stray load losses could be
reduced when skewed rotor slots were used.

Progressive improvement in the power and speed of
workstations has resulted in a situation in which time-step-
ping finite-element analysis of electrical machines is used as
an industrial tool. For most types of electrical machines,
the modelling is two-dimensional. Their potentially more
accurate three-dimensional counterparts require one or two
orders of magnitude more of computer resources, so they
are still well beyond the bounds of economic viability [2].

The rotor skew in induction machines is a problem for
two-dimensional calculation because of the axial variations
in the magnetic field due to the changing orientation of
rotor with respect to stator [3]. In an analytical method,
skewing can be modelled using a skew-factor [4]. In a
numerical method, the skewing is quite often modelled
using so called multislice technique. It is possible to use sep-
arate field and circuit models when the induced rotor bar
currents are time-stepped but the field equations are not [2].
If the field and electric equations are in the same matrix,
they are solved simultaneously. Usually in this case, the
variables are vector potential, the potential differences over
the slice in rotor slots and stator currents [5, 6]. Dziwniel
and Piriou [7] used a hybrid 3D approach using the 2D
invariant hypothesis to model skew. In their model the end
ring currents and scalar potential were solved instead of
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rotor bar currents or potential differences. We propose a
multistice time-stepped model in which field and electric
equations are solved in the same matrix and the solved var-
iables are magnetic vector potential, rotor bar and stator
currents. The rotor bar currents are normally not used as a
variable in calculation. In some cases (when periodicity fac-
tor is equal to one), a straight use of rotor bar currents as
variables is not possible because of singular matrices. This
paper also presents a method to avoid the singular matrices
when rotor bar currents are solved from field and circuit
equations. .

2  Numerical model

The modelling of an induction machine can be done using
two-dimensional electromagnetic field equations in which
the geometry and magnetic material characteristics are
independent of z co-ordinate. In this kind of a model, the
rotor slot skewing and other three-dimensional effects have
to be taken into account within the two-dimensional model
[8]. An approach to represent a skewed rotor in two dimen-
sions is to use a set of two-dimensional models. The mag-
netic fields of the slices are coupled together by forcing the
currents of rotor bars and stator winding to be continuous
from slice to slice. The angle difference between each slice is
modelled by

2n—ntot-1
a=q)+yV——————

(1)
in which o and o are angles between rotor and stator with
and without skew, yis skew angle, » is number of slice and
n,, 18 total number of slices. From Maxwell’s equations
and by introducing the magnetic vector potential 4 and
electric scalar potential ¢, we obtain the partial differential
equation

2Ntot

JA
VX(UVXA)+J—5t—+0V¢=O (2)
in which v is the magnetic reluctivity and o is the electric
conductivity. When the two-dimensional model is used to
calculate a straight conductor of length £ of one slice, the
scalar potential difference U between the ends of the
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conductor in the slice is civen by

U=- / Vodl = —V 1™ (3)
JI

If R is used the DC resistance of the conductor, the voltage
equation of the slice becomes
aA

U=RI+R 8t —dS 4)
in which [ is total current and S is the area of the cross-
section of the conductor. If the total current is taken as a
source of the field, the vector potential satisfies the integro-
differential equation [9]

9A oR aA __OR

(5)
If the thickness of the slices is always the same i.e. 1) = /@
=...= I = l/m, eqn. 5 can be written
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(6)
In the time-stepped finite-element method the field equa-
tions have to be solved by a step-by-step method evaluating
the variation of the field in short time intervals At. In the
Crank—Nicholson method, the vector potential at time step
k + 1 is approximated

1) 0A
A’““:i{_at_

2.1 Equations for rotor cage
Normally in FEM calculations, stranded conductors have
current excitation and solid conductors have voltage excita-
tion. In this work, in rotor bars, current excitation is used
in solid conductors instead of traditional potential differ-
ence excitation. In this way the continuity of currents from
slice to slice is included directly into the matrix equations.
To shorten expressions, the circuit equations of the rotor
are derived for sinusoidally varying quantities. The same
solution method is applicable in the case of general time
variation, but the equations are considerably longer. Only
the results are given for the time-stepped case.

S

0A
ot

At + Ay (7)
k+1

Ui, iy gy Ualijg

Hn-] :.i.n-l Hn:_in h_‘_h.hh

end
region

core

end

Fig.1  Circuit model of rotor cage in which h is periodicity factor

Fig. 1 shows the circuit notations used in the derivation
of the circuit equation for the rotor cage. Impedance matri-
ces associated with the bar ends and end ring segments are
defined [9]

Z,, =27Z,,1
Z,.=22,1 )
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where 1 denotes the diagonal unit matrix. The total poten-
tial difference vector of the rotor bars including the bar
ends outside the slice model is

u =+ 2,4 9)
From Kirchhoff’s second law applied to the circuit of
Fig. 1, a relation between the potential difference vectors is
obtained

’

1 - |y =My (10)
0 o - - 1

where u is the end ring potential difference and /4 is perio-

dicity factor (x1). Kirchhoff’s first law gives the connection

between the end ring currents { and the rotor bar currents

i, respectively

-1 1 0 - 0
0 -1 1 0

=10 0 -1 i=-MTi (11)
R 0 0 - -1

The potential differences in the end ring segments between
adjacent rotor bars are given by

2u=2,.1 (12)

Combining eqns. 8-12 obtains the relation between the
rotor bar currents and the potential differences of the bars
induced in the core region

A+M'Z,MZ,)i" = ~(M"Z,/Myu" (13)

Now the potential difference 4" can be solved from
eqn. 13. Unfortunately, the product of matrices on the
right side of eqn. 13 is singular if the periodicity factor is
equal to one. In this case we need an additional constraint
that is obtained by studying the potential differences of the
end rings and rotor bar currents. If the periodicity factor is
equal to one, the sum of the end ring potential differences
is zero and the sum of the bar currents is zero. Provided
that

— all rotor bars have equal impedance
— the end ring segments all have equal impedance
— the periodicity factor is equal to one

the sum of the end ring currents is zero and the sum of end
ring potential difference is zero. This means that the multi-
plication of the end ring current vector { and potential dif-
ference vector of the rotor bar g’ by matrix K, whose
elements are all equal to one, for example, gives the zero
column vector, ie. K, - i = 0 and K}, - g" = 0. These zero
vectors are added to eqns. 10 and 11. As a result, a nonsin-
gular coefficient matrix product is obtained and the voltage
difference of rotor bars #" can be solved from eqn. 13.

The relationship between g and  can be changed from
time-harmonic form to a time-stepped form using eqn. 7.
Another relationship can be obtained from the electric
eqn. 4. The rotor bar currents have to be continuous from
slice to slice. Eqn. 4 can then be written for a rotor bar

ZD:nAk+1 +ZD:nA’€
+2l 1+R—((Kb+]w) (Kb—}-]\/[))
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(7, + 7+ ) )|

=0 (14)
in which R, is resistance of rotor bar, Ry, Ly, R, L, are
resistance and inductance of the end of rotor bar and of the
end ring. The elements of the matrix D,/ is defined

F 1 i .

in which f# is one if the integration point belongs to rotor
bar, and zero elsewhere, N is shape function in the element
method. Eqn. 14 can be written shortly

> D Api + Y DL Ay + Chyyify, + Crip =0
1 1
(16)

2.2 Equation for stator winding

Because the stator generally consists of fine wires, the cur-
rent density is assumed to be uniform. The equation for the
stator side does not change compared with the FEM model
for one slice and can be written

> KD Api1 + G,y + Y KD5 Ag + HG}
1 1

+C(vig +vi) =0 (17)

in which K, G°, H*, and C* are connection matrices
between currents, voltages and vector potentials. The ele-
ments of the matrix D are defined [9]

k3

. MmN,
D, = —/ 5 N,dS,, (18)
Sh

in which N,, is the number of turns in series in the coil side
n. The definition of these matrices and column vector §* are
different for different connections of the stator winding.

2.3 Solution of field and circuit equations

The field equation with current source term is presented in
eqn. 5. If all the conductors of an induction machine are
taken into account, the two-dimensional field equation
becomes

DA o [ ..0A
VX0V x A) tos S;/Sﬁra?ds

1 Qr P
5 2B+ Y B e =0
j=1 j=1
(19)

where the f functions are used to define the current regions
and S, is cross-section of the rotor bar. Q, denotes the
number of rotor bars in the solution sector and p is number
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of phases. Using eqns. 7 and 18, eqn. 19 can be written in a
time-stepped form for each slice

S(Ar+1) Akt + B'ipy, + D" K 4,
+S(AWAL+ B, + [D]TKTi; =0 (20)

Combining eqn. 20 with the circuit eqns. 16 and 17, a
system of coupled residual equations f is obtained and it
can be written in matrix form

F (S1) B, DiTKT) rA;
i = (Sn) B, D"KT| |An
f D, - D, C i
F KD] - KD:, G° 7
0 0
+1 0 |=1]o (21)
0 0
h(v®) 0

3 Results

We have applied our multislice model to the simulation of
a three-phase induction motor with cast aluminium rotor
and with P = 37kW, f'= 50Hz, four poles and skewing of
1.53 stator-slot pitch in the rotor. The motor has 48 stator
slots and 40 rotor slots. The same motor has also unskewed
rotor for comparison. Taking periodicity conditions for the
finite element mesh and circuit equations into account, only
one pole has to be modelled. The used finite element has
1510 second-order triangular elements and 3427 nodes. The
simulation near the nominal point (1476 rev/min, 400V,
50Hz sinusoidal voltage supply, star connection, At =
20ms/400) was done for the model with the numbers of
slices m = 1 and m = 3. The rotor skew effects are consid-
ered only in the case of m = 3. In Table 1 the calculation
results are compared with the measured ones. The values of
the slip are taken from the measurements. The measured
rotor speed is not exactly the same as the calculated one
because the frequency of the supply varies a little bit during
the measurements.

Table 1: Comparison between calculated and measured
results of muitislice model

Calculated Measured
skewed  unskewed skewed  unskewed
uv 400 400 400 400
Ims A 70.1 68.3 69.4 68.7
W 39380 40130 39810 39820
n, rev/min 1473.4 1473.6 1473.9 1472.4
S, % 1.773 1.757 1.773 1.757
T Nm 242.2 247.3 240 240
Poute W 37370 38160 37040 37110

Fig. 2 shows the flux lines of the first, second and third
slice when the total number of slices is three. The rotor
skew can be easily seen from the position of the rotor.
Figs. 3 and 4 show the measured waveforms of phase volt-
ages and currents of the skewed and unskewed motor.
These Figures can be compared with Figs. 5 and 6, in
which the calculated waveforms are presented. The effects
of skewing are easy to see from Figs. 3-6. The waveforms
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are much smoother and the slotting harmonics clearly
reduced.

|;lig.2 Cross-section of machine and flux lines when total number of slices is
three

a First slice

b Second slice

¢ Third slice

In Table 2 the magnitudes of harmonics of the phase
voltages are presented for the skewed and undeskewed
case. The magnitudes are calculated by FFT for both, the
calculated and measured waveforms. According to Table 2
the use of skewing reduces clearly the amplitude of slot har-
monics (19th and 21st).

One of the most familiar effects of rotor skew is the
reduction of the torque ripple. Fig. 7 shows the calculated
torque for the motor equipped with an unskewed and
skewed rotor. The torque is calculated by method based on
Maxwell stress tensor [9].

The torque against speed curve (Figs. 8 and 9) is calcu-
lated and measured for a skewed and unskewed case. The
voltage used was 320V. The calculation was done using
three slices and second-order elements.
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Fig.3 Measured voltage and current waveforms for 37kW induction motor
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Fig.4 Measured voltage and current waveforms for 37kW induction motor
with skewed rotor
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The asynchronous torque dips caused by the fifth har-
monic and by the stator-slot harrnonics can be clearly seen
in the torque curve measured for the unskewed motor. The
19th harmonic causes the large synchronous torque dip at
150 rev/min, and a smaller synchronous torque occurs at
~300rev/min. The skewing reduces the parasitic torques but
it does not eliminate completely, for instance, the synchro-
nous torque dips. At the negative speeds the torque meas-
ured for the skewed motor increases and becomes even
larger than the torque measured for the unskewed machine.

The torque computed for the unskewed motor agrees
well with the measured one. For the skewed machine, the
agreement is good at the positive speed range but at nega-
tive speeds the computed torque is smaller than the meas-
ured one. The reason for this behaviour is not quite clear.
The division of the machine into three slices is not enough
to model properly the higher harmonies with short wave-
lengths, and this may cause the error in the torque.
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An increase of the number of slices from three to five did
not change the torque significantly. Maybe more slices are
needed to get good results at negative speeds but it
increases computation time significantly.
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Fig.5 Computed voltage and current waveforms for 37kW induction
machine modelled using one slice
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Fiq.6 Computed voltage and current waveforms for 37kW induction
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Table 2: Magnitudes of harmonics by FFT from calculated
and measured phase voltage waveforms

Order of Skewed rotor, V Unskewed rotor, V

harmonic  measyred  calculated measured  calculated
326. 326 327 326

3 13.3 13.9 15.3 12.4

19 37 2.1 6.9 3.1

21 13.7 1.2 26.9 41.6

22 3.4 29 7.5 10.7

23 2.4 1.6 3.6 6.1
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Fig.7 Caleulated torque as function of time for 37k W induction motor
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Fig.8 Measured and calculated torque against speed curves for 37kW induc-

tion motor with skewed rotor slots
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If the difference in the computed and measured torque is
associated with underestimation of the harmonic torques,
one would expect to see some larger torque dips in the
measured curve but it increases relatively smoothly as the
speed decreases. Another explanation for the large torque
at the negative speed range could be the losses associated
with inter-bar currents flowing in the skewed rotor. The
slice model neglects these currents.

The CPU time per one period of line frequency is about
207s, 617s and 1039s on a Hewlett-Packard 9000/778
computer for one, three and five slices using first-order
elements. The calculation time depends almost linearly on
the number of slices. The optimum number of slices is not
determined in this work. The bigger the number of slices,
the better the results; unfortunately the computation time
grows almost linearly with the number of slices.

49



4 Conclusions

A numerical model permitting the simulation of induction
machines with skewed rotor slots has been presented. The
two-dimensional finite-element method was used for elec-
tromagnetic field analysis of the induction machine. Skew
effects are considered by coupling several discs cut by
planes perpendicular to the shaft. The slices were connected
together by forcing the rotor bar and stator winding cur-
rents to be the same in every slice.

As an example of application we have simulated a 37kW
induction motor with and without rotor skew at nominal
speed. The results obtained from our model are compared
with the measured ones. The model gives good results at
the normal operating range. It is easy to see the effect of
skewing from the waveform of phase voltage and current.

The torque against speed curve is calculated and meas-
ured for the same induction machine with and without
rotor skew. For the nonskewed case, the computation gave
good results at the whole speed range. The torque com-
puted for the skewed motor agrees well at the positive
speed range but at negative speeds the computed torque is
smaller than measured. The reason for this behaviour is not
quite clear. It might be caused by the interbar currents or
too small number of the slices used in the computation.
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