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Abstract

The paper presents an impulse method to calculate the
frequency response of the electromagnetic forces acting
between the rotor and stator of a cage induction motor
when the rotor is in whirling motion. Time-stepping
finite element analysis is used for solving the magnetic
field and the forces are calculated from the air gap field
based on the principle of the virtual work. The impulse
response method is applied to the finite element analysis
by moving the rotor from its central position for a short
period of time. This displacement excitation disturbs the
magnetic field and, by doing this, produces forces
between the rotor and stator. Using spectral analysis
techniques, the frequency response function is calculated
using the excitation and response signals. The forces are
calculated from the frequency response function. The
forces calculated by impulse response method are
compared with the forces calculated by a conventional
computation. The results show very good agreement.
The use of impulse method to calculate the forces in
electrical machines is also discussed.

1. Introduction

This paper presents a new way to define the forces acting
between the rotor and stator when the rotor is performing
cylindrical circular whirling motion with respect to the
stator. This means that the rotor is aligned with the stator
but the geometrical centreline of the rotor travels around
the geometrical centreline of the stator in a circular orbit
with a certain frequency, called whirling frequency, and
certain radius, called whirling radius. The presented
impulse method calculates the frequency response
function of the electromagnetic forces on whirling cage
rotors. The frequency response function presents the
electromagnetic forces on a wide whirling frequency
range, including zero, static eccentricity, and
synchronous, dynamic eccentricity, frequencies.

An eccentric rotor creates a non-symmetric flux
distribution that causes the unbalanced magnetic pull.
The non-ideal field may induce circulating currents in
the rotor cage and parallel paths of the stator winding.
These currents tend to equalise the flux distribution and
they may significantly reduce the radial force.
Conventionally, the forces acting between the rotor and
stator have been studied by analytical means. There are
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lot of papers in which the effects of the rotor eccentricity
on the unbalanced magnetic pull, i.e. forces, are studied
analytically [1-4]. The problem with the analytical
models is how to evaluate the equalising currents
induced in the windings by the asymmetric flux
distribution. The effects of saturation and stator and rotor
slotting are also difficult to model by analytical means.
Numerical field calculation methods have only rarely
been used for analysing eccentric rotors. DeBortoli et al.
[5] used a time-stepping method for studying the
equalising currents set up by an eccentric rotor in the
parallel circuits of the stator windings. They also
presented some results of the force calculation.
Tenhunen [6] used time stepping analysis for studying
the equalising currents and the forces when the rotor is
not aligned with the stator. Arkkio and Lindgren [7]
studied the forces in a high-speed motor using also time-
stepping finite element analysis. Their study was focused
on static eccentricity and the method of analysis was
verified by measurements.

The references given above focus on the two special
cases of whirling motion i.e. the static and dynamic
eccentricity. However, the whirling motion of the rotor
can also occur at other frequencies. Friictenicht et al. [8]
developed analytical tools to study the cage induction
motor in a more general whirling motion. Arkkio et al.
[9] used numerical method to study the electromagnetic
force for a general circular whirling motion. They
modelled the whirling motion by forcing the centre point
of the rotor to move along a circular path at constant
speed i.e. they used a harmonic excitation to create the
forces. They verified their calculations by measurements
with active magnetic bearings and results showed
excellent agreement. In Reference [9], the forces for a
whirling motion are presented using frequency response
function K(iw,,):

F(iw,) = K(i@,) &i @) (1)

where F is the force, w,, is whirling frequency and ¢ is
the displacement. According to Equation (1), the forces
are linear functions of the displacement.

The time-stepping calculation of the forces between the
stator and rotor by forcing the centre point of the rotor to
move along a circular path at constant speed requires
huge calculation times. This is the case especially if the
interest is in the forces as a function of whirling



frequency, because the forces have to be calculated
separately for each whirling frequency.

The starting point for this study was to find out a way to
calculate the forces for a wide whirling frequency range
quickly keeping up the accuracy at the same level it has
been in previous studies [6,9].

In mechanical engineering, the vibration characteristics
of a system are widely studied by defining the frequency
response function using different kind of excitations,
including harmonic and impulse excitation. The transfer
function K(s) is a generalisation of the frequency
response K(iw). If the system is linear and there are no
hidden sources inside the system, the transfer function,
defined by impulse excitation, is exactly the same as the
frequency response, obtained by harmonic excitation
[10].

We propose an impulse response method to calculate the
forces between the rotor and stator when the rotor is
displaced from the centre point of the stator. The basic
idea of the approach is to move the rotor from its central
position for a short period of time. This displacement
excitation disturbs the flux density distribution in the air
gap, and by doing this, produces forces between the rotor
and stator. Using spectral analysis techniques, the
frequency response functions are defined from the
excitation and response signals. The forces are then
obtained from the frequency response function.

2. Methods of analysis
2.1 BASIC RESULTS BY ANALYTICAL MEANS

The magnetic field, currents and forces associated with
whirling motion were studied in [8] by analytical means.
The basic results are briefly summarised below to give
background for the discussion of the numerical results.

A rotor in whirling motion produces harmonics in the air
gap field. Only the harmonics of order p£1 interact with
the fundamental harmonic of the machine and generate
the forces. This is the reason why the effects of the other
harmonics are usually neglected in the analysis. The
eccentricity harmonics are of the form:

b, (x,0) = B, cos[ (p£1)x -

2

(@xw)i=(4,4,)]
where p is the number of pole pairs, w; is the
fundamental frequency, w,, is the whirling frequency, ¢,
and ¢, are phase angles. The slips of the rotor with
respect to these two harmonics are
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where s is the slip of the rotor with respect to the
fundamental harmonic. The slips become =zero at
whirling frequencies
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p

If the slip of an eccentricity harmonic is nonzero, the
harmonic induces currents in the rotor cage. The currents
modify the amplitude and phase of the eccentricity
harmonic and, by doing this, they affect the radial force.
In general, the radial component of the force (in the
direction of the shortest air gap) is reduced and the
tangential component of the force is generated.

2.2. CALCULATION OF THE FORCES

The calculation of the magnetic field and operating
characteristics of the induction motor is based on time
stepping, finite-element analysis of the magnetic field.
The details of the method are presented in Reference
[11]. The magnetic field in the core region of the motor
is assumed to be two-dimensional. End-winding
impedances are used in circuit equations of the windings
to model the end effects approximately. The magnetic
field and circuit equations are discretized and solved
together as a system of equations. The time-dependence
of the variables is modelled by the Crank-Nicholson
method.

The method presented by Coulomb [12] was used for
computing the electromagnetic forces. It is based on the
principle of the virtual work, and the forces are obtained
as a volume integral computed in an air layer
surrounding the rotor. In the two-dimensional
formulation, the computation reduces to a surface
integration over the finite elements in the air gap. The
method was chosen because it has given accurate results
when computing the forces of the electrical machines
and it is verified by measurements [11]. The forces are
calculated at each time step, and as a result, one gets the
forces as a function of simulation time.

The motion of the rotor is obtained by changing the
finite-element mesh in the air gap. Second order,
isoparametric, triangular elements were used. A typical
finite-element mesh for the cross section of the test
motor contained about 10000 nodes.

Several simplifications have been made to keep the
amount of computation to a reasonable level. The
magnetic field in the core region is assumed to be two-
dimensional. The laminated iron core is treated as a non-
conducting magnetically non-linear medium, and the
non-linearity is modelled by a single-value
magnetisation curve. The homopolar flux, that may be
associated with eccentricity, is neglected. This study
concentrates on the four pole machines, in which the
homopolar flux due to the rotor eccentricity is negligible
[3,4]. The method of analysis should model properly the
effects of equalising currents, slotting and saturation.

In theory, the transient response signal should be
infinitely long. However, the response signal has only a
finite length 7 of data. This is the reason why the
frequency response function (FRF) was calculated by



dividing the cross-spectral density of the response and
excitation signals Si(w) by the auto spectral density of
the excitation signal Si{w)
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where subscript f corresponds to the excitation and
subscript x corresponds to the response signal. More
information of the signal analysis associated with the
frequency response can be found from References
[10,13].

The idea of the approach is to move the rotor from its
central position for a short period of time. This
displacement excitation produces harmonics into the air-
gap field, which in their turn create forces between the
rotor and stator. Using spectral analysis techniques, the
frequency response function (FRF) is calculated from the
excitation and response signals. Now the frequency
response function gives the forces per whirling radius for
a studied frequency range. Hence, the forces can be
calculated from FRF for a certain rotor eccentricity.

The direction of the pulse is fixed in the stator co-
ordinate system and the forces are also calculated in the
same co-ordinate system. There are several possibilities
to choose the type of the excitation pulse. Two
representative examples are a rectangular pulse and a
cosine pulse, which is defined &(¢) = 1-cos(2nt/T), t; <t <
t,, where T is the length of the pulse. Figures 1 and 2
show the used displacement pulses in time domain and
in frequency domain. Regardless of the type of the pulse,
the parameters describing the pulse can be derived from
the excitation requirements. First of all, it is required that
all frequencies at the studied frequency range are
excited. Then the upper bound frequency has to be
smaller than the first frequency f, at which the response
of the pulse is zero. It can be shown that there is a direct
relationship between the frequency f; and the maximum
duration of the pulse, 7= t, — #; [13]. This relationship
can be written as

L=aB- (6)

where @ is a constant depending on the type of the pulse
and on the required flatness of the excitation force as a
function of frequency. The value of a; is 1.0 for a
rectangular pulse and 2.0 for a cosine pulse.

The cosine pulse is quite a good low-pass filter because,
according to Figure 2, it gives almost all its energy to the
demanded frequency range. The rectangular pulse,
instead, excites also the frequencies higher than the
frequency f; (Figure 1). Anyway, the both excitation
pulses give almost identical frequency responses at the
studied frequency range. One should keep in mind that
this study is focused on the forces, created by
eccentricity, the frequency of which is quite often
smaller than the frequency of the fundamental field.
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Figure 1. The rectangular displacement pulse a) in time domain
and b) in frequency domain.
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Figure 2. The cosine displacement pulse a) in time domain and
b) in frequency domain.

In the time-stepping, finite element force calculation,

there is always some numerical error because of the

discretization. This white noise in the response signal



might cause error in FRF. The duration and amplitude of
the pulse define the amount of energy, which is given to
the system. The bigger the energy, the better the signal to
noise ratio. The frequency f| limits the duration of the
pulse. Then, the amplitude of the pulse should be
optimised somehow. Unfortunately, if the displacement
pulse is too big, the forces are not anymore linear
function of displacement [8]. Also the numerical
accuracy of the finite element analysis suffers due to the
changes in the air gap mesh. The amplitude of the
displacement pulse used in the analysis is 10 — 20 % of
the air gap.

3. Results

The test motor is a 15 kW four-pole cage induction
motor. The main parameters of the motor are given in
Table 1 and its cross-sectional geometry is shown in
Figure 3.

Table 1: Parameters of the motor

Parameter

Number of poles 4
Number of phases 3
Number of parallel paths 1
Quter diameter of stator [mm] 235
Core length [mm] 195
Inner diameter of stator [mm] 145
Airgap length [mm] 0.45
Number of stator slots 36
Number of rotor slots 34
Connection Delta
Rated voltage [V] 380
Rated frequency [HZ] 50
Rated current [A] 28
Rated power [KW] 15

\

Figure 3. Cross-sectional geometry of the test motor.

At first, the forces were calculated at no-load condition
using rectangular pulse excitation. According to
Equation 4, the slips associated with the eccentricity

harmonics are simultaneously zero when the whirling
frequency is equal to the rotation frequency.

The forces are divided into a radial component in the
direction of the shortest air gap and a tangential
component perpendicular to the radial one. Fig. 4 shows
the computed radial and tangential components of the
force with respect to the direction of the pulse.

400
350 -
300 -
250 -
200 -
150 -
100 -
50 4
0
.50 4
-100

Force [N]

0 0.05 0.1 0.15 0.2 0.25 0.3
Time [s]

Figure 4. Calculated electromagnetic forces in a time domain
for a 15% rectangular pulse. Thin line the radial component
and thick line the tangential component of the force.

In the analysis, the duration of the horizontal rectangular
displacement pulse was 0.01 s and the amplitude was
15% of air gap length. Total simulation time was 1 s
with constant time-step of 0.05 ms. The excitation pulse
was given in the stator co-ordinates because the forces
were calculated in the stator co-ordinates.

The discrete excitation and force signals were then
transformed into the frequency domain by the fast
Fourier transform without filtering or windowing. The
number of sample points was 8192, and the length of the
signal was extended to be 2 s by adding zeros to the end
of the sample in order to obtain a frequency resolution of
0.5 Hz. FRF, calculated by Equation (5), is presented in
Figure 5.
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Figure 5. The frequency response function at no load condition.
Thick line, the radial and dashed line the tangential component.

Actually, FRF gives the electromagnetic force per
whirling radius as a function of whirling frequency.
Assuming the spatial linearity, the force for a specified
whirling radius is easy to calculate from the frequency
response function FRF by multiplying it by the absolute



value of eccentricity. The radial force has a sharp
maximum at the synchronous whirling frequency. As
described in Section 2.1, the eccentricity produces
harmonics with pole numbers p£1. These harmonics do
not induce any damping currents at the synchronous
whirling frequency and the maximum radial force
occurs.

The load of the motor affects the radial and tangential
force distributions. According to Equation 4, the single
radial-force maximum is now divided into two force
peaks. The eccentricity harmonics p-1 and p+1 of the air
gap have their zero slips at whirling frequencies of 25.8
Hz and 22.6 Hz. At these frequencies, the corresponding
rotor current is zero, and because the flux density
harmonic is not damped by rotor currents, it has its
maximum amplitude. As the two eccentricity harmonics
make the main contribution to the force, it also has two
maxima close to those whirling frequencies at which the
harmonics have zero slips. As the used frequency
resolution is 0.5 Hz, the calculated force peaks are not
exactly at the right frequencies. This inaccuracy causes
leakage and the calculated peaks are shifted to the
discrete calculated frequencies. Figure 6 shows the radial
and tangential components of the force computed by
impulse method and forced whirling method as a
function of whirling frequency. The motor is running at
the rated speed (s=3.2%). The whirling radius is 50 pm.
The method, which is called forced whirling method is
the traditional way to calculate numerically the forces
due to the rotor eccentricity. In this method, the centre
point of the rotor is forced to move along the circular
path at constant whirling frequency. The calculation is
done for 36 different whirling frequencies to reach the
results presented in Figure 6. In the impulse response
calculation, the length of the cosine displacement pulse
was 0.01 s and the amplitude 15% of air gap length. The
total simulation time was 1 s with a constant time-step of
0.05 ms. The forces are calculated from the FRF by
multiplying it by whirling radius. The results of the two

methods show excellent agreement.
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Figure 6. Electromagnetic forces calculated by a whirling and

impulse method. The results of the forced whirling method are
marked by X the radial and o the tangential component.

4, Discussions

The impulse method is computationally very effective
requiring less than 5 % of the computational time of the
conventional forced whirling method to calculate the
forces as a function of whirling frequency at some
frequency range. The advantage of the impulse method is
that one simulation gives the forces for a demand
frequency range. The accuracy of the method seems to
be very good. The results are compared with the
conventional calculation, which is verified by
measurement in Reference [9].

The used spectral analysis is quite simple. We have not
used windowing or filtering to improve the response
signal. The exponential window might improve the
accuracy of the method, but the effects of windowing
should be compensated. The correction for exponential
windowing can only be done in parametric force model
level [13]. The problems arising from the finite length of
response data, such as truncating or leakage, cause some
error to the calculated forces. According to the results,
this error is small. The method is quite sensitive to the
accuracy of the time-stepping finite element analysis.
The calculated forces at the end of the simulation are
small. The discretisation error in the field solution causes
an error in the force calculation and then deteriorates the
accuracy of the method. However, the results presented
show that despite of the potential error sources, the
method gives good results.

5. Conclusions

This paper presents the impulse method to calculate the
frequency response of the electromagnetic forces acting
between the rotor and stator of a cage induction motor
when the rotor is in whirling motion. The presented
impulse response method is applied to the time stepping
finite element force calculation by moving the rotor from
its central position for a short period of time. This
displacement excitation produces a force between the
rotor and stator. Using spectral analysis techniques, the
frequency response function of the electromagnetic
forces is calculated using the excitation and response
signals. The force is then calculated from the frequency
response function. The results of the impulse method are
compared with the results got by conventional
calculation. The two methods yield almost equivalent
results. The new method is computationally more
efficient requiring less than 5 % of the computational
time of the conventional method when studying the
forces as a function of whirling frequency. The
advantage of the impulse method is that it gives the
forces for a wide frequency range, including as special
cases the static and dynamic eccentricities, by one
simulation.
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