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Abstract

The decades of research in motion planning have resulted
in numerous algorithms. Many of the most successful
algorithms are randomized and can have widely differing
run-times for the same problem instance from run to run.
While this property is known to be undesirable from user’s
point of view, it has been largely ignored in past research.
This paper introduces the large run-cost variance of
randomized motion planners as a distinct issue to be
addressed in future research. Run-cost variance is an
important performance characteristic of an algorithm that
should be studied together with the mean run-cost. As a
positive example of possibilities for reducing the run-cost
variance of a randomized motion planner, simple heuristic
techniques are introduced and investigated empirically.

1. Introduction

Motion planning capability is an essential property of any
autonomous robotic system [1]. When formulated as the
classical “mover’s” problem, it can be shown that the
problem is PSPACE-hard [2]. The most basic variation of
the problem assumes that all obstacles are known and
static during the planning and execution of the motion for
the movable device. A large number of motion planning
algorithms have been presented for this and other
variations of the problem [1][2][3]. Due to the complexity
of the problem, practical planners must be based on
heuristic and incomplete algorithms.

The complexity of the problem guarantees that for any
algorithm there exists a problem instance that exhibits the
intractable worst-case behavior. Heuristics can take
advantage of assumed regularities in the problem, but
when the heuristics is known, the construction of a
“deceptive” problem instance exhibiting worst-case
behavior is usually quite straightforward. Relaxing the
completeness requirement has allowed the development of
randomized motion planners that are complete only in
probabilistic sense. Randomized planners use either some
randomized search procedure, e.g. [4][5], or random
sampling of the configuration space (cspace) for subgoals
in combination of local search between the subgoals, e.g.
[6][7][8][9].

The current motion planners that rely on configuration

space samples for subgoals are very sensitive to the
selection of the particular sampling sequence, be it a
particular segment of a pseudo-random number sequence
or a particular type of a quasi-random number sequence.
Structured sampling techniques, e.g. [10][11][12], usually
rely on assumptions on the task structure that are easily
violated [13]. Since randomized algorithms tend to break
the task structure, they are usually robust against
“deceptive” inputs. However, this robustness comes at the
expense of being able to reliably estimate the length of a
particular run of the algorithm due to run-cost variance.

This paper introduces the large run-cost variance of
randomized motion planners as a distinct issue to be
addressed by the research community in the future work.
Variance should be accounted for in the research
methodology, especially if it is empirical [14]. If a new or
variant randomized motion planner is presented,
appropriate descriptive statistics should be presented to
describe the run-cost variance of the proposed motion
planner. Users are known to find run-cost variance
distressing [15], therefore motion planners with low
variance are preferred. The size of variance is also directly
involved in comparisons between various planners or
components of planners, since large variance can
invalidate the statistical significance of an observed
difference in average performance.

Furthermore, in order to demonstrate prospects for
addressing the variance problem, simple techniques with
variance reduction effect are presented. The techniques
are heuristic in nature and their effects are verified
empirically. The techniques are applicable to motion
planners that use samples in the configuration space as
subgoals to be connected with a local search procedure. In
essence, they make the local search procedure more
powerful when it is observed that a large number of
samples or local planner calls are needed for the solution
and thus the particular sampling sequence cannot be relied
to be successful for the task at hand. Since the search
procedure used here is deterministic, this can be seen as
shifting the balance of computation away from the
randomized sampling procedure to the deterministic
search procedure.

The next section presents a brief overview of
randomized motion planners. Section 3 introduces PRM



motion planner variants with heuristics that improve
performance both in the expected run-cost and the run-
cost variance. Section 4 describes the empirical
methodology used in this paper and section 5 presents the
results. Finally, section 6 presents the conclusions and
issues for future work.

2. Previous Work

Randomization techniques have been introduced into
motion planning algorithms in order to avoid expending
large amount of computation when a deterministic planner
exhibits the worst-case behavior. Classical cell
decomposition methods construct a cspace representation
for the entire cspace although only a part may be
necessary for the construction of the solution. Heuristic
strategies can be used to restrict the construction of the
cspace representation to promising areas, e.g. [16][17].
However, when the heuristics fails and guides the
construction to some unimportant area, the complexity of
the problem may again reveal itself with large costs in
terms of time and space requirements. This renders
planners utilizing straightforward best-first search
strategies useless for practical problems, since the
planners tend to get trapped examining dead-end regions
of the cspace. This has been long known as the problem
of local minima [1].

The same problem is also present when the guiding
heuristics takes the form of a potential field over the
workspace or the cspace. A theoretical result establishes
that all global navigation functions have saddle points
[18], and therefore, simple gradient procedures can
terminate at some configuration other than the intended
goal configuration of the problem. Again, the question
becomes what to do once the (deterministic) primary
technique ceases to make progress.

Randomization was introduced in order to solve the
local minima problem. A randomized search procedure
can be obtained by combining a heuristic search strategy
with randomly generated subgoal configurations. The
heuristic strategy is first attempted between the original
start and the original goal configuration. If the heuristics
guides the search to a local minimum, a random subgoal is
generated and the heuristic strategy is attempted via the
subgoal configuration. As more subgoals are generated
and path segments are generated between them with the
heuristic strategy, they will form a graph that
approximates the connectivity of the cspace [6][19]. The
heuristic strategy can be as simple as a straight-line
interpolation between the subgoals [2]. This general idea
has evolved into a randomized version of the classical
roadmap approach [20][10][21] and it has been a topic for
extensive research under the name of probabilistic

roadmap (PRM) planning. Other similar motion planners
use more complex heuristics for search and subgoal
generation, e.g. [9][7].

An early and influential motion planner called
Randomized Path Planner (RPP) combined the potential
field approach with a random walk procedure to escape
from the local minima [4]. Several variations of the
planner were introduced, but it had difficulties in solving
problems that required long walks against the potential
[22]. A special random exploration procedure was later
introduced to improve the efficiency of randomized search
[5].

Recently, the use of quasi-random sampling has been
proposed as an alternative for the more usual pseudo-
random sampling [23]. While eliminating the variance
caused by different seeds for the random number
generator, it remains brittle with respect to small but
critical changes in the workspace of the problem.

Very few user experiences with applications utilizing
motion planning algorithms have been reported in the
literature. Experiences with a maintainability study tool
based on RPP indicate that users find the variance
inherent in randomized algorithms very disturbing [15].
Although the run-cost variance has been known to be a
serious deficiency of the sampling based randomized
motion planners [24], no methods have been presented to
directly address this problem. This observation has
motivated the consideration of the amount of variance as a
measure of the performance of an algorithm and the
investigation in the possibilities of reducing the variance.

3. Heuristic Techniques for Variance Reduction

The general idea of the heuristic strategy presented in this
paper is to increase the relative effort spent in
deterministic local search procedure when it is observed
that the randomized sampling procedure does not succeed
rapidly in producing subgoals that cover the cspace
adequately. Two variations of this general idea are derived
with a simple PRM planner using bidirectional A* search
[25] based local planner and parameterized formulas for
increasing the competence of the local planner.

Although A* search algorithm makes a (resolution)
complete motion planner when combined with one of the
cell decomposition methods, it has an exponential
memory consumption. The memory consumption makes it
practically impossible to escape deep local minima, since
the algorithm can exhaust any available central memory.
Therefore, it alone is not suitable for motion planning, but
must be combined with other methods, here with pseudo-
random sample subgoals. The approach is to use A* search
local planner on a grid approximation of the cspace from
one sample to the other, but to discontinue A* search when



it appears to be too costly to generate the path segment
with A*. The underlying assumption is that a sequence of
subgoals can be found so that A* search succeeds in
generating all the path segments from the start to target
configurations within a defined limit on the search
efficiency on each segment.

 The essential property of a search algorithm based
local planner is that it allows simple evaluation and
control of the difficulty of the path segments that the local
planner is capable of yielding. A measure of search
efficiency can be obtained from the ratio of the size of the
examined search space to the length of the best available
path candidate towards the target sample. Noting that the
local planning is performed in discrete rectangular grid
representation of the cspace lets us realize the above
measure with simple counting operations. Let F(C) be the
total number of collision-free configurations examined by
the local planner until the examination of configuration C.
Furthermore, let g(C) be the distance from the start
sample to the configuration C currently examined by the
local planner. Now, an efficiency measure O(C) can be
defined as
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The competence of the local planner can be controlled
by setting an upper limit Oth for O(C) and discontinuing
the search in the local planner, if the limit is exceeded.
Thus, the local planner is only competent to solve
problems in which the search algorithm does not at any
point violate the given efficiency limit by requiring more
than the set upper limit of grid point examinations for
each step proceeded away from the start sample along the
currently best solution candidate path.

Note that O(C) measure is similar to Nilsson’s
penetrance [25]. The difference is that penetrance is
evaluated once after the (optimal) path is found, but O(C)
is evaluated continuously during the search and used as a
control during the search.

The efficiency of a heuristic search algorithm such as
A* is highly dependant on the guiding heuristic function.
The usual form of the guiding function is f(C) = A×g(C)
+B× h(C), where g(C) is as above, h(C) is a heuristic
estimate for the cost from the currently examined
configuration C to the target sample, and A and B are
constants.  The guiding function used here is greedy with
smaller A=3 and larger B=5. Manhattan distance in the
discrete cspace is used for both g(C) and h(C). The
heuristic estimate h(C) has an additional tie breaking in
favor of configurations that repeat a motion of a joint
along the solution path candidate.

The sampling strategy used here is simple pseudo-
random sampling until a roadmap connecting all the seed
configurations of the given test task is obtained. Candidate

sample pairs for the local planner are produced by
selecting for the newly generated sample up to k=10
closest samples from each connected component of the
roadmap at the sample generation time. Euclidean
distance is used as the distance metric in the selection.

An interesting problem is the question of how to
determine a threshold for O(C). The majority of PRM
planners have static local planners. For this study, static
local planners with well-defined capability can be
obtained by setting a fixed upper limit o for O(C).

Since the competence of the local planner can be set
separately for each call, information gained during the
roadmap construction can be used to determine a suitable
value for O(C) limit with the goal of reducing the overall
roadmap construction cost. Two such adaptation strategies
are proposed here and studied experimentally in the
following sections. The first strategy involves increasing
the O(C) limit linearly with the size of the roadmap. The
intuition behind this strategy is that more difficult
problems require larger roadmap and a more capable local
planner to adequately capture the connectivity of the
cspace. Furthermore, as more samples are added to the
roadmap, the failure probability of the local planner
decreases [26]. If the failure probability is lower, failures
that are more expensive can be tolerated. This strategy has
a global character in the sense that it determines a single
increasing O(C) limit for all the samples in the roadmap.
The following parameterized formula is used to determine
the threshold Oth for O(C) during roadmap construction at
a particular roadmap size of S:
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A strategy of local character is defined by setting the
Oth threshold separately for each sample in the roadmap.
The strategy uses a measure of difficultiness of the cspace
around a particular sample. For each sample v the fraction
of successful calls of local planner is computed:
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where N(v) is the total number of local planner calls with
the configuration space sample v either as start or target
and Ns(v) is the number of calls that succeeded in
producing a path segment to or from the sample v. This
measure is very similar to failure ratio [8].

A value of Oth is computed for both start and target
samples with the parameterized formula:
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and the maximum is used as the current threshold value.
The intuition behind this strategy is to use an estimate of
the difficultiness of the cspace region to control the
capability of the local planner. A small rs suggests that



sample resides in a difficult region of the cspace and thus
the local planner should be given opportunity to search the
region more broadly.

Parameterized heuristics present a problem of selecting
the values for the heuristic parameters. If the properties of
the expected motion planning problems are known, then
the parameters should of course be tuned for those
problems using preliminary experiments. When tuning is
not possible or desirable, then some on-line procedure can
be used to select the value.

In this paper a metaplanner is used to select the values
for parameters o, s and n. Perhaps unsurprisingly, the
selection is done randomly from a set of reasonable values
for each parameter. The metaplanner selects a parameter
value uniformly from the set at the start of the execution
of the PRM planner. Based on the preliminary
experiments, the reasonable ranges of parameter values
were determined and the sets defined to be {2, 4, 8, 16,
32} for o, {300, 1000, 3000, 9000} for s and {0.01, 0.03,
0.1, 0.3} for n. Thus, the planners compared in the
experimental section of this paper are PRM variants with
bidirectional A* search between the samples. Planner
PRM-C uses a static local planner at a competence level o
selected by the metaplanner at the start of the run. PRM-G
uses the global adaptation of the local planner according
to the equation (1) with parameter value s selected by the
metaplanner. Similarly, PRM-L uses the local adaptation
strategy defined by the equation (2) and parameter n. The
research question is whether the planners PRM-C, PRM-
G and PRM-L differ in location or spread of their
empirical run-cost distributions. The results are taken to
indicate possible benefits of increasing the capability of
the local A* search during planning (PRM-G, PRM-L)
against keeping it static (PRM-C).

4. On the Empirical Methodology

The run-cost of a Las Vegas -type randomized algorithm
varies from run to run according to some distribution ).
Usually, deriving the true run-cost distribution of a
randomized algorithm is a formidable task and no such
results exists for any of the well-known motion planning
algorithms. Sometimes the true distribution is sampled
empirically and the results are presented in the form of a
histogram [19]. More often the run-cost distribution is
described by reporting estimates for the location and
spread of the true distribution e.g. [9][27][28]. This
implies a parametric model )
Q�X� for the run-time
distribution, where Q describes the location of the
distribution and X the spread of the distribution. Sample
average and median are typically used for estimating the
location and sample variance, standard deviation or range
for estimating the spread.

Most often, however, only an estimate of the location
parameter is presented by reporting the sample average of
the run-cost over some number of runs. This case is
unsatisfactory since it hides one of the most problematic
characters of the randomized motion planning algorithms.
Furthermore, it makes it impossible to evaluate the
statistical significance of differences between algorithms
or variations, e.g. when comparing the performance of one
sampling strategy with another. An estimate of the
standard deviation is needed for the most elementary test
of statistical significance, namely the t-test. Of course, the
outcome of the test or analysis of variance should be
given as an indication of the statistical significance.

The following section presents descriptive statistics on
the run-cost of the proposed PRM variants and results
from the statistical tests of the significance of the
differences between the variants. The test problems are
two well-known benchmark problems proposed in the
literature. The Hwang and Ahuja benchmark problem is a
5 degrees-of-freedom robotics motion planning problem
for a SCARA-type robot [2]. The task was designed to
represent a realistic but non-pathological problem for a
manipulator. The task involves removing a hook from a
wicket and a subsequent backtracking motion to avoid a
large obstacle (see Fig. 1). No generally available
geometric model for the task exists, but a difficult version
of the problem was produced for this study.

The second test problem is the Alpha Puzzle benchmark
problem proposed by Amato et al. [11]. The problem is
intended to represent 6 degrees-of-freedom disassembly
problems and it is designed to have a narrow passage that
the movable object must pass. Several versions of the
Alpha Puzzle exist with varying difficultiness. This study
uses Alpha Puzzle version 1.2, which is of medium
difficultiness. The original Alpha Puzzle problem involves
separating the two intertwined α-shaped loops. The loops
can be intertwined in two different ways with the prongs
of the loops either in symmetric (first image in figure 2) or
anti-symmetric (middle image in figure 2) orientations.
Since the intention of this paper is to evaluate the
performance of the various strategies in capturing the full
connectivity of the test problems, both intertwined
configurations together with a separated configuration
(last image in figure 2) are inserted as seed configurations
to the roadmap at the beginning of the construction.

The roadmap construction with the PRM variants is
continued until a roadmap connecting all the seed
configurations of the task is obtained and the number of
performed collision checks is taken as the run-cost
measure. The grid approximation of cspace for A* search
has resolution of 128 steps for each degree-of-freedom for
the Hwang and Ahuja benchmark problem and 512 for



Figure 1: The seed configurations for a version of the
benchmark problem proposed by Hwang and Ahuja.

Figure 2: The seed configurations for the Alpha Puzzle
1.2 benchmark task.

the Alpha Puzzle problem.

5. Empirical Results

Table 1 gives descriptive statistics for the experiments
with the PRM variants. The table gives run-cost mean,
standard deviation and the coefficient of variation for a
sample of 240 runs. The coefficient of variation expresses
standard deviation as a percentage of mean, so it can
reveal if the standard deviation changes together with the
mean.

 As can be seen in table, PRM-G and PRM-L have
considerably better performance than PRM-C both in
terms of mean run-cost and the standard deviation of the
run-cost for the version of the Hwang and Ahuja
benchmark problem. PRM-L not only has the absolute
standard deviation improved but also the coefficient of
variation is smaller. This indicates that not only has the
scale of the run-cost distribution changed but also its
shape. Ryan-Einot-Gabriel-Welsch multiple comparison
procedure [29] can declare the difference between static
(PRM-C) and adaptive (PRM-G, PRM-L) planner variants
statistically significant at α=0.01 (experimentwise), but
fails to detect statistically significant difference between
the two proposed heuristics. Levene’s test of homogeneity
of variances [30] detects a very significant difference in
the standard deviations (p=0.0071). For the Alpha Puzzle
1.2 problem the results are not as good. There is an
improvement in standard deviation when using the
proposed heuristics, but that difference is not statistically
significant. Neither are the differences in the means.

The failure of the heuristics to yield statistically
significant differences for the Alpha Puzzle 1.2 may be
explained by the fact that it is very difficult to generate
“good” subgoal samples for this task. Finding critical
samples for this problem from a pseudo-random sampling
sequence is a rare event and the increase in the capability
of the local planner fails to make it sufficiently more
frequent. It can be stated that the behavior of the planners
on this test problem is determined by the “narrow
passage” nature of the problem, as samples are required in
a small bottleneck area in the cspace. Narrow passages are
a well-known difficulty for all PRM type planners [31]
and the proposed heuristics does not overcome this
problem.

6. Conclusions And Future Work

This paper introduced the run-cost variance of randomized
motion planners as a distinct research issue. In future
research in randomized motion planners the run-cost
variance should be considered as an important
performance characteristic of the planner. Descriptive
statistics and statistical tests used in this paper will
provide researchers with tools to address the issue of
variance and strengthen the research methodology.

As a positive example of possibilities for reducing the
run-cost variance of a randomized motion planner, simple
heuristic techniques were introduced and investigated
empirically. A typical analysis of the run-cost means
shows that the techniques can provide a statistically
significant improvement. An analysis of the run-cost
variance shows an additional benefit of the techniques and
helps to select between two techniques that have similar
expected run-cost. But like all heuristics, also the
techniques presented here may fail to provide the
expected benefit.

The heuristic techniques for variance reduction
presented in this paper can also be used with other search
procedures that have a means to control the extent of
search in the local planner. Possible search procedures
include randomized ones such as RPP [4] and RRT [5].
But due to the lack of a theoretical model of the
phenomena, the effectiveness of the proposed techniques
with other search procedures must be investigated
empirically.
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Hwang and Ahuja problem Alpha Puzzle 1.2
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