
Channel Estimator for Multiple Co-channel
Demodulation in TDMA Mobile Systems

Markku Pukkila and Pekka A. Ranta

Nokia Research Center
P.O. Box 407, FIN-00045 Nokia Group, Finland

E-mail: markku.pukkila@research.nokia.com
       pekka.ranta@research.nokia.com

Abstract   --  The suppression of the dominant co-channel
interference by joint demodulation is a potential tech-
nique to enhance the performance of the future TDMA
based mobile systems. The requirements for joint de-
modulation are that the dominant interfering signal is
identified in the receiver and reliable channel estimates
are provided for both co-channel signals. In practice to
meet both requirements the channel estimation should
be based on unique training sequences transmitted in
each co-channel. In this paper, we propose new opti-
mised training sequence sets and an algorithm for the
identification of the dominant interferer. The perform-
ance of the sequences is analysed in terms of the bit
error rate after joint channel estimation and detection
using the GSM platform.

I. INTRODUCTION

The requirements of the third generation mobile systems
claim substantial improvement to the performance of the
current mobile networks. The most obvious way to achieve
this goal is to improve the receiver performance with co-
channel interference by exploiting interference cancellation
(IC) methods. IC techniques considered in the literature are
either based on adaptive antennas or joint demodulation of
cochannel signals. A major difficulty in the application of
IC methods is the estimation of the channel parameters
both for the desired and interfering signal(s).

In this paper we focus on the problem of joint demodu-
lation of cochannel signals although the results can be ex-
ploited in the application of adaptive antennas, too. Joint
detection of cochannel signals applied for the GSM system
has been studied previously in [1,2,3]. In those papers the
dominant interfering signal is cancelled requiring joint
channel estimation of cochannel signals. The joint channel
estimation is accomplished by frame synchronous cochan-
nel signals with unique training sequences.

The performance of joint channel estimation depends
strongly on the correlation properties of the training se-
quences. Lower auto- and cross-correlation values give
smaller channel estimation error. Unfortunately, the current
GSM training sequences are not optimised by their cross-

correlation but only autocorrelation properties. This causes
problems for the joint channel estimation as well as identi-
fication of dominant interfering signal.

In this paper, we propose new training sequence sets
constructed from two basic families for the purpose of in-
terference cancellation. In addition an algorithm for the
identification of the dominant interferer is presented. The
first family consists of the length 31 Gold sequences and
the second family consists of length 20-bit sequences. The
latter sequence set has an advantage that they fit to the
GSM frame structure.

The paper is organised as follows. The co-channel
communication system considered in this paper is first de-
scribed. Next the joint channel estimation and joint detec-
tion algorithms are shortly presented. Then the methodol-
ogy for selecting the sequence sets is described and appro-
priate training sequence sets are proposed. Next the domi-
nant interferer identification algorithm is presented and its
performance is analysed. After that the performance of the
sequence sets is analysed by link level simulations. Finally,
the results are discussed and conclusions are drawn.

II.  SYSTEM MODEL

The co-channel communications system considered in
this paper is depicted in Fig. 1. It consists of N synchro-
nous co-channel signals with independent complex channel

impulse responses ( )h L n n n L nh h h, , , ,, , ,= 0 1  �  where L is

the length of the channel memory. The sum of the signals is
added up with independent white Gaussian noise and re-
ceived by TDMA mobile or base station. The bits are
transmitted burstwise through the channels, and the training
information is located in the middle of transmission bursts.
An example of the transmission burst structure is given in
Fig. 2. The GSM system uses training sequences with 16
reference and 10 guard bits [4].
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Fig. 1   Communications system with N co-channel signals.
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Fig. 2   TDMA burst structure (example).

III.  RECEIVER ALGORITHM

The received signal y, corresponding to the training se-
quence information, sampled once per symbol in the pres-
ence of additive noise n can be written in matrix form as
follows

y Mh n= +  (1)

where all the radio channels are organised as a vector

( )h h h h= L
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L
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L N
T T

11 2, , ,      �  (2)

and the known training bits as a matrix
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With the assumption of white Gaussian noise the maximum
likelihood channel estimate is given by
�

( )h M M M yML
H H= −1 . (5)

The channel estimates are passed to the joint detector
based on the maximum likelihood sequence estimation
(MLSE) principle. Joint MLSE can be straightforwardly
implemented via the Viterbi algorithm and the detected
data bits �a  are found by [1,3]
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where r is the received signal during the whole burst and A
is constructed from the tentative data bits like M in Eq. (3)
and (4).

IV.  NEW TRAINING SEQUENCES

In this paper, we consider training sequence structure
similar to that depicted in Fig. 2, i.e. the sequence is di-
vided into guard and reference parts. Guard bits are used to
cover propagation and multipath delays between the near-
est co-channels. Replicas of the last reference bits can be
chosen to guard bits to optimise periodic correlation prop-
erties.

A sequence set for joint detection should meet the fol-
lowing requirements:

1. Set size is large enough to assure distinct codes for the
nearest co-channels.

2. The length of the sequence is as short as possible to
minimise the amount of overhead bits but long enough
to enable estimation of adequate number of channel co-
efficients.

3. Sequence pairs in the set have low cross- and autocor-
relation properties.

In the following sections we propose two larger sets from
which the actual training sequence sets with a smaller size
are selected.

A. Length 20-bit sequences

The first proposed basic set consists of length 20-bit se-
quences that are optimised by their autocorrelation function
(ACF). Wolfmann [5] reports two sequences of length 20
bits having all out of phase components zero except one,
i.e. there are 9 zeros after the main peak in ACF. Relaxing
the requirement to 7 consecutive zeros in ACF gives a set
of 22 sequences. This basic set is presented in Table I and
it can be divided into three classes based on ACF:

•  2 sequences with 9 zeros in ACF
•  8 sequences with 8 zeros in ACF
•  12 sequences with 7 zeros in ACF

The total length of these sequences can be set to 26 by
choosing guard length of 6 bits. Thus they fit to the current
GSM frame structure.



TABLE I
Length 20-bit sequences

0. 02CEB 1. 035CD 2. 046D7
3. 04A27 4. 04B9D 5. 04C2B
6. 05A23 7. 05CE9 8. 0622D
9. 06A19 10. 07229 11. 075B1
12. 089AF 13. 08B3D 14. 08BCD
15. 08BD3 16. 09BC5 17. 09BD7
18. 0A6EF 19. 0B3D1 20. 0BBCD
21. 0BCD1

Autocorrelation:
9 zeros { 14,19}
8 zeros { 2,3,6,8,10,11,12,18}
7 zeros  { 0,1,4,5,7,9,13,15,16,17,20,21}

Subsets:
subset 7 { 1,6,8,13,15,18,21}
subset 10 { 1,2,3,8,9,11,13,15,17,19}
subset 15 { 1,2,3,5,6,8,9,10,11,13,15,16,17,18,19}

B. Gold sequences

One binary sequence family with considerably low cor-
relation values is Gold sequences [6]. They are constructed
from a pair of m-sequences with a help of shift registers.
The period of m-sequences is N n= 2 -1 , n = 1,2,... and the

constructed set consists of 2n +1  Gold sequences includ-
ing those two m-sequences. The whole set has a period of
2n -1 . There is only one m-sequence of period 15, thus no
Gold sequences of that length can be constructed. The next
possible period length 31 is therefore selected, corre-
sponding best to the GSM training sequence (period 16).
The cross-correlation spectrum of Gold sequences of
length 31 is three-valued having values

-   ,    -   ,    
9

31

1

31

7

31
  . (7)

The autocorrelation of Gold sequences has also the same
spectrum.

In the next section we consider the problem of selecting
the best subsets among the basic sets.

C. Selection of subsets

The proposed basic sets have low autocorrelation prop-
erties, but in order to exclude the worst cross-correlations
from the sets, we select smaller subsets. In this paper, we
consider subsets of  7, 10 and 15 sequences and compare
them to a subset of 7 GSM sequences. The subsets of
length 20-bit sequences are listed in Table I above.

TABLE II

SNR degradation values (dB) of training sequence sets. The worst and
   best sequence pair from each set is given.

Set Length Set size SNR degr. (dB)

worst best

GSM 16 bits 7 8.0 3.2

7 3.5 2.5

20-BIT 20 bits 10 5.0 2.3

15 5.7 2.2

7 1.9 1.6

GOLD 31 bits 10 2.0 1.6

15 2.1 1.6

The selection method is based on the properties of the
correlation matrix. The goodness of the set is evaluated by
the degradation of the signal-to-noise ratio (SNR). The
formula for the degradation dce  is as follows [7]

( ){ }d dBce
H/ log= ⋅ +
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where the matrix M is formed from the training bits like in
Eq. (3). This criterion tells us how much SNR degrades due
to the errors in the channel estimation process. Hence, low
degradation values are more desirable. Table II summarises
the SNR degradation values for the best and worst pairs in
the selected subsets.

The GSM training sequences perform well when used
for conventional single channel estimation but some degra-
dation can be seen in multiple channel estimation. Table II
shows that the best GSM pair achieves a tolerable perform-
ance whereas the worst pair performs 5-6 dB worse than
the worst 20-bit or Gold sequence pairs. However, the av-
erage performance is still reasonably good. It should be
noted that this analysis is for a subset of seven GSM se-
quences. The eighth sequence causes a very severe cross-
correlation peak which corresponds to a degradation value
of over 12 dB.

The 20-bit sequences perform better than the GSM se-
quences on average, and the channel estimation accuracy
depends much less on the particular pair of training se-
quences that are used. However, the relatively small size of
the basic set (22 sequences) limits the performance of the
larger subsets. All the bad pairs cannot be any more
avoided, and hence a few undesirable degradation values
occur in the subsets. Still, all the subsets look promising in
terms of channel estimation accuracy on the average.



The Gold sequences look excellent for the joint channel
estimation purposes. The degradation values are small and,
what is more, the values appear to be very much alike for
the whole set, which is due to the very even correlation
properties of the set. One consequence is the minimal im-
provement achieved by shrinking the subset size since there
are no particularly poor Gold sequence pairs.

V.  DOMINANT INTERFERER

The maximum number of simultaneously estimated
channel tap coefficients is strictly limited by the reference
length of the training sequence, e.g. with GSM sequences
can be estimated no more than 16 channel taps. This im-
plies that the dominant interferer cannot be found just by
performing joint channel estimation for all the signals as in
Eq. 5. In the following we propose a new suboptimum al-
gorithm to find the dominant interferer and thus avoid this
inconvenience.

A. Identification of dominant interferer

The identification algorithm of dominant interferer is in-
cluded in the channel estimation process presented in Ch.
III. This algorithm is based on the channel estimates re-
sulted from an estimation of two signals at a time, the de-
sired signal and one of the interfering signals. All the other
signals are considered as a noise during the process.

Let there be N simultaneous co-channel users transmit-
ting over independent radio channels with a memory of L
taps. If there is no noise in the system, the received signal
is

y Mh M h M h= = +e e r r   , (9)

where

[ ]M M Me i= 1   ,  i = 2,3,...,N (10)

[ ]M M M M M Mr i i N= − +2 3 1 1

 


and M i  consists of the training sequence bits as in Eq. 4

and
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The desired signal has the index 1 and the interfering sig-
nals have indices from 2 to N.

The channel tap coefficients in vector h e  are the pa-

rameters that are currently estimated. The rest of the sig-
nals are supposed to give only noise to the system, thus the
channel estimate is

( )
�
h M M M ye e

H
e e

H=
−1

  . (12)

The estimation (12) is repeated for each interferer yielding
channel estimates for them. A straightforward method to
find out the strongest interference is to calculate power
estimates based on the channel estimates as follows


,P hi k i

k

L

=
=
∑ 2

0

  ,  i = 2,3,...,N. (13)

The signal having the biggest power estimate 
�
Pi  is deter-

mined to be the dominant one.

A more elaborate method to determine the dominant in-
terferer is to reconstruct the received signal and compare
that with the real received signal. Using the channel esti-
mates given by Eq. (12) the estimated received signal is
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The mean squared error (MSE) of the reconstructed signal
is given by

( )y y I A M h− = −
� 2 2

r r   (15)

where

( )A M M M M=
−

e e
H

e e
H1

(16)

and I is the identity matrix. It can be seen that small error
term implies also small h r  as there exists a linear depend-

ence between them. Hence, MSE is most likely to reach the
minimum value when the most powerful signals are taken
into estimation matrix M e  and the other signals are weak

( h r is small). The signal having the smallest MSE is cho-

sen to be the dominant.

B. Performance analysis

In this section, the probability of finding dominant inter-
ferer with the proposed algorithms is evaluated in MAT-
LAB environment. The three families of training se-
quences, GSM, 20-bit and Gold, with the optimised subsets
of 7, 10 and 15 sequences are used in the simulations. The
intercell interference from the nearest cochannel cells is
modelled with lognormal distribution as the shadowing
effect dominates also the path loss variations. Intersymbol
interference (ISI) is generated according to Typical Urban
(TU) multipath channel profile and 5 channel taps per sig-
nal are estimated in the receiver. Interference limited situa-
tion is studied, thus noise is assumed to be negligible com-
pared to the interference.
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Fig. 3  Probability of finding dominant interferer with respect to power   
ratio between the dominant and other interfering signals (DIR).

During the simulation, the power ratio between the
dominant interferer and the sum of the other interferers
(DIR) is calculated, the DI identification is performed with
the proposed pairwise method using both strict power esti-
mates and MSE based techniques. As a comparison,
matched filter (MF) estimation for all the signals simulta-
neously is also performed.

The simulated average performance over all possible
sequence pairs, i.e. the percentage of the successful identi-
fications, with respect to DIR is presented with graphs in
Fig. 3. Note that the simulation cases are classified ac-
cording to the DIR ratio, i.e. there is no variance in the
ratio values. This approach corresponds to a frequency
hopping network in which the consecutive bursts are inde-
pendent of each other and we are usually interested in the
average performance characteristics of the system. How-

ever, if a non-hopping network is assumed, the same inter-
fering signal may dominate for a period of several succes-
sive bursts, and the average performance may not be in-
formative enough. The real performance depends on the
particular training sequences that are allocated for the co-
channel signals, and it can be either worse or better than
that in Fig. 3.

The proposed MSE algorithm is affected by the training
sequences as it exploits their correlation properties. Graphs
show that to achieve 100 % certainty of finding DI it re-
quires DIR to be at least 5 dB with Gold sequences, 10 dB
with length 20-bit sequences and 20 dB with GSM se-
quences. On the other hand, the pairwise channel estima-
tion with direct power estimate performs poorly in many
cases. Only with the Gold sequences this algorithm seems
to work adequately because of the desirable cross-
correlation properties of the sequences.

The MF estimation gives a steady and similar perform-
ance with all the training sequences. The cross-correlations
have a significant role, especially when DI is not very dis-
tinguishable they impair the MF performance clearly. As
DIR ratio grows, the probability of finding DI slowly in-
creases.

With the subsets of 10 and 15 sequences the MSE
method still performs very well and also MF estimation
gives reasonable results. Hence, these two methods seem to
be insensitive against increasing number of users and the
DIR ratio is the dominating factor in performance. Only the
pairwise method with power estimates is considerably de-
graded if the length 20-bit sequences are used.

The noise in the pairwise estimation is not necessarily
white Gaussian because of the residual interference and
therefore the pairwise channel estimates in Eq. (12) are not
optimum. Furthermore, the power estimates (13) may be
highly biased degrading the performance. Instead, the pro-
posed MSE method can perform more reliably in the pres-
ence of coloured noise.

VI. SIMULATION RESULTS

In this section, the performance of the training se-
quences is evaluated by link level simulations. A compari-
son between the sequences is performed by jointly de-
modulating two cochannel signals in the presence of Gaus-
sian noise. Simulation results with different training se-
quences are given in Fig. 4 - Fig. 7. Subsets of 7 and 15
sequences are used, and the best and worst sequence pairs
are evaluated from each subset.

Simulation model is a standard GSM simulation model
where the receiver is updated with joint channel estimator
and joint detector presented in Ch. III. There are two co-
channel signals corresponding to the desired and interfer-
ing signals, respectively. The signals are equally strong



(SIR = 0 dB) and they have independent Rayleigh fading
multipath channels. The joint detection of the cochannel
signals is performed in the receiver and bit error rate
(BER) is measured. As a reference the conventional detec-
tion of single signal with no interference (SIR infinite) is
performed. In the both conventional and joint detection
cases additive white Gaussian noise (AWGN) is present.

The cross-correlation properties of the training se-
quences have a major impact on the joint detection per-
formance as the simulation results show. GSM sequences
have a large variance in performance depending which
particular sequence pair is used since there is over 6 dB
difference at BER level of 10-2 between the best and worst
sequence pair. The other sets are more uniform, thus the
gain for the best 20-bit sequence pair is under 1 dB but up
to 6 dB for the worst pair compared to the corresponding
GSM pairs in the subset of size 7. Gold sequences perform
still over 1 dB better both with the best and worst pairs
compared to the 20-bit sequences, and their performance
depends also least on the chosen sequence pair. As they
achieve more gain from the longer sequence, this is also
expected.

In the subset of size 15 the Gold sequences perform only
slightly worse than in the smaller subset and the average
performance of the length 20-bit sequences is still reason-
able. However, the worst pair of 20-bit sequences is de-
graded being more than 2 dB worse at BER level of 10-2

than the worst Gold sequence pair.

VII.  CONCLUSIONS

The suppression of the dominant cochannel interference
by joint detection technique requires identification of the
dominant interferer and accurate channel estimation for the
cochannel signals. To improve the estimation accuracy new
training sequence sets with low cross-correlation properties
are proposed, and the simulations show that the perform-
ance of the system can be improved by the new sequences.
By the length 20-bit sequences can be achieved 6 dB and
by Gold sequences over 7 dB gain compared to the worst
GSM sequence pair at BER 10-2. Even though, GSM se-
quences are still applicable for the joint detection, too,
since they have a reasonable average performance.

Burstwise identification of the dominant interferer is re-
quired in frequency hopping network where the interfer-
ence in consecutive bursts is independent. The identifica-
tion algorithms are integrated as a part of the joint channel
estimation process exploiting distinct training sequences of
the users. The simulations show that the algorithm which is
based on the pairwise channel estimation and MSE crite-
rion finds the dominant interferer reliably if it is 5 dB / 10
dB / 20 dB above the interference left over with Gold / 20-
bit / GSM sequences. The algorithm outperforms the other

identification algorithms that are the pairwise channel esti-
mation with strict power estimation and matched filter es-
timation. Proper training sequence design is also essential
for the identification algorithms.

GSM training sequences can be replaced by the length
20-bit sequences as they both fit to the frame of 26 bits
(including guard bits). By that replacement IC works more
efficiently but the payload of the system is kept unchanged.
Gold sequences have slightly better performance, but on
the other hand, they take more bits in the frame structure.
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Fig. 4   Performance of joint detection of two cochannel signals.
            Best sequence pairs from subset 7 used.

Fig. 6   Performance of joint detection of two cochannel signals.
            Best sequence pairs from subset 15 used.

Fig. 5   Performance of joint detection of two cochannel signals.
            Worst sequence pairs from subset 7 used.

Fig. 7   Performance of joint detection of two cochannel signals.
            Worst sequence pairs from subset 15 used.
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