
A Parallel Motion Planner for Systems with Many Degrees of Freedom
Pekka Isto

Laboratory of Information Processing Science
Helsinki University of Technology
 P.O. Box 9700, FIN-02015 HUT

evp@cs.hut.fi

Abstract
During the several decades of research, a number of

algorithms intended to solve practical motion planning
problems have been presented. However, the
intractability of the problem makes it difficult to design
algorithms capable of solving hard problems, especially
when the number of degrees-of-freedom is large. It is
necessary to use all available means to extend the
domain of practically solvable problem instances. This
paper reports results for a parallel implementation of a
motion planner based on two-level search algorithm.
The planner can solve difficult problems with many
degrees-of-freedom within practicable time limits.
Furthermore, easier problems can be solved with
unprecedented search resolution.

1. Introduction
The computation of collision-free motion for an

object among obstacles is an important problem with
applications in robotics and virtual reality [1]. However,
the problem is intractable. The current understanding is
that the planning of a collision-free motion for an object
among static obstacles is PSPACE-hard problem with an
upper bound that is exponential in the number of
degrees-of-freedom (DOF) [2]. The analysis of the
problem has produced several theoretical algorithms for
motion planning, but none of the theoretical algorithms
have been implemented for practical use [3]. Instead, a
large number of approximate and heuristic algorithms
have been developed to solve various instances of
practical motion planning problems [4]. Due to the
complexity of the problem even the best heuristic
planners take impractical amount of time to compute a
solution, if the number of DOF is sufficiently high and
the task is geometrically difficult. In order to solve real-
world motion planning problems as efficiently as
possible and to extend the scope of practically solvable
motion planning tasks, all the available techniques from
computer science must be used, including parallel
processing.

The purpose of this paper is to demonstrate that a
two-level search algorithm [5] can be used to solve
geometrically difficult motion planning problems for

systems with many degrees-of-freedom (here up to 18).
Furthermore, the algorithm can solve less difficult tasks
with a search resolution that is an order of magnitude
higher than other methods [6]. High-resolution planning
is required in workspaces that contain tight clearances or
thin obstacles like in assembly planning and spot
welding.

The structure of the algorithm makes it easy to
parallelize it efficiently. A parallel implementation of
the algorithm running on a PC-cluster can solve the
Hwang and Ahuja benchmark task [2] in average time
comparable to the cycle time enabling near real-time
operation. The Alpha Puzzle 1.2 benchmark task [7] can
be solved in minutes demonstrating significant
improvement over previous results.

The next section will present a brief overview of the
previous related research in motion planning. Section 3
provides an overview of the implemented algorithm and
the selected parallelization strategy. Section 4 presents
the experimental results. Finally, section 5 presents
conclusions.

2. Previous Related Research
A considerable amount of literature has been

accumulated during the past three decades of research in
motion planning. Several good reviews and books have
been published on the subject [1,2,3,4,8]. Therefore, this
section is limited to the context of the results presented
here.

Like most contemporary algorithms for motion
planning, the presented algorithm performs search in
discretized representation of the robot’s joint space or
configuration space (C-space) [9]. In order to deal with
the exponential cost of global planners and the
susceptibility to local minima of local planners,
Faverjon and Tournassoud proposed to combine both
methods into a single two-level planner [10]. Glavina
presented randomized planner using similar approach
that builds a subgoal graph by connecting random
subgoals or landmarks in C-space with a “sliding” local
planner [11]. The SANDROS search strategy performs
selective and non-uniform subdivision of the C-space
and uses a “sliding” local planner to connect subgoals



from different portions of the C-space [12]. As their
local planners are relatively weak, these motion planners
are quite dependable on the quality of the generated
subgoals. Recent developments along this line of
research involve the heuristic placement of the subgoals
[13,14,7].

Many of the motion planning approaches and
algorithms originally introduced in serial form have
been later formulated into parallel form. Only a limited
number is covered here; for a more extensive
discussion, see the review by Henrich [15]. Glavina
conjectures that a significant reduction in time for the
first solution can be attained by running his algorithm in
parallel on multiple workstations [16]. Challou et al. [6]
and later Caselli and Reggiani [17] use the same
approach to construct a parallel implementation of the
influential Randomized Path Planner (RPP) [18].
Instances of the RPP solving the original problem are
run on multiple processors and the first solution is kept.
Experimental results demonstrate good expected speed-
up and reduction in variance of the planning time when
the problems are sufficiently difficult.

Baginski presents a parallel version of Glavina’s
algorithm for time-varying workspaces [19]. Rather than
running multiple instances of the algorithm on the
processors, the implementation distributes the local
planners into the available slave processors and builds
the subgoal graph in the master processor. Little
experimental data is provided, but a network of 30
workstations provides only a speed-up of four. A similar
approach is used by Qui and Henrich but with a better
speed-up [20]. Their local planner is rule-based.

Mazer et al. present a motion planner based on
parallel genetic algorithms [21]. In addition to running
the components of the planner in parallel, they
implement parallel collision detection. The planner
should be quite scalable due to the perfectly parallel
nature of genetic algorithms.

3. A Parallel Motion Planner
The motion planner presented in this paper is a

parallel and improved version of the adaptive two-level
heuristic search algorithm presented earlier [5]. The
upper level is a subgoal graph built with random
subgoals. A unique feature of the algorithm is that rather
than using a single local planner or a combination of
local planners to attempt the path segments between the
subgoals, it uses a local planner with continuously
adaptable capability. As more subgoals are needed and
generated for solving the problem, the global planner
increases the capability of the local planner. The subgoal
graph is essentially a task decomposition method and
the global planner attempts to construct a solution from

solutions to subproblems with a cost measure below a
certain increasing limit.

The local planner originates from the free-space
enumeration algorithm presented by Kondo [22]. It uses
a bi-directional A* algorithm guided by four different
heuristics to search a grid representation of the C-space.
The heuristics are executed in round-robin fashion and
the efficiency of each heuristics t = 1,...,4 at
configuration node C is estimated by the formula:
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where g(C) is the distance from the start configuration
to the current configuration C in grid steps (Manhattan
distance) and Ft(C) is the total number of configurations
examined by the heuristics t until the examination of C.
The overall efficiency Pt(j) of heuristics t at round j is
estimated by taking an average of pt(C) over the last 20
configurations.

At the first round of execution each heuristics is
allocated 25 node expansions in the A* algorithm.
Subsequently, the number of examinations is determined
by the relative efficiency of the heuristics with the
following formula:
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where Et stands for the number of examinations
allocated for heuristics t. A second evaluation value is
calculated for each examined configuration:
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If the evaluation value Ot(C) for the heuristics t
increases above a threshold value Oth, the execution of
the heuristics is discontinued for that round. If all
heuristics are discontinued, the local planner fails.

The heuristic evaluation of a configuration uses the
standard form of A* guiding function f(C) = g(C) +
h(C), where g(C) is as above and h(C) is an estimate for
the cost from the evaluated configuration to the goal
configuration. The following four weight sets are used
in the estimate:
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Even heuristics:
.,...,1,5 DOFiai ==

d=  (DOF + 0.5)/ 2 . An additional “greediness”
multiplier A=3 and a tie-breaking term ρ are added to
the full expression of h(C):
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Di(C,G) is the distance between the current
configuration and the goal configuration G in grid steps
along axis i. The tie-breaking term has a value of 0.5 if
the evaluated node was expanded in the same direction
as the parent node along the axis j or 0 otherwise.

All of the heuristics share the search space
representation, and therefore progress made by any of
the heuristics will immediately and continuously benefit
all of them. The evaluation values control the search so
that relatively more efficient heuristics are used more
and the individual heuristics and eventually the local
planner are discontinued if sufficient progress is not
made.

The memory consumption of the local planner grows
exponentially as the number of degrees-of-freedom is
increased. The threshold parameter Oth can be used to
control the memory consumption, but an additional limit
on the maximum number of configuration nodes for
each subtask is needed. This is a machine specific
parameter that depends on the amount of main memory
in the machine.

The global planner generates random subgoals and
builds two trees of subgoals and successful subpaths,
one rooted at the start configuration and the other at the
goal configuration. Pohl’s cardinality principle [23] is
used to select the tree for expansion. As more subgoals
are generated, the threshold parameter is updated
according to the formula Oth = O´th RS, where S is the
current number of subgoals, O´th and R are constants
with values of 3 and 1.05. This means that the local
planner becomes gradually more powerful and the
balance of computation shifts increasingly from global
planning to local planning.

The main motivation for the parallel implementation
of the motion planner is to reduce the wall-clock time
spent in solving the planning tasks. Although no
established limit exists to denote what is “practicable”
planning time, Gupta considers run times in few minutes
and few tens of minutes “reasonable” [8] and times in
hours “impracticable” [24]. A parallel implementation
should be able to reduce the running time from hours to
minutes or tens of minutes with reasonable computing
resources.

Several alternative parallelization strategies could be
used. The whole planner can be run on multiple
machines for the first solution like parallel RPP. Or the

Figure 1: A version of the benchmark problem proposed
by Hwang and Ahuja.

   
Figure 2: Alpha Puzzle 1.2 benchmark task. Two
intertwined L shaped tubes must be separated.

    
Figure 3: The start and goal configurations for the
12DOF task “dogs with bones”.

   
Figure 4: The start and goal configurations for the
18DOF task. The robots must avoid the gates and each
others while performing a right hand rotation.

local planners can be distributed to the slave processors
while the global planner is run at the master processor.
A hybrid strategy would combine these approaches by
running multiple copies of the whole planner on
subtasks at the slave processors and running an
additional global planner at the master. The results
presented here are for the second strategy as it has



CPUs Min. 25% 50% 75% Max. Ave. Std.

1 2.7 14.7 23.1 34.6 158.0 28.5 22.45DOF
11 0.6 1.6 2.3 3.1 11.7 2.6 1.6
1 75.7 216.0 390.5 623.0 3609 500.0 470.0HR5DOF

11 21.8 41.3 58.0 82.5 312 68.6 42.1
1 14.1 209.5 450.0 909.5 5636 764.4 956.96DOF

11 0.8 15.2 32.2 66.6 417 54.7 69.6
1 23.5 1302 4171 7407 21377 5045 4666HR6DOF

11 12.1 120 331 655 1855 444.4 409.1
1 45.9 498.5 1117.5 2579 10648 1981 227210DOF

11 9.3 42.0 96.6 183.5 987 149.1 181.0
1 10.9 286.0 940.5 5553 34974 4112 630012DOF

11 4.5 17.5 58.1 305.0 1945 225.6 345.6
1 31.2 476.5 1297 3143 25584 3330 502618DOF

11 10.8 38.0 82.0 186.5 1661 214.8 325.3

Table 1: Run times in wall clock seconds for the various tasks on a single 500 MHz CPU and on the whole cluster of 11
CPUs. Sample size is 100 runs. Percentiles are rounded up.

the smallest granularity of computing, and thus is the
worst case for scalability.

4. Experimental Results
The parallel motion planner was tested on a Linux PC

cluster comprised of 11 processors with clock speeds
between 450 MHz and 550 MHz and memory sizes of
128 MB or 512 MB. The computing nodes are
connected with 100 Mbit Ethernet. For the scalability
experiments the computing nodes are grouped so that
each group has an average clock speed of 500 MHz. The
implementation uses RAPID collision detection library
[25] and MPICH message passing library [26].

As seen in table 1, the planner can solve the Hwang
and Ahuja benchmark task (figure 1) in seconds with a
296×171×42×191×105 grid representation of the C-
space (label: 5DOF). The search resolution is the same
as that of the similar “AdeptOne” task [12]. A
2960×1710×420×1910×1050 high-resolution version of
the task (HR5DOF) can be solved in few minutes using
the whole cluster. The benchmark task is designed to
force a large backtracking motion to the solution and
many other planners would need considerable effort for
producing the backtracking motion at such a high search
resolution.

The Alpha Puzzle 1.2 task (figure 2) is intended to
represent disassembly problems with a “narrow
passage”. The parallel planner can solve it in minutes
with a resolution of 128 positions for each DOF
(6DOF). A high-resolution version with 1280 positions
can be solved in tens of minutes on the whole cluster

(HR6DOF). These are significant improvements, since
the earlier results are in hours on a single processor [7].
The planner has also demonstrated capability to plan
motions through narrow space in the previous
experiments [5].

The main motivation of this paper is to complement
earlier experiments with many degrees-of-freedom
problems and demonstrate that the planner can be used
for such problems despite the potentially excessive
memory consumption of the local planner [5].

Various notions of what is considered a large number
of degrees-of-freedom exist. Gupta states that from the
practical point of view, systems with more that four
DOF must be included in the category [24,8]. Faverjon
and Tournassoud would only include systems with 8 or
more DOF [10]. Kavraki and Latombe introduced the
PRM approach especially for systems with many
degrees-of-freedom [27]. Their test cases have 8 and 12
DOF. The minimum number of degrees-of-freedom
required to place an object into an arbitrary position and
orientation in 3D space is six. Therefore, motion
planners intended for general use should be able to
generate motions for 6 degrees-of-freedom systems.
Industrial robot cells usually have auxiliary degrees-of-
freedom for placement of the work piece. Multirobot
cells can easily have two dozens degrees-of-freedom.
Recently introduced new applications, such as planning
for flexible objects, call for several dozens or hundreds
of degrees-of-freedom [28,29,30]. In this paper, systems
with 10 or more degrees-of-freedom are included in the
category of problems with many degrees-of-freedom.

The Hwang and Ahuja benchmark task can be
extended into a 10 DOF version by planning the motion
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Figure 5: Speed-up for tasks 5DOF and 10DOF. The
speed-up is calculated from the average run time for 5
runs of the planner.

simultaneously for two independent SCARA robots
(10DOF). Similarly, 12 DOF and 18 DOF tasks are
constructed from two and three Puma type robots as
shown in figures 3 and 4. The 12DOF and 18DOF tasks
are planned with 100 discrete positions for each degree-
of-freedom. The data in table 1 shows that also these
problems can be solved in minutes with the cluster.

Finally, the scalability of the planner is shown in
figure 5. Even the worst-case parallelization strategy
provides an acceptable speed-up. Additional reduction
in planning time could be attained by adding more
processors to the cluster. However, the graph shows
diminishing returns and eventually a larger granularity
strategy must be used. The superlinear speed-up for
small number of processors is probably caused by cache
effects.

5. Conclusions
This paper presented experiments with a parallel

motion planner based on two-level heuristic search in
the configuration space. The experiments demonstrated
a moderately good scalability of the algorithm on an
inexpensive parallel computer built form commodity
hardware and free software. While the algorithm shows
diminishing speed-up as the number of processors is
increased, alternative parallelization strategies may be
used to provide improvement in the behavior of the
planner. Even in the current form, the parallel
implementation can be used to solve very difficult
motion planning problems within near real-time and
practicable off-line time limits. The test problems
included cases with many degrees-of-freedom
demonstrating that A* search-based approach can be

used to solve such cases. Additionally, easier but non-
trivial problems can be solved with exceptionally high-
resolution representation of the C-space. The results on
Alpha Puzzle 1.2 presented here are a significant
improvement over previous results.
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