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Abstract

Realistic Monte-Carlo simulations show that the apparent macroscopic activation energy is only

partially explained by the expected expression for the average over the microscopic activation

energies for surface processing. An additional term accounting for the existence of fluctuations in

the fractions of particles has to be taken into account. In all cases considered, the additional term

can be accurately estimated by a posteriori analysis of the temperature dependence of the surface

densities. In addition, we demonstrate that the relative contribution of the different competing

microscopic processes to the macroscopic activation energy can be accurately obtained during the

simulations, allowing for the unambiguous identification of the particular surface species which

effectively control the process. As an example of the non-equilibrium open interfaces to which the

results apply, the case of wet chemical etching of crystalline silicon is considered. The results can

be directly applied to surface growth.
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I. INTRODUCTION

During surface growth and chemical etching, the interface is an example of an evolving

non-equilibrium open system driven by the environment through the deposition or removal

of particles. The moving surface reaches a steady state with a well-defined apparent macro-

scopic activation energy (obtained from an Arrhenius plot) for the overall growth or etch

rate. Since the macroscopic evolution of the surface - its motion, roughnes and morphol-

ogy - can be modelled by the local dynamics stemming from a reduced set of microscopic

activation energies [1, 2], it is physically meaningful to expect for an analytical/numerical

relation between macroscopic and microscopic activation energies.

The problem of understanding how the macroscopic behaviour of a system is related to

the interplay between the microscopic motion of the interacting particles and the configu-

rational degeneracy of the available microstates is solved in statistical mechanics in terms

of a compromise between internal energy and entropy at any temperature. If the system

is in thermal equilibrium and its Hamiltonian can be defined, the macroscopic value of an

observable is obtained simply as the (ensemble) average of the values taken by the observable

over a large number (ideally infinite) of microstates [3]. However, if the system is far from

equilibrium - as is typically the case during surface growth and wet chemical etching - it

is not always clear how the macroscopic values of the observables can be found from their

microscopic counterparts. As an example, the determination of the exact relation between

the macroscopic activation energy of the growth/etch rate and the microscopic activation

energies of the atomistic processes occurring at the surface, turns out to be a non-trivial

problem which has been traditionally overlooked and exceedingly simplified.

Typically, as a result of an iterative sequence of local processes, a self-organized non-

equilibrium steady state with well-defined average values for the observables is reached in

these open systems (surfaces). Depending on the problem, the local dynamics may not even

be related to an underlying Hamiltonian, but to a set of local activation energies which

effectively control the formation of transient species between the different microstates. In

these cases, the usual techniques of equilibrium statistical dynamics cannot be used to

obtain the averages. Furthermore, some observables - such as the total energy - are not well

defined. Only the number of particles removed from (incorporated to) the interface and the

energy cost of each removal (incorporation) have a meaning and take indeed well defined
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macroscopic values. The problem is to unveil the relation between these macroscopic values

and the microscopic realizations of the observable.

The purpose of this paper is to describe several one-dimensional and two-dimensional

interface systems where the above mentioned unexpected relation between macroscopic and

microscopic activation energies is observed in the context of anisotropic wet chemical etch-

ing. In particular, it will be shown that the macroscopic activation energy of the etch rate

is explained by the sum of two terms. One of them corresponds to the average of the mi-

croscopic activation energies, and the other accounts for the existence of fluctuations in the

fractions of particles at fixed temperature. As an important side result, it will be demon-

strated that the relative weight of the different microscopic processes for the determination

of the activation energy can be accurately obtained during the course of one simulation, even

if the energy contribution of each process may not be easily determined. In our opinion, this

is a most important issue, since it allows for the unambiguous identification of the particular

surface species which effectively control the etching process, allowing a quantitative measure

of the relative importance of majority and minority surface sites. The results directly apply

to other systems in surface science, in particular to surface growth.

We will consider three types of systems, representing three different levels of modelling of

the etching process (Figure 1). After giving a general overview of the common features to the

three models in Section II and defining in Section III the etch rate, the activation energy and

the other quantities required, a simplified two-dimensional exactly solvable surface model is

presented in Section IV (Fig. 1(c)). A more realistic model for a two-dimensional solid with

a one-dimensional surface is presented in Section V (Fig. 1(a)) and a full three-dimensional

model for the simulation of anisotropic wet chemical etching of silicon is considered in Section

VI (Fig. 1(b)). Finally, we draw our conclusions in Section VII.

II. OVERVIEW OF THE MODELS

In this study we consider 1D and 2D open moving interfaces (’surfaces’ embedded in 2D

and 3D environments, see Figure 1) for use in the modelling and understanding of anisotropic

wet chemical etching. We present here the general common features to these interfaces.

At any time, the interface is composed of N (not necessarily constant) particles (labelled
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FIG. 1: Ilustration of the interfaces considered in this study: (a) The 1D interface between a

2D square crystal and the environment (an etchant). (b) The 2D interface between crystalline

silicon and an etchant (a portion of approx. 30×30 nm2 vicinal Si(111) is shown). (c) The M-state

Thermal Flipping Chessboard (TPC): an analytically solvable 2D model for evolving surfaces.

as i = 1, 2, ..., N) with removal probabilities

pi = p0ie
−Ei/kBT , (1)

where T is the temperature, kB is the Boltzmann constant, Ei is the microscopic activation

energy for the removal from site i and p0i is a prefactor. Each of the N atoms currently in

the surface belongs to one of M different types of sites (also referred to as particle/atom

types, labelled as α = 1, 2, ..., M). All sites of type α share the same prefactor p0α but may

have different activation energies.

The reason for choosing this Arrhenius form for the microscopic removal probabilities pi

lies in the experimental fact that the macroscopic etch rate typically follows an Arrhenius de-

pendence on temperature [4, 5]. This choice precisely guarantees the macroscopic Arrhenius

behaviour in the limiting case that the surface is made of only one type of particle. For more

types of particles, it is not mathematically guaranteed that a combination of microscopic

Arrhenius dependencies will lead to a global Arrhenius behaviour. However, if the etching

process is controlled by only a few types of particles (perhaps only one), then this choice is

expected to provide the correct macroscopic dependence. As will be shown by means of the

simulations reported in this work, this assumption typically performs well even for the case

when more than one surface species control the etching process.

The dynamics of the surface consists of random removals of sites according to the probabil-

ities pi. In principle, the microscopic activation energies Ei may be considered as parameters
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that can be varied at will. However, in the most realistic of the models presented here (Sec-

tion VI), the activation energies are obtained from a local energy function that considers the

geometry of the neighbourhood, the number of bonds that need to be broken and the inter-

actions between the surface terminating species, OH and H. In any case, the local activation

energies Ei can be thought to effectively control the formation of transient species between

the microstates of the surface before and after the removal. In this way, the evolution of the

system in these models is not associated to any global energy function or Hamiltonian for

the whole system (which would include the surface, the etchant, the bulk and the species

in solution formed as products of the reaction). This does not mean that such a function

would not exist. However, it can be anticipated that the form of that function will be very

complex and, before it is resolved, we must content ourselves with simplified approaches,

such as the local dynamics used in this study. Accordingly, the macroscopic evolution of the

surface can be obtained using a Monte-Carlo scheme which randomly chooses surface sites

and decides whether they are removed or not according to the probabilities pi, such as that

in [6].

During the time evolution, the state of the surface is characterized by the current numbers

of particles of each type {Nα}
M
α=1, or, equivalently, by the current fractions {fα = Nα/N}M

α=1.

Actually, only M − 1 of the {fα}
M
α=1 variables are required to describe the system, since

∑
α fα = 1. For fixed values of the parameters, { p0α; Eα }M

α=1, and as a result of the iterative

sequence of local processes, the surface reaches a self-defined steady state independent of

the initial state and characterized by well-defined average values {〈fα〉}
M−1
α=1 .

III. ETCH RATE AND ACTIVATION ENERGY

A. Etch rate

The etch rate is defined as the distance travelled by the moving surface per unit time.

When the etching process has reached the steady state, the etch rate is simply the ratio of

the distance travelled by the center of mass (CM) of the surface ∆ZCM to the period of time

elapsed ∆t: R = ∆ZCM/∆t. During a simulation, ∆ZCM can be determined as the sum of

all individual shifts (∆ZCM)i of the surface following each successful event (S.E.), i.e. the
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sum over all successful particle removals i ∈ {S.E.} occurring during ∆t,

R =
∆ZCM

∆t
=

1

∆t

∑

i∈{S.E.}

(∆ZCM)i . (2)

Although (∆ZCM)i is typically positive, occasionally it may be negative if the removal of

site i involves a reduction in the total number of surface sites. In particular, certain site-

types of the most realistic of our models for wet chemical etching (e.g. the trihydrides, see

Section VI), typically contribute to the motion of the CM with a negative shift on average.

Alternatively, we may consider the sum over all events (i ∈ {A.E.}), independently of

whether the event is a successful removal or not,

R =
∆ZCM

∆t
=

1

∆t

∑

i∈{A.E.}

(∆ZCM)ipi . (3)

Here pi is the removal probability of surface atom i, as given by Eq. (1). Note that the

(positive/negative) shift of the CM of the surface due to the removal of atom i, (∆ZCM)i,

may be calculated independently of whether the atom is removed or not. In principle, Eqs.

(2) and (3) give statistically identical results for very long times ∆t. In practice, Eq. (3)

provides a more robust estimation (better statistics) of the etch rate as it provides averages

over all events whilst Eq. (2) averages over only a fraction of them.

Eq. (3) suggests that the etch rate is composed of two factors: one purely geometrical

(the CM-shifts) and one purely numerical (the number of removed particles). Indeed, the

etch rate R is proportional to the average number of surface atoms removed from the surface

per unit time 〈Ṅ↑〉,

R =
∆ZCM

∆t
= ∆Z 〈Ṅ↑〉 , (4)

and the proportionality constant ∆Z is precisely a measure of the average shift in the CM

of the surface per removed atom. ∆Z is an exclusively geometrical feature of the etch

rate. In particular, it is independent of temperature. Although ∆Z may take different

values for different surface orientations, ∆Z does not depend on temperature for a fixed

orientation. In this way, the temperature dependences of R and 〈Ṅ↑〉 are the same. This

is an important observation because the appearance of negative CM-shifts (∆ZCM)i may

affect the interpretation of the relative importance (weight) of the different particle types

for the calculation of an average. Actually, the interpretation becomes meaningless if some

of the weights are negative. However, the use of 〈Ṅ↑〉 is free of these artifacts and allows

unambiguous interpretation, as shown in this study.
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There are three alternative ways to determine the rate of removal of particles 〈Ṅ↑〉 during

the simulation:

(i) As in the case of the etch rate R, 〈Ṅ↑〉 can be determined during the simulation using

only successful events, 〈Ṅ↑〉 = 1
∆t

∑
i∈{S.E.} 1 , or, alternatively, using all events,

〈Ṅ↑〉 =
1

∆t

∑

i∈{A.E.}

pi . (5)

Note that the average of the number of surface atoms N (not a constant) can be written

similarly as 〈N〉 = 1
∆t

∑
i∈{A.E.} 1 .

(ii) The rate of removal of particles 〈Ṅ↑〉 can be written in terms of a sum over the different

types of surface sites α = 1, 2, ..., M ,

〈Ṅ↑〉 =
∑

α

〈Nα〉〈pα〉 , (6)

where 〈pα〉 is the average probability of removal of a surface site of type α,

〈pα〉 =

∑
i∈α

pi

∑
i∈α

1
, (7)

(’i ∈ α’ stands for the sum over all events concerning the sites of type α) and 〈Nα〉 is the

average number of sites of type α,

〈Nα〉 =
1

∆t

∑

i∈α

1 . (8)

Note that 〈Nα〉〈pα〉 is the average number of particles of type α that are removed per

unit time, denoted as 〈Ṅ↑
α〉. Thus Eq. (6) is just the sum of the removed particles over

all particle types, 〈Ṅ↑〉 =
∑
α

〈Ṅ↑
α〉.

(iii) The rate of removal of particles 〈Ṅ↑〉 may also be expressed in terms of the average

fraction of particles removed per unit time 〈ḟ ↑〉,

〈Ṅ↑〉 = 〈N〉〈ḟ ↑〉 = 〈N〉
∑

α

〈fα〉〈pα〉 . (9)

Here we have defined 〈fα〉 as the average fraction of particles of type α,

〈fα〉 =
〈Nα〉

〈N〉
. (10)

As done for interpreting Eq. (6), we can think of the last term in Eq. (9) as a sum over

the fractions of particles of each type that are removed per unit time (〈ḟ ↑
α〉 = 〈fα〉〈pα〉):

〈ḟ ↑〉 =
∑

α〈ḟ
↑
α〉.
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B. Activation energy

In relation to the etch rate R, the activation energy Ea is, by definition, the slope of the

curve R = R(β) in an Arrhenius plot, where β is the inverse temperature β = 1/kBT ,

Ea = −
∂ log R

∂β
= −

1

R

∂R

∂β
, (11)

Very often, this curve is a straight line for wide ranges of β and the activation energy is thus

a constant. However, it is worth to keep in mind that, in principle, Eq. (11) allows Ea to

be any function of β.

As discussed in the context of Eq. (4), the geometrical factor ∆Z is independent of the

temperature. Thus the activation energy may be written as the logarithmic derivative of

the rate of removal of particles,

Ea = −
∂ log〈Ṅ↑〉

∂β
. (12)

Note that in principle, we have three alternative equivalent expressions for the rate of removal

of particles 〈Ṅ↑〉 (namely, Eqs. (5), (6) and (9)). Although all three expressions provide

the same values for 〈Ṅ↑〉 in the simulations, the final expression for the activation energy

is found to depend on the choice. If we consider Eq. (9) and recognize that 〈N〉, 〈fα〉, and

〈pα〉 may be functions of the temperature, the derivative in Eq. (12) can be expressed as

the sum of three terms,

E(N,f,p)
a = E〈N〉 + E(f)

a + E(p)
a = E〈N〉 +

∑

α

〈w↑
α〉E〈fα〉 +

∑

α

〈w↑
α〉E〈pα〉 , (13)

where

E〈X〉 = −
∂ log〈X〉

∂β
, X = N , fα , pα (14)

and 〈w↑
α〉 is the average normalized fraction of removed particles of type α:

〈w↑
α〉 =

〈ḟ ↑
α〉∑

α

〈ḟ ↑
α〉

=
〈fα〉〈pα〉∑

α

〈fα〉〈pα〉
. (15)

However, the use of Eq. (6) as an alternative for 〈Ṅ↑〉 in Eq. (12) results in the last two

terms:

E(f,p)
a = E(f)

a + E(p)
a =

∑

α

〈w↑
α〉E〈fα〉 +

∑

α

〈w↑
α〉E〈pα〉 , (16)
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and the use of Eq. (5) results in the last term only:

E(p)
a =

a

∑
i∈{A.E.}

piEi

∑
i∈{A.E.}

pi

=
b

∑
α

〈fα〉〈pα〉E〈pα〉

∑
α

〈fα〉〈pα〉
=
c

∑

α

〈w↑
α〉E〈pα〉 . (17)

Intuitively, in an initial approach to the determination of Ea, one would expect Eq. (17)

(in either form (a),(b) or (c)) to be the correct expression [7]. For instance, in either form

(b) or (c), it represents the sum (over all species) of the average amount of particles leaving

the surface (〈w↑
α〉) multiplied by the average removal energy cost (E〈pα〉), and in form (a)

it has the typical form of an ensemble average. However, this turns out to be a simplified

approach. The previous intuitive reasoning does not take into account the fact that the frac-

tions of particles {fα}
M
α=1 are functions of temperature. Due to the normalization condition

∑
α fα = 1, the fluctuations in the surface fractions at fixed temperature are asymmetric

about the average values (Section IVC2), a phenomenon that is macroscopically observed

as a preferred direction of change for each of the surface fractions when the temperature is

changed. As an example, if M = 2, one of the surface fractions increases with temperature

while the other decreases. This type of variations in 〈fα〉 with temperature are considered

in Eqs. (13) and (16) through the terms E〈fα〉 6= 0.

Similarly, one would initially expect 〈N〉 to change (increase) with temperature. However,

this can only happen if the formation of overhangs on the surface is very frequent. On

the other hand, for conditions producing single-valued surfaces, which is the case in wet

chemical etching, 〈N〉 does not vary with temperature. Thus, for the purpose of modelling

wet chemical etching, 〈N〉 is independent of the temperature and the use of Eq. (16) instead

of Eq. (13) is justified.

Eq. (16) is the central result of the present study. By determining the temperature

dependence of the removal probabilities 〈pα〉 and the surface fractions 〈fα〉, it will be shown

that the two contributions E
(p)
a +E

(f)
a accurately describe the macroscopic activation energy

of the etch rate. In particular, it will be shown that, in the worst case, E
(p)
a and E

(f)
a can be

accurately estimated in a a posteriori analysis of the temperature depence of the removal

probabilities and surface fractions, respectively. An additional interesting feature of Eq. (16)

is that the relative weight of each particle type for the determination of the macroscopic

activation energy is given by the average normalized fractions of removed particles 〈w↑
α〉,

which can be easily computed at any temperature during each simulation. As we will see,
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this will enable an estimation of the relative importance of the different species in the etching

process. In particular, it will be shown that the relative contributions εα of the different

atom types to the total macroscopic activation energy, defined from Eq. (16) as

εα =
〈w↑

α〉
(
E〈fα〉 + E〈pα〉

)
∑
α

〈w↑
α〉

(
E〈fα〉 + E〈pα〉

) , (18)

are described approximately by 〈w↑
α〉 in all models considered, even exactly in one particular

model (Section IV).

Let us stress the fact that the activation energies E〈fα〉 in Eq. (16) correspond to fluctu-

ations in the numbers of particles Nα at each temperature. To see this, note first that, as a

result of the temperature independence of 〈N〉, we have

E〈fα〉 = −
1

〈fα〉

∂〈fα〉

∂β
= −

1

〈N〉〈fα〉

∂(〈N〉〈fα〉)

∂β
= −

1

〈Nα〉

∂〈Nα〉

∂β
. (19)

Thus, in order to determine E〈fα〉 it will be sufficient to find an expression for ∂〈Nα〉
∂β

. In order

to do so, we may consider the expression for the fluctuations in the numbers of particles

〈(δNα)2〉 ≡ 〈N2
α〉 − 〈Nα〉

2 in the grand canonical ensemble for open systems,

〈N2
α〉 − 〈Nα〉

2 =
∂〈Nα〉

∂(βµα)
, (20)

where µα is the chemical potential of the species α. This leads to the following expression

for ∂〈Nα〉
∂β

∂〈Nα〉

∂β
=

(
〈N2

α〉 − 〈Nα〉
2
)(

µα + β
∂µα

∂β

)
. (21)

Thus, Eqs. (19) and (21) formally demonstrate that the activation energies E〈fα〉 are directly

related to the fluctuations in the numbers of particles Nα. Unfortunately, it is not clear how

the chemical potentials µα = ∂E
∂Nα

can be determined, since the total energy E has not been

defined.

The previous interpretation of the term E
(f)
a =

∑
α〈w

↑
α〉E〈fα〉 as originating from the

fluctuations in the numbers of particles Nα illustrates the fact that, as long as the explicit

expression for the dependence of 〈fα〉 on temperature is not available (or, otherwise, a

method to determine the chemical potentials is devised), the determination of the activation

energies E〈fα〉 can be done only a posteriori by using the simulated data for 〈fα〉 at different

temperatures. This is precisely the approach taken in the present work in order to understand

how the macroscopic activation energy of the etch rate takes a particular value. Incidentally,
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there exists a non-trivial meaningful model of wet chemical etching for which E〈fα〉 can be

calculated analytically. This will be the subject of Section IV.

IV. THERMAL FLIPPING CHESSBOARD

A. The M-particle TFC model

Consider a two dimensional system composed of two types of sites (’white’ and ’black’ or,

equivalently, ’1’ and ’0’) in which the white (black) sites have a probability p1 = p01e
−E1/kBT

(p0 = p00e
−E0/kBT ) to be removed from the system, independently of the state of their

neighbourhood. The removal of a white (black) site leads to the appearance of a black

(white) site with probability π1→0 (π0→1) and of a white (black) site with probability π1→1

(π0→0). The transition matrix Π = (παβ) ≡ (πα→β) characterizes the probability of any

conversion between the two species. Since every removed site is always replaced by another

site (which can be of either type) the transition matrix Π satisfies the following normalization

conditions

π00 + π01 = 1 , π10 + π11 = 1 . (22)

The local dynamics of the system consists of random removals of white and black sites

with probabilities p1 and p0, leading to the appearance of white or black sites according

to the probabilities παβ. The macroscopic evolution of the system is obtained as indicated

in Section II. The state of the system is characterized by e.g. f1 (as f0 is obtained from

f0+f1 = 1) and the total number of sites N is constant. The system is purely two dimensional

and there are no height changes associated to the site removals. In consequence, the etch rate

in this model can only be defined as the rate of removal of particles 〈Ṅ↑〉. The equivalent

fractional measure 〈ḟ ↑〉 will be used.

The important feature of the current model is that it offers the possibility to study the

relation between macroscopic and microscopic activation energies without the additional

difficulties involved in more realistic models of wet chemical etching. The interesting feature

of the model resides in the use of the temperature T and not in the existance of two states.

In fact, the number of states may become arbitrarily large (say M) without further compli-

cations. We will refer to the proposed M -particle model as the thermal flipping chessboard

(TFC). Fig. 1(c) shows a snapshot of the M = 3 TFC model.
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Note that the two-state TFC model (M = 2) can be mapped to the 2D Ising model [8],

although no interactions between the neighbours have been defined through a Hamiltonian

and, in general, the transitions between the two states are partial (as implied by a general

transition matrix). The relation between the two models becomes clearer in the particular

case that the transition matrix is chosen as


π00 π01

π10 π11



 =



0 1

1 0



 , (23)

in which case every white site that is removed is replaced by a black site, and the reverse.

In principle, the M -particle TFC can be similarly mapped to the q-state Potts model [9].

The TFC model contains the basic ingredient for the simulation of chemical etching,

namely, that the removal of one surface site produces the incorporation of new sites into

the surface and/or a transformation of the site-type of the already existing neighbouring

surface sites. This essential feature is incorporated in the model by the use of the transition

matrix Π. The TFC model is convenient for two reasons: firstly, because the total number

of particles N in the system is fixed; secondly, because there are no geometrical changes

involved in the site-type transformations. These two features differ from the typical case

found in more realistic models of chemical etching (Sections V and VI) and will allow us to

demonstrate that the deviations in the determination of the macroscopic activation energy

(occurring both in this and the more realistic models) are not related to fluctuations in the

total number of particles N nor to complicated geometrical effects.

In the TFC model, the transition matrix (παβ) is a parameter, independent of other

variables such as the removal probabilities pα and the temperature T . This turns out to

be a usefull difference with respect to the more realistic systems, in which the transition

matrix depends on the removal probabilities, the temperature and the underlying geometry

of the bulk structure. In fact, the independence of Π from temperature allows to solve

analytically the TFC model exactly for any number M of particle types. This makes the

TFC systems ideal for testing and judging the goodness of our approach for the (a posteriori)

determination of the contribution E
(f)
a in Eq. (16) in more realistic models of wet etching.
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B. Analytical solution of the M-particle TFC model

Consider the M -particle TFC model introduced in the previous section. At any instant,

the rate of change in the fraction of particles of type α is given by the Master Equation

∂fα

∂t
= −pαfα +

M∑

β=1

πβαpβfβ (∀ α = 1, 2, ..., M) , (24)

where −pαfα is the number of particles of type α being removed and
∑M

β=1 πβαpβfβ corre-

sponds to the number of α particles being created due to the removal of all other types.

Here Π = (παβ) ≡ (πα→β) is the transition matrix whose element πβα = πβ→α describes

the probability that a site of type α will be created following the removal of a site of type

β. Since the removal of one particle always leads to the appearance of another particle, the

transition matrix satisfies the normalization condition

M∑

β=1

παβ = 1 (∀ α = 1, 2, ..., M) . (25)

We are interested in finding the values of fα that are solutions of the steady state of Eq.

(24) (∂fα

∂t
= 0) and simultaneously satisfy the restriction:

M∑

α=1

fα = 1. (26)

In the steady state, Eq. (24) can be written as




π11 − 1 π21 π31 · · · πM1

π12 π22 − 1 π32 · · · πM2

π13 π23 π33 − 1 · · · πM3

...
...

...
. . .

...

π1M π2M π3M · · · πMM − 1




︸ ︷︷ ︸
A=Π†−I

·




p1f1

p2f2

p3f3

...

pMfM




︸ ︷︷ ︸
g

=




0

0

0
...

0




︸ ︷︷ ︸
0

, (27)

where Π† is the transpose of Π and I is the identity matrix. Writing παα − 1 = −
∑

β 6=α παβ

from Eq. (25) shows that det(A) = 0. Thus, one of the M equations is redundant (e.g. the
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last one) and may be substituted by Eq. (26), as in




(π11 − 1)p1 π21p2 π31p3 · · · πM1pM

π12p1 (π22 − 1)p2 π32p3 · · · πM2pM

π13p1 π23p2 (π33 − 1)p3 · · · πM3pM

...
...

...
. . .

...

1 1 1 · · · 1




·




f1

f2

f3

...

fM




=




0

0

0
...

1




. (28)

After some algebra, the solution to Eq. (28) is found to be: (note fα → 〈fα〉 and pα → 〈pα〉)

〈fα〉 =

cα

〈pα〉
M∑

β=1

cβ

〈pβ〉

(α = 1, 2, ..., M) , (29)

where

cα = det(MA
αα) (30)

and MA
αα is the matrix minor corresponding to element Aαα of matrix A. For instance, if

M = 3 one gets

c1 = 1 − π22 − π33 + π22π33 − π23π32 , (31)

and similar relations for c2 and c3.

The eigenvalue-problem form of Eq. (27) suggests an alternative way to solve for

the steady-state surface fractions fα. The idea is to solve first for the eigenvector

g = (g1, g2, ..., gM) corresponding to the eigenvalue λ = 1 of Π† and to find f as

(f1, f2, ..., fM) = (g1/p1, g2/p2, ..., gM/pM). This can be done by multiplying Π by itself

several times until the result does not vary, and taking (g1, g2, ..., gM) as any of the rows of

the resulting matrix [10]. This procedure is computationally more efficient for the determi-

nation of the cα’s (as gα’s) if the number of particle types M is large. The advantage of

the approach followed in the derivation of Eq. (29) is that it provides an exact analytical

expression for 〈fα〉 in terms of the removal probabilities 〈pα〉 and the transition matrix Π.

The physical meaning of Eq. (29) is intuitively simple as it states that the average

number of particles 〈fα〉 of type α at the surface is inversely proportional to their removal

probability 〈pα〉 and proportional to the removal probabilities of the rest species through

the normalizing factor
∑M

β=1 cβ/〈pβ〉. Note that, in addition to the steady-state condition

for the Master Equation (Eq. (24)), the derivation of Eq. (29) makes use of very general
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relations, such as Eqs. (25) and (26). Therefore, it would seem that Eq. (29) is very general

and should be valid also for other models of wet chemical etching. This is not the case, as

will be shown in Section V.

Due to the temperature independence of the coefficients cα in Eq. (29), an exact ex-

pression for the macroscopic activation energy can be obtained for the M -particle TFC

model. The independence of cα from temperature stems from the fact that, according to

Eq. (30), the coefficients cα are completely determined by the transition matrix Π, which,

being an input parameter in this model, is fixed for all temperatures. Thus the evaluation

of E〈fα〉 = − ∂ log〈fα〉
∂(1/kBT )

(using Eq. (29)) for the determination of the macroscopic activation

energy according to Eq. (16) becomes straightforward. The result is

E〈fα〉 = −E〈pα〉 +

M∑

β=1

〈fβ〉E〈pβ〉 . (32)

Thus, the macroscopic activation energy can be determined by substituting Eq. (32) into

Eq. (16) to get

Ea =
M∑

α=1

〈fα〉E〈pα〉 . (33)

Eq. (33) provides a very simple relation between the microscopic energies E〈pα〉 and the

macroscopic energy Ea for the M -particle TFC model with temperature independent transi-

tion matrix. The simplicity of this result is surprising. After all, the macroscopic activation

energy in the TFC model is literally the ’total energy’ of the surface. However, this result

should not be over-interpreted by expecting the same to be true in other models. In partic-

ular, Eq. (33) fails to provide the macroscopic activation energy in the case of temperature-

dependent transition matrices, which is the case in more realistic approaches to wet chemical

etching. Moreover, it is easily verified that in the TFC model the relative contributions εα

of the different atom types to the total macroscopic activation energy, defined in Eq. (18),

take the simple value εα = 〈w↑
α〉, whilst the alternative definition from Eq. (33):

ε̃α =
〈fα〉E〈pα〉∑

α

〈fα〉E〈pα〉

, (34)

does not lead to a simplified expression. This suggests that the normalized fractions of

removed particles 〈w↑
α〉 are a natural measure of the relative importance of the different

surface sites for the macroscopic activation energy, as they clearly are (by definition) for
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the etch rate R itself. Actually, we will see that, although εα 6= 〈w↑
α〉 in the more realistic

models, the two measures take similar values and the normalized fractions 〈w↑
α〉 can be used

as indicators of relative importance.

C. Results for the TFC model

1. Macroscopic activation energy

We report on results for the TFC model on square regions containing N = 2500, 10000

and 40000 sites for two-particle (M = 2) and three-particle (M = 3) systems. Since the

TFC model is analytically solvable for any M (Section IVB), the purpose of this section

is not to provide numerical proof of the exact results, but to illustrate by means of a few

examples how the values of the temperature-averaged macroscopic activation energy can be

accurately described in a posteriori analysis of the results at different temperatures. This

will support the analysis made in the more realistic models of wet etching.

For M = 2, we consider two examples for the case of the trivial transition matrix given

by Eq. (23) (cases A and B) and a third example (case C) for a more general transition

matrix, chosen as:

Π =


0.25 0.75

0.65 0.35


 . (35)

Two representative examples for the case of different energies [17] (E1 = 0.3 eV, E0 = 0.5

eV) are considered: (A) equal prefactors (p01 = p00 = 5 × 103) and (B and C) different

prefactors (p01 = 5 × 103, p00 = 2 × 106). For M = 3 (case D) the transition matrix Π, the

microscopic activation energies Eα (in eV) and the prefactors p0α are chosen as follows:

Π =




0.00110 0.08056 0.91834

0.02937 0.47202 0.49861

0.03961 0.58581 0.37458


 ;




E1

E2

E3


 =




0.0

0.3

0.5


 ;




p01

p02

p03


 =




1.0

5 × 103

2 × 106


 . (36)

This choice of Π corresponds to the transition matrix of a one-dimensional interface with

three types of particles at low temperature (Section V), whose microscopic activation energies

and prefactors are similar to those of Eq. (36) and whose dynamics are dominated by slow

etch pit formation followed by fast step propagation. A summary of the choice of parameters

for cases A, B, C and D is given in Table I.
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N p01 p00 E1(eV ) E0(eV ) Π

A 100 × 100 5 × 103 5 × 103 0.3 0.5 Eq. (23)

B 100 × 100 5 × 103 2 × 106 0.3 0.5 Eq. (23)

C 50 × 50 5 × 103 2 × 106 0.3 0.5 Eq. (35)

D(∗) 50 × 50 - - - - -

TABLE I: Summary of parameters for cases A, B and C. (*) Parameters for case D from Eq. (36).

Figure 2(a) shows the rate of removal of particles 〈ḟ ↑〉 as a function of temperature for

case D as an example of the typical behaviour obtained in all cases. The exact curve in

the main frame is obtained by plotting 〈ḟ ↑〉 from Eq. (9) with 〈fα〉 from Eq. (29) and cα

from Eq. (30). In the case of the exact curve for the macroscopic activation energy Ea in

the inset, Eq. (33) is used. The agreement between the simulation points and the exact

curve (main frame) is very good. Note that the exact curve is slightly bent, illustrating

the fact that the combination of microscopic removal rates (following each the Arrhenius

behaviour) does not guarantee linear Arrhenius behaviour for the global macroscopic rate

(Section II). As a result, the macroscopic activation energy is not constant but, rather, a

(smooth) function of temperature, as shown in the inset. Nevertheless, the assumption of

linear macroscopic behaviour and constant activation energy is reasonably good as the range

of temperatures of interest in wet chemical etching is small. This is shown by the similarity

between the slope of the linear fit Elin-fit
a ≈ 0.44 eV and the average slope of the exact

curve 〈Ea〉 ≈ 0.42 eV (inset). Closer results are obtained for cases A-C.

Let us now pretend for a moment that the temperature dependence of 〈fα〉 is not ana-

lytically known a priori (as it is the case for the more realistic models of wet etching), so

that an exact expression for the macroscopic activation energy (as Eq. (33) for the TFC

model) cannot be derived. It is still possible to understand how the macroscopic activation

energy (considered as an average over all temperatures, i.e. essentially as the slope of the

linear fit) gets its value. The macroscopic activation energy obtained from the linear fit of

Fig. 2(a) (and corresponding linear fits for cases A-C) is shown in Figure 3, together with

the values for the contributions E
(p)
a and E

(f)
a (defined through Eq. (16)). Figure 3 shows

that the term E
(p)
a alone fails to explain the macroscopic activation energy in all four cases

and that term E
(p)
a accurately describes the deviations. The macroscopic activation energy
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FIG. 2: Arrhenius plot of (a) the rate of removal of particles 〈ḟ↑〉 and the surface fractions (b)

〈f1〉, (c) 〈f2〉 and (d) 〈f3〉 for case D.

is thus explained as the sum E
(p)
a + E

(f)
a . Note that the value of E

(p)
a is computed at each

temperature during the simulations (using E〈pα〉 = Eα in Eq. (17) with the weights 〈w↑
α〉

given by Eq. (15)) but, since the temperature dependence of 〈fα〉 is not known a priori (as

we are pretending), E
(f)
a can ’only’ be determined a posteriori from the temperature analysis

of the values obtained in the simulations. This is done in Figures 2(b)-(d), where it is shown

that linear fits to the simulation results for 〈fα〉 can be used to provide approximations to

the values of the slopes E〈fα〉. The values quoted in Figure 3 for E
(p)
a , E

(f)
a and E

(p)
a + E

(f)
a

correspond to the temperature-averaged values over the simulated temperatures.

The previous procedure, although not strictly required for the exactly-solvable TFC

model, illustrates the method that will be applied in the more realistic models of wet etching

in order to describe the temperature-averaged values of the macroscopic activation ener-
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FIG. 3: Activation energy Elin-fit
a explained as the sum E

(p)
a + E

(f)
a (Eq. (16)) for cases A-D.

gies. It shows that the (temperature-averaged) macroscopic activation energy - described

approximately by the slope of a linear fit - can be approximated by evaluating the term

E
(f)
a =

∑
α〈w

↑
α〉E〈fα〉 a posteriori from the temperature dependence of the surface fractions

〈fα〉.

2. Non-gaussian statistics

As commented in Section III B, the fluctuations in the numbers of particles Nα (or,

equivalently, in fα) are expected to be asymmetric about their mean value 〈fα〉, due to

the constraint
∑

α fα = 1, (0 < fα < 1). As an example of this typical feature, Figure

4(a) shows the probability density function P (f1) at three temperatures for case A (Section

IVC1). Following [11], P (f1) is shown as the quantity σP (f1) plotted against (f1 − 〈f1〉)/σ

for better comparison of the different probability densities. Here, σ is the standard deviation

of the data, σ = [
∑

P (f1)(f1 − 〈f1〉)
2]

1/2
. If P (f0) would be drawn in this figure, a mirror

reflection of the shown curves about (f1 − 〈f1〉)/σ = 0 would be obtained.

The main feature of the probability densities is the asymmetry (skewness). Figure 4(a)

shows that, as the temperature is decreased, the distribution becomes more skewed and the

mean value decreases. Similarly, the skewness of the distribution increases as the system

size is decreased (Figure 4(b)), although in this case the mean value does not depend on
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FIG. 4: Probability density function P (f) for the fluctuations in the fraction of particles of type

1 (f ≡ f1) for case A: (a) at three different temperatures in logarithmic and natural (inset) scale,

and (b) for three system sizes N = 50×50, 100×100, 200×200. 〈f〉 = 0.00253 for all cases in (b).

size. The reason for this increase in skewness with decreasing temperature and decreasing

size can be found in the constraint
∑

α fα = 1, with 0 ≤ fα ≤ 1.

In the case of the variation with temperature, note that the mean values 〈f1〉 and 〈f0〉 =

1 − 〈f1〉 get more separated from each other and, correspondingly, closer to their limiting

values (0 and 1, respectively) as the temperature is decreased (legend in Fig. 4(a)). Since

〈f1〉 cannot become less than zero and 〈f0〉 cannot be larger than one, the fluctuations are

forced to occur more frequently within the region between the two mean values. As a result,

the positive tail of P (f1) grows at the expense of the negative tail, and the reverse occurs

for P (f0).

The increase of skewness with decreasing system size is explained by the inherent discrete-

ness of 〈fα〉 in small systems. In Fig. 4(b), where the mean value 〈f1〉 does not depend on

size, the average number of particles of type 1 (〈N1〉 = N〈f1〉) is about 101 for N = 200×200,

about 25 for N = 100 × 100, and about 6 for N = 50 × 50. Thus, in absolute terms, the

fluctuations of N1 to the left of 〈N1〉 are more restricted in the smaller systems and, as a

result, the smaller systems spend more time at the right of 〈N1〉. In the limit of large system

size, the fluctuations become gaussian, as suggested by Fig. 4(b).

We stress that, even though the distribution of the fluctuations depends on the system

size, the average values of all macroscopic quantities (such as, 〈fα〉, 〈w↑
α〉, 〈ḟ ↑〉 and the
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macroscopic activation energy Ea) are size independent. In addition to Fig. 4(b), this is

supported by the excellent agreement between the exact curves and the simulation results

(points) provided in Fig. 2 for N = 50× 50 (and similar figures for cases A-C, not shown).

V. ONE-DIMENSIONAL INTERFACE

A. Description of the 1D model

We turn now to the next level of difficulty in the modelling of wet chemical etching by

considering an interface with a self-defined transition-probability-matrix. Consider a one-

dimensional ’surface’ between a square lattice (whose nodes represent atoms in the bulk) and

the etchant region (represented by the empty nodes of the lattice). The surface is defined as

the set of occupied nodes having less than four links to neighbouring occupied nodes and,

thus, it may contain M = 3(+1) types of surface sites (Figure 5). The sites having 0 links

(type 0) are included for completeness, since overhangs can occur in our simulations. As

already commented in Section III B, these are rare events for the choice of parameters used

to model wet etching and, in practice, they have negligible influence in the behaviour of the

interface. This explains the previous notation ’M = 3(+1)’ for the number of atom types.

FIG. 5: Schematic representation of the one-dimensional interface showing the four types of atom

(α = 0, 1, 2, 3) depending on their number of links.

The local dynamics of this system consists on random removals of particles from the

surface (with probabilities pα = p0αe−Eα/kBT , α = 0, 1, 2, 3) and a Monte-Carlo scheme can
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be used, as previously, in order to determine the macroscopic evolution of the surface. After

each removal, the site-type of each neighbouring atom needs to be updated. Keeping track

of all created/updated site-types corresponding to each site removal allows to obtain the

transition matrix Π = (παβ) = (πα→β), which describes the probability that a site of type

β will be created following the removal of a site of type α. The state of the system is

characterized by e.g. {f1, f2, f3}, since f0 is obtained from
∑

α fα = 1. The total number

of sites N (not constant) fluctuates about the value imposed by the horizontal size of the

system. The rate of removal of particles 〈ḟ ↑〉 will be used as a measure of the etch rate

R = ∆Z〈N〉〈ḟ ↑〉.

B. Results for the 1D model

We consider an interface with linear size N = 200 and report on four representative cases

of parameter values, as shown in Table II. The choice of parameters in E was made to

provide comparison with the TFC model of Section IVC1. The parameters in H result in

an atomistically flat surface, characterized by slow etch pitting and fast step propagation.

In F, the surface becomes rougher as the rates of etch pitting and step propagation are

p01 p02 p03 p04 E1 E2 E3 E4

E 5 × 103 5 × 103 5 × 103 5 × 103 0.3 0.3 0.5 0.3

F 1.0 5 × 103 5 × 105 1.0 0.0 0.3 0.55 0.0

G 1.0 5 × 103 5 × 105 1.0 0.0-0.1(∗) 0.3-0.5(∗) 0.55-0.85(∗) 0.0

H 1.0 8 × 104 5 × 105 1.0 0.0 0.4 0.75 0.0

TABLE II: Parameter values for cases E, F, G and H. (*) Random activation energies are uniformly

chosen from the shown interval. Energies are measured in eV.

more similar. Although G also results in an atomistically rough surface, it is included as

an anticipation of the more realistic simulations presented in Section VI. Based on this

example, we will see that the average activation energy associated to an atom type does not

correspond to the mean energy if the microscopic activation energy of that atom is uniformly

distributed over an interval.
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We determine the macroscopic activation energy corresponding to the etch rate from

the Arrhenius plot log〈ḟ ↑〉-vs-β in Figure 6(a) and provide an example of the temperature
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FIG. 6: (a) Rate of removal of particles 〈ḟ↑〉 for cases E, F, G and H. (b)-(c) Determination of

the activation energies E〈pα〉 (α = 0, 1, 2, 3) and E〈fα〉 (α = 1, 2, 3) for case G. In (c), 〈fα〉Master

corresponds to the values calculated using Eq. (29). The case α = 0 is not shown as 〈f0〉 . 10−6.

analysis of 〈pα〉 and 〈fα〉 for case G in Figure 6(b)-(c). In all four cases, the macroscopic

activation energy (Elin-fit
a ) differs from the values provided by E

(p)
a (Eq. (17)) and the

differences are explained by the fluctuations in the numbers of particles E
(f)
a . A summary

of the results for all four cases is given in Figure 7(a).
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It is interesting to note that, although the activation energies for the microscopic removal

probabilities pi are distributed uniformly in intervals for case G (Table II), according to Fig.

6(b) the average activation energy for each particle type E〈pα〉 does not correspond to the

mean value of each energy interval. Actually, the values obtained from the linear fits in Fig.

6(b) are in excellent agreement with those (not shown) obtained during the simulations by

using Eq. (17) restricted to the atom type considered (i.e. i ∈ α):

E〈pα〉 =

∑
i∈α

piEi

∑
i∈α

pi
. (37)

This illustrates the fact that Eq. (17) is physically meaningful when all particles are of the

same type (i.e. have the same prefactors, although different activation energies) and there

are no fluctuations in the surface fractions. However, if the different activation energies for

the same atom type are not distributed uniformly over an energy interval but, rather, form a

discrete set of energies, the problem of determining the average activation energy for an atom

type becomes formally equivalent to the problem of determining the macroscopic activation

energy for the whole surface. The average activation energy for each site-type cannot be

calculated during the simulations using Eq. (37) but, rather, a variation of Eq. (16) applied

to the different subtypes within the same site-type. As we will see in realistic simulations

of wet chemical etching (Section VI), surface atoms belonging to the same site-type α (i.e.

sharing the same prefactor p0α) can have very different activation energies, depending on

the local coverage by H and OH groups, thus forming discrete sets of energies. In that case,

Eq. (37) will not provide the average activation energy of the atom-type considered.

Figure 6(c) shows that the average surface fractions 〈fα〉 in the one-dimensional interface

model are not described by Eq. (29) (〈fα〉Master in the figure). The disagreement is not

due to numerical error and similar results are obtained for cases E, F and H. The reason

for the failure of Eq. (29) in the current model lies in the fact that the transition matrix

is determined by the removal probabilities (and the underlying geometry), so that it is not

an independent parameter as it is implicitly assumed in the analytical derivation of Section

IVB. A physically more meaningful argument is that in the TFC model, for every particle

that is removed, a new replacing particle appears, but, in the current model, the removal

of one particle may be followed by the incorporation of two particles or no particles at all.

Besides, in the current model there exists a non-linear effect associated to the update of the
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atom-type of the neighbouring sites which is not present in the TFC model.

Finally, Figure 7(b) shows the relative contributions εα of each atom type to the total

macroscopic activation energy for cases E-H and compares them to the normalized fractions

of removed particles 〈w↑
α〉. This shows that the weights 〈w↑

α〉 can be used during a simulation

as indicators of the relative importance of the different site-types, even if the actual values

of E〈fα〉 and E〈pα〉 (required to evaluate εα) are not known.

The results of this section show that, also for the one-dimensional interface system, the

(temperature-averaged) macroscopic activation energy can be approximated by evaluating

the term E
(f)
a a posteriori from the temperature dependence of the surface fractions 〈fα〉.

Eventhough the explicit expression for the temperature-dependence of 〈fα〉 is not known

and the value of the activation energy cannot be calculated at each temperature during a

simulation, the weights 〈w↑
α〉 can be used to identify the relative importance of the different

sites.

VI. ANISOTROPIC WET CHEMICAL ETCHING OF SILICON

A. Realistic model

Anisotropic wet chemical etching is a non-equilibrium process in which both the micro-

scopic roughness and morphology, and the macroscopic orientation-dependent etch rate are

determined by the relative values of the microscopic (atomistic) reaction rates. Gosálvez

et al [12] have shown that the origin of the (large) differences in site-specific rates is found

in two microscopic mechanisms: the weakening of backbonds following OH termination of

surface atoms and the existence of significant interaction between the terminating species

(H/OH). The weakening of the backbonds depends only on the total number of hydroxyls

attached to the two atoms sharing the bond and is independent of the particular distribution

of the OH groups between the two atoms [12], in such a way that each backbond is weakened

by the same energy ε ≈ 0.4 eV for every OH group that is attached to either atom. Thus,

the energy of a bond between an atom terminated by i OH groups and an atom terminated

by j groups (i, j = 0, 1, 2, 3) can be written as

εij = εo − (i + j) · ε , (38)
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where εo is the bond energy between two bulk atoms ( εo ≈ 2.7 eV ). Correspondingly, the

total bonding energy for a surface atom with n first neighbours is simply the sum of the

energies of the n bonds:

Ebonds =
n∑

j=1

εm,mj
, (39)

where we have considered the most general case, in which the target atom is terminated by

m OH groups (m 6 4 − n) and the j-th first neighbour (j = 1, 2, .., n), having itself nj first

neighbours, is terminated by mj OH groups (mj 6 4 − nj).

The other microscopic mechanism of major importance in wet chemical etching, namely,

the interaction between the surface terminating groups (H/OH), occurs only in the presence

of indirect second neighbours [13, 14]. Due to these interactions, hydroxyl termination of

the target atom (and its first neighbours) involves additional energy terms, not taken into

account in Eq. (39). As a result, the total (local) energy of a surface atom can be expressed

as the sum of three terms [13]:

E = Ebonds +
∑

(eTA
OH/H + eTA

OH/OH) +
∑

(eFN
OH/H + eFN

OH/OH) , (40)

where Ebonds is the energy of Eq. (39) and
∑

(eTA
OH/H + eTA

OH/OH) (
∑

(eFN
OH/H + eFN

OH/OH)) sym-

bolically denotes the total energy from the interactions between the OH groups terminating

the target atom TA (the first neighbours FN) and H and/or OH terminating the indirect

second neighbours of the target atom TA (first neighbours FN). The geometrical restrictions

to hydroxyl termination in the presence of indirect second neighbours is a manifestation of

the important role of steric hindrance in anisotropic wet chemical etching. In the present

model, the source of steric hindrance is identified as the (H/OH-terminated) indirect second

neighbours.

Note that, although the parameters ε and εo used for describing the bonding energy are

fixed by the first-principles ab-initio study [12], the interaction energies eTA,FN
OH/OH and eTA,FN

OH/H

can be used as tunable parameters in order to describe different etchants. Once an etchant

is chosen, its concentration is described in the model by the amount of surface coverage by

OH-groups.

As with the previous simpler models for wet chemical etching, the local dynamics of this

model consists on random removals of surface sites with probabilities:

p = p0e
−∆E/kBT , (41)
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where the activation energy ∆E is defined as:

∆E = max(0, E − Ec). (42)

Here, p0 and Ec are parameters describing the different surface atom types (as p0α and Eα

previously). We have dropped the index α to stress the fact that the local energy E is

calculated using the same expression (Eq. (40)) for all site types. The use of the function

max(0, E −Ec) mimics the Metropolis algorithm [15]. Following the discussion of Gosálvez

et al. in [13], and the notation used in surface studies of Si(111) [16], we consider the

following surface site types:

• Type 0: Non-bonded atoms that have not been removed: unlinked (UL)

• Type 1: Singly-bonded atoms: trihydrides (TRI); also referred to as kinks.

• Type 2A: Two-bonded atoms on ideal (100) surfaces: terrace dihydrides (TD)

• Type 2B: Vertical two-bonded atoms at ideal [121] steps: vertical step dihydrides (VSD)

• Type 2C: Horizontal two-bonded atoms at ideal [121] steps: horizontal step dihydrides

(HSD); plus all other possible two-bonded atoms.

• Type 3A: Three-bonded atoms at ideal (111) surfaces: terrace monohydrides (TM)

• Type 3B: Three-bonded atoms at ideal [121] steps: step monohydrides (SM); plus all

other possible three-bonded atoms.

Note that the atoms of type 0 are included for completeness since they can occasionally

appear in connection to the formation of overhangs. This is, however, a rare event in the

simulations and has no measurable effect on the evolution of the surface. These atoms are

removed (with probability one) as soon as they are encountered and, accordingly, we can

say that in this model the surface contains M = 6(+1) types of atoms.

The six pairs of parameters (p0, Ec) for Types 1, 2A,...3B can be determined from com-

parison to experiment. The idea is to choose the parameters so that the relative values of

the etch rates of a number of surface orientations (six, in principle) agree with those from

an experiment. By adjusting the parameters p0, the simulated etch rates will shift up/down

in an Arrhenius plot. Similarly the slopes of the etch rates can be controlled by tuning the
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parameters Ec. Alternatively, it is also possible to choose the parameters (p0, Ec) based on

comparison of the simulated surface morphology with that from experiments. An example

of this approach is provided in [2].

Note that due to the different possible combinations of the terminating species H and OH

around a surface site, the activation energies ∆E take different values for atoms of the same

type. This situation resembles that of case G for the one-dimensional interface in Section

V, where the activation energy of each atom type was randomly chosen from a uniform

distribution in an energy interval. However, in the current case the distribution is not

uniform, but rather, a discrete set of activation energies. Thus, the problem of determining

the average activation energy for an atom type is formally equivalent to the problem of

determining the macroscopic activation energy for the whole surface and Eq. (37) should

not be expected to be valid.

B. Results for the realistic model

In this section, we report on the relation between macroscopic and microscopic activation

energies for the two surface orientations of silicon with highest technological interest: Si(100)

and Si(110). The parameters of the model (eTA,FN
OH/OH , eTA,FN

OH/H , (p0,Ec) and θ) are chosen to

provide the formation of pyramidal hillocks on Si(100) and nosed-zigzag structures on vicinal

Si(110), as shown in [2]. In the case of Si(100), we consider the fully-texturized steady-state

surface, completely covered with pyramids [2].

Figure 8(a) shows the etch rate of the two surface orientations considered, both as the

rate of removal of particles 〈ḟ ↑〉 and as the actual etch rate R. The similarity between

the activation energies demonstrates that R is proportional to 〈ḟ ↑〉, as claimed in Section

IIIA. In order to understand the origin of the macroscopic activation energy for Si(100) in

this fully-texturized regime, the a posteriori analysis of the temperature dependence of the

removal probabilities 〈pα〉 and the surface fractions 〈fα〉 is provided in Figures 8(b)-(c). The

activation energies E〈pα〉 and E〈fα〉 are obtained as the slopes of the linear fits. Figure 8(d)

shows the temperature dependence of the weights 〈w↑
α〉, illustrating that, eventhough the

removal probabilities and the surface fractions may vary strongly, the normalized fraction

of removed particles is comparatively a rather smooth function of temperature. Taking the

average values of 〈w↑
α〉 over all temperatures (legend of Fig. 8(d)) and using them in Eq.
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FIG. 8: (a) Etch rate R and rate of removal of particles 〈ḟ↑〉 for (100) and (110). (b)-(c) Determi-

nation of the activation energies E〈pα〉 and E〈fα〉 (α = 0, 1, 2A, .., 3B) for (100). (d) Temperature

dependence of the normalized fractions of removed particles 〈w↑
α〉.

(16) together with the values determined for E〈pα〉 and E〈fα〉, shows (Figure 9(a)) that the

macroscopic activation energy is described as the sum of the two terms E
(p)
a +E

(f)
a (Eq. (16)).

This figure shows that also the macroscopic activation energy of Si(110) can be described

as the sum of these two terms.

Finally, we show the relative contributions εα of each atom type to the total macroscopic

activation energy in Figure 9(b) and compare them to the normalized fractions of removed

particles 〈w↑
α〉. According to this figure, the etching process under the chosen conditions

is dominated by the same surface sites in these two surface orientations: horizontal step

dihydrides (2C), step monohydrides (3B) and vertical step dihydrides (2B). The fact that
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FIG. 9: (a) Activation energy Elin-fit
a explained as the sum E
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a (Eq. (16)) for Si(100) and

Si(110). (b) Relative contributions εα (Eq. (18)) compared to the normalized fractions 〈w↑
α〉 (Eq.

(15)) for Si(100) and Si(110). Straight lines are guides for the eyes.

the contribution from 3B is larger in (110) than in (100), stems from the fact that the step

monohydrides are the natural termination of (110) (100% in the ideal surface and about

60% in these simulations) whilst in (100) they appear mostly at pyramidal ridges and at

the steps between the (111)-terraces forming the pyramidal facets [2] (about 40% in these

simulations, cf Fig. 8(c)). Although the presence of the horizontal step dihydrides (2C) on

these orientations is only a small fraction (bellow 1%) in both surfaces, as shown in Fig.

8(c) for (100), their relatively high removal probability (Fig. 8(b)) makes them dominate

the etching process. The same applies to the vertical step dihydrides (2B), which are present

on surface by a fraction of a percent, as shown in Fig. 8(c) for (100). These results show

quantitatively that the minority species do control the etching process and that usually the

macroscopic activation energy cannot be attributed to only one single species, not especially

to the majority species, as is extended practice in wet chemical etching. We conclude that

the weights 〈w↑
α〉 can be used during a simulation as indicators of the relative importance

of the different site-types, even if the actual values of E〈fα〉 and E〈pα〉 (required to evaluate

εα) are not known.

The previous discussion allows us to conclude that, in the fully pyramid-covered regime

of Si(100), the microscopic mechanisms controlling the etching process are the same as in

Si(110), even if these two surface orientations display very different morphologies, as shown
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in [2]. This conclusion should not be understood as a general proof that equal macroscopic

activation energies imply the same microscopic processes. The present work shows that the

macroscopic activation energy is a very complicated quantity that cannot be identified with

only one atomistic process and that, in principle, similar numerical values can be obtained

for it with different combinations of weights for different processes.

VII. CONCLUSIONS

By using the case of anisotropic wet chemical etching as a particular example of non-

equilibrium systems with open moving surfaces, it is shown that the macroscopic activation

energy Ea (defined as the slope of the etch rate in an Arrhenius plot) is explained by the

sum of two terms E
(p)
a + E

(f)
a . The first term E

(p)
a - sometimes wrongly identified as the

activation energy itself - corresponds to the average of the microscopic activation energies

E〈pα〉, and the additional term E
(f)
a accounts for the existence of fluctuations in the fractions

of particles fα at fixed temperature. This shows that the description of the macroscopic

activation energy as a ’total surface energy’, such as
∑

α〈fα〉E〈pα〉, is not valid for these

systems and will lead to erroneous interpretations of results. As a matter of fact, the ’total

energy’ concept is shown to be correct only in the particular case that the transition matrix

(παβ) does not depend on temperature, which is not the case in realistic models of growth

and etching. In these models, (παβ) is a complex function of the removal probabilities, of

the temperature and of the geometrical structure of the material, as shown by the particular

examples considered for chemical etching in this study.

It is shown that the correction term E
(f)
a can be accurately determined by a posteriori

analysis of the temperature dependence of the surface fractions in all cases considered. A

model is presented in which this term can be calculated analytically. Further work would

be needed if the corresponding analytical expression for the more realistic models is desired.

It is also shown that the normalized fractions of removed particles 〈w↑
α〉 can be used

as indicators of the relative importance of the different surface sites for the growth/etch

process. This enables a quantitative measure of the way how the minority species dominate

the process and stresses the fact that the macroscopic activation energy is a complicated

function and should not be identified with one atomistic process only; especially not with

the majority species on surface, as seems to be extended practice in growth and etching.
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