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Wave function for quantum-dot ground states beyond the maximum-density droplet
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We study the possible lowest energy states for spin-polarized electrons in a parabolic quantum dot in the
strong magnetic field, for filling factors=1v»=1/3. We present a variational wave function that correctly
predicts the possible angular momentum values obtained from numerical diagonalizations. The wave function
is optimized using quantum Monte Carlo techniqU&0163-182009)05927-3

[. INTRODUCTION region® The central theoretical question is mainly related to
the angular momentum values of the possible lowest energy
Semiconductor quantum dot®D) are small devices con- states and also to the topology of these many-body states.
taining a tunable number of electrons in an external confine- The composite fermiofCF) wave functiori—®is the only
ment potential. There has been significant progress in the“analytic” construction the authors are aware of, in the
fabrication of QD’S during the last few yea%'SNhK;h has range that we are Currently interested in. The prOblem with
stimulated an increasing interest in investigating the properthe CF wave function is that the necessary LLL projection is
ties of such systems. From the theoretical point of view, aplfﬂcult to calculateé It is possible to formulate th_e CF theory
QD is an ideal many-electron object for theoretical study ofYSing only the LLL. In the “standard” formulation of the
fundamental physical properties of correlated systems. OngF theory, in which the composite fermions occupy several
of the major theoretical goals is to understand the nature olrandau levels of their own and the LLL projection of the

the many-body ground states for various magnetic-fiel ave fu_nction i_s needed, the_ possible values are gi\_/en_ by
strengths he noninteracting electrons in the reduced magnetic field. In

We use the usual model for a quantum dot: electrons witfihe LLL formulation of the CF theory, as presented in Ref. 9,

frecti . g in two di : d he L* values are the same as in the standard formulation.
an e. ective masm arg moving !n wo Zlmensmns and aré e magnetoexciton states of Ref. 11 are presented mainly
confined by a parabolic potential Llér . The one-body

for 1>v=N-1/N+1, and for smaller values of the mag-

problem is siryilar to 2the harmonic oscillator ofwith fre-  petoexciton states have only a small overlap with the exact
quencyw2=wo+ 1/4w¢ , wherew.=eB/m*c) and is easily ground states.

solved for an arbitrary magnetic fieBl®> As we concentrate
on the strong magnetic-field limit, the relevant one-particle

states are on the lowest Landau leydlL ), and these states Il. WAVE FUNCTION
can be labeled by the angular momentum eigenvhlde
interaction between electrons is included in the Hamiltonial
by the termsezlerij , Wheree is the dielectric constant of the

As a consequence of the parabolic potential, the model
"Hamiltonian discussed above can be separated intolum
=H.n+H,y (Ref. 6 where the first term contains only

material. center-of-mass coordinates and the second only relative co-
The fully spin polarizedN-electron state built from LLL ordinates. The Hamiltoniard . is exactl squ}E)Ie The
states of angular momentuni=0,... N—1 is the ) cm y y

Hamiltonian of the relative motion includes the Coulomb
interaction and it cannot be exactly solved.

Next we will first discuss the LLL part of the wave func-
tion. The LLL one-particle states can be written as

maximum-density dropletMDD) state. In the thermody-

namic limit, the MDD corresponds to an integer quantum

Hall state with filling factorr=1. The total angular momen-

tumL is equal toL y;pp=N(N—1)/2. The many-body states

for »>1, corresponding to lowest energy states in the

weaker magnetic fields, can be easily obtained from a modi- r2
o] ).

5 M

fied one-electron picture as presented in Ref. 4. In the stron-
ger magnetic-field values, the angular momentum is larger
than Ly,pp and this region corresponds to the fractional
guantum Hall regime in the thermodynamic limit, with filling where =0,1,2 ... is the angular momentum and=Xx
factor defined ag=Lypp/L<1. Thel values of these pos- +iy. The length is measured in unitslg= \A/m* w. If one
sible lowest energy states, marked by in this paper, do omits the electron-electron interaction, the many-body wave
not contain all possible values of the system, but only function can be written as a determinant of the one-body
some of them. There is no theory to rigorously predictlifie  states above. In this case, the total energy is determined by
values. the total angular momentuin, which is simply a sum over
There are a number of previous theoretical studies on thithe | values of the single-particle states.
v<1 or post-MDD regior:®1°~1*Recently, high quality ex- The determinant of the states=0,1,2...N—1 is
periments with a symmetric QD have been done for thisMDD, and it can be written in a compact form as
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N N 2 One should note that the functiahcontains only relative
Vvbp= H zZjjexp — E E' , (2)  coordinates. This is satisfactory because of the separation of
=] =1 the Hamiltonian discussed above and because the Coulomb

wherez;; =z —z;. One should note that the phase part of theinteraction changes only thé part of the Hamiltonian. If
MDD wave function contains only relative coordinates, the Landau-level mixing is properly captured by the Jastrow
which means that the center-of-mass motion is in the lowegctors, the task remaining is to find an approximative LLL
state. The total angular momentum of MDD lsypp,  Many-body wave function. o o
=N(N-1)/2, and MDD is the only LLL state with this an- We start constructing the LLL approximative variational
gular momentum value. The state with=Lypp+1 is also ~ Wave function from the single-particle states given in &g.

. T . N H
unique, as the only possibility to increase the angular moA set of angular momentum valugk};— , is selected, and a
mentum of the MDD by 1 is to move the electron from the Slater determinant is constructed from these. The center-of-

I=N—1 state to the state with=N. The state withL  mass motion is restricted to the lowest energy state by using
=Luop+2 has two configurations, namely=N—1—I Eq. (3). This results, combined with the correlation factdrs
=N+1orl=N—2—l=N. discussed above, a variational wave function given by

If one now includes the Coulomb interaction, the energy N
of the N-electron configuration is not the same for all the
configurations with the samevalue. The interaction energy \If:de[{w,}]xi];[j I(rij), (@)
is smaller for the configurations that have less center-of-mass
motion and more relative motion, because the relative mowhich can be labeled by the sgf}\_, . For a certain angular
tion keeps the electrons further away from each other. Fofomentum value.>L,,pp+ 2, there are several different
this reason, one should restrict the center-of-mass motion tgossibilities for the sefl;}. As one moves to higher mag-
the lowest energy eigenstate. In practice, this requirement igetic field,L increases and there are more and more unoccu-
most easily fulfilled by the following coordinate pied values ofl in the set{l;}. We have found that it is

replacement? energetically favorable to have only one region of unoccu-
A . pied values of. In this way, the number of possible configu-
X+ =X +1y = (X=Xem) T1(Y—Yem), (3 rations is reduced. We have used the quantum Monte Carlo

wherex., andy.,, are the coordinates of the center of mass.(QMC) method for finding the optimal parametésand

This replacement should be done only in the phase part dfvaluating the energy. _ ,
the single-particle states. The transformation can be under- 1he limitation of the wave function presented above is
stood by noting that the excitations of the center-of-maséhat as the magnetic field is made stronger, the difference in

motion involves the coordinate,, in the phase part of the €N€rgy betwee_n different ‘“starting (_:onfigurations” dis_-
wave function, and the rule of E3) removes these as cussed above is reduced. Due to this, the wave function

should be presented as a sum over several configurations.
Xemt 1Y em= Xem= X em) +1(Yem— Yem) =0. (4)  For this reason, the wave function is less accurate for larger
angular momentum values and for more accurate treatment

If this transformation is applied to a state without center-of-5 5 ghoyid expand the wave function as a sum over several
mass motion, the wave function does not change. This Ca@onfigurations

easily be seen in the case of MDD, as
Zij—(Zi— Zem) = (2= Zem) = Zij - (5) Ill. RESULTS

The exact LLL wave function for a certain value lotcan The best test for the variational wave function given
be presented as a linear combination of all the possible cor2POve is to compare the results obtained with it with the ones
figurations that have the correct angular momentum. The cdfom the exact numerical diagonalization. Due to the limita-
efficients can be found, e.g., by the exact diagonalizatiodions of the exact d|agolnallzat|on technique, the diagonaliza-
method. The problem with this approach is that the numbeHon can only be done in the LLL for the electron numbers
of configurations in the expansion increases rapidly as &tudied in this work. For this reason, the direct comparison
function of the angular momentum. For this reason, the exa@f the energies is not totally meaningful. A better test for the
diagonalization method is limited both by the angular mo-Presented variational wave function is to compare the angu-
mentum and the number of electrons. This further motivatea” momentum values for the possible lowest energy states
the search for approximative wave functions that could bd-*- This comparison can be done also with the CF theory,
used to study larger QD’s also. without calculation of the CF wave function or its energy, as

We have previously showh that up to 98% of the the possibleL* values are given by the simple mean-field
Landau-level mixing can be captured in a three-electron Q[FU|e-7_
by multiplying the LLL multiconfigurational many-body In Fig. 1, we compare the result obtained using this wave

wave function by tWO'bOdy correlation factors for each pair:fUnCtion with exact diagonalization for the seven-electron
QD. The parameter values used am&/my=0.067, €

N =12.4, andB=5 T. The confinement and the Zeeman term

[T 3, (6)  are omitted. One can see that the QMC energy is lower for

= up toL=>51. After that the error in the LLL part of the QMC
where J is a correlation factor of the Jastrow fordqr;;) energy is larger than the gain in the energy obtained by in-
= exfdar;; /(1+br;)], with a andb as variational parameters. cluding Landau-level mixing. The lines in the figure connect
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FIG. 1. Total energy as a function of the angular momentum for  F|G. 2. The radial density(r) for the Laughliny=1/3 state
seven electrons. The numerical diagonalization energies are markefd for the variational wave function presented in this work. Nor-
with “ +" and the QMC energies are marked witD"” The pa-  malization is such that 2/ p(r)r dr=N. The smallr limit has the

rameter values am*/my=0.067,e=13.0,hwo=0, andB=5 T.  \orst statistics, and the densities there are less accurate than in the
The vertical lines are drawn for the possible lowest enérgglues  |arger limit.

L*. The “& " for L=63 is the energy of the Laughlin=1/3 state
with Jastrow correlation factor. The predictéd values are the . % 3 .
same for diagonalization and QMC. For the states with more thar'iwt a_ble to predlc_:t the.* =61 value” The state_ W'thl_-
one hole in the wave function, only tHe* and the neighboring =731is not.a possible lowest energy state as clqlmed in Ref.
states(with holes moved by one step towards center or gdge & and predicted by the CF mean-field rule. The firststate

plotted for clarity. corresponding t&.* =55 has again a hole in the center. The
stateL* =61 hasl=2 and|l=3 empty andL* =63 hasl
=1 andl =2 empty, and both the states have thus two holes.

the possible lowest energy statésThe important thing is :
The rest of theL* states havé=0 andl=1 occupied and

that the predicted.* values for the possible lowest energy ;
states are exactly the same for the diagonalization and for tH&°™M 3 o 5 unoccupied sta\tlgs after that. _
proposed variational wave function. One should note that W& have previously showrthat the transition points ob-

=56 isnota possible lowest energy state as claimed in RefS€"ved in the experiments of Ref. 5 =6, »>1 are very
8 and falsely predicted by the CF mean-field rule. well predicted by the QMC simulations. It is interesting to

In the QMC wave function, the state witht =28 has one ~compare the QMC prediction of the transition point from the
hole in the center of the dot£0 unoccupiedl The rest of MDD to the post-MDD region with the experimental find-

the states havé=0 occupied and from 2L(* =33) to 7 ings. In the QMC simulations, we have used the same pa-

(L* =63) unoccupied states after that. One should also nol@meters as in Ref. 4. Using these, the transition occurs at

tice that the Laughlin=1/3 stat&® combined with a Jastrow B~10.7 T whereas the experimental value is rather close to

factor used above gives clearly the lowest energy. In Fig. 00 T. Itis Important to note that. the assumption of con-
we have plotted the radial densip(r) for the Laughliny stant, parabolic confinementi®t valid in this experimental
=1/3 state and for the variational wave function presented in
this work. One can see that the density of the Laughlin’s %
wave function is more smeared over the whole dot compared
with the present wave function, which has a smaller density
from ~20 nm to~40 nm from the center of the dot. This
can be seen as a consequence of having one starting configt
ration, unoccupied orbitals corresponding to this region. On
the other hand, for the smaller angular momentum values,¥ |
the number of unoccupied states is smaller and the errer in gm_
should also be smaller. In Ref. 14 the pair correlation func- % |

160

150

tions for theN=6 case are plotted. The one for the-1/3 F 1a0f
state (* =45) differs significantly from the ones of smaller ;
angular momentum values, especially from tHe= 35 state e

that has a clearer peak in the center of the dot.

In Fig. 3 similar results as in Fig. 1 are presented, but for ™
ten electrons. Same parameters have been used as hh the : : P : : :
=7 case. The diagonalizations are now limited to a smaller ' 3 3 o e % 7 3
range ofL. Again, one can see that the& values predicted ArauiNomerum
are exactly the same. The mean-field rule of the CF theory is FIG. 3. Same as Fig. 1, but for ten electrons.
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setup atB and is stronger than-7 T (Ref. 19 and if the the other hand, the very good agreement of the CF energies
parabolic confinement is assumed, the strength df «ity presented in Ref. 9 for the set bfvalues suggest that the
should be smaller. We have found that havihg,=4.25 few failures of the CF theory might not be used to judge the
meV instead ofi wy=4.5 meV predicts the transition at the CF wave function itself, but that the mean-field rule used to
correctB value. obtainL* values in the CF theory might be questionable. In
addition, reasonable agreement with the experimental find-
IV. CONCLUSION ings for the stability of the MDD is found in the=6 case.

In summary, a simple variational many-body wave func-
tion for post-MDD states of a parabolic quantum dot is con-
structed. The proposed wave function correctly predicts the We thank Veikko Halonen and Pekka Pieitilen for the
possible lowest energy angular momentum values, even iaxact diagonalization results and helpful conversations. We
the cases where the mean-field rule of the CF theory fails. Oalso thank Viktor Sverdlov for helpful discussions.
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