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Abstract — There is unbalanced magnetic pull between the
rotor and stator of the cage induction motor when the rotor is
not concentric with the stator. These forces depend on the
position and motion of the center point of the rotor. In this
paper, the linearity of the forces in proportion to the rotor
eccentricity is studied numerically using time-stepping finite
element analysis. The results show that usually the forces are
linear in proportion to the rotor eccentricity. However, the
closed rotor slots may break the spatial linearity at some
operation conditions of the motor.

Introduction

An electrical motor converts electrical energy to
mechanical work. The magnetic field in the air gap of the
machine generates the tangential forces required for the
energy conversion, but the field also produces other force
components that may interact with machine structures and
excite harmful vibrations. At low frequencies, the vibration
amplitudes may be large enough to couple the
electromagnetic system with the mechanical system. The
electromechanical interaction changes the vibration
characteristics of the machine e.g. it may induce additional
damping or cause rotor dynamic instability.

The nature of these interaction forces has an effect on
the methods required to model the electromechanical
interaction in the machines. If the forces are linear in
proportion to the rotor displacement, the electromagnetic
and mechanical systems can be analysed separately and a
highly reduced simulation model can be used to study the
effects of electromechanical interaction.

Conventionally, the forces acting between the rotor and
stator have been studied by analytical means. There is a lot
of papers, in which the effects of the rotor eccentricity on
the unbalanced magnetic pull are studied analytically
(Freise and Jordan, 1962; Ellison and Yang, 1971; Smith
and Dorrell, 1996; Belmans et al, 1987). The problem with
the analytical models is how to evaluate the equalising
currents induced in the windings by the asymmetric flux
distribution. The effects of saturation and stator and rotor
slotting are also difficult to model by analytical means.

Numerical field calculation methods have been used
only rarely for calculating the forces due to eccentric rotors
(Arkkio and Lindgren, 1992; Tenhunen, 2001). A time-
stepping analysis is used for studying the effects of
equalising currents induced by an eccentric rotor in the

parallel circuits of the stator windings on the forces
(DeBortoli et al, 1993).

The references given above focus on the two special
cases of whirling motion i.e. the static and dynamic
eccentricity. However, the whirling motion of the rotor can
also occur on some other frequencies. Früctenicht et al.
(1982) developed analytical tools to study the cage
induction motor in a more general whirling motion.

Arkkio et al. (2000) presented a linear force model using
complex variables for the electromagnetic forces acting
between the rotor and stator:

( ) ( ) ( )w w wF Kω ω ε ω= (1)

in which F is the total force, K is the frequency response
function of the system,  is relative eccentricity, which is
defined as a ratio between the whirling radius and average
air-gap, and w is the angular frequency of the whirling
motion in relation to the stator. This model fits for non-
synchronous whirling motion. They also determined the
model parameters for an induction motor by numerical
simulations and verified the results by measurements. Later
on, this force model was incorporated with a mechanical
rotor model and the interaction phenomena were studied
(Holopainen et al, 2002). However, an important open
question is the linearity of the forces in proportion to the
eccentricity. The problem can be stated as: is it true that

( ) ( ), , , , ,w wF F s U F s Uε ω ε ω′= = (2)

where s is the slip and U is the line voltage.
In this paper, the assumption of linearity is studied in

order to establish the limits of application of this previously
developed force model. The spatial linearity is studied
numerically using impulse method (Tenhunen et al, 2002)
in finite element analysis to calculate the frequency
response functions between the forces and whirling radius
of the rotor at different voltage and slip values. The results
show that the assumption of the linearity is usually valid
for small values of relative eccentricity. However, the
closed rotor slots may break the linearity at some operation
conditions.

Analytical study

At first, the analytical theory of the rotor eccentricity is
presented briefly. The rotor eccentricity is considered as a



rotor in whirling motion. When the rotor is eccentrically
positioned with respect to the stator bore, the air gap length
δ is a function of the angular displacement x and time t

( ) ( )0, 1 cos w wx t x tδ δ ε ω ϕ= − − −   (3)

where δ0 is average air gap length and ϕw is the phase
angle. The air gap permeance  varies inversely with the
air gap length (Früchtenicht et al, 1982)
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The magnetomotive force is assumed to be sinusoidaly
distributed in the air gap. The expression for the
magnetomotive force is then

( )m m
ˆ( , ) cos mF x t F px tω ϕ= − − (6)

The magnetic flux density b(x,t) is a product of
magnetomotive force Fm(x,t) and the air gap permeance
Λ(x,t)

m( , ) ( , ) ( , )b x t F x t x tΛ= (7)

We consider only the motors, in which the number of
pole pairs is bigger than one and neglect the homopolar
flux by supposing that the integral of the flux density
around the rotor is zero. Then, by taking only the first
harmonics of the air gap permeance into account, the
product in Equation (7) gives the flux density distribution
in the air gap.
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where the amplitudes of the flux density harmonics are
Bp=� 0 and Bp±1=�  p±1.

The radial component of the force between the rotor and
stator to the z- and y-directions (vertical and horizontal
directions with respect to the cross-sectional geometry) is
got by surface integral over the rotor outer surface
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where l is the length and R is the outer radius of the rotor.
As a result, one gets the force vector, which rotates at

the whirling frequency ωw. The force vector is presented as
complex form:
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The force in Equation (10) presents only the radial
component of the force. The forces are usually divided into
the radial component in the direction of the shortest air gap
and a tangential component perpendicular to the radial one.
Früchtenicht et al. (1982) presented the common
expression for the electromagnetic forces, including also
the tangential component of the force.

The amplitude of the force vector depends only on the
amplitudes of the permeance waves , because the
magnetomotive force mF̂  is constant. Figure 1 shows the

relative values of Fourier coefficients of the permeance
waves 0 and 1.
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Figure 1. The Fourier coefficients of the permeance waves 0,
marked by ������ 1, marked by x as a function of relative

eccentricity .

The radial component of the force is proportional to the
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The first term in (11) is the linear part and the rest
presents the non-linear part. Figure 2 shows the product
and the relative error done when the forces are supposed to
be linear in proportion to the displacement (sum of the non-
linear terms in Equation (11)).
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Figure 2. Product of the Fourier coefficients (thick line) and the
error of the linear assumption (thin line).



Figure 2 shows that according to the analytical theory,
the assumption of the spatial linearity is valid for small
values of relative eccentricity.

This analytical study shows that the unbalanced
magnetic pull is linear in proportion to the displacement of
the rotor if the radius of the whirling motion, i.e. amplitude
of the eccentricity is small. The effects of saturation are not
taken into account in the analytical expression of the
forces. The flux density harmonics created by the rotor
eccentricity influence on the saturation and vice versa. That
is why the spatial linearity is also studied numerically by
time-stepping finite element analysis in the next section.

Method of numerical study

The calculation of the magnetic field and operating
characteristics of the induction motor is based on time
stepping finite-element analysis of the magnetic field. The
details of the method are presented by Arkkio (1987). The
magnetic field in the core region of the motor is assumed to
be two-dimensional. End-winding impedances are used in
circuit equations of the windings to model the end effects
approximately. The magnetic field and circuit equations are
discretized and solved together as a system of equations.
The time-dependence of the variables is modelled by the
Crank-Nicholson method. The method of analysis neglects
the homopolar flux, but it should model properly the effects
of equalising currents, slotting and saturation.

The method presented by Coulomb (1983) was used for
computing the electromagnetic forces. It is based on the
principle of the virtual work, and the forces are obtained as
a volume integral computed in an air layer surrounding the
rotor. In the two-dimensional formulation, the computation
reduces to a surface integration over the finite elements in
the air gap. The method was chosen because it has given
accurate results when computing the forces of the electrical
machines and it is verified by measurements (Arkkio et al,
2000). The forces are calculated at each time step and as a
result one gets the forces as a function of simulation time.

The motion of the rotor is obtained by changing the
finite-element mesh in the air gap. Second order,
isoparametric, triangular elements were used. A typical
finite-element mesh for the cross section of the test motors
contained about 10000 nodes.

The impulse method in the finite element analysis is
used to calculate the frequency response of the
electromagnetic forces. The details of the impulse method
are presented in reference (Tenhunen et al, 2002). The
basic idea of the impulse method is to move the rotor from
its central position for a short period of time to one
direction, fixed into the stator co-ordinate system. This
displacement excitation disturbs the flux density
distribution in the air gap, and by doing this, produces
forces between the rotor and stator. Using spectral analysis
techniques the frequency response functions are determined
using the excitation and response signals. The length T of
the displacement pulse, which is defined (t) = (1-

���� t/T)), t1 < t < t2, was 0,01 s and the total simulation
time was 1 s with constant time-step of 0.05 ms. To
increase the spectral resolution, the sample size was
extended to be 2 s obtained by adding the zeros to the end
of the sample leading to frequency resolution of 0.5 Hz.

The discrete excitation and force signals were transformed
into the frequency domain by the fast Fourier transform
without filtering or windowing. The number of sample
points was 8192.

The frequency response function presents the
electromagnetic forces per whirling radius as a function of
whirling frequency. Then, if the forces have spatial
linearity property, the frequency response is independent of
amplitude of the excitation pulse. The effective amplitude
of the cosine excitation pulse is half of the maximum value.

Three parameters are varied in the analysis: the supply
voltage, the amplitude of the displacement pulse, and the
slip. The radial and tangential components of the frequency
response of the electromagnetic forces are studied at range
0 – 50 Hz of whirling frequency, which is the fourth
parameter in Equation (2). The limits of linearity are
studied by varying the input parameters and comparing the
frequency responses.

Results

Two machines, 15 kW and 37 kW four-pole cage
induction motors were chosen for test motors to study the
spatial linearity of the electromagnetic forces. The quarters
of the cross-sectional geometry of the motors are shown in
Figures 3 and 4 and the main parameters of the motors are
presented in Table I. The main difference between these
motors is that the 15 kW motor has open and the 37 kW
motor closed rotor slots.

TABLE I. THE MAIN PARAMETERS OF THE TEST MOTORS.

Parameter 15 kW 37 kW
Number of poles 4 4
Number of phases 3 3
Number of parallel paths 1 1
Outer diameter of stator [mm] 235 310
Core length [mm] 195 249
Inner diameter of stator [mm] 145 200
Airgap length [mm] 0.45 0.8
Number of stator slots 36 48
Number of rotor slots 34 40
Connection Delta Star
Rated voltage [V] 380 400
Rated frequency [Hz] 50 50
Rated current [A] 28 69
Rated power [kW] 15 37

Figure 3. The cross sectional geometry of the 15 kW motor.



The values of the varied parameters in the analysis were
the following: The used voltages were 100 V, 250 V and
the rated voltage (380 V for 15 kW motor and 400 V for 37
kW motor). The used values for the slip were s = 0 %, s =
1,6 % and s = 3,2 % for 15 kW motor and s = 0 %, s = 1,6
% for the 37 kW motor. The frequency response functions
(FRF) were calculated using a displacement pulse with
amplitudes 10 %, 20 % 30 % and 40 % of the air gap.

Figure 4. The cross sectional geometry of the 37 kW motor.

At first, the 15 kW motor, which has open rotor slots
was studied. Figure 5 shows the FRF of the radial
component and Figure 6 the FRF of the tangential
component of the force. The voltages was 100 V and the
slip s = 0 for all the used displacement pulses.
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Figure 5. The radial components of the FRF function of the forces
at U=100 V, s=0% for the 15 kW motor. The curves represent all

the displacement pulses.
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Figure 6. The tangential component of the FRF of the forces at
U=100 V, s=0% for the 15 kW motor. The overlapping curves

represent all the displacement pulses.

The radial component of the FRF grows slightly when
the amplitude of the displacement pulse increases. In
Figure 5, the upper most curve is calculated by a 40 %
displacement pulse and the lowest is calculated by a 10 %
pulse. The radial component of FRF by the 40 %
displacement pulse is on average about 18 % larger than
corresponding response calculated by the 10 % pulse.
Anyway, the difference in the FRF is less than 10 % for the
pulses of 20 % and 30 %.

The tangential component of the FRF seems to be
independent of the amplitude of the pulse in this case. All
the four responses in Figure 6 are almost equal, the
maximum difference between them is less than 2 % of the
amplitudes.

At voltage level 100 V, the maximum value of flux
density is 0.69 T, so there are no saturation effects. At
voltage 250 V, the maximum flux density is 1,32 T and the
saturation slightly affects the magnetic field. Instead, at
voltage 380 V, the motor is strongly saturated ( b̂  = 2.04
T). Figure 7 and 8 present the FRF at rated operating point
U = 380 V and s = 3,2 % for all the used displacement
pulses.
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Figure 7. The radial components of the FRF of the forces at
U=380 V, s=3,2 % for the 15 kW motor.
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Figure 8. The tangential component of the FRF of the forces at
U=380 V, s=3,2% for the 15 kW motor.

The frequency response functions presented in Figures
5-8 have a typical shape for the four pole cage induction
motors. The behavior of the FRF as a function of the pulse
amplitude is the same for all the calculated voltage levels.
To study the spatial linearity more precisely, the
electromagnetic forces are calculated from the FRF at
whirling frequency 10 Hz. The behavior of the forces as a
function of the displacement is similar at reduced voltage
levels, so the results are presented only at voltage level 250



V. The radial and tangential component of the forces are
presented as a function of the relative displacement in
Figure 9 at 250 V and in Fig. 10 at 380 V voltage for slip
values s = 0 %, s = 1,6 % and s = 3,2 %.

According to the results presented in Figures 9 and 10,
the tangential component of the force is almost linear
function of the rotor displacement and it is independent of
the slip. However, near to synchronous speed, the
tangential component of the force depends strongly on the
slip, but it still is a linear function of rotor displacement.
The slip has a visible effect on the radial components of the
forces. The radial component of the force follows the
analytical theory well in the reduced voltages 100 V and
250 V.
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Figure 9. The forces as a function of relative displacement at 250
V and whirling frequency 10 Hz for the 15 kW motor.
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Figure 10. The forces as a function of relative displacement at 380
V and whirling frequency 10 Hz for 15 kW motor.

TABLE II. THE AVERAGE DIFFERENCE [%] OF THE TOTAL FORCE AS A

FUNCTION OF DISPLACEMENT PULSE COMPARED WITH THE TOTAL FORCE

CALCULATED BY 10 % DISPLACEMENT PULSE FOR THE 15 KW MOTOR.
THE TOTAL FORCES ARE CALCULATED VARYING VALUES OF VOLTAGE AND

SLIP.

U=100 V s = 0 % s = 1,6 % s = 3,2 %

20% 2.2 3.1 4.8
30% 6.4 9.2 14.5
40% 14.4 20.7 33.7

U=250 V
20% 2.2 3.0 4.0
30% 6.3 9.0 11.5
40% 14.3 19.9 24.3

U=380 V
20% 2.0 2.0 1.7
30% 5.9 5.5 4.7
40% 12.5 11.0 9.1

Table II presents the average difference of absolute
value of the total force at whirling frequency range 0 – 50
Hz as a function of displacement pulse compared with the
total force calculated by 10 % displacement pulse. The
difference is calculated by calculating the difference of the
absolute value for each of the studied whirling frequencies
and taking the average of the differences at valid frequency
range. The total forces are calculated varying the values of
voltage and slip.

According to Table II, the frequency response of the
forces is almost the same for 10 % and 20 % rotor
displacements. We can assume that the spatial linearity is
valid for smaller than 10 % displacements.

Actually, Table II shows the error, which results when
using the assumption of spatial linearity, at different values
of relative rotor displacement for different operating
characteristic of the motor.

After the analysis of the 15 kW motor, the spatial
linearity is studied for the 37 kW motor. Figure 11 presents
the FRF of the radial component and Figure 12 the FRF of
the tangential component of the force at voltage 400 V in
no load condition (s = 0%) for all the used displacement
pulses.
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Figure 11. The radial components of the FRF of the forces at
U=400 V, s=0% for the 37 kW motor.
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Figure 12. The tangential component of the FRF of the forces at
U=400 V, s=0% for the 37 kW motor.

Figure 11 shows the nonlinear behavior of the forces at
this operating point and used displacements. The smallest
pulse gives the largest radial component of the FRF. The
exception is the synchronous speed, at which no equalizing
currents are induced into the rotor cage and the FRF is
independent on the pulse. The closed rotor slots can explain
the nonlinear behavior. The eccentricity harmonics in
Equation (8) open magnetically the rotor slots and the
damping currents start to flow in the rotor cage when the



amplitude of the displacement increases. The tangential
components of the FRF (Figure 12) are almost equal for all
the pulses. However, at whirling frequencies near to the
synchronous speed the 10 % pulse gave notably lower
forces.

Table III presents the average difference of absolute
value of the total force at whirling frequency range 0 – 50
Hz as a function of displacement pulse compared with the
total force calculated by 10 % displacement pulse for 37
kW motor. The total forces are again calculated varying
values of voltage and slip.

The same effect, which is shown in Figure 11, seems to
occur also at all the studied voltage levels at no load. If the
rotor displacements increase, the saturation level in the iron
over the rotor slots increases, and more and more induced
damping currents flow in the rotor cage. The induced
currents in rotor cage damp the harmonics created by the
rotor displacement, and by doing this, damp nonlinearly the
forces and break the spatial linearity property at relatively
low values of rotor displacement.

TABLE III. THE AVERAGE DIFFERENCE OF THE TOTAL FORCE [%] AS A

FUNCTION OF DISPLACEMENT PULSE COMPARED WITH THE TOTAL FORCE

CALCULATED BY 10 % DISPLACEMENT PULSE FOR THE 37 KW MOTOR.
THE TOTAL FORCES ARE CALCULATED VARYING VALUES OF VOLTAGE AND

SLIP.

U=100 V s = 0 % s = 1,6 %

20% -16.0 5.4
30% -23.2 17.6
40% -24.2 47.0

U=250 V

20% -7.5 4.3
30% -10.7 13.5
40% -7.7 31.8

U=400 V

20% -13.7 3.1
30% -19.1 8.0
40% -18.7 15.9

At rated load, the force – rotor displacement relation
follows approximately the analytical expression. The
absolute value of the total force increases slightly when the
rotor displacements increase.

Discussions

The 15 kW cage induction motor has open rotor slots.
The saturation has hardly no effects on the forces. The
increase of the load linearises slighly the forces in
proportion to displacement. For the 37 kW test motor, the
saturation effects are more complicated. At no load
condition, the harmonics created by rotor displacement
open magnetically the rotor slots through the saturation
when the displacement grows enough. For loaded motors,
the fundamental field opens the slots and the spatial
linearity is valid.

However, the amplitudes of the vibrations are usually
very small, just few percents of the air gap. Based on this
fact, obtained results indicate that the assumption of the
spatial linearity is valid for studying the electromechanical
interaction. One should be aware of the possibilty that the

closed rotor slots may cause nonlinearity at some operating
points of the motor.

Conclusions

The linearity of the electromagnetic forces between the
rotor and the stator in proportion to the rotor displacement
is studied in this paper. At first, the background of the
study is presented analytically. The spatial linearity is
studied numerically using time-stepping finite element
analysis. The results indicate that usually the forces are
linear in proportion to the rotor displacement. However, the
closed rotor slots may break the spatial linearity of the
forces at some operating points of the motor.
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