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Abstract

This thesis investigates the use of wave-function methods for the study of
quantum-dot systems. It investigates single dots, using quantum Monte
Carlo techniques in a wide range of magnetic field values, and a double-dot
system, using the exact-diagonalization method.

The thesis proposes simple yet accurate many-particle wave functions
for various angular-momentum and spin states, for both weak and strong
magnetic fields. Using these trial wave functions, it evaluates various prop-
erties of dots and studies Wigner crystallization and spin polarization for the
weak-field limit. For strong magnetic fields, the thesis investigates ground
states of different spin polarizations as a function of the magnetic field and
tests the commonly used lowest-Landau-level approximation. The results
are compared to calculations from the density-functional theory.

Finally, the thesis presents a method that combines the accuracy of
the exact-diagonalization method and the scalability of Monte Carlo meth-
ods. The Monte Carlo-based diagonalization is a promising tool for use in
situations that cannot be handled with a simple trial wave function, and
have too many particles for an exact-diagonalization treatment. For quan-
tum dots, methods for efficiently evaluating the high-magnetic-field basis
functions and their gradients are demonstrated.
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Chapter 1

Introduction

An increasingly large portion of modern condensed-matter science concen-
trates on man-made structures. Advances in recent decades in manufactur-
ing technology and experiments have decreased the gap between the atomic
and bulk regimes and given rise to mesoscopic physics between the two ex-
tremes. This new field has raised fundamental physical questions, many of
which are still unresolved. Nonetheless, simple applications, like ordinary
laser diodes, are already widespread.

Theoretically, mesoscopic structures provide a wealth of intriguing chal-
lenges, especially in low-dimensional systems. In atoms, for example, the
strong and massive nucleus obscures much of the effects of interactions,
whereas in mesoscopic structures, interactions between charge carriers play
an important role. The strong interactions result in a highly correlated
state of charge carriers, to which single-particle theories are no longer valid.
Perhaps the most famous examples of such new states of matter are integer
and fractional quantum Hall effects [1–3], observed in magnetic fields.

Solving the state of an interacting N -electron system requires solving
the N -particle Schrödinger equation

HΨ = EΨ ,

where Ψ is the wave function of all particles, H is the Hamiltonian operator,
and E is the total energy. Solving this equation analytically is possible in
special cases only, and solving it numerically is almost as difficult: already
the general case of two-particles in two dimensions, giving four degrees of
freedom, is challenging. For increasing degrees of freedom, it soon becomes
utterly impossible to just store the numerical values of the wave function
(on a grid of reasonable spacing) in a computer’s memory space.
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It is possible to get past the difficulties in solving the interacting Schrö-
dinger equation. Because the difficulties emerge from interactions, various
mean-field theories take the interactions into account only in an averaged
way. The widely used density-functional theory [4] and the Hartree-Fock
methods belong to this class.

With increasing computational power, methods solving the wave func-
tion exactly have become increasingly popular. These methods treat inter-
action effects accurately. The exact-diagonalization method aims at solving
the Schrödinger equation to a point of numerical accuracy, by using a suit-
ably chosen basis set. The number of particles is, however, severely limited
by the rapidly increasing basis size. Various Monte Carlo methods [5], on
the other hand, use a statistical approach, which is in principle accurate, and
can be applied in some cases to systems containing up to several thousand
particles.

1.1 Quantum dots

Quantum dots are fabricated, nanoscale structures, which are able to cap-
ture and localize charge carriers, such as electrons. Typical dimensions for
quantum dots range from nanometers to a few micrometers, and the number
of electrons can be tuned from zero to up to thousands.

Quantum dots resemble ordinary atoms in many ways. Both contain
a more or less fixed number of electrons, have a shell structure, and even
the experimental Hund’s rule describing the spin alignment in atomic shells
also holds for quantum dots in many cases [6, 7]. These similarities gave
rise to the term “artificial atom”, which is commonly used as a synonym for
quantum dot.

Quantum dots are much larger than real atoms. From the technological
point of view, however, the most important difference between quantum
dots and atoms is that the properties of quantum dots can be tailored by
design, or even in real time, by adjusting the electromagnetic environment
of the dot. This opens a broad spectrum of new possibilities, ranging from
superior laser technology [8, 9] to applications of quantum-dot transistor
[10] or memory technologies [11], and even future applications in quantum
computing [12, 13].

For a theoretician, quantum dots are interesting objects. As highly
correlated many-particle systems, with tunable properties, they are excellent
for studies of electron-electron interactions. Spin effects are also pronounced
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in quantum dots: the magnetic field needed to produce spin effects of similar
magnitude in atoms is millions of times higher than in quantum dots. For
small quantum dots, complete spin polarization can be easily achieved in
laboratories.

Quantum dots can be manufactured in a number of different ways. Vast
quantum-dot arrays can be created using various self-assembly methods [14–
16] or, for example, by cluster deposition [17]. Both metallic [see Fig. 1.1(a)]
and semiconductor dot arrays can be made. A few dots or molecules can
be also created by using a scanning tunneling microscope. It is possible to
make the self-organized dots in the arrays extremely small, but the height
of the dots is typically of the same order as their diameter, which makes
them three-dimensional.

Two-dimensional quantum dots can be manufactured at semiconductor
interfaces, which have a quasi-two-dimensional electron gas (2DEG) in the
inversion layer. Electrodes, which create the confining electrostatic poten-
tial and contacts to the dot, can be made with lithographic techniques on
top of the structure, thereby producing lateral dots [see Fig. 1.1(d)]. By
etching away most of the 2DEG interface, vertical semiconductor dots [see
Fig. 1.1(b,c)] can be created. Vertical dots are typically smaller than lateral
dots, down to the size of a single-electron dot.

3



(a) (b)

(c) (d)

Figure 1.1: (a): An array of self-organized Fe quantum dots on dislocation
network of Cu bilayer on Pt(111) surface. The size of each dot is approxi-
mately 4 nm (from Ref. 14 by H. Brune et al.). (b): A schematic figure of
a vertical quantum dot (from Ref. 18 by L. Kouwenhoven and C. Marcus).
(c): Experimental realizations of vertical GaAs quantum dots. Horizontal
bars are 0.5µm (from Ref. 19 by M. A. Reed et al.). (d): A lateral quantum
dot on top of GaAs/AlGaAs heterostructure. The effective size of the dot
in the center of the structure is approximately 800 nm. (from Ref. 20 by
L. P. Kouwenhoven et al.).
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Chapter 2

Monte Carlo methods

Monte Carlo (MC) methods are a broad collection of techniques to gather
information from complex systems. The formulation of the problem is usu-
ally as follows: evaluate the average value of some quantity over all possible
states of the system. If the number of states is so large that it is impossible
to handle all, or even a subset of them, in any systematic way, then MC
methods may prove to be the best or the only choice. In an MC method,
only a small but representative random subset of all states is selected, and
the size of the subset can be chosen at will. As an example, an MC method
might be used to simulate the average waiting time for a lift in a high
building to optimize the driving logic.

Systems often have a natural time evolution. In MC methods, any such
complex time dependence or dynamics is replaced by “stochastic dynamics”
from random numbers. The system is transferred to a new state, completely
ignoring the real time evolution between initial and final states. This makes
the MC method powerful, but also limited in measuring dynamical proper-
ties on a quantitative (real-time) level.

2.1 Monte Carlo integration

Monte Carlo integration is an integration method with random sample
points [21, 22]. Using the terms from the last section, the set of states
would correspond to the set of all numbers in the volume of integration. In
traditional methods, like the Simpson’s method, the integrand is evaluated
at each point on a regular quadrature. If the volume is very high dimen-
sional, then it is impossible to even go through all the quadrature points in
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a reasonable time (if there is more than one point per dimension). In the
MC integration, the number of sample points can be chosen freely. Another
advantage of the MC integration is that it can be easily implemented in
almost any geometry: infinite regions or fractals cause no problems.

The MC integration method is based on the following limit:

1

M

M
∑

i=1

f(Ri) −−−−→
M→∞

1

V

∫

V

f(R) dR , (2.1)

where points Ri are uniformly randomly distributed throughout the volume
of integration V . The error term is statistical, and decays as

e ∝ σ√
M

, (2.2)

where σ is the standard deviation of the integrand and M the number of
sample points. The major advantage in this kind of an error term is the
independence on the dimensionality d of the space. In traditional methods,
the error estimate deteriorates as the dimensionality increases: for example,
the error in the trapezoidal method behaves like e ∝ M−2/d and in the
Simpson’s method like e ∝ M−4/d. For large d, the MC integration becomes
superior to most quadrature methods.

2.1.1 Importance sampling

If the integrand is highly peaked, the standard deviation σ in Eq. (2.2)
is large. This is often the case in physical applications involving many-
dimensional integrals, and it makes the direct use of Eq. (2.1) inefficient.
The following transformation can be used to reduce the variance:

1

M

M
∑

i=1

f(Ri) =
1

M

M
∑

i=1

p(Ri)
f(Ri)

p(Ri)
∼ Ip
M

M
∑

i=1

f(Rp
i )

p(Rp
i )
, (2.3)

where p(R) is a positive weight function on V , Ip =
∫

V
p(R) dR, and points

R
p
i are distributed as p. The last two summations are equal in the limit

M → ∞. By choosing a suitable p that resembles f , the variance of the
ratio f/p can be made significantly lower than the variance of f itself. This
is the importance sampling method.

As a consequence of the reduced variance, an additional integral Ip

appears in Eq. (2.3). The function p should be chosen so that Ip is calculable.
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In some cases (see Sec. 2.2), the integral Ip cancels out from the final result,
and its value is not needed at all.

Besides the reduction of the variance, the importance sampling can
be used to directly evaluate integrals over infinite volumes, since uniformly
distributed random numbers for Eq. (2.1) can only be generated for finite
volumes. For these applications, one should be careful about the liming
behavior of p with respect to f .

2.1.2 Metropolis algorithm

Generating independent random points from a many-dimensional p is gen-
erally difficult. Direct methods are available only for a few special cases.
Correlated random points, however, are easy to generate as a path in a
Markov chain. The states in the chain are exactly the states of the system
being simulated, and the transition probabilities between states are given
by a stochastic matrix.1

Let π be the stochastic matrix for the Markov chain. The matrix π

determines the unique limiting distribution for the chain (if such exists),
but in this case the inverse problem needs to be solved: how to construct
the matrix π from the known distribution p? Among many solutions, the
“asymmetric rule” by Metropolis et al. [23] is perhaps the most widely used:

πnm = τnm min

(

1,
pm

pn

)

. (2.4)

Here τ is any symmetric matrix with diagonal elements τnn = 1−
∑

m6=n πnm.
The element τnm gives the probability of selecting the next trial state to be
the state m. The actual acceptance probability is then determined from
the ratio pm/pn. As the number of points Rp generated from Eq. (2.4)
approaches infinity, the distribution of points approaches p.

The random points from the Metropolis algorithm are correlated. Each
state depends on the previous one, and the amount of correlation is deter-
mined by the matrix τ . If only near-by states can be selected, then corre-
lations are large, but if any state in the system can be selected with equal
probability, correlations are small (but not zero). The optimal τ depends on
the application. A common rule of thumb for a variational quantum Monte
Carlo simulation is that about half of the trial states should be accepted,

1πnm gives the transition probability from state n to state m given that the system
is in state n. The row sums of π are 1.
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but to properly minimize the error term, the optimal τ should be searched
separately in each case.

Autocorrelation

The autocorrelation function can be used to measure the degree of corre-
lations in the Markov chain. Let f(R) be some property of the system in
state R. The correlation coefficient of f between states separated by n steps
in the chain, Cn, can be defined as

Cn =
〈fifi+n〉 − 〈fi〉2

〈f 2
i 〉 − 〈fi〉2

, (2.5)

where fi = f(Rp
i ), and 〈· · · 〉 is the average value over the whole simulation.

The autocorrelation function is normalized so that C0 is 1.

In practice, calculating the function Cn from Eq. (2.5) is slow. Inter-
preting Cn as a convolution, and using a Fourier transform F , yields a more
useful expression:

C̃ = F−1
(

|F (f) |2
)

, (2.6)

C =
1

C̃1

[

C̃

N
−

(∑

i fi

N

)2
]

, (2.7)

where f = (f1, f2, . . . , fN) and C = (C1, C2, . . . , CN). This method is
O(N logN) while Eq. (2.5) is O(N 2). In the limit of a long sample vec-
tor f , both methods give the same autocorrelation.

The autocorrelation length ξ can be defined as

ξ =
∑

n

Cn . (2.8)

To compute the error bounds from Eq. (2.2), which is valid for independent
sample points only, the number of sample points should be divided by ξ:

e ∝ σ
√

M/ξ
. (2.9)

However, more rigorous error bounds can be obtained by running several
independent MC calculations in parallel.
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2.2 Variational quantum Monte Carlo

Quantum Monte Carlo methods are tailored to integrate quantum mechan-
ical expectation values, like the ground-state energy. The variational quan-
tum Monte Carlo method (VMC) is perhaps conceptually the simplest one,
and is a direct application of the MC integration presented above.

Let Ψ be the wave function of a system of N particles. The expectation
value of an operator A in this state is defined as

〈Ψ |A|Ψ〉
〈Ψ|Ψ〉 , (2.10)

where Ψ need not be normalized. By performing the transformation

1

〈Ψ|Ψ〉

∫

Ψ∗AΨ dR =
1

〈Ψ|Ψ〉

∫

|Ψ|2 AΨ

Ψ
dR , (2.11)

the expectation value can be interpreted as an importance-sampling MC
integral:

〈Ψ |A|Ψ〉
〈Ψ|Ψ〉 =

〈

AΨ

Ψ

〉

|Ψ|2
, (2.12)

where 〈· · ·〉p means the expectation value with sample points distributed
as p. The norm 〈Ψ|Ψ〉 [denoted Ip in Eq. (2.3)] cancels out. The quantity
(Ψ−1AΨ)(R) is called the local value of the operator A at R. For an eigen-
state of A, it is independent of R and equal to the corresponding eigenvalue.

According to the variational principle, the energy given by any trial
wave function Ψ is an upper bound to the true ground-state energy. This
is the corner stone of the VMC method. The variational principle allows
one to construct a wave function Ψα with free variational parameters α =
(α1, α2, . . . , αn), and optimize the form of the wave function by minimizing
the expectation value of the local energy,

〈EL〉|Ψα |2 =

〈

HΨα

Ψα

〉

|Ψα |2
, (2.13)

with respect to the parameters. In principle, if the parametrized function
Ψα spans the whole Hilbert space, then by minimizing the local energy
(2.13) the trial wave function converges to the exact quantum mechanical
ground state. The special case of a linear variational wave function, in which
Ψα is a linear combination of basis functions with coefficients αi, leads to a
matrix diagonalization problem that will be handled in Ch. 3.
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In VMC simulations it is common to minimize the variance of the local
energy σ2 instead of the local energy EL itself [24,25]. The reasons for this
include numerical stability and the knowledge of the absolute lower bound
(zero) of the quantity being minimized. Nevertheless, the minimum of vari-
ance need not coincide with the minimum of energy, which is a fundamental
problem in all variance-minimization techniques. The methods to be pre-
sented below have largely solved the problems with numerical stability, and
they have made the variance minimization unnecessary in many cases. In
this thesis all minimizations are based on direct energy minimization.

The slowly decaying statistical error (∝M−1/2) present in MC simula-
tions makes the optimization of variational parameters nontrivial. Methods
that do not take the noise into account are generally useless, at least near
the optimal point. The traditional method of handling the noise in energy
minimization is to take a large, fixed set of points {Ri} distributed as |Ψ|2.
The parameter optimization is then carried out using some traditional tech-
nique within the chosen set of sample points. Since the points are fixed, the
energy function E({Ri}; α) is an analytic function of α with no noise, and
the ordinary minimization works. (This method of the noise elimination
is actually the correlated sampling method presented in Sec. 2.3.) The set
{Ri} needs to be large, to minimize the statistical error in the position of
the minimum, or equivalently, to keep the form of the function E({Ri}; α)
close to the true energy function E(α).

The problem in traditional approaches is that the distribution {Ri} cor-
responds to the initial parameter set α0, not the current set αi. This causes
bias, and the minimum α∗ that is found is not the true minimum. A new
optimization with an updated set {Ri} can be done, but the recalculation
of the sample points is slow because of the large number of configurations.

Stochastic Gradient Approximation

The stochastic gradient approximation (SGA) [26] is a minimization tech-
nique that has no bias. In SGA, the number of configurations m is small
and the configurations follow the evolution in parameter space. As a result,
the noise is not completely eliminated, but only damped more and more as
the optimization proceeds. Indeed, this turns out to be one of the strengths
of the SGA method.

Let Q(α) be the quantity to be minimized with respect to parameters
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α, e.g., the energy. The SGA method can be summarized in the formula

αj+1 = αj − γj+1∇α

[

1

m

∑

i

Q({R(j)
i }; αj)

]

, (2.14)

where γj is the damping parameter, {R(j)
i }m

i=1 is the set of configurations
for the iteration number j, and ∇α is the gradient in the parameter space.
As the name suggests, the gradient is a stochastic, unbiased approximation
to the real gradient. Even at the minimum α∗, the gradient need not be

zero, because Q({R(j)
i }; αj) does not need to be a very good approximation

to the actual Q(α). Only in the limit j → ∞ the gradient vanishes.

The damping, determined by γj, should satisfy [27] the conditions
∑

j

γ2
j <∞ and

∑

j

γj = ∞ . (2.15)

The first condition ensures strong enough damping, and the second guaran-
tees that all points can be reached in the parameter space. A choice that
satisfies both conditions is γj = j−r, where 1

2
< r ≤ 1.

The evaluation of the parameter gradient ∇α can be done using a finite-
difference method and the correlated sampling (see the next section). How-
ever, a better method using analytical energy derivatives is presented in
Ref. 28. Generalizing this method to complex-valued wave functions it can
be written as

∂

∂αi
〈EL〉 = 2 Re

{〈

EL
∂ ln Ψ∗

∂αi

〉

− 〈EL〉
〈

∂ ln Ψ∗

∂αi

〉}

, (2.16)

where 〈· · ·〉 denotes the average over the set {R(j)
i }m

i=1 and Re takes the
real part. Eqs (2.14) and (2.16) together make up a powerful minimization
scheme for VMC simulations.

2.3 Correlated sampling

The driving wave function, from which the random points R
p
i are sampled,

can be separated from the wave function whose properties are being solved.
Let Ψ0 be the driving wave function, and let {Ψi}i≥1 be a set of some other
wave functions. Eq. (2.12) can be generalized to give

〈Ψn |A|Ψm〉
〈Ψ0|Ψ0〉

=

〈

Ψ∗
nAΨm

Ψ∗
0Ψ0

〉

|Ψ0|2
=

〈

ωn
AΨm

Ψn

〉

|Ψ0|2
, (2.17)
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where ωn = |Ψn/Ψ0|2. Using this equation to evaluate the norms of Ψi’s
as well, the properly normalized matrix elements of the operator A can be
written as:

〈Ψn |A|Ψm〉
√

〈Ψn|Ψn〉
√

〈Ψm|Ψm〉
=

〈

ωn
AΨm

Ψn

〉

|Ψ0|2

〈ωn〉
1

2

|Ψ0|2
〈ωm〉

1

2

|Ψ0|2

. (2.18)

In order to keep the error bounds reasonable, the driving wave function
should resemble the wave functions Ψn and Ψm.

In the correlated sampling method, the equations presented above are
used to evaluate the properties of some wave functions Ψi and Ψj during
a single MC run. The resulting expectation values have similar statistical
error components, i.e., they are correlated. This can be used to cancel the
error. As an example, the difference

〈Ψi |A|Ψi〉
〈Ψi|Ψi〉

− 〈Ψj |A|Ψj〉
〈Ψj|Ψj〉

is much more accurately computed using correlated sampling than using two
independent MC simulations (provided that Ψi and Ψj are similar enough).
This property of correlated sampling is essential in parameter minimization
and Monte Carlo-based diagonalization (see Sec. 3.2).

2.4 Cusp conditions

The local energy EL(R) = T (R)+V (R), where T is the local kinetic energy
and V the local potential energy, is independent of R for any eigenfunction
of the Hamiltonian. Any singularities in V (e.g, due to Coulomb interactions
when ri → rj) are canceled exactly by singularities in T . The analytical
conditions for a wave function to fulfill this cancellation at singular points
of V are called Kato’s cusp conditions [29].

To examine the behavior of T as ri → rj, it is useful to replace the
coordinates ri and rj with

r = ri − rj , MR = miri +mjrj , (2.19)

where M = mi +mj (for generality, let us use different masses for different
particles), and let r → 0. The gradient is transformed respectively as

∇r =
µ

mi
∇ri

− µ

mj
∇rj

, ∇R = ∇ri
+ ∇rj

, (2.20)
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where µ = mimj/(mi +mj) is the reduced mass. The total kinetic energy
operator becomes:

T = −
∑

k

~
2

2mk
∇2

rk
= − ~

2

2µ
∇2

r
− ~

2

2M
∇2

R
−

∑

k (6=i,j)

~
2

2mk
∇2

rk
. (2.21)

Without any knowledge of coordinates other than r, the local kinetic energy
T = Ψ−1TΨ can diverge in the limit |r| → 0, either because Ψ approaches
zero, or because ∇2

r
Ψ approaches infinity. The latter can happen at points

where the wave function has a discontinuous gradient, e.g., at cusps or kinks.

2.4.1 The general Jastrow-Slater wave function

For the Jastrow-Slater wave function Ψ = DJ, where D is a product of
up and down-spin Slater determinants, and J is a Jastrow factor describing
correlations, the cusp condition has a universal form. To derive the condition
it is assumed that J is a positive function of interparticle distances and that
the states in the Slater determinant are eigenstates of the single-particle
Hamiltonian.

For the simplicity of notation, let ~ = 1, and let all the masses mk

be equal to each other and to the unit mass. The correct factors, as in
Eq. (2.21), are restored again at the end of this section. With this simplifi-
cation, the local kinetic energy for the Jastrow-Slater wave function is

Ψ−1TΨ = −1

2

(∇2D

D
+ 2

∇D · ∇J
DJ

+
∇2J

J

)

, (2.22)

where ∇ is the multidimensional gradient with respect to all degrees of free-
dom of the system. Because single-particle eigenstates are used, D−1∇2D
is finite (and even a constant), but the behavior of the other two terms as
ri → rj require more analysis.

If ri and rj represent identical particles, then D → 0, and all cross
terms from Eq. (2.22) could contribute to the divergence of T . However, as
r = ri − rj → 0, then ∇rk

D → 0 (k 6= i, j), and also ∇RD → 0. The first
limit follows from the fact that ∇rk

D still contains a determinant that goes
to zero, and the latter from Eq. (2.20) and antisymmetry (∇ri

D → −∇rj
D).

Hence, the only cross term that may be divergent as r → 0, is

2
∇rD · ∇rJ

DJ
∼ 2

η

η · r · ∂rJ

J

r

r
=

2

r

∂rJ

J
, (2.23)
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where η = ∇rD and ∂rJ = ∂J/∂r. The results D → η · r (see the next
section) and ∇rJ → ∂rJ r/r (particles i and j are identical) have been used.

If the particles are not identical, their coordinates are in different Slater
determinants, and D remains non-zero in the limit r → 0. As a result, none
of the cross terms is divergent for a non-zero J. For notational convenience,
the divergence (2.23) is multiplied by the factor k, which is 1 for identical
particles, and 0 otherwise.

Another divergence may arise from the Laplacian of the Jastrow factor.
A non-zero Jastrow factor J = J({rij}), provided that ∂2

rJ is not divergent
at r = 0 and ∂rJ(r)|r=0 6= 0, has the following limiting behavior as r → 0:

∇2
r
J

J
∼ (d− 1)

r

∂rJ

J
, (2.24)

where d is the dimensionality of the r-space. Equations (2.23) and (2.24)
now give all the divergent components of the kinetic energy when two par-
ticles approach each other.

Combining the kinetic energy with the Coulomb potential, and return-
ing to the unit system of Eq. (2.21), the local energy can be written as:

EL −−→
r→0

− ~
2

2µ

(

k
2

r

∂rJ

J
+

(d− 1)

r

∂rJ

J

)

+
qiqj

4πε0r
. (2.25)

For this to remain finite as r → 0, the following condition must be met:

∂rJ

J
=

qiqjµ

2πε0~2 (2k + d− 1)
. (2.26)

In a unit system, where the Coulomb potential is written as C/r and ~ = 1,
this simplifies to

∂rJ

J
=

2µC

2k + d− 1
, (2.27)

which, in the case of two-dimensional electrons, can be further simplified to
∂rJ/J = C/3 for parallel spins and ∂rJ/J = C for antiparallel spins.

How does a determinant approach zero?

To derive a proper cusp condition for the Jastrow-Slater wave function, one
needs to know the asymptotic behavior of the determinant as ri → rj.

Let us first consider a general second-order determinant

D2 =

∣

∣

∣

∣

ψ1(r1) ψ1(r2)
ψ2(r1) ψ2(r2)

∣

∣

∣

∣

= ψ1(r1)ψ2(r2) − ψ2(r1)ψ1(r2) .

14



Assume now that r2 is fixed and r1 → r2. Expanding the functions ψ1 and
ψ2 in a Taylor series around r2, and denoting r = r1 − r2, one has:

D2 =
[

ψ1(r2) + r · ∇ψ1(r2) + 1
2
(r · ∇)2 ψ1(r2) + . . .

]

ψ2(r2)

−
[

ψ2(r2) + r · ∇ψ2(r2) + 1
2
(r · ∇)2 ψ2(r2) + . . .

]

ψ1(r2)

= (ψ2∇ψ1 − ψ1∇ψ2) · r + O(|r|2) , (2.28)

where the functions are evaluated at r2. The factor ψ2∇ψ1 − ψ1∇ψ2 is a
function of r2 only, and generally a nonzero vector. Specifically, it cannot
depend on r, and therefore

D2 −−−→
r1→r2

(const. vector) · (r1 − r2) , (2.29)

irrespective of the exact form of functions ψ1 and ψ2. Only in special cases,
where ψ2∇ψ1 − ψ1∇ψ2 is zero at r2, can the limiting behavior be of higher
order than linear.

The full N -row Slater determinant D can now be written as follows:

D =
∑

σ

(−1)P (σ)ψσ1
(r1)ψσ2

(r2) . . . ψσN
(rN)

=
∑

σ1,σ2

[

(−1)P (σ)ψσ1
(r1)ψσ2

(r2)
∑

σ3,...,σN

(6=σ1 ,σ2)

ψσ3
(r3) . . . ψσN

(rN)
]

=
∑

i<j

{

[ψi(r1)ψj(r2) − ψj(r1)ψi(r2)]Fij(r3, r4, . . . , rN)
}

,

where Fij’s are some functions, independent of r1 and r2, σ is a permutation,
and P (σ) its parity. Using the result derived above, this can be further
simplified,

D −−−→
r1→r2

(r1 − r2) ·
∑

i<j

{

[ψi(r2)∇ψj(r2) − ψj(r2)∇ψi(r2)]Fij(r3, . . . , rN)
}

,

and since the summation does not contain r1, it generally follows that for
the N -row determinant,

D −−−→
ri→rj

(const. vector) · (ri − rj) . (2.30)

As earlier, by suitably choosing rj and the functions ψi, it is possible to
construct higher order zeros as special cases.

The comparison of Eq. (2.30) with the Taylor expansion of D at rj

shows that the constant vector must be the gradient ∇iD evaluated at rj.
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Chapter 3

Diagonalization

It is possible to solve the Schrödinger equation in a numerically exact way for
small systems. This can be done by choosing a finite-dimensional subspace
of the full infinite-dimensional Hilbert space, and solving the eigenvalues
and eigenvectors (i.e. diagonalizing) of the Hamiltonian exactly in that sub-
space. The method is exact in the sense that at the theoretical level there
are no approximations: by increasing the basis size, the numerical solution
converges to the exact quantum mechanical solution.

Let {|Ψi〉} NB-dimensional subspace of the full Hilbert space. The
eigenvalue equation for a Hermitian operator A in this subspace,

A |Φi〉 = ai |Φi〉 , (3.1)

can be written in this basis as a generalized NB × NB matrix eigenvalue
equation

AC = SCD , (3.2)

where Aij = 〈Ψi |A|Ψj〉, Sij = 〈Ψi|Ψj〉, C is an unknown matrix of eigen-
vectors, |Φi〉 =

∑

j Cji |Ψj〉, and D is an unknown diagonal matrix of
the corresponding eigenvalues ai. Using the orthonormalization condition
〈Φi|Φj〉 = δij, the problem can be formulated as

CHAC = D and CHSC = I . (3.3)

Because A is Hermitian, the system has always a solution. Furthermore,
the solution is unique if all the eigenvalues ai are distinct.

Eq. (3.1) is equivalent to the requirement that 〈Φi |A|Φi〉 / 〈Φi|Φi〉’s are
stationary against variations in Φi. For the Hamiltonian operator, which is
bounded from below, this connection extends to the variational principle for
the ground state (see Sec. 2.2): not only is the expectation value stationary
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for the ground state, but also the minimum value. For the restricted system
(3.2) or (3.3), a similar result is the Hylleraas-Undheim theorem [30, 31],
which states that also for the excited states, the eigenenergies are upper
bounds to the real energies.

The error resulting from the finite basis size can be estimated by per-
forming several diagonalizations with different basis sizes. In an MC-based
diagonalization, there is an additional statistical error component, which
often outweighs the finite-basis error.

For the numerical process of solving Eq. (3.3), there are efficient rou-
tines readily available. The operation count for the diagonalization of a
general matrix is O(N 3

B), but for special cases much faster methods exist.
For two-dimensional systems, an important simplification is available in the
case of circularly symmetric potentials, where the diagonalization of the
Hamiltonian can be done separately in each angular-momentum subspace.

3.1 Exact diagonalization

In the exact-diagonalization method, the Schrödinger equation is solved nu-
merically in as large a Hilbert subspace as possible. The basis {|Ψi〉} is usu-
ally chosen to be either determinants of suitable single-particle states, or (at
least for small systems) simple functions, so that an analytical treatment can
be pursued as far as possible. In the former case, the elements of the inter-
action Hamiltonian Hint are usually not completely analytically calculable,
even though the complexity of integrals can be significantly brought down by
analytical techniques. In the latter case, even the interaction Hamiltonian
may be analytically evaluated, as is done in Publication III.

3.2 Quantum Monte Carlo-based diagonal-

ization

In exact-diagonalization studies, the size of the basis set needed for a good
convergence increases very quickly as the number of the degrees of freedom
increases. This quickly renders the method useless. Large basis sets are
needed because the form of basis functions in exact-diagonalization studies
is often dictated by analytical convenience, and as a result they may not
correspond very well to the physical system under study. As an example,
while it is true that infinite linear combinations of Slater determinants span
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the whole many-body Hilbert space, the number of such determinants to
reach a satisfactory accuracy for a strongly correlated state can be enormous.
A more tailored basis set would allow one to get useful results with fewer
basis functions, but such sets might be analytically heavy or unmanageable.
This restriction can be overcome by using the quantum Monte Carlo-based
diagonalization method (MCD).

In the MCD method, all matrix elements needed in the diagonaliza-
tion procedure, 〈Ψi |A|Ψj〉 and 〈Ψi|Ψj〉, are evaluated during a single QMC
simulation. This is accomplished by choosing a suitable driving wave func-
tion Ψ0, and using Eq. (2.17). The common normalization factor 〈Ψ0|Ψ0〉
cancels out from Eq. (3.3), and no norms of wave functions are needed.

A disadvantage of the MCD method is that, in addition to the finite-
basis error, there will also be statistical errors in the matrix elements. The
correlated sampling method (see Sec. 2.3) itself introduces some statistical
error to the elements (compared to independent calculations for each of the
elements) through the factors ωi [see Eq. (2.17)], but it also ensures that
the total errors in all elements are highly correlated. This common error
is, to a large extent, canceled in the diagonalization phase, and in fact the
correlated sampling method is superior to independent evaluations of each
of the matrix elements. The driving wave function Ψ0 should resemble the
basis functions as much as possible and, e.g., the variational parameters
common to all the basis functions should be optimized for the state for
which the greatest accuracy is desired.

3.2.1 Hamiltonian matrix elements

In the diagonalization of the Hamiltonian, it is possible to use Eq. (2.17)
directly. However, for the commonly used Jastrow-Slater wave function (see
Sec. 2.4.1) the analytical evaluation of the ∇2J term may become compu-
tationally dominating. In Ref. 32 it is shown how this term can be cast into
a more efficient form if J is real and common for all the basis functions. In
this section the result is generalized for complex J’s in such a way that each
basis function can have its own Ji.

Let us write the basis functions as products, Ψi = ΦiJi, for which the
following condition holds:

HΨi = H(ΦiJi) = Ji HΦi −∇Φi · ∇Ji + Φi

(

−1
2
∇2Ji

)

, (3.4)

where ∇ is the gradient with respect to all the degrees of freedom. For the
Hamiltonian used in this work [see Eq. (4.1)], this requirement is equivalent
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to Ji being an eigenfunction of the total angular-momentum operator with
zero eigenvalue: Lz(ΦiJi) = JiLzΦi. The Hamiltonian matrix element from
Eq. (2.17) is therefore

Hij = 1
2
(Hij +H∗

ji) =
1

2

〈

Ψ∗
i

Ψ0
∗
· HΨj

Ψ0

〉

|Ψ0|2
+

1

2

〈

Ψj

Ψ0

· HΨ∗
i

Ψ0
∗

〉

|Ψ0|2

=
1

2

〈

J∗
i Jj (Φ∗

i HΦj + ΦjHΦ∗
i )

|Ψ0|2
〉

|Ψ0|2

− 1

2

〈

Φ∗
i∇Φj · J∗

i ∇Jj + Φj∇Φ∗
i · Jj∇J∗

i

|Ψ0|2
〉

|Ψ0|2

− 1

4

〈

Φ∗
i Φj (J∗

i ∇2Jj + Jj∇2J∗
i )

|Ψ0|2
〉

|Ψ0|2
.

(3.5)

Let IH, I∇·∇, and I∇2 denote the three terms above, respectively. The term
I∇·∇ can be simplified by applying

fi∇f ∗
j = 1

2

[

fi∇f ∗
j + ∇(fif

∗
j ) − f ∗

j ∇fi

]

(3.6)

to each of the four factors. I∇·∇ then becomes

−1

4

〈

(Φ∗
i∇Φj − Φj∇Φ∗

i ) · (J∗
i ∇Jj − Jj∇J∗

i ) + ∇ (Φ∗
i Φj) · ∇ (J∗

i Jj)

|Ψ0|2
〉

|Ψ0|2
.

The expectation value 〈Q〉f is just
∫

(fQ dR)/
∫

f dR, and one can apply
the first Green’s transformation to the second term and write

− 1

4

〈∇ (Φ∗
i Φj) · ∇ (J∗

i Jj)

|Ψ0|2
〉

|Ψ0|2
=

1

4

〈

Φ∗
i Φj · ∇2 (J∗

i Jj)

|Ψ0|2
〉

|Ψ0|2

=
1

4

〈

Φ∗
i Φj · (J∗

i ∇2Jj + Jj∇2J∗
i + 2∇J∗

i · ∇Jj)

|Ψ0|2
〉

|Ψ0|2
,

since the boundary terms vanish at infinity. The first two terms are now
canceled by I∇2, and finally the original matrix element can be written as

Hij =
1

2

〈

J∗
i Jj (Φ∗

i HΦj + ΦjHΦ∗
i )

|Ψ0|2
〉

|Ψ0|2
+

1

2

〈

Φ∗
i Φj∇J∗

i · ∇Jj

|Ψ0|2
〉

|Ψ0|2

− 1

4

〈

(Φ∗
i∇Φj − Φj∇Φ∗

i ) · (J∗
i ∇Jj − Jj∇J∗

i )

|Ψ0|2
〉

|Ψ0|2
.

(3.7)

If Ji = J for all i, and J is real, then the last term becomes zero. Further-
more, if Φi’s are the eigenfunctions of the (noninteracting) Hamiltonian,
then the expression can be further simplified.
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Chapter 4

Quantum Dots

In this thesis, two-dimensional semiconductor quantum dots are studied in
various magnetic field strengths. Effective models are used for the semicon-
ductor medium, but the correlated electrons confined by the dot potential
are accurately modeled. The study in this chapter is restricted to two di-
mensions but, with a few exceptions, the generalization to three dimensions
is straight-forward.

4.1 Models

The lateral size of even the smallest two-dimensional quantum dots is sev-
eral tens of times larger than the lattice constant of the underlying lattice.
Therefore, the effects of the lattice are modeled using the effective mass
approximation, m∗ = mrm0, where m0 is the electron’s rest mass, mr is
a coefficient (relative mass) determined by the crystal structure, and m∗

is the effective mass that replaces the rest mass in calculations. Likewise,
electrostatic effects are described collectively by the effective permittivity,
ε = εrε0, where ε0 is the permittivity of vacuum, and εr the relative per-
mittivity, and the Landé g-factor is replaced by the effective g-factor g∗.
For electrons in GaAs, the values of these parameters are approximately
mr = 0.067, εr =12.4–13.0, and g∗ = −0.44 [33].

For single dots, the external potential Vext is assumed to be symmetric
and harmonic: Vext = 1

2
m∗ω2

0r
2, where r is the distance from the center of

the dot, and the parameter ω0 determines the strength of the external con-
finement. The value of the confinement energy ~ω0 is typically in the meV
range. The harmonic potential is a good approximation to the real potential,
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and it is also analytically convenient. Much of the physical phenomena seen
in experiments can be reproduced within the harmonic approximation [34],
but in some cases, as in the far-infrared spectroscopy measurements, devi-
ations from the harmonic potential become essential [35]. In any case, the
harmonic potential can be used as a starting point in generating trial wave
functions for other kinds of potentials.

For a negative charge q, the noninteracting single-particle Hamiltonian
in magnetic field B is given by

Hi =
(pi − qiAi)

2

2m∗
+ 1

2
m∗ω2

0r
2
i +

g∗µB

~
B · si , (4.1)

where r and p are the position and momentum operators, respectively, and
i is the particle index. A is the vector-potential operator (∇×A = B), µB

is the Bohr magneton, and s is the spin-angular-momentum operator. The
Bohr magneton is the plain Bohr magneton (µB = |q|~/2m0 for an electron)
because conventionally the effective mass is incorporated into the factor g∗.

The interaction Hamiltonian Hint is assumed to be purely Coulombic,

Hint =
∑

i<j

qiqj
4πεrij

, (4.2)

where rij is the distance between particles i and j. Due to screening [36]
and finite-thickness effects, other forms of the interaction are also justified.
For example, the finite thickness of the dot softens the short-range part of
the effective interaction potential.

4.1.1 Quantum dot molecules

For double dots with the separation d, the external potential is

Vext(x, y) = 1
2
m∗ω2

0

[

min
(

x− d

2
, x+

d

2

)2

+ y2
]

, (4.3)

which, for d = 0, reduces back to the single-quantum-dot potential. As
d −→ ∞, the potential approaches that of two independent quantum dots.
This system is studied in Publication III using the exact diagonalization.

4.2 Single-particle eigenstates

In a zero magnetic field, a harmonic quantum dot reduces to a two-dimen-
sional harmonic oscillator. The potential is separable and has the usual
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eigenfunctions, expressed using the Hermite polynomials in x and y direc-
tions as

ψn,m ∝ Hn(x)Hm(y)e−
1
2
(x2+y2) , (4.4)

where the coordinates are measured in units of
√

~/m∗ω0. These functions
are used for the single-particle states in Publication IV.

In a nonzero magnetic field the Hamiltonian (4.1) can still be solved
analytically. For Coulomb gauges (∇ ·A = 0), the operators A and p com-
mute with respect to the dot product. In the special case of the symmetric
gauge, A = − 1

2
B (yi − xj), one can further write A · p = 1

2
B lz, where lz

is the z-component of the single-particle angular-momentum operator, and
A2 = 1

4
B2r2. In the symmetric gauge, the Hamiltonian (4.1) becomes

H =
p2

2m∗
+
µ∗

B

~
B lz + 1

2
m∗

(

qB

2m∗

)2

r2 + 1
2
m∗ω2

0r
2 +

g∗µB

~
Bsz

=
p2

2m∗
+ 1

2
m∗

(

ω2
0 + 1

4
ωc

2
)

r2 +
µ∗

BB

~
(lz + γ∗sz) , (4.5)

where µ∗
B = µB/mr is the effective Bohr magneton, ωc = |q|B/m∗ is the

cyclotron frequency, and γ∗ = g∗mr. The total confinement ω is defined as
ω2 = ω2

0 + 1
4
ωc

2.
Switching to the coordinate representation and the effective harmonic

oscillator (HO) unit system, which is obtained by setting ~ = m∗ = |q| =
ω = 1, the single-particle Hamiltonian can be written simply as

H = −1
2
∇2 + 1

2
r2 + 1

2
ωc (lz + γ∗sz) . (4.6)

The coordinate part of the Hamiltonian (4.6) has the well-known Fock-
Darwin [37] eigenfunctions, which in polar coordinates can be written as:

ψnL,l(r, θ) = CnL,l r
|l| eilθ L(|l|)

nL
(r2) exp

(

−1
2
r2

)

, (4.7)

where nL ≥ 0 and |l| ≤ nL, CnL,l is a normalization constant,

C2
nL,l =

nL!

π(nL + |l|)! , (4.8)

and where L
(k)
n is an associated Laguerre polynomial [38], defined by

(n + 1)L
(k)
n+1(x) = (2n+ k + 1 − x)L(k)

n (x) − (n + k)L
(k)
n−1(x) ,

L
(k)
0 (x) = 1 , and (4.9)

L
(k)
1 (x) = 1 − x+ k .
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Figure 4.1: (a): Single-particle energy levels in a zero magnetic field. The
indices used in this thesis are illustrated. For electrons, the states with a
fixed n− condense to form a Landau level when B is increased (see Fig. 4.2).
(b): The radial part of the single-particle wave functions with NS ≤ 4. The
solid lines are for nL = 0, dashed for nL = 1, and dotted for nL = 2.
Harmonic oscillator units are used.

The corresponding eigenenergies of the Hamiltonian (4.6) are

EnL,l = 1 + 2nL + |l| + 1
2
ωc (l + γ∗s) , (4.10)

where s is the spin quantum number. In a zero field, the states with the
same NS = 2nL + |l| are degenerate, and in an infinite field (in the positive
z-direction, ωc = +2) the electron states with the same n− = nL + 1

2
(|l|+ l)

and s are degenerate. Fig. 4.1 illustrates the various quantum numbers
used, and the first few energies as functions of B are shown in Fig. 4.2.

In the sequel, the Zeeman term is neglected. The trial wave functions
are eigenfunctions of the spin operator, and the Zeeman energy can always
be added afterwards. For electrons in GaAs, the dimensionless factor γ∗ in
Eq. (4.10) is approximately −0.0295.

4.3 Many-particle states

For an interacting Hamiltonian, analytical many-particle eigenfunctions ex-
ist only for special forms of the interaction. For the Coulomb interaction,

Hint =
∑

i<j

Cij

rij
, (4.11)

where Cij is the interaction strength for pair ij, analytical solutions exists for
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Figure 4.2: The single-particle energy levels [see Eq. (4.10)], without the
Zeeman energy, as a function of the magnetic field for mr = 0.067, and
confinement energies ~ω0 = 2 meV (a) and ~ω0 = 5 meV (b). The states
with NS = 2nL + |l| ≤ 7 are drawn. The Landau-level formation with
increasing B is clearly visible.

two particles [39], but only for specific values of C. In the HO unit system,
the interaction strength between two electrons has the value C =

√

Ha∗/~ω,
where Ha∗ is the effective Hartree (see Sec. 4.6).

A widely used way to approximate interacting many-particle states is
the Jastrow-Slater wave function:

Ψ = D↑D↓J , (4.12)

where D↑(↓) is a Slater determinant for spin up (down) electrons, and the
Jastrow factor J is a correlation factor depending on interparticle coordi-
nates {ri − rj}i<j only. The wave function (4.12) is expected to be good
if the interactions are weak, but with a stronger interaction strength the
situation is more complicated. However, earlier it has been confirmed that
the Jastrow factor can very efficiently capture the interaction effects [40–42]
in small quantum dots. If Eq. (4.12) is not a sufficient approximation, a
completely general many-electron wave function (with a given symmetry)
can be written as the series

Ψ =
∑

i,j

ci,jD
(i)
↑ D

(j)
↓ J , (4.13)

where ci,j’s are complex coefficients, and D(i) is the ith determinant in some
sequence of all possible Slater determinants with single-particle states from
Eq. (4.7). The Jastrow factor J, in this case, has no profound significance;
it merely accelerates the convergence of the summation.
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The interaction energy in the HO unit system is proportional to ω− 1

2 . In
the limit of a weak total confinement, i.e., small density, interactions begin
to dominate over the kinetic energy, and the system is expected to reach
a localized state [43–46]. The formation of this so-called Wigner-molecule
state is studied in Publication IV.

By symmetry the (time-independent) many-particle wave functions are
rotationally invariant. Therefore, from the charge density one cannot get
information about the localization of particles. As proposed in Publica-
tion IV, a convenient tool to study the localization within the VMC scheme
is the conditional probability

ρ̃(r1) ∝ |Ψ(r1, r̃2, . . . , r̃N)|2 , (4.14)

where the configuration (r̃1, . . . , r̃N) maximizes the probability density |Ψ|2.
The quantity ρ̃ has an analytical expression in the VMC scheme, and there-
fore, no statistical noise. This is an important difference from many other
quantities, like the charge density. In Publication IV, contour plots of ρ̃ are
given for a six-electron system.

4.3.1 Single-configuration states

If the Jastrow factor is set to unity in Eq. (4.12), the resulting wave function
is an exact eigenstate of the noninteracting Hamiltonian with an eigenenergy
equal to the sum of occupied single-particle energies. The local energy,
including the interactions, can be written as

E0
L =

∑

i

Ei + V 0
int = Econst + V 0

int , (4.15)

where i enumerates the occupied single-particle states (nL, l). The expec-
tation value of the local energy reduces to

〈

E0
L

〉

|Ψ|2
= Econst +

〈

V 0
int

〉

|Ψ|2
. (4.16)

All the system parameters are scaled away from the wave functions
in Eq. (4.7) by switching to the effective harmonic oscillator unit system.
Therefore, the matrix elements of a B-independent operator cannot depend
on B. The Hamiltonian operator depends on B, but only through simple
multiplicative factors [see Eqs (4.6) and (4.11)] to operators. As a result, the
Hamiltonian matrix elements between single-configuration states can only
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have a trivial B-dependence. As an example, in HO units the interaction
energy for the state Ψ = D is just

〈

V 0
int

〉

|Ψ|2
= C V Ψ

C , (4.17)

where V Ψ
C is a constant for each state Ψ, and C = Cij is the common

interaction strength between all electrons, depending on the magnetic field
through C =

√

Ha∗/~ω [see Eq. (4.11)].

4.3.2 Jastrow factor

The Jastrow factor J accounts for correlations. It can significantly lower the
total energy and reduce its variance for high-density states. For electrons,
the Jastrow factor creates a negative cusp to the wave function at ri = rj,
and therefore keeps electrons further away from each other. This can be seen
in Fig. 4.3. In this thesis the Jastrow factor also contains all the variational
parameters.

In the presence of a Jastrow factor, let the different contributions to
the total energy be defined by

〈

EJ
L

〉

|ΨJ |2
=

〈

E0
L

〉

|Ψ0|2
+ EJ + ∆Vint , (4.18)

where EJ is the difference in kinetic energies between states with and with-
out the Jastrow factor, and ∆Vint is the corresponding difference in the
potential energy. The expectation value

〈

EJ
L

〉

|ΨJ |2
now depends on B in a

nontrivial way, because there is an explicit B-dependence in the Jastrow
factor itself through cusp conditions. Fig. 4.4 illustrates this. A useful
expression for EJ is given later in Eq. (4.37).

The form of the Jastrow factor is somewhat arbitrary, and several vari-
ants are used in the literature. In this thesis the Jastrow factor is of the
form

J({ri}) =
∏

i<j

exp

(

Cijrij

βij + αijrij

)

, (4.19)

where αij is a variational parameter for the pair ij, and Cij is the interaction
strength. The parameters βij are fixed by the cusp conditions, as described
in Sec. 2.4. By symmetry, only two parameters are free: α↑↑ for parallel spins
and α↑↓ for antiparallel spins. The Jastrow factor (4.19) is an eigenfunction
of the total-angular-momentum operator L =

∑

i li with a zero eigenvalue,
and as such it has no effect on the angular-momentum properties of Ψ.
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Figure 4.3: Upper row: the effect of the Jastrow factor on the interparticle
separation for N = 5, 6, and 7 particles. On the left, the state is the first
fully spin-polarized lowest-energy state (the MDD state, see Sec. 4.4.1) that
appears when B is increased from zero. On the right, the state is the second
fully spin-polarized lowest-energy state. The solid lines show the values for
the corresponding states with J = 1, in the same order. The Jastrow factor
increases the separation by creating a negative cusp to the wave function at
rij = 0. Lower row: The effect on 〈ri〉, where ri is the distance of the ith
particle from the origin, as a function of ω for the same states as above. All
lengths are measured in l∗ho =

√

~/m∗ω.

As described in Sec. 2.2, the optimal values for parameters are found
by minimizing the total energy. Because all the non-constant terms in
Eqs (4.15) and (4.18), and also the wave function (4.12) itself, depend only
on ω, it follows that for a given state, the optimal value of α, denoted α∗, is
a function of ω only. In a few sample cases, Fig. 4.5 shows how the optimal
value of α↑↑ depends on ω, and how the total energy depends on α.
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Figure 4.4: The effect of the Jastrow factor on the total energy for selected
lowest-energy states for N = 5, 6, and 7 particles. Upper panels: the differ-
ence ∆Vint in the potential energies between a state without a Jastrow factor,
and the corresponding state with the Jastrow factor, scaled by

√

~ω/meV
to remove the trivial

√
ω behavior. The states shown in the two panels are

the same as in Fig. 4.3. Lower panels: the difference EJ in the kinetic en-
ergy as a function of ω for the same states as above. Corresponding curves
from upper and lower panels together give the full Jastrow contribution to
the total energy.

Also a linear Jastrow factor with no variational parameters,

Jlin({rij}) =
∏

i<j

(1 + Cijβijrij) , (4.20)

is tested in this thesis, but it does not improve upon the form (4.19).
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Figure 4.5: (a): The optimal Jastrow parameters α∗ for two high-B
six-particle states. The upper curve is for the first fully spin-polarized
lowest-energy state, the MDD state (see Sec. 4.4.1), that appears when
B is increased from zero, and the lower curve is the second fully spin-
polarized lowest-energy state. For the MDD state, a power-law fit gives
α∗ = 0.32×ω−0.013, and for the other state it gives α∗ = 0.34×ω−0.014. The
parameters are in HO unit system: in an ωc-independent unit systems the
curves have an extra factor proportional to

√
ω. (b): The relative energy

E/Emin as a function of ω and the relative Jastrow parameter α/α∗(ω) for
the six-electron MDD state. As ω → 0, the minimum in the parameter
space becomes steeper.

4.3.3 Center-of-mass motion

For N particles, the center-of-mass coordinates {r̃i, rC} are defined as:























r̃i = ri −
1

M

N
∑

j=1

mjrj

rC =
1

M

N
∑

j=1

mjrj

⇐⇒ ri = r̃i+rC

(

∑

i

mir̃i = 0

)

, (4.21)

where M =
∑

mi. For the harmonic confinement (and constant B) the
center-of-mass motion is separable from relative coordinates:

H =
∑

i

Hi + Hint = HC +
∑

i

H′
i + Hint , (4.22)

where HC depends only on the center-of-mass coordinate rC, and H′
i on

the relative coordinates {r̃i = ri − rC}i , or equivalently, on coordinates
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{rij = ri − rj}i<j. This implies any eigenstate of H to be of the form

Ψ = ΨC(rC)Ψr({rij}) . (4.23)

In any trial wave function for the ground state, the center-of-mass part
should be restricted to be the lowest eigenstate of HC. To guarantee this,
the following coordinate transformation can be used:

zk → zk − zC = z̃k , (4.24)

where zk is the complex coordinate in the 2D plane, defined by zk = xk+iyk,
and zC is the corresponding complex center-of-mass coordinate. For the
harmonic confinement this transformation is implicit in the relative part Ψr

of all the wave functions presented in this thesis.

4.4 Many-particle states in a strong mag-

netic field

In an increasing magnetic field, the single-particle states condense (in en-
ergy) to discrete Landau levels1 (see Fig. 4.2). As the magnetic field in-
creases, the energy difference ∆E between states within one Landau level
vanishes (in atomic or SI units) as ∆E ∝ B−1, and the inter-level separation
increases directly proportionally to B [see Fig. 4.2(b)]. If the magnetic field
is strong enough, only the lowest Landau level (LLL) will be significant,
because all the other levels are much higher in energy. This leads to the
widely used LLL approximation, in which the many-body wave function is
constructed from the LLL single-particle states only. In Publication VI it
is shown that this approximation can lead to qualitative errors.

Relaxing the LLL approximation simply by including single-particle
states from higher Landau levels is difficult. In strong fields, higher Landau
levels also have a large density of states, and therefore no single state from
a higher Landau level can have a dominating effect. In the case of the
diagonalization (see Ch. 3), this leads to a quickly increasing number of
basis functions. Also the analytical convenience given by the simple form
of the LLL wave functions is lost by including states with nL ≥ 1.

In Publication VI, the effect of higher Landau levels is included into the
total wave function through a Jastrow factor. It takes the wave function

1Some authors reserve the term “Landau level” strictly for the case ω0 = 0, and use
the term “Fock-Darwin level” in the confined case ω0 6= 0.
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Figure 4.6: Total charge (a) and current (b) densities for a pure MDD state
(N = 8) and the corresponding state with the Jastrow factor included.
Densities that are shifted outward belong to the Jastrow case.

out of the LLL in an efficient way, yet preserving most of the analytical
manageability. With the Jastrow factor taking care of the higher Landau
levels, the problem of creating a good trial wave function is reduced back
to the lowest Landau level.

4.4.1 Maximum-density-droplet state

For electrons, the states from Eq. (4.7) with a fixed n− = nL + 1
2
(|l| + l)

constitute a Landau level [see Fig.4.1(a)]. The lowest Landau level contains
states with n− = 0, i.e., nL = 0 and l ≤ 0. They have a simple form,

r|l|eilθ exp
(

−1
2
r2

)

= z∗|l|e−
1
2

r2

= ϕl(x, y) (4.25)

where z = x + iy is a complex coordinate in the two-dimensional plane, z∗

is the complex conjugate of z, and r2 = x2 + y2. The eigenenergies are

El = 1 +
(

1
2
ωc − 1

)

l (l ≤ 0) . (4.26)

The N lowest (in energy) single-particle states from the LLL make up
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the so-called maximum-density-droplet (MDD) wave function:

ΨMDD({ri}) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

ϕ0(r1) ϕ0(r2) · · · ϕ0(rN)
ϕ1(r1) ϕ1(r2) · · · ϕ1(rN)

...
...

. . .
...

ϕN−1(r1) ϕN−1(r2) · · · ϕN−1(rN)

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∏

i<j

(

z∗j − z∗i
)

exp

(

−1
2

∑

i

r2
i

)

.

(4.27)

In the thermodynamical limit (ω0 → 0, N → ∞), this state corresponds
to the ν = 1 quantum-Hall state [1, 47], where ν is the filling fraction,
i.e., the ratio between the density of electrons and the density of magnetic
flux quanta. The MDD state has the total angular momentum LMDD =
−1

2
N(N − 1) and the energy EMDD = N +

(

1
2
ωc − 1

)

LMDD. For a non-
interacting, fully spin-polarized system, ΨMDD is the ground state in the
limit of large B. Also for an interacting system ΨMDD is a decent approx-
imation in a large range of magnetic field values, and it is the first fully
spin-polarized state to appear as the magnetic field is increased from zero.
Fig. 4.6 shows the charge and current-density profiles for the MDD state.
In this thesis, the MDD state is a common factor in all trial states at high
magnetic fields, even for the partially polarized ones.

4.4.2 Other fully spin-polarized states

As the magnetic field is increased, the total confinement ω increases and
the electrons overlap more. To balance the increasing interaction energy,
the system will at some point move to a new state with a lower angular
momentum (higher in absolute value), L = LMDD + ∆L (∆L < 0), and a
lower density. If the Zeeman factor is strong enough, the system will stay
fully spin-polarized after the transition. In this case, ∆L can only take
values from a set of “magic numbers” [7, 48].

A trial wave function for the fully spin-polarized state is of the form

ΨD = DJ , (4.28)

where D is a single determinant containing single-particle states from the
lowest Landau level. Different many-particle states are constructed by occu-
pying different single-particle states. Because the single-particle states are
all from the LLL, the antisymmetric ΨMDD always factors out of D, leaving
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ΨD = ΨMDDJP
D
S , where PD

S is some polynomial, symmetric in variables zi,
and determined by the single-particle states in D. This suggests another
form for the trial wave function:

ΨS = ΨMDDJPS , (4.29)

where PS is any symmetric polynomial. This wave function can be written
as a (finite) sum of terms like Eq. (4.28).

Both forms presented above can be used to construct bases for a given
angular-momentum value. This is done in Sec. 4.5. Both sets of wave
functions span the same Hilbert space, but the latter is often numerically
easier to use. In Sec. 4.5.1 some properties of the latter wave function are
derived.

4.4.3 Partially spin-polarized states

When the Zeeman coupling is weak, the system can re-enter a partially
spin-polarized configuration even if the magnetic field is increased from the
MDD region. This is studied in Publication VI, and the effects of higher
Landau levels on transitions are examined.

As a trial wave function, a form similar to (4.29) is used:

ΨY = ΨMDDJP . (4.30)

The difference is that the polynomial P has a symmetry corresponding
to the spin state, and in general is not symmetric in all variables. The
polynomial can be constructed as follows:

ΨY = Yχ

(

ΨMDDJP
0
)

= ΨMDDJ Y ′
χP

0 , (4.31)

where χ is the number of inverted spins, Yχ is the Young’s symmetrization
operator, and Y ′

χ is the corresponding operator with the symmetrization
and antisymmetrization directions interchanged. It is used because an an-
tisymmetric factor ΨMDD is taken out of Yχ. The polynomial P 0 is

P 0 =

|∆L|
∏

i=1

z∗i , (4.32)

i.e., it brings ∆L units of additional angular momentum to the system.
Then Y ′

χP
0 is just the required polynomial P in Eq. (4.30). The parameter

χ determines the shape of the Young tableau corresponding to Yχ.
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Another, simpler trial wave function for the partially spin-polarized
states is

ΨJ = D↑D↓J
∏

σi 6=σj

(z∗j − z∗i ) , (4.33)

where σi is the spin of particle i, i.e., the product runs over antiparallel pairs
of electrons. The single particle states −l = 0, . . . , N↑ − 1 are occupied in
D↑, and states −l = 1, . . . , N↓ in D↓. This state has the angular momentum
L = LMDD + ∆L = LMDD −N↓, and the spin S = |N/2 + ∆L|, and as such
it corresponds to the state ΨY(χ = N↓,∆L = N↓).

The reasoning behind both wave functions (4.31) and (4.33) is similar:
with a given angular momentum and spin, it is advantageous to put the
“free” zeros of the wave function on the opposite-spin electrons. The latter
wave function does not have the correct symmetry, but gives surprisingly
good energies. Because it is also fast to evaluate numerically, it is useful in
some cases.

4.5 Bases for Monte Carlo diagonalization

As seen in the previous section, in strong magnetic fields the effects of higher
Landau levels can be efficiently modeled using a Jastrow factor, and the rest
of the wave function can be confined to the LLL. In this case, generating a
suitable basis for an Monte Carlo diagonalization (MCD) is straightforward.
In the MCD method the form of the trial wave functions is free, and an
obvious choice for many-particle basis functions is found from Eq. (4.28):

Ψi = DiJ , (4.34)

where Di contains some (ith) set of single-particle states ϕl from the LLL
(l ≤ 0). Let ∆lj denote the (positive) integer representing the amount of ad-
ditional angular momentum for state j in D, with respect to the MDD state,
i.e., ∆lj = |lj| − j and |∆L| =

∑

j ∆lj. All the determinants correspond-
ing to a given ∆L can now be enumerated by noting that the condition
|∆L| =

∑

j ∆lj gives a one-to-one correspondence between such determi-
nants and the integer partitions2 of the number |∆L| with no more than
N terms. Let λ = (λ1, λ2, . . . , λN) be a partition of |∆L| (λi ≥ 0). The

2An (unrestricted) partition of an integer N is an ordered integer sequence
(n1, n2, . . . , nm) such that ni ≥ ni+1 and

∑

i ni = N . A k-restricted partition fulfills
also ni ≤ k. The number of k-restricted partitions of N is the same as partitions of N
with at most k terms; the two partition sets are conjugates of each other.
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Figure 4.7: The spectrum of a 12-electron quantum dot in high magnetic
field and a zero confinement for |∆L| ≤ 12, computed using the MC diago-
nalization. Energies are only plotted at the lowest |∆L|-value they appear.
Because ω0 = 0, every energy level appears also in the spectrum for higher
|∆L|. The spectrum without the Jastrow factor is shown on the left, and on
the right the Jastrow factor is included (the scales are different). Parameters
are: B = 5 T, εr = 13.0, and mr = 0.067.

identification with determinants can be chosen to be ∆lj = λN−j+1, which
is merely a rearrangement of the indices. Let D(λ) = D(λ1, λ2, . . . , λN)
denote this determinant.

Similarly as in Sec. 4.4.2, the determinant Di can always be written
as a product of ΨMDD and a symmetric polynomial. This gives again an
alternate basis of the form

Ψi = ΨMDDPiJ , (4.35)

where Pi is a symmetric polynomial. This basis set is equivalent to the
determinant basis [see Eq. (4.47)], but because ΨMDD is an explicit factor
in all the basis functions, the latter set is far better than (4.34) for the
MCD method. Figs 4.7 and 4.8 are produced using the MCD method with
basis functions from Eq. (4.35). In Fig. 4.7 the full spectrum of a twelve-
electron quantum dot is computed, and Fig. 4.8 shows the charge density
of a quantum dot with an impurity.

With the basis Ψi = ΦiJ, where Φi = ΨMDDPi, and the driving wave
function Ψ0 = ΨMDDJ, the interacting Hamiltonian matrix element from
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Figure 4.8: The charge density of a six-electron quantum dot, with point-
like impurities (the charge qimp = −|e|) on the plane at the point indicated
by the line segment. The magnetic field is 4 T on the left and 6 T on the
right, and the external confinement is ~ω0 = 3 meV. The calculation used
227 basis functions with the MCD method.

Eq. (3.7) can be written simply as (here J is real)

〈

Ψ∗
i HΨj

|Ψ0|2
〉

|Ψ0|2
=

〈

P ∗
i

(

1
2
(Ei + Ej) + Vint +

1

2

∇J
J

· ∇J
J

)

Pj

〉

|Ψ0|2
. (4.36)

In the case of the traditional single-wave-function MC, the Jastrow (kinetic)
energy term EJ in Eq. (4.18) and in Fig. 4.4 can therefore be expressed
conveniently as

EJ = 1
2

〈

∣

∣

∣

∣

∇J
J

∣

∣

∣

∣

2
〉

|Ψ|2

= 1
2

〈

|∇ ln J|2
〉

|Ψ|2
, (4.37)

where Ψ is the trial wave function.

4.5.1 Symmetric polynomials

A function fS(z1, z2, . . . , zN) is symmetric if it remains invariant under a
permutation of arguments. Symmetric polynomials can be expressed in
numerous different basis sets. Monomial polynomials, power sum polyno-
mials, elementary symmetric polynomials, Schur polynomials, and complete
polynomials can all be used to construct a basis for the space of symmetric
polynomials [49,50]. Generally, any such basis function can be characterized
by a vector of integers λ = (λ1, λ2, . . . , λm).
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The determinant basis presented above gives rise to the Schur polyno-
mials σλ :

D(λ1, λ2, . . . , λN) = ΨMDDσλ . (4.38)

Even though σλ ’s have a direct one-to-one correspondence to the nonin-
teracting ground states, they are computationally unfavorable. A better
choice for the basis is based on the elementary symmetric polynomials sk.
The basis constructed from them is also relatively diagonal with respect to
the Hamiltonian, and the values of the polynomials and their derivatives
can be evaluated extremely fast.

The kth-degree elementary symmetric polynomial, sk, in N variables
is defined as (1 ≤ k ≤ N):

sk(z1, z2, . . . , zN) =
∑

1≤i1<···<ik≤N

zi1zi2 · · · zik = Skz1z2 · · · zk , (4.39)

where Sk is the symmetrization operator in k indices (for N variables). The
polynomials have

(

N
k

)

terms, each of degree k. Every sk is also linear in all
the variables. The basis function sλ is defined, using elementary symmetric
polynomials, as a product (let us also define s0 = 1)

sλ =
∏

k

sλk
, (4.40)

and the degree dλ of sλ is given by dλ =
∑

k λk. The vector λ can be
identified to be a partition of the integer dλ.

The set {sλ} forms a basis, and therefore any symmetric polynomial P
can be written as a linear combination

P =
∑

i

cisλi
, (4.41)

where ci’s are constants and {λi} is a set of vectors. As an example,
∑

i z
3
i =

3s3 − 3s1s2 + s3
1. For a polynomial P of degree M, the size of the basis is

restricted by dλi
≤ M for all λi. If P represents the symmetric polynomial

part of a wave function that is an eigenstate of the angular momentum
operator [see Eq. (4.29)], then all the terms in P must be of the same

degree. In this case the restriction dλ = M leads to a P
(N)
M -dimensional

Hilbert space, where P
(N)
M is the number of N -restricted integer partitions

ofM. There is no closed-form expression for P
(N)
M , but the Euler’s recurrence

relation [49] gives the number of unrestricted partitions, and Fig. 4.9 shows

how P
(N)
M behaves for small M and N .
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Figure 4.9: The logarithm of the number of N -restricted integer partitions
of M. The asymptotic behavior in the unrestricted case (N ≥ M) is PM ∝
exp(

√
M).

Evaluation

In practice, Eq. (4.39) cannot be used to numerically evaluate sk’s. A quick
algorithm based on the linearity of the elementary symmetric polynomials
has been created [51] for the evaluation. Let us define s

(N)
k to be sk in all

the N variables, and s
(N\i)
k to be sk in variables other than zi. The linearity

can be used as follows:

s
(N)
k = s

(N\i)
k + zis

(N\i)
k−1 . (4.42)

This equation can be used to implement an algorithm to compute values of
all si’s, 1 ≤ i ≤ N in only N(N − 1) operations, using the memory space of
input coordinate vector (z1, . . . , zN) only.

An algorithm to calculate the derivatives of the elementary symmetric
polynomials has been developed in this thesis. The derivatives can be effi-
ciently evaluated by using Eq. (4.42) twice. The algorithm is based on the
following observation:

∂

∂zi
s
(N)
k = s

(N\i)
k−1 = s

(N)
k−1 − zis

(N\i)
k−2 = s

(N)
k−1 − zi

∂

∂zi
s
(N)
k−1 . (4.43)

The algorithm is recursive, but with a proper implementation the derivatives
∂isj for all 1 ≤ i, j ≤ N can be evaluated in only 2(N − 1)2 operations, i.e.,
the cost is of the same order as the cost of evaluating sk’s themselves. The
second and higher derivatives of sk’s are zero.
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Conversions between bases

A symmetric polynomial written out in expanded form (in terms of variables
zi) is in monomial polynomial basis, i.e., the conversion to this basis from
any other is trivial. The monomial polynomial mλ can be defined as

mλ = Skz
λ1

1 zλ2

2 · · · zλk

k , (4.44)

where λ1 ≥ · · · ≥ λk. From mλ ’s it is rather straightforward to switch to a
power sum basis,

pλ = pλi
pλ2

· · · pλk
, where pk =

∑

i

zk
i . (4.45)

The conversion between power sums and elementary polynomials can then
be done using Newton-Girard formulae [52, Sec. 10.12] or the following
determinant [53]:

pk =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

s1 1 0 · · · 0
2s2 s1 1 · · · 0
3s3 s2 s1 · · · 0
...

...
. . .

. . .
...

ksk sk−1 sk−2 · · · s1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (4.46)

A helpful identification is the following: Let λ′ be the conjugate parti-
tion of λ. Then

sλ = σλ
′ + terms from lower order partitions . (4.47)

A partition µ is of lower order than λ, if
∑n

i=1 µi ≤
∑n

i=1 λi for all n. For
example,

D(1, 1, 1, 1) = ΨMDD s4 and D(2, 2, 1, 1) = ΨMDD s2s4

(in these cases no lower order terms are present). Eq. (4.47) also proves
that bases (4.34) and (4.35) are equivalent.

4.6 Units

In this chapter effective harmonic oscillator units have been used, because
in these units the eigenfunctions have a simple form. However, atomic units,
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or effective atomic units are more widely used in mesoscopic physics. The
former can be obtained by setting ~ = m = |q| = 4πε0 = 1, and latter by
setting ~ = m∗ = |q| = 4πε = 1.

Let E∗
ho = ~ω denote the unit energy of the effective harmonic oscillator

unit system, and let E∗
au denote the unit energy of the effective atomic units,

e.g. the effective Hartree Ha∗. The ratio between these two is

r =
E∗

au

E∗
ho

=
Ha∗

~ω
=

m∗q4

(4πε)2~3ω
≈ mr

εr2
· 27.21138345 eV

~ω
. (4.48)

Ratios between units of length and time in these unit systems can be
expressed in terms of r:

l∗au
l∗ho

=
a∗B
l∗0

= r−
1

2 and
t∗au
t∗ho

= r−1 . (4.49)
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Chapter 5

Results and conclusions

This thesis applies the exact wave function methods, variational quantum
Monte Carlo (VMC) methods and the exact diagonalization method, to
various quantum dot systems in a wide range of magnetic field values.

Publications I, II, and VI present results for states in high magnetic
fields, i.e., post-MDD states. Publication I uses the Jastrow-Slater form
for the spin-polarized wave function. The lowest-energy states in the range
1
3
≤ ν ≤ 1 are predicted, and compared to the composite fermion (CF)

theory. Several cases are highlighted, in which the CF theory fails but
the VMC approach gives correct lowest-energy states, which are compati-
ble with exact-diagonalization studies. Transition points between the two
first lowest-energy states are found to agree reasonably well with exper-
iment. Publications II and VI study partially spin-polarized states in a
high magnetic field, using a wave function with correct symmetry. The
accuracy of the results is proven by comparison to exact-diagonalization
results in Publication II. Publication VI produces phase diagrams of par-
tially spin-polarized states for both lowest-Landau-level (LLL) states, and
states with Landau-level-mixing (LLM) included. The effect of LLM is
found to be significant, even in high magnetic fields in the post-MDD re-
gion. The study shows that LLM even suppresses the existence of certain
spin-polarized states that normally appear as lowest-energy states in the
widely used LLL approximation. It predicts that a state with a single spin
flipped could be visible in experiments.

Publication IV is a study on the weak-confinement limit in a zero mag-
netic field. VMC method results are in excellent agreement with the most
accurate numerical results available from diffusion and path-integral Monte
Carlo calculations. The method is also applied in sufficiently low con-
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finement in order to show a new, spin-polarized, low-density state. In an
even weaker confinement, a smooth transition to a Wigner-molecule state
is found. A conditional single-particle density is introduced and used to
measure the localization of particles.

Publication III studies a two-electron quantum-dot molecule. It uses
the exact diagonalization method and reveals an interesting spin-phase di-
agram, as a function of the interdot distance and the magnetic field. The
states of the quantum-dot molecule are found to conform to the composite-
fermion picture, even with surprisingly large interdot distances.

For Publication V a series of VMC calculations was performed in a wide
range of magnetic field values, both for single and double quantum dots, to
provide a benchmark results for density-functional-theory (DFT) methods.
The agreement between different DFT methods and VMC is within the
expected accuracy of DFT. Agreement is especially good for totally spin-
polarized and spin-compensated cases.

As a general conclusion, the VMC method proves to be an accurate
and efficient tool to study highly correlated electron systems. Results are
accurate for the systems studied, even with relatively simple trial wave
functions, and the computational cost to obtain satisfactory results is low
compared to other techniques. Furthermore, since the actual wave functions
are available in VMC, many physical quantities can be studied that are
unavailable in some other techniques.

The Monte Carlo-based diagonalization method, which is developed
in this thesis, combines the exact diagonalization and traditional quantum
Monte Carlo methods. It can be used to study geometries that have no
obvious trial wave function, for example, symmetry-broken ones. It can
also be used to study excited states within the VMC scheme and can be
expected to have diverse applications.
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