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ABSTRACT

An efficient path planning algorithm for general 6
degrees of freedom robots is presented in the paper.
The path planner is based on multiheuristic A* search
algorithm with dynamic subgoal generation for rapid
escaping from deep local-minimum wells. The
algorithm has been implemented as an extension to a
robot off-line programming and simulation system for
testing. The presented test results demonstrate that the
algorithm is practically applicable to path planning for
devices of different kinematic structure.

INTRODUCTION

Computation of a collision-free path for an
movable object among obstacles is an important
problem in the fields of robotics, CIM and AI.
Various automatic task level programming systems
can be build for robot guidance, teleoperation,
assembly and disassembly among others, if a suitable
method for path planning is available. In this paper an
algorithm for path planning is presented. It is an
extension of the well known and widely applied A*

search algorithm (Hart et al. 1968). However, the A*

algorithm is very susceptible to local-minimum wells,
that it has to "fill" in order to proceed in the search.

The proposed algorithm uses a bidirectional
multiheuristic A* based search engine as a local
planner. If the search encounters a deep local-
minimum well, a random subgoal is generated and the
search is continued for the subpaths from the original
start to the subgoal and from the subgoal to the
original goal.  This procedure is continued
recursively, until a path is found.

THE PROBLEM OF PATH PLANNING

Path planning has been studied for decades now.
For surveys, see (Latombe 1991; Hwang and Anhuja
1992). Although theoretical solutions to the problem
have been presented, for example (Canny 1988), only
a few practical path planning algorithms have
emerged, for example (Barraquand and Latombe
1991; Chen and Hwang 1992).

Most of the current approaches to path planning
are based on the concept of configuration space (C-
space) introduced by Lozano-Pérez and Wesley
(Lozano-Pérez and Wesley 1979). C-space  is the set
of all possible configurations of a robot. The number
of independent parameters needed to fully specify a
robot configuration is the dimension of the C-space.
The path planning problem has been proven to be a
PSPACE-hard problem (Reif 1979). The high
dimensionality of the C-space is seen as the principal
reason for the difficultiness of the problem (Hwang
and Anhuja 1992).

GRAPH SEARCHING APPROACH

One approach to path planning is to compute a
decomposition of the C-space and search the graph
connecting collision-free areas of the decomposition
for a collision-free sequence. Unfortunately, the size
of the C-space makes it impossible to precompute the
decomposition for devices of more than 4 degrees of
freedom (DOF′s). An alternative to the
precomputation is to use heuristics to guide the search
and to compute the decomposition as the search
proceeds.

The proposed algorithm can be characterized as a
heuristic search in the graph formed by discretizing
the C-space into a rectangular grid. The graph
representation is calculated as the search front
proceeds away from the start configuration. The graph
is computed only for a heuristically selected part of
the C-space.

The problem with using grid searching techniques
for path planning is the existence of local-minimum
wells in the search space (C-space) (Latombe 1991).
An informal definition for a local-minimum well is a
region of the C-space where the heuristic function
guides the search to a dead end. A* and many other
search algorithms have to fill up the wells in order to
escape from them. This means generating and
checking for collisions all of the configurations
residing in the well. The resulting computational cost
makes these simple algorithms impractical for
difficult path planning problems or for devices with
high number of degrees of freedom. Hence, many



different techniques have been developed for escaping
from the local-minimum wells i.e. (Barraquand and
Latombe 1991; Pal and Jayarajan 1993).

THE SEARCH ALGORITHM

The search engine of the path planner is an
improved version of the free-space expansion
algorithm developed by Kondo (Kondo 1991). The
algorithm performs staged multiheuristic search on
the grid representation of the C-space. The search is
A* based, but instead of the usual one heuristic
function the search is guided by a set of heuristic
functions. These functions are allowed to guide the
search sequentially in a round-robin fashion. The
number of node expansions allocated for each
function is calculated during the search based on the
relative efficiency of the function for guiding the
search away from the start configuration.

Using several heuristic functions is also a method
to speed up the escape from the local-minimum wells.
The heuristic functions utilized in the algorithm have
different preferred search directions in the C-space.
Since the more efficient heuristic functions guide the
search more than the less efficient ones, the filling of
the wells proceeds to the shallowest direction and the
apparent sizes of the local-minimum wells are
reduced.

Because a collision check is a computationally
expensive operation, the improved search algorithm
has been designed to use lazy evaluation principle to
decrease the number of collision checks performed
during the search. First, the nodes are checked for
collision when they are taken from the OPEN set for
expansion, not when they are generated. Since up to 2
∗DOF new nodes are generated when expanding a
node, this allows a substantial decrease in the number
of performed collision checks. Only the collision-free
nodes are expanded, the non-free space nodes are just
inserted into the CLOSED set. Second, the collision
status of a node is stored in its representation. This
allows saving the redundant checking of the reopened
nodes. It was experimentally found out that up to a
third of the open operations can be reopenings, so the
slight increase in the memory usage pays off with a
decrease in the number of performed collision checks.
Similarly, according to lazy evaluation principle, the
reopened nodes are just re-evaluated and inserted back
to the OPEN set. An alternative is to propagate the
better path to the successor nodes as described in
(Rich and Knight 1991). However, all this effort is
wasted, if the successors were not selected for
expansion in the later stages of the search.

The evaluation functions are similar to those used
by Kondo, but with some important differences. Since
the opened nodes are the ones selected by the
heuristics, they describe it better than the expanded
nodes. Therefore, the calculation of the evaluation

values is based on the opened collision-free nodes
instead of generated collision-free nodes.

After the j th stage, an evaluation value
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is calculated for each heuristics t = 1,...,T where T is
the number of heuristics utilized and Q=20.  The
value of pt(C) is calculated for each opened node C by
the following equation:
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where g(C) is the distance from the start node to the
current node C in grid steps and Ft(C) is the total
number of nodes opened by the t th heuristics until the
expansion of node C.

For the first stage, each heuristics is allocated
Einit = 25 node expansions. For the subsequent stages
each heuristics is allocated
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node expansions.
For the full utilization of the multiple heuristics

approach, it is essential to have the maximum
operation in the previous equation. It keeps heuristics
from being "zeroed out" by guaranteeing that each
heuristics will perform at least one node expansion in
each stage. Since every expanded node is evaluated by
each of the heuristics and inserted to the common
OPEN set, the heuristic functions are co-operating in
the sense that they generate nodes for each other. The
nodes generated by one heuristics may cause one of
the other heuristics to jump out of a local-minimum
well. For example, a heuristics bending the wrist of a
manipulator may enable the heuristics rotating the
base joint of the manipulator to continue motion
towards the goal configuration.

Also a second evaluation value is calculated for
each opened node according to the equation:
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If the evaluation value Ot(C) for the t th heuristic
function decreases below a threshold value Oth, the
execution of the heuristic is discontinued for that
stage. Since the heuristic functions are co-operating,
the discontinued heuristic may become active again in
some later stage of the search. If all of the heuristics
are discontinued, the search has encountered a serious
local-minimum well and a subgoal is generated as
described below. The value for Oth is a user defined
parameter.

Since the search direction can have a dramatic
effect on the search efficiency, the search engine is
bidirectional. The bidirectionality is implemented by
executing unidirectional search from both directions.



In accordance to Pohl’s cardinality comparison
principle (Pohl 1971), the size of the OPEN set is used
to select the search direction. After completing a
search stage, the search direction with the smaller
OPEN set is selected for the next stage. This choice
makes the search algorithm select the more efficient
search direction from the more cluttered space to the
open space. This takes place because there are more
collisions in the cluttered space. As the non-free space
nodes are not expanded, the size of the OPEN set
grows slower allowing more search effort being spent
in that particular search direction.

A multiheuristic A* search can still easily get
stuck in the local-minimum wells. Although it will
escape them faster than a pure A* search, it can still
take hours to solve the planning task or it may fail to
solve the task due to the amount of memory needed.
Thus, multiple heuristics as such is not a sufficient
technique for a practical path planner.

If a deep local-minimum well is encountered and
all heuristics are discontinued, a detour is attempted.
A random collision-free subgoal configuration is
generated and the OPEN sets are sorted to reflect the
distance to the subgoal. The search is then continued
for the subpaths from the original start to the subgoal
and from the subgoal to the original goal. Often, the
detour avoids deep local-minimum wells, but if one is
encountered again, the subgoal generation is
continued recursively until a path avoiding deep local-
minimum wells is found.

HEURISTICS

The evaluation of a node is performed with the
two part function f(C) = g(C) + h(C), where g(C) was
given above and h(C) is the estimated cost from the
current node to the goal node.

The heuristic functions h(C) utilized by the
algorithm presented here are weighted manhattan
distances between the evaluated configuration and the
goal configuration. The choice of manhattan distance
instead of euclidean distance is based on the
expansion strategy of the algorithm. Nodes are
expanded along the axes of the grid. Diagonal
movements from one grid point to another are not
allowed. Thus, manhattan distance is a better estimate
of the distance to the goal and can be expected to
yield better results than euclidean distance.

A problem with the approach taken by Kondo is
that the heuristics for his preferred search strategy are
randomly chosen. While he can demonstrate that
randomly selected weight sets can yield good search
efficiency when averaged over many sets, the
efficiency for a particular run can be very low.
Furthermore, variance in the search efficiency is an
undesirable feature. A fixed set of weights producing
good search efficiency would be a desirable
improvement.

A reasonable set of fixed weights can be based on
the following categorization of the devices and their
degrees of freedom. The movement of the first joints
of a manipulator-like device affects the position of all
of the subsequent joints of the device. Therefore, the
joints closer to the base of the device should be given
higher weights than the joints further away from the
base.  The degrees of freedom of many devices can be
partitioned into two sets.  One set determines the
position of the device and the other set determines the
orientation of the device.  This model suits for
example a rigid body. If there is no obvious
preference to pick, even weights for each degree of
freedom is a reasonable choice. These qualitative sets
can be defined more precisely as parameters for the
heuristic function h(C):
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Even heuristics:
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Above d=   (DOF + 0.5)/ 2 . These are the four
fixed weight sets used by the search engine.

Random subgoal generation often produces very
poor solution paths in terms of path length and
geometry. Similar problems have plagued also some
of the previous path planners and the authors have
developed simple but fairly effective geometrical
optimizing algorithms (Barraquand and Latombe
1991; Berchtold and Glavina. 1994). These optimizers
can be used for improving the quality of the solutions
produced by the path planning algorithm presented in
this paper. The simple optimizers try to repeatedly
delete those vertices from the solution path that are
not necessary to keep the path collision-free. These
optimizers have a run-time proportional to the number
of vertices. Therefore, if two configurations have the
same value of f(C), the expansion is continued to the
same direction in the C-space. This will reduce the
number of vertices in the solution. A momentum term 
ρ is used for tie-breaking. The momentum term has a
value of 0.5, if the evaluated node was expanded in
the same direction as the parent node along the axis j,
or 0 otherwise.

Randomized weight-set generation was also
implemented for comparison with the fixed heuristics.
A randomized heuristics is produced by randomly
selecting a value between 1 and 9 inclusive to be used
as a weight aj in the heuristic function. In the test



cases, four such heuristics were generated for each
run.

The full expression for the estimate of the cost to
reach the goal cell is given in the equation:
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where Di(C,G) is the distance between the current
node and the goal node G  in grid steps along axis i.
The value for A is 3.

DATA STRUCTURES

The efficiency of the path planning algorithm can
be qualified based on the number of performed
collision checks. However, it is not enough for
evaluating the performance of an algorithm. The free-
space enumeration type of path planning algorithms,
like the one presented in this paper, have the
drawback of having to represent a portion of the high-
dimensional configuration space. This incurs a
considerable computational cost for this type of path
planning algorithms.

Since the efficiency of the search algorithm
implementation is directly affected by the efficiency
of the underlying data structures, the issue of search
space representation can make or break the practical
usability of a particular algorithm. Thus, the
representation of the configuration space for the path
planning algorithm is a non-trivial problem.

In the current implementation of the path planner,
the configuration space is represented as a DOF-
dimensional grid of points. Each point represents a
neighborhood in the C-space, which means that any
configuration in the configuration space is equivalent
to the nearest point in the grid.

There are two distinct types of functionality
required from the data structures for the presented
search algorithm. An inclusion test has to exist for
checking the inclusion of a certain node in the OPEN-
set or in the CLOSED-set. Also, there has to be a
method to obtain a node with the lowest f(C) value
from the OPEN-set.

The inclusion test is implemented by making the
sets resemble sparse matrixes. The discrete positions
of the degrees of freedom are enumerated and the
enumerations are used as vectors to identify the points
in the grid and to index the sparse matrix. Only those
points of the configuration space are stored in the
sparse matrix (set), that are examined during the
search process. If each dimension of the configuration
space corresponds to a dimension in the sparse matrix,
one can find a node by accessing the sparse matrix
element, that has the same coordinates as the node’s
discretation point.

In the DOF-dimensional sparse matrix
implementation, one has to access up to DOF rows to
find an element. Since each row may contain only as
many nodes as there are discrete positions for the

corresponding degree of freedom, the access time for
a node has an upper limit of O(Dmax), where Dmax is
the maximum number of discrete positions. It should
be noted that the N-dimensional sparse matrix data
structure can be modified for an O(log(Dmax)) access
time by implementing the rows as balanced binary
trees. At the moment, this modification has not been
implemented, since it is doubtful that the
improvement in the total search time will pay off the
required programming effort.

For rapid access of the best node from a set, the
nodes are sorted on f(C). The nodes with a certain
value of f(C) are all bundled together and put into a
bucket. The order of the buckets is maintained with a
skip list (Pugh 1990). A skip list has a probabilistic O(
log( Nf ) ) access time, where Nf is the number of
different f(C) values in the set. As the sets are a
combination of a DOF-dimensional sparse matrix and
a skip list, the set operations execute in
O(Lmax+log(Nf)), where Lmax is the length of the
longest row in the sparse matrix.

TEST CASES

The test cases for the presented algorithm can be
divided into two categories. Several relatively easy
problem cases are used to demonstrate that the
predefined set of heuristics has a satisfactory
performance. More difficult problems are used for
demonstrating that the subgoal generation technique
makes the algorithm powerful enough for practical
use.

All reported times are CPU times on a SGI
Indigo2 computer with a 250Mhz R4400 processor
and 128 megabytes of main memory. The object
modeling and collision testing were done with
TELEGRIP robot simulation and off-line
programming system (Deneb Robotics Inc. 1994).
Each degree of freedom of the devices was quantized
into 100 discrete positions. The statistical data was
calculated for at least 500 runs.

None of the single heuristics above could solve
every task in the table 1 in less than 100000 collision
checks, while search with the multiple fixed heuristics
found a solution to every easy task in less than 3000
collision checks. It should be noted that the
performance of the fixed heuristics is better than the
average performance of the randomized heuristics. All
of the easy problem cases were solved in 5 seconds by
the multiple fixed heuristics based path planner.

Neither the fixed nor the randomized
multiheuristic search algorithm could solve the
difficult tasks of table 2 in 200000 collision checks.
Those tasks are only solvable by the presented path
planner with the help of the subgoal generation. The
value for Oth was 50 for the SCARA of figure 2 and
60 for the rigid body of figure 3.

CONCLUSIONS AND FUTURE WORK



The combination of multiple heuristics and
dynamic subgoal generation yields to several good
properties in the algorithm. Easy planning tasks are
solved rapidly by the multiheuristic search engine.
Since the search engine is based on A* algorithm and
manhattan distances, the quality of the solutions found
for easy problem cases is good if compared with the
paths produced by many other algorithms.  The
subgoal generation mechanism allows the algorithm to
rapidly escape deep local-minimum wells. Therefore,
the algorithm is practically applicable to difficult
problem cases too.

The search is performed in the configuration
space of the device. Thus, the algorithm is applicable
to a wide range of path planning tasks, as
demonstrated by the test cases.

Two immediate problems with the presented
algorithm are non-completeness and uncontrolled use
of memory. However, both problems can be solved.
Resolution completeness is lost because all of the
generated subgoals have to become parts of the
solution. An extension of the algorithm to build a
subgoal graph (Faverjon and Tournassoud 1987)
would allow the local search algorithm to connect the
start, subgoal and goal configurations in any order
until a solution is found. This subgoal graph approach
should also improve the performance of the path
planning algorithm, since the most difficult to reach
subgoals can be left out from the solution.

A* fully expands every opened node. This means
that there will be 2∗DOF new nodes per each opened
node. Furthermore, there is no mechanism in A* to
limit the growth of the OPEN and CLOSED sets. As
search algorithms are an active field of research,
newer algorithms have been developed that perform
search in restricted amount of memory and perform
partial node expansion in order to limit the growth of
the OPEN and CLOSED sets (Russell 1992). Such a
search algorithm would relieve the potentially
excessive memory need of the current path planning
algorithm.

A version of the path planner will be integrated to
the NEUROBOT car disassembly cell for on-line
generation of robot movements (Tuominen et. al
1995). The NEUROBOT sensory system is used for
obtaining the target locations for the various
disassembly operations. The path planner is used for
generating collision-free movements that can be used
for constructing individual robot programs for each
car to be disassembled.
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a)                                                      b)
Figure 1: The start and goal configurations for a 6 DOF Puma robot.

a)                                                           b)                                                        c)
Figure 2: The start configuration and two goal configurations for a 5 DOF SCARA robot.

a)                                                     b)                                                c)
Figure 3: The start configuration and two goal configurations for a 6 DOF U-shaped rigid body.

Task Manipulator Position Rotation Even Multiple fixed Multiple randomized

ave min max std
1a→1b 202355 27104 710 1764 909 7092 276 262664 20599
2a→2b 26190 >376384 418 7920 880 2255 312 42066 3456
2b→2c 3149 >330338 4463 3822 2640 4489 643 129605 8074
3a→3b >403244 109306 100180 >460623 539 101800 302 397498 116410

Table 1: Results for the various heuristics. Numbers in the first column refer to figures above.

Task Multiple fixed heuristics

Collision checks CPU time

min ave max std min ave max std
2a→2c 21840 79714 432916 70739 48.6 212.2 1340 214.2
3a→3c 90507 122960 359029 49202 229.9 331.2 1035 158.7

Table 2: Results for the difficult problem cases for the multiple fixed heuristics path planner with subgoal
generation. CPU time in seconds.


