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ABSTRACT

Digital image libraries are becoming more common and widely used as visual infor-
mation is produced at a rapidly growing rate. Creating and storing digital images
is nowadays easy and getting more affordable all the time as the needed technolo-
gies are maturing and becoming eligible for general use. As a result, the amount
of data in visual form is increasing and there is a strong need for effective ways to
manage and process it. In many settings, the existing and widely adopted meth-
ods for text-based indexing and information retrieval are inadequate for these new
purposes.

Content-based image retrieval addresses the problem of finding images relevant to
the users’ information needs from image databases, based principally on low-level
visual features for which automatic extraction methods are available. Due to the
inherently weak connection between the high-level semantic concepts that humans
naturally associate with images and the low-level visual features that the computer
is relying upon, the task of developing this kind of systems is very challenging.
A popular method to improve retrieval performance is to shift from single-round
queries to navigational queries where a single retrieval instance consists of multiple
rounds of user–system interaction and query reformulation. This kind of operation
is commonly referred to as relevance feedback and can be considered as supervised
learning to adjust the subsequent retrieval process by using information gathered
from the user’s feedback.

In this thesis, an image retrieval system named PicSOM is presented, including de-
tailed descriptions of using multiple parallel Self-Organizing Maps (SOMs) for image
indexing and a novel relevance feedback technique. The proposed relevance feedback
technique is based on spreading the user responses to local SOM neighborhoods by
a convolution with a kernel function. A broad set of evaluations with different im-
age features, retrieval tasks, and parameter settings demonstrating the validity of
the retrieval method is described. In particular, the results establish that relevance
feedback with the proposed method is able to adapt to different retrieval tasks and
scenarios.

Furthermore, a method for using the relevance assessments of previous retrieval
sessions or potentially available keyword annotations as sources of semantic infor-
mation is presented. With performed experiments, it is confirmed that the efficiency
of semantic image retrieval can be substantially increased by using these features in
parallel with the standard low-level visual features.
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1 INTRODUCTION

Producing visual content in digital form is becoming more and more common and
affordable. Digital cameras, scanners, multimedia portable phones, and powerful
personal computers are already available at reasonable prices. Data storage units
have evolved as well as other computer hardware providing more capacity for less
cost. Furthermore, the fast development of computing hardware has enabled the
switch from text-based computing to graphical user interfaces and multimedia ap-
plications and communications. This transition has fundamentally changed the use
of computers and made visual information an inseparable part of everyday com-
puting. Thereby, the lack of effective methods for indexing and retrieving stored
information has become the limiting factor for wide utilization of stored visual con-
tent.

The traditional text-based approaches to image retrieval have proven out to be in-
adequate for many purposes. On some occasions, image databases have associated
captions or other text describing the image content and these annotations can be
used to greatly assist image search. Manually annotating large databases takes,
however, a lot of effort and raises the possibility of different interpretations of the
image content. As a result, content-based image retrieval (CBIR) has received con-
siderable research and commercial interest in the recent years. The field has matured
into a distinct research discipline which differs substantially from text-based infor-
mation retrieval. In CBIR, images are indexed based on the visual content of the
image itself, generally using low-level statistical features such as color, texture, and
shape. The main advantage is that these features can be automatically derived from
the visual content of the images. Visual features are objective, as human involve-
ment is not required in the extraction process, and overall quite natural for visual
information processing.

Unfortunately, very few assumptions about image content can be made in the case
of general images, and the generic low-level features used in CBIR are insufficient to
discriminate this kind of images well on a conceptual level. This creates a quintessen-
tial problem in CBIR, namely the semantic gap between the high-level semantic
concepts used by humans to understand image content and the low-level visual fea-
tures used by a computer to index the images in a database. Due to the immense
need for effective image retrieval applications, a considerable amount of research has
been directed on ways to bridge or at least narrow the semantic gap. One common
approach is to try to learn the user’s preferences with intra-query learning methods
such as relevance feedback. Relevance feedback is a technique originally proposed for
text-based information retrieval to improve the performance of information access
systems. The improvement is achieved by modifying the system’s responses based on
the user’s reaction to the previously retrieved items. This way the role of the CBIR
system is changed by relevance feedback from an automatic answering machine to
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an interactive tool that is being used by a skillful human expert. Image retrieval be-
comes an iterative process of human–computer interaction. Alternatively, relevance
feedback can be regarded as a best-of-both-worlds type solution: the retrieval sys-
tem is an interface between an intelligent high-level system and a low-level system
with extremely fast performance on simple, low-level operations. The human user,
on the other hand, has a natural ability to explore large amounts of visual data,
perform semantic analysis and extract only the relevant information, but is limited
in speed and endurance for monotonous tasks.

To answer some of these challenges, the PicSOM project was started in 1998 by
Prof. Erkki Oja and Dr. Jorma Laaksonen. It was inspired by the earlier WEBSOM
project of Academician Teuvo Kohonen and his group, in which Self-Organizing
Maps were used for text document indexing and retrieval. In PicSOM, the informa-
tion is in the form of images instead of text, which sets quite new requirements.

1.1 Contributions of the thesis

The main contributions of this thesis are:

• A survey of various techniques developed and used in the field of CBIR re-
search. The fundamental issues of image indexing, query processing, measur-
ing image similarity, relevance feedback, and retrieval evaluation are addressed.

• The development and representation of our PicSOM CBIR system, including
detailed descriptions of using the Self-Organizing Map (SOM) as an image
indexing method and a novel relevance feedback technique where multiple
parallel SOMs are utilized and user responses are spread to local map neigh-
borhoods. The proposed method provides a common framework for CBIR
with the following advantages:

- It scales well up to large databases of even one million images.

- It supports the use of multiple features, both visual and non-visual, si-
multaneously in image retrieval.

- It has a modular architecture, allowing the easy addition or removal of
features.

- It contains a visualization tool provided by the SOM, which facilitates
easy browsing of the database.

• A set of evaluations with different image features (both ones developed by us
and ones obtained from external sources), image databases, and parameter
settings demonstrating the validity of our approach. A reference technique
which ignores the topological ordering provided by the SOM is described and
results of comparisons are provided.

• A framework for extending the basis of retrieving relevant images from the
visual features. On certain application areas, additional information on the

12



semantic content of the images is available and should be exploited. Especially,
a method for using the results of previous search instances or existing keyword
annotations as sources of semantic information is provided.

1.2 Outline of the thesis

The following chapters of the thesis are organized as follows. First, a general
overview of image retrieval based on the image content is presented in Chapter 2.
Chapters 3 and 4 cover the two fundamental phases in CBIR, the image indexing
phase and the retrieval phase. First, different techniques for offline processing and
indexing the image database are discussed in Chapter 3. Then, an overview of sig-
nificant issues related to querying and retrieving the indexed content is given in
Chapter 4. Relevance feedback is covered in more detail in Chapter 5. Evaluating
the performance of CBIR systems is discussed and a summary of performed exper-
iments is presented in Chapter 6. The details of the arrangements and results of
these experiments are presented in the included publications. The conclusions of
the thesis are drawn together in Chapter 7.

1.3 List of publications and the author’s contributions

The journal articles and conference papers listed below are included in this thesis.
In this section, the content of each publication is briefly described and the contribu-
tions of the author are listed for each publication. The following numbering of the
publications is used throughout the thesis when referring to the publications:

I Jorma Laaksonen, Markus Koskela, Sami Laakso, and Erkki Oja (2000). Pic-
SOM – Content-Based Image Retrieval with Self-Organizing Maps, Pattern
Recognition Letters 21(13-14): 1199–1207.

II Jorma Laaksonen, Erkki Oja, Markus Koskela, and Sami Brandt (2000). An-
alyzing Low-Level Visual Features using Content-Based Image Retrieval, Pro-
ceedings of the 7th International Conference on Neural Information Processing
(ICONIP 2000) (invited paper), Vol. 2, Taejon, Korea, pp. 1333–1338.

III Jorma Laaksonen, Markus Koskela, Sami Laakso, and Erkki Oja (2001). Self-
Organizing Maps as a Relevance Feedback Technique in Content-Based Image
Retrieval, Pattern Analysis & Applications 4(2+3): 140–152.

IV Markus Koskela, Jorma Laaksonen, and Erkki Oja (2001). Comparison of Tech-
niques for Content-Based Image Retrieval, Proceedings of the 12th Scandinavian
Conference on Image Analysis (SCIA 2001), Bergen, Norway, pp. 579–586.

V Jorma Laaksonen, Markus Koskela, and Erkki Oja (2002). PicSOM—Self-
Organizing Image Retrieval with MPEG-7 Content Descriptions, IEEE Trans-
actions on Neural Networks, Special Issue on Intelligent Multimedia Processing
13(4): 841–853.
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VI Markus Koskela, Jorma Laaksonen, and Erkki Oja (2002). Implementing Rel-
evance Feedback as Convolutions of Local Neighborhoods on Self-Organizing
Maps, Proceedings of the International Conference on Artificial Neural Net-
works (ICANN 2002), Madrid, Spain, pp. 981–986.

VII Markus Koskela and Jorma Laaksonen (2003). Using Long-Term Learning to
Improve Efficiency of Content-Based Image Retrieval, Proceedings of the Third
International Workshop on Pattern Recognition in Information Systems (PRIS
2003), Angers, France, pp. 72–79.

The PicSOM project has involved a number of people over the five-year period. Dur-
ing the project, four journal articles (Publications I, III, and V and Brandt et al.
2002) and numerous conference papers have been published. In addition, six Mas-
ter’s Theses (Koskela 1999, Brandt 1999, Laakso 2000, Pakkanen 2002, Viitaniemi
2002, Rummukainen 2003) have been written on the subject. The original idea of
using multiple parallel Self-Organizing Maps for image retrieval and spreading user
responses on local map neighborhoods to achieve relevance feedback was conceived
by the manager of the research project, Dr. Laaksonen. The author of this thesis
was then hired as the first full-time worker to the project.

Publication I is the first journal article on the PicSOM system. It contains a concise
description of all the major parts of the system. The visual features used in early ex-
periments with the system are described. A set of performance evaluation measures
used also in later publications and results of retrieval experiments are introduced.
The author of this thesis had a substantial role in the work done for the article along
with the first author. The experiments were performed by the author. All coauthors
participated in the reporting of the work.

Publication II discusses the analysis of low-level statistical visual features in a CBIR
setting. CBIR is seen as an emerging research topic benefiting from previous re-
search on natural image statistics. The relevance of different statistical features can
be evaluated in the PicSOM setting. While the connection from low-level features to
semantic concepts remains unsolved, the use of a meaningful set of parallel features
can aid in linking statistical visual features to image similarity perceived by hu-
mans. The illustrations of semantic image classes on feature-wise SOM surfaces are
introduced. The original features used in and developed for PicSOM are described
in some detail. The author of this thesis participated in the general work on this
article and implemented some of the visual features.

Publication III is a journal article focusing on the description and qualitative anal-
ysis of the relevance feedback technique based on Self-Organizing Maps which is the
backbone of the PicSOM system. The article covers also other existing relevance
feedback methods and different kinds of usage of SOMs in the CBIR field. Advan-
tages and differences of our method when compared to existing relevance feedback
methods are discussed. A general CBIR system structure and the idea of divid-
ing the task of a CBIR system into independent stages or blocks is introduced by
separating the per-feature and final processing stages, resulting in reduced compu-
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tational burden. Initial version of the reference methods based on vector and scalar
quantization are introduced. The author of this thesis implemented the reference
system, performed the experiments and was a major participant in the preparation
of the article.

Publication IV takes the block structure approach further. The operation of a CBIR
system is seen as a series of independent processing stages. For each stage, there
may exist multiple choices, and different CBIR systems may be implemented in
this framework. Moreover, each stage of processing may be analyzed separately.
Performed experiments validate these assumptions and show two alternative paths
in the block structure that lead to superior results. The author of this thesis par-
ticipated in the programming work, planned and performed the experiments, and
did a major part in the reporting of the work. The first coauthor participated in
programming and both coauthors helped in the reporting phase.

Publication V is a journal article describing an extensive evaluation of the PicSOM
system with visual content descriptors defined in the MPEG-7 standard. In this
work, we have replaced our previous features with ones defined in MPEG-7. In
addition, a slightly modified version of our algorithm was presented and used. The
results were presented using recall-precision curves and they show that PicSOM can
readily utilize the MPEG-7 content descriptors and the system in general benefits
from using as many descriptors as there are available without any preceding feature
selection. The author of this thesis implemented the modified version of the re-
trieval algorithm, suggested the use of MPEG-7 descriptors in the PicSOM system,
performed the experiments, and participated in the reporting of the work.

Publication VI discusses the interpretation of PicSOM’s relevance feedback tech-
nique as convolutions of sparse value fields obtained from the relevance information
with a kernel function. A number of kernel functions with different sizes are com-
pared in spreading the relevance information on the SOM surfaces. In addition, two
methods for incorporating information about the relative distances of the map units
in the original feature space are presented. The author of this thesis raised the issue
of a comprehensive evaluation of different kernel functions, planned and performed
the experiments, and wrote the publication with the help of the coauthors. The first
coauthor implemented the location-dependent window functions into PicSOM.

Publication VII presents a method to use previously recorded user–system inter-
action data as an image feature which can be used to improve retrieval efficiency
on large databases of miscellaneous images. The method can also be used for ex-
isting keyword annotations, which can result in greatly improved retrieval results.
The author of this thesis proposed the method, gathered the user interaction data,
performed the experiments, and wrote the publication with the help of the coauthor.
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2 CONTENT-BASED IMAGE RETRIEVAL

Image retrieval has been an active research field since the 1970s. The traditional
approach has been based on manually inserted annotations describing both the con-
tents of the image and other textual or numeric metadata such as the file name, im-
age format, size, dimensions, and where, when, and by whom the image was created.
The user then formulates textual or numeric queries which are made against these
annotations. This approach enables the use of the existing and widely adopted meth-
ods developed for standard database management systems also in image retrieval.
For reviews of text-based image retrieval, see, for instance, Fidel et al. (1994) or the
image database system survey by Tamura and Yokoya (1984).

There are, nevertheless, serious drawbacks with the textual annotation approach.
First of all, the most descriptive annotations must usually be entered manually. In
order to fully describe the contents of an image, the human annotator would have to
provide a description for every object’s characteristics and spatial and other relations
with other objects in the image. This kind of a comprehensive description of images
is usually impossible as images contain too much detail. Rather, people tend to enter
annotations only for the most obvious content or for the current task at hand. This
approach also quickly becomes impractical as the database grows in size. With huge
and dynamic databases, such as ones containing indices of the images available in
the World Wide Web, this approach is clearly not viable. The annotations may even
change later: some previously unnoticed attribute may become an important aspect
and, consequently, the images would have to be indexed again to keep the database
up-to-date. The second problem is the rich and subjective content images generally
have. Therefore, even if the annotations are scrupulously provided for each image
in the database, there is a problem with different interpretations of image content
different people are bound to have. If the database is large, the annotation task
has to be divided among a group of indexers and the interpretations of the images
may vary. The user must know the exact terms the annotator used in order to
be able to retrieve the images she wants. Usually, this is not the case as the user
does not necessarily have any insight into the database generation process. Textual
annotations are also language-dependent.

In the early 1990s, content-based image retrieval (CBIR) emerged as a method to
overcome the evident problems of text-based image retrieval (see e.g. Kato 1992,
Chang and Hsu 1992, Niblack et al. 1993, Gudivada and Raghavan 1995). In the
CBIR approach, the images are indexed by features directly derived from their visual
content using automatic or semi-automatic image processing techniques. Indexing
images differs substantially from indexing textual documents since images or visual
information in general do not consist of such fundamental building blocks as words
in text which could be directly utilized. Instead, the desired attributes of images
for efficient indexing are complex functions of image regions or the whole image. In
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this sense, image retrieval can be considered as a discipline in the intersection of
(traditional) information retrieval (IR) and image processing.

CBIR has received considerable research interest in the last decade and has evolved
and matured into a distinct research field. Still, the research field is rather young
as the first influential papers were published and the first notable CBIR systems,
such as QBIC (Niblack et al. 1993, Flickner et al. 1995), Photobook (Pentland et al.
1994), Chabot (Ogle and Stonebraker 1995), Virage (Bach et al. 1996), VisualSEEk
(Smith and Chang 1996), MARS (Huang et al. 1996), and PicHunter (Cox et al.
1996, Cox et al. 2000) were developed in the early 1990s. The majority of papers
on CBIR have been published after 1995 with a clear upsurge in the last few years.

The interest in the field is a result of both the rapid development of computer hard-
ware and the fact that the need for effective visual information management tech-
nologies is immediate. Content in any form has value only if it can be found and the
easier it gets to produce visual content, the more complex the problem of managing
the content archives gets. Potential applications for image database technologies
can be found in diverse fields such as education (Chang et al. 1998b), industry
(Iivarinen and Pakkanen 2002), online shopping catalogs (Viitaniemi and Laakso-
nen 2002), museums and art galleries (Addis et al. 2003), medical imaging (Shyu
et al. 1999), geography and remote sensing (Smith 1996), astronomy (Csillaghy et
al. 2000), crime prevention and investigation (Pastra et al. 2003), and archiving
personal digital photographs and scanned images (Rodden and Wood 2003), among
many others.

In recent years, textbooks on CBIR and multimedia retrieval in general have begun
to appear, including Gong (1998), Del Bimbo (1999), Lew (2001), Santini (2001),
Castelli and Bergman (2002), and Dunckley (2003). Several worthy survey articles
have also been written, including Gudivada and Raghavan (1995), Aigrain et al.
(1996), Forsyth et al. (1996), Chang et al. (1997), Gupta and Jain (1997), Jain
(1997), Eakins and Graham (1999), Rui et al. (1999), Yoshitaka and Ichikawa (1999),
Smeulders et al. (2000), Vasconcelos and Kunt (2001), Eakins (2002), and Antani et
al. (2002). In addition, surveys focusing on reviewing CBIR systems have also been
compiled (Johansson 2000, Venters and Cooper 2000, Veltkamp and Tanase 2000).

2.1 Types of image search tasks

General CBIR systems must support a multitude of usage types. Users of a CBIR
system are likely to present a very diverse set of different search scenarios, which
the system should support. A commonly used classification for CBIR search tasks
is given in Cox et al. (2000). The most precise search task is target search, in
which the user is trying to find a specific target image which may or may not be
actually present in the database and which is the only relevant image for this query.
An example situation for a content-based target search takes place when the user is
searching for an image of a previously seen painting, knowing neither the name of the
artist nor the title of the painting. Generally, target search is mostly employed when
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searching for a specific known image in catalogs, component listings, trademark or
logo databases, personal photograph collections, etc.

Category search occurs when the user is looking for images belonging to a certain
category or class of images and all images fulfilling the category criteria are consid-
ered relevant. The remaining images are then non-relevant to the query. Here, the
notion of a class should be considered a user-centric concept, used as an aid for this
discussion, rather than a “hard” class as is generally assumed e.g. in pattern recogni-
tion. In the beginning of a category search, the user may have initial example images
belonging to the class in question to start the search with or the search may be ini-
tiated using some alternative method such as a keyword query or a preceding image
browsing phase. In CBIR system performance evaluations, a common test setup is
to assume a single initial example image and that the user is looking for additional
images in the same class. Category searches may be enhanced during the query in
a natural way by relevance feedback, i.e. grading the returned images on whether
they belong to the class in question and communicating this information back to
the retrieval system, thereby providing more information about the class of relevant
images and thus guiding the system toward the remaining relevant images in the
database. An implicit assumption of both target and category searches is that the
user is able to partition the image database D into sets of relevant and non-relevant
images, D⊕ and D	, respectively, and that D = D⊕∪D	 and D⊕∩D	 = ∅. In target
search, the set D⊕ contains only one image, D⊕ = {I⊕}. The validity of this as-
sumption has been questioned in IR (see e.g. Ingwersen 1992) and many researchers
consider relevance to be a fuzzier and more pragmatic concept. The evaluation of
IR and CBIR methods becomes, however, much more complicated without making
this assumption.

In open-ended search or browsing, the user has a vague or inexact search goal in
mind and she browses the database for any interesting things. The retrieval goal
can abruptly change during the session when the system returns interesting but
unexpected images. Image searches of this type are highly interactive and often
constitute a nonlinear sequence of actions, thus requiring a flexible user interface.
A database visualization tool providing an overview of the database as well as a
localized point-of-interest with increased level of detail is needed. In addition, rele-
vance feedback is a useful way to manipulate the system toward the desired kind of
images also in open-ended searches. It should be noted that objective evaluations
of system performance become increasingly difficult as we move from target search
to less exact search tasks.

The above classification is a useful starting point but certainly does not cover all
image retrieval tasks. Another way to examine the issue is to take a more user-centric
approach by studying actual users and their retrieval practices. For example, the
image retrieval needs of art directors have been studied by Garber and Grunes (1992)
and of journalists by Ornager (1997) and by Markkula and Sormunen (2000). User
studies comparing the traditional keyword-based approach with a retrieval method
based on semi-automatic spatial indexing and metadata-based categorization of the
images have been presented by Jose et al. (1998) and Yee et al. (2003), respectively.
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2.2 Semantic gap

Depending on the image domain, the type of the image query, and the amount of
a priori information available on the images, the CBIR problem exhibits a varying
degree of difficulty. The fundamental problem is that, for a computer, extracting the
semantic content from an image is an exceedingly difficult task as objects with the
same semantic content often have variable visual appearances and many semantically
totally different objects are visually nearly similar (Gupta et al. 1997). In particular,
automatic segmentation and object recognition in general images are very difficult
problems and even if these were completely solved, it would not be enough for
defining image semantics in the general case (Santini et al. 2001). Humans, on
the other hand, possess a highly sophisticated visual system and have a lot of a
priori information on different objects, which we automatically use e.g. in object
recognition. This information is based on previous experience, personal preferences
and interests, cultural issues, and the context in which the image is represented.
Unfortunately, this kind of knowledge is inherently hard to duplicate in a computer
vision application. This discrepancy is commonly referred to as the semantic gap.
Feature extraction methods developed in computer vision, image processing, and
more recently also directly in the CBIR field can be seen to provide different solutions
to this problem. The digital image itself, consisting of a regular array of pixels with
different color or gray-level values, is clearly a representation not suited for semantic
analysis. In this sense, one can consider the task of feature extraction, that is, finding
as good features as possible, as a step in bridging the gap between raw image data
and image semantics.

A straightforward and influential factor in the complexity of the image retrieval
problem is the repertoire of images in the database—the image domain (Smeulders
et al. 2000). A narrow image domain has only a limited and predictable variabil-
ity in all aspects of appearance whereas a broad image domain has unlimited and
unpredictable variability as well as ambiguous and subjective semantics. The scope
of a given image domain is largely a subjective issue lacking an exact definition.
However, an effort to develop a measure of image database complexity, analogous
to the concept of perplexity of a text corpus, was presented in Rao et al. (2002).

A common narrow-domain test set, also for CBIR research, is the Brodatz texture
collection which provides images with somewhat homogeneous stochastic textures
(Brodatz 1966). Object databases, in which sets of physical objects have been
photographed in a controlled setting with a uniform background, are also typical
narrow-domain CBIR test collections. An example of such is the Columbia Ob-
ject Image Library (COIL-100) (Nene et al. 1996). Of real-world application areas
involving narrow image domains, the most studied one is undoubtedly retrieval of
trademark images, typically based on shape features as the lack of background en-
ables automatic segmentation of the images, see e.g. Eakins et al. (1998), Jain and
Vailaya (1998), Ciocca and Schettini (2001), King and Jin (2001), Yin and Yeh
(2002), or Neumann et al. (2002). Other narrow domains include, among many oth-
ers, different kinds of medical images (Shyu et al. 1999), face recognition (Pentland
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et al. 1994), maps (Samet and Soffer 1996) and industrial applications such as paper
web defect images (Iivarinen and Pakkanen 2002). The results of applying CBIR in
these domains have been rather good, as is to be expected.

At the other end lie broad image domains, often containing large quantities of un-
constrained images with little general or domain-specific information available. The
semantic content of the images is variably unrestricted and heterogeneous. Gen-
eral photograph and other stock image collections constitute typical broad domain
databases. An important image domain of this type is the World Wide Web which
has, in addition to the enormous database size, its unique challenges due to its dy-
namic and unlocalized nature. Since very few assumptions about the images can
be made, only representations of very general nature are valid. Object recognition
and image understanding, even in a limited sense, are generally impossible. The
performance of automatically extracted visual features remains moderate and addi-
tional, e.g. non-visual or semi-automatic, features may well be required for reaching
an acceptable retrieval performance level.

The varying difficulty of the CBIR problem can also be examined from the viewpoint
of different users’ needs. Generally, users are interested in searching for images of
particular semantic attributes, scenes, objects or events, rather than based on low-
level similarity in visual content. In fact, the query the user has in mind may be
so abstract that the user herself does not know or is unable to explain what she is
looking for until she finds it. Image features were explicitly divided into primitive
or low-level features and logical features denoting deeper semantics manifested in
the images by Gudivada and Raghavan (1995). A similar categorization of image
retrieval was proposed by Eakins (2002) who identified three distinct levels of image
queries:

• Level 1, retrieval by primitive (visual) features.

• Level 2, retrieval by logical features or semantic attributes.

• Level 3, retrieval by abstract attributes.

This framework emphasizes the mismatch between user needs and capabilities of
current CBIR systems. Level 1 queries concentrate on basic low-level components
of visual content. Used features are typically based on color, texture, shape, and
spatial arrangement of uniform regions in the image. Level 2 introduces semantics
to the queries. Queries at level 2 may contain specific objects (e.g. “car”) and scenes
(e.g. “beach”). At this level, some degree of object and scene recognition as well as
inference about the image content is required. At the highest level of complexity,
operation at level 3 involves sophisticated image understanding, knowledge repre-
sentation, and reasoning about the relations and significance of objects and scenes,
which goes beyond the enumeration of objects and their relations in the image.
Level 3 queries may contain abstract concepts (e.g. images depicting “freedom” or
“humor”). Users formulate queries mostly on levels 2 and 3 and expect the systems
to operate at the same levels of complexity and semantics but the current CBIR
systems operate mainly at level 1. Fortunately, there is substantial overlap between
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levels 1 and 2 in many cases, which makes it possible to develop CBIR systems with
sufficient performance for many applications. In other words, it can be stated that
the underlying assumption in CBIR is that semantically similar images also share
similar visual characteristics that can be automatically extracted or that semantic
features can be synthesized from the low-level features with automatic techniques.
The limitations of current technologies for image processing and understanding re-
strict, however, the validity of this assumption to hold only to a certain level. On
the other hand, this overlap may also cause frustration on inexperienced users as a
CBIR system may at first appear to operate genuinely on a higher level, but further
retrieval results may be disappointing from this viewpoint.

In the research field, the deficiencies of current image retrieval techniques have been
long noted and recent research has been increasingly focusing on moving toward
level 2 retrieval. In this research, the leading principle is to build semantic represen-
tations by extracting intermediate semantic levels from the low-level features (see
e.g. Chang et al. 1998a, Naphade et al. 1998, Colombo et al. 1999). For success,
relatively moderate objectives must be placed and therefore these techniques are of-
ten dubbed as finding weak or simple semantics. Recent reviews on semantic image
retrieval include Eakins (2002) and Naphade and Huang (2002). Level 1 multimedia
processing is, however, facing a daunting task with level 3 queries and a fundamental
paradigm shift may be required for real semantic retrieval. Indexing and retrieval
at level 3 is currently possible only by using textual descriptions.

The weakness of the connection between semantic concepts and visual low-level
features is a serious limitation and reduces the usefulness of the content-based ap-
proach. As a result, many content-based retrieval applications cannot be expected
to produce the best available images as the first response or reach high precision
of relevant items. They can, nonetheless, serve as valuable semi-automatic tools
and make retrieving images manageable even from large-scale general image collec-
tions. Satisfactory results can often be obtained if the image query can be turned
into an iterative process toward the desired retrieval target. In this setting, the
focus is shifted from formulating elaborate one-shot queries to match only to the
relevant items as well as possible, into progressive interaction between the user and
the retrieval system. This kind of operation is commonly denoted as relevance feed-
back and it will be the topic of Chapter 5. In many applications, a relatively low
precision can be acceptable, provided that the system is ultimately capable of re-
turning the correct image with a reasonable effort. It should be highlighted that, in
this sense, CBIR is intrinsically different from many traditional pattern recognition
problems, in which the different classes are much more easily defined and separable
and, therefore, low probabilities of error can be achieved. In fact, in the current
state of machine vision technology, the task of a CBIR system in semantic retrieval
should be mainly seen as reducing the number of returned images in an image query
compared to random browsing or systematic examination of the database.
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3 FEATURE EXTRACTION AND INDEXING

Modern databases, and ones consisting of images or other visual data are not an ex-
ception, are regularly used to store large amounts of data. Database operations are
thus typically data intensive as opposed to many common computing tasks, espe-
cially in scientific computing, which are computationally intensive. At the simplest
form, an image database is only a collection of images. Computational require-
ments for supporting effective browsing and retrieval, however, demand that we use
some kind of an organized structure and means for rapid access to the database.
Therefore, among the first and most crucial tasks in constructing an image database
application is to compile a suitable index to the database. In the scope of this
thesis, an index can be defined as any data structure over the original data which
enables efficient retrieval. Review articles focusing on different aspects of indexing
visual and multimedia data include Idris and Panchanathan (1997), De Marsicoi et
al. (1999), Böhm et al. (2001), and Lu (2002).

Image indexing and the preceding feature extraction are typically performed off-
line, during the construction and setup of the database application. Even dynamic
databases, in which images are added and removed during operation, are often re-
organized and reindexed in background with offline-type processing. This may be
performed at regular intervals or when a sufficient number of changes (insertions
and deletions) have occurred. Consequently, computational requirements for gener-
ating the index are usually not as crucial as for tasks in the query stage. Instead,
the attention is focused on optimizing the system for search tasks i.e. minimizing
computations needed during online operation. Calculations should therefore be per-
formed in advance as much as possible and the results stored for later utilization.
In some cases, certain indexing methods are also required during online operation,
mainly if the system supports adding new images straight to the database or if
external images can be used as the starting-point for image queries.

This chapter deals with the two main parts of offline processing required for a
content-based image retrieval system: extracting suitable features to describe the
images and constructing efficient indices for the features. First, we proceed with a
summary of different feature extraction methods commonly in use in current retrieval
systems. Next, an overview of common techniques for indexing the extracted feature
representations is presented. A more detailed description of the indexing method
used in our work, the (Tree Structured) Self-Organizing Map, then ends this chapter.

3.1 Feature extraction

The construction of a CBIR index begins with the extraction of suitable features
from the images in the database. A feature refers to any characteristic which, in some
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way, describes the content of an image. In a broad sense, this includes visual features
extracted directly from the raw image data, textual keywords, captions, and annota-
tions, and also other kinds of textual or numeric metadata associated with the image.
In feature extraction, each image in the database is transformed with M sets of dif-
ferent feature extraction methods to a set of M low-dimensional prototype vectors
in the respective feature spaces. The mth representation of the ith image Ii is com-
piled into a Km-dimensional feature vector fm

i = (fm
i (1) fm

i (2) fm
i (3) . . . fm

i (Km))T .
This kind of vector space model (VSM) representations with fixed dimensionalities
Km for the features is generally assumed in this thesis. Typical values for Km in
content-based image retrieval are of order 100 (Rui et al. 1999).

Two main categories of image features, primitive and logical features, were identified
in Gudivada and Raghavan (1995). We follow this categorization here, but refer to
these basic types as visual and semantic features, respectively. Visual feature ex-
traction is the foundation for all kinds of CBIR applications and, therefore, various
types of visual features have been developed and studied. In fact, most of the early
work in the field was concentrated on finding the best possible features to represent
different kinds of images to facilitate effective retrieval. The conventional require-
ment that the features can be automatically extracted, however, limits features of
this type to low-level statistical representations. Semantic features, on the other
hand, are abstract representations of images manifesting deeper semantics at vari-
ous levels of detail and describing objects, scenes, events, and also abstract content
within the image. In general, semantic features cannot currently be obtained for
unconstrained images without human involvement at some stage of the extraction
process. These two basic types of features will be discussed in more detail below.

3.1.1 Visual features

The simplest visual image features are directly based on the pixel values of the
image. This kind of features are, however, very sensitive to noise and varying imag-
ing conditions and not invariant e.g. to affine transformations. Using image pixels
directly is also very inefficient. For example, should we use the pixel values of an
n × m-sized gray-level image as features, the image would be transformed into a
feature vector in an nm-dimensional space; for a color image the dimensionality
would be threefold. Processing large numbers of such vectors is clearly infeasible
due to massive storage and computation requirements. As a result, direct pixel-
based features are seldom used in practice. Instead, more practical visual features
can be obtained by computing certain characteristics or signatures from the images
by using suitable image processing or computer vision techniques. This way, the
original dimensionality of the image data is reduced during the feature extraction
process and, as in dimensionality reduction in general, a good feature maintains
those characteristics of the original data which preserve the discriminating power
while excluding any redundant information. In general, low-level visual features can
be either statistical or structural (syntactic) in nature. However, with images whose
content is unrestricted, generally only statistical features can be called upon since
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the structural approach requires a definite structure which can be captured with a
composition of derived rules.

Visual features can be extracted either with automatic or semi-automatic methods.
Fully automatic feature extraction is appealing for obvious reasons, especially with
large or dynamic databases, but the current level of knowledge on image analysis and
pattern recognition techniques is limited and the automatic methods at our disposal
cannot always provide sufficient discriminating power for effective image retrieval.
Semi-automatic methods, on the other hand, rely on human assistance in tasks like
image segmentation. For example, since the recognition of objects in general images
is a very difficult task for a computer, manually pointed object contours can be
used to enhance shape detection and thus shape-based image indexing. Using semi-
automatic methods can lead to notable performance improvements but, depending
on the application, the requirement of human effort can be intolerable. As a result,
for indexing large collections of miscellaneous images, the repertoire of available
features is generally restricted to global features, features computed from fixed image
regions or zones (as was done in Publications I–IV or e.g. in Stricker and Dimai
(1996) and Taycher et al. (1997)), features relying on weak segmentation, i.e. finding
internally homogeneous regions according to a specific feature or features instead
of actual object recognition (see e.g. Ma and Manjunath 1997, Carson et al. 2002,
Barnard et al. 2003, Sjöberg et al. 2003), or to features based on identifying interest
points in the images, i.e. pixel locations at which the image signal changes two-
dimensionally (see e.g. Schmid and Mohr 1997, Bres and Jolion 1999, Loupias and
Sebe 2000, Amsaleg and Gros 2001).

Usually, the general-purpose visual features, applicable for a variety of image types,
are said to include color, texture, and shape. These feature types have been exten-
sively treated in many review articles as well as in CBIR textbooks; see, for example,
the pertinent chapters of Lew (2001) and Castelli and Bergman (2002). MPEG-7,
a noteworthy standardization initiative for describing multimedia content (see Sec-
tion 6.3) also follows this categorization, recognizing color, texture, and shape as
the three fundamental types of visual features applicable to automated still image
content description. MPEG-7 also defines a set of standard visual features or De-
scriptors which have also been used in this work (Publications V–VII). Sometimes
also the structure or composition of the image is mentioned as a basic feature type,
although it severely suffers from the requirement of prior segmentation. Other fea-
ture types are generally specific to certain application domains and require special
domain knowledge and constrained images. This makes these features ill-suited
for general use and therefore fruitless to consider outside the specific application
context.

Color. Color is a simple and straightforward feature for all kinds of color images.
The human eye is much more sensitive to color shades than gray-level intensities
in an image. The colors of different objects are also largely resolution and view
invariant. Selecting an appropriate color space and the used color quantization are
key issues for color feature extraction. Smith (1997) lists the elemental properties
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for a feasible color space as uniformity, completeness, compactness, and naturalness.
Still, the ordinary RGB color space is commonly used, although it suffers from not
being perceptually uniform. Perceptually more uniform color spaces, such as HSV
and L*a*b* (Jain 1989), can be obtained from RGB by using a nonlinear transform.
Color quantization is used to reduce the number of distinct colors in an image. It
is used to reduce both computational complexity of color feature extraction and the
dimensionality of the resulting feature vectors.

Color has been the most commonly-used feature type in CBIR. Basic color features
are easy to implement and usually yield reasonable and predictable results which
can then be improved by including other types of features. The standard represen-
tation for color information in CBIR has been the color histogram, first investigated
in this context by Swain and Ballard (1991). The color histogram describes the
distribution of different colors in an image in a simple and computationally effi-
cient manner. Other commonly used color features include color moments (Stricker
and Orengo 1995), color regions (Hsu et al. 1995), color sets (Smith and Chang
1995), the color coherence vector (Pass et al. 1996), and the color correlogram and
autocorrelogram (Huang et al. 1997b).

Texture. Texture is an innate property of all surfaces referring to visual patterns
not resulting from the presence of a single color or intensity. Albeit being intuitively
obvious, texture lacks a precise definition. Humans often distinguish textures with
properties like periodicity, directionality, granularity, and randomness. Because of
the importance and usefulness of texture information, various texture representa-
tions for diverse application areas in pattern recognition and computer vision have
been extensively researched over the last decades and these achievements are now
being adapted also to CBIR applications. Generally, an image can be considered to
be composed of a number of salient regions with different texture patterns and the
properties of these regions can be used in image indexing.

Texture analysis methods can be divided into syntactic and statistical approaches. In
syntactic texture analysis, different textures are described with suitable and distinct
grammars by setting single pixels or connected sets of similar pixels as primitives
and defining their allowed spatial arrangements. Syntactic methods work best with
deterministic or “strong” textures having large and distinct primitives. Statistical
methods, on the other hand, describe textures according to their underlying statis-
tical properties. Each texture is described by a feature vector. Various statistical
methods have been studied and used in texture analysis as they are more suitable
for describing many stochastic or “weak” real-world textures. Thereby, statistical
methods are dominant in CBIR.

Texture representations readily applicable to CBIR include the co-occurrence matrix
(Haralick et al. 1973), Tamura representation (Tamura et al. 1978), SAR/MRSAR
texture models (Mao and Jain 1992), Wold decomposition (Liu and Picard 1996),
Gabor functions (Turner 1986), wavelets (Daubechies 1990), and local binary pat-
terns (Ojala et al. 1996) among many others.
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Shape. Shape features have not been studied as intensively as color and texture
from the CBIR viewpoint. This is mostly due to inherent difficulties in object
recognition and shape representation and the lack of a mathematical formulation
corresponding to the human perception of shapes. Shape has, however, the potential
to be the most important representation in many application areas.

In order to enable querying for specific objects, the system would need a shape
description capable of distinguishing different shapes and regions belonging to sep-
arate objects. The shape of an object is, unfortunately, very much dependent on
the view and distance. A 3D object can be projected into a 2D image in a vari-
ety of ways. As a result, the task of general object recognition is beyond current
technologies. Still, shape is an important source of information for CBIR, especially
in restricted image domains where robust segmentation is possible. Shape-related
global features, i.e. ones which operate on the whole image and therefore do not re-
quire object detection have also been developed for CBIR on general images. Within
our research project, a study of statistical shape features not requiring segmentation
was presented by Brandt et al. (2002).

Shape representations can be divided into two general categories: boundary-based
and region-based methods. Boundary-based methods utilize only information about
the boundary of an object, whereas region-based methods describe shapes based on
the whole area of the object. Thus, the intrinsic difference between these representa-
tions is that boundary-based methods model the object as a one-dimensional curve
while region-based methods operate on two-dimensional fields. Common boundary-
based shape features applied to CBIR include chain codes (Freeman 1974), Fourier
descriptors (Zahn and Roskies 1972, Persoon and Fu 1977), and Wavelet descrip-
tors (Chuang and Kuo 1996). Moment invariants (Hu 1962), Zernike moments
(Khotanzad and Hong 1990) and simple heuristic region features, such as area, Eu-
ler’s number, circularity, eccentricity, elongatedness, and rectangularity, are common
examples of region-based shape features in CBIR applications.

3.1.2 Semantic features

In order to make genuine image indexing by higher-level content possible, an in-
evitable requirement is to be able to capture the image’s semantic content in such a
way that it corresponds to the human view of image semantics. As was discussed in
Section 2.2, with general images, automatically extracted visual features often fail
to do this adequately and additional sources of information are needed for reaching
acceptable performance. Naturally, automatic extraction of semantic content would
be a decisive step forward for CBIR and related fields. For example, in Naphade and
Huang (2002), it was dubbed “the final frontier” of multimedia indexing. In some
cases, however, certain semantic categorizations are possible with current automatic
methods. Types of semantic image categories can be distinguished with specialized
classifiers which typically perform two-class classifications to the database images.
This kind of semantic image categorization can be seen as a very limited form of
image understanding where the task is to assign one or more semantic classes to
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each image, instead of trying to comprehensively understand image content. Ex-
perimental methods for this type of image categorization have been developed, for
example, to distinguish photographs from computer-generated images (Frankel et
al. 1996), indoor and outdoor images (Szummer and Picard 1998), and city images
from landscape scenes (Vailaya et al. 1998). These single two-class classifiers can
then be combined to achieve more extensive categorizations. For example, hierar-
chies of classifiers can be constructed as in Vailaya et al. (2001), where the resulting
categories from earlier classifiers are further classified to more specific categories.
Another example of a CBIR system using semantic categorization methods is pre-
sented in Wang et al. (2001). Automatic annotation of images in a broader setting
has also been studied, and some results are presented in Barnard and Forsyth (2001).

In some occasions, the image database or a portion of it may already contain elabo-
rate manually-constructed captions or other annotations. Such annotated databases
can typically be found e.g. in commercial image libraries, art galleries, news photo
archives, and medical image databases. For example, the Corel Photo CDs widely
used in CBIR research contain keyword annotations. A method for using these
keywords as an image feature is presented in Publication VII. Implicit annotations
can also be found, e.g. from the text surrounding an image in the WWW. In fact,
due to the immense popularity growth of the WWW, combining text from associ-
ated HTML pages and image features to enable semantic image retrieval from the
WWW has become a widely studied issue (see e.g. Agnew et al. 1997, Sclaroff et al.
1999, Lew 2000, Aslandogan and Yu 2000, Newsam et al. 2001, Zhao and Grotsky
2002). A straightforward way to use these annotations is to implement text-based
retrieval, in which case the problem transforms into one of traditional information
retrieval (IR). The annotations are used as a textual document associated with the
image and the best-matching items to a query are determined using standard IR
techniques but, instead of the associated text, the corresponding images are returned
as the result of the query. The problem of possible keyword mismatches between
the query and the image annotations can be alleviated by using a general-purpose
electronic thesaurus such as WordNet (Fellbaum 1998) (examples of using WordNet
in image retrieval include Aslandogan et al. (1997), Duffing and Smäıl (2000), Ben-
itez and Chang (2002), and Han and Guo (2002)) or by generating an automatic
thesaurus from the annotated image database (Zhou and Huang 2002). An alterna-
tive method is to use the annotations indirectly, as sets of binary attributes affixed
to the images. Each keyword or term in the annotations is represented as a binary
attribute and images with that term in their annotations have the corresponding
attribute set to one. These hidden annotations (Cox et al. 1997) can then be used
like any other statistical feature to represent images in the database. This approach
may be useful if the annotations correspond to complex semantic similarities that
are not easily explained or if the vocabulary or the language of the annotations is
unknown to the user.

One avenue of research in semantic image retrieval has been to study methods for
reducing the workload needed for image annotation and provide tools to aid the
annotation process in a semi-automatic manner. The goal in these methods is to
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require manual annotations only for a small fraction of images and to use automatic
methods to assign probable annotations to the remaining images. Active learning
has been used for this task, so that, during the learning stage, the system prompts
images for manual annotation based on how much the annotations can decrease the
uncertainty in the system (Zhang and Chen 2002, Sychay et al. 2002). Interactive
tools for image annotation have also been developed e.g. by Minka and Picard (1997),
Srihari and Zhang (2000), Schreiber et al. (2001), and Pfund and Marchand-Maillet
(2002).

Previous user interaction with the CBIR system can also be recorded and used to
infer information about the semantic content of the images. During a query, the
user implicitly evaluates images according to her current information need. The
fact that two images are given similar relevance evaluations during a single query
session is a cue for similarities in their semantic content. Extracting these features
are discussed in more detail in Section 5.5 and Publication VII.

Semantic information can also be available on application-specific sources depending
on the application area. For example, the hypertext link structure of the WWW can
be used to construct a statistical image feature as was done in Laakso et al. (2001).
The basis of the method consists of a set of basic relations that can take place
between two images in the WWW. For example, if one image acts as a hypertext
link to another image (e.g., as a thumbnail) it can be assumed that the two images
are closely related. Also, if two images are situated on the same WWW page, it
is likely that they are somehow semantically related. Furthermore, a noteworthy
initiative in the WWW domain for extending the current WWW with semantics
is the W3C’s Semantic Web effort (Berners-Lee et al. 2001, W3C 2003). The aim
of the Semantic Web is to provide a framework for improving the cooperation of
computers and people in the WWW based on the Resource Description Framework
(RDF) language.

3.2 Indexing techniques

Indexing multimedia databases is a different and in many ways more complex prob-
lem than indexing traditional databases. The main difficulties arise from the high
dimensionality K of the typically used feature vectors. High-dimensional spaces lack
many intuitive geometric properties we are accustomed to in low-dimensional spaces
(Castelli and Bergman 2002). We cannot properly imagine high-dimensional spaces
so we try to find low-dimensional analogies where the same effects may not occur.
These difficulties are commonly subsumed into the term curse of dimensionality
(Bellman 1961). In addition, the size of the image database can be large and it may
be required to rely on using many features simultaneously in image retrieval (this
will be discussed in Section 4.2.2). Due to these factors, using basic linear search,
where every stored feature vector is considered, easily leads to poor performance.
Fast response time is, however, essential in interactive systems as users are quick to
reject systems they consider overly sluggish (see e.g. Nielsen 1994). Therefore, spe-
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cialized techniques and efficient data structures are needed to manage the retrieval
process so that the best-matching images can be determined quickly enough.

A typical task in image retrieval is to determine k nearest data items to a specific
point in a high-dimensional feature space, denoted as k-nearest-neighbor (kNN)
query. Other types of queries (i.e. point, range, and within-distance queries, see
Section 4.2) are not as important in image retrieval, so the focus in this discussion
is on index structures supporting kNN queries. The concept of a nearest neighbor
requires a similarity or distance measure, which will be discussed in Section 4.2.1.
In general, there are two broad categories of index structures for high-dimensional
spaces. The first approach is to apply a divide-and-conquer strategy. The data or
the feature space is divided into categories (clusters) or subspaces with the intention
that only one or a few of these have to be processed in one given query. Alternatively,
we can transform the original feature space into a new space where the operations
needed to process a database item are less demanding. This usually means reducing
the dimensionality of the original feature space.

A number of common indexing techniques for high-dimensional features are briefly
discussed next. The list is not comprehensive due to the vast number of different
techniques that have been presented over the years of research in the field. Instead,
the intent of this presentation is to provide a concise overview of different methods
and to emphasize parts of research most related to the present work. For more
detailed treatments of the subject, an interested reader is directed to the reviews
on indexing listed in the beginning of this chapter as well as the general works on
CBIR listed in Chapter 2.

3.2.1 Dimensionality reduction

The distribution of image feature vectors in high-dimensional spaces is typically
not uniform, but rather has local structure. Also, the features represented at the
feature space spanned by the dimensions are often highly correlated, i.e. the intrin-
sic dimensionality of the data is lower than K. These properties make it feasible to
approximate the original space by projecting it into a new space with a lower dimen-
sionality and thus reduced computational requirements. Still, this inevitably results
in a loss of information. For kNN queries, the loss of local proximity information
between data items is most harmful and should be minimized.

The mapping from a higher-dimensional to a lower-dimensional space, i.e. dimen-
sionality reduction, can be accomplished with linear methods like variable subset
selection, principal component analysis (PCA) (Hotelling 1933), singular value de-
composition (SVD), random projection (Kaski 1998) or nonlinear methods such as
multidimensional scaling (MDS) (Kruskal 1964) or Self-Organizing Map (SOM) (see
Section 3.3.1). Examples of using dimensionality reduction methods for image in-
dexing and retrieval, in addition to our SOM-based method discussed in Sections 3.3
and 5.4, include Beatty and Manjunath (1997), Ravi Kanth et al. (1999), Kulkarni
et al. (1999), and Wu et al. (2000a). A more recent method is independent compo-
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nent analysis (ICA) (Comon 1994, Hyvärinen et al. 2001) which has been applied
also in image retrieval (Kolenda et al. 2002). Since dimensionality reduction reduces
the complexity of measuring similarity between data items, it may be sufficient on
its own to facilitate effective retrieval. An alternative approach is to use dimen-
sionality reduction as a preprocessing step and then some indexing method on the
lower-dimensional space.

3.2.2 Recursive partitioning methods

Recursive partitioning methods divide the feature space or the data set into progres-
sively smaller partitions. The resulting hierarchical structure is then represented as
a tree and the efficiency of accessing data items is significantly improved by uti-
lizing the hierarchy. Existing methods differ in the way the partitioning is per-
formed. Castelli and Bergman (2002) listed quadtrees (Finkel and Bentley 1974),
k-dimensional trees (k-d-trees) (Bentley 1975), and R-trees (Guttman 1984) as the
most commonly used families of recursive partitioning methods. Quadtrees divide a
K-dimensional space into 2K regions by splitting the space into two parts in every
dimension. Each node of the tree is thus either a leaf or has 2K immediate children.
The k-d-tree is a k-dimensional extension of the standard binary tree. It divides
the space by using (K − 1)-dimensional hyperplanes one dimension at a time. R-
trees apply possibly overlapping hyperrectangles, represented as nodes in the tree,
to divide the space. Children of a node then further divide the space inside the
hyperrectangle with smaller hyperrectangles.

Originally, the above methods were developed for lower-dimensional spaces and point
or range queries (Section 4.2), so extensions to these basic methods are required for
using them effectively in multimedia indexing. The main problem is that these
methods do not scale well with regard to dimensionality. Therefore, they are mostly
useful for medium-dimensional (K < 20) feature spaces. According to a study by
Weber et al. (1998), under certain assumptions, a simple linear search outperforms
these methods already when the dimensionality exceeds K = 10. Secondly, the
performance of a kNN query often suffers if the query point is located near a parti-
tion border; either we take also the neighboring partitions into account, resulting in
increased computational requirements, or risk degrading retrieval precision as a por-
tion of potential images are ignored. Insightful reviews and comparisons of various
recursive partitioning methods are presented by White and Jain (1996a) and Böhm
et al. (2001). As a rule of thumb, it can be stated that, regardless of the used par-
titioning method, the search time of kNN queries in medium and high-dimensional
spaces increases exponentially with dimension and linearly with the number of near-
est neighbors. Recommended indexing methods for kNN queries in various sources
include optimized versions of the k-d-tree (see e.g. Egas et al. 1999, Castelli and
Bergman 2002), R*-tree (Kriegel et al. 1990), X-tree (Berchtold et al. 1996), SS-tree
(White and Jain 1996b), VA-file (Weber et al. 1998), and Pyramid-tree (Berchtold
et al. 1998).
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3.2.3 Clustering

Clustering means partitioning data into m sets or clusters so that data items in a
certain cluster are more similar to each other than to data items in other clusters.
In the basic form (also called hard or crisp clustering), every data item belongs to
exactly one cluster. Clustering can be used to produce an effective image index as
follows. After clustering, each cluster is represented by its centroid or sometimes a
single representative data item (i.e. the image label for that cluster) and, instead of
the original data items, the query point is compared to the centroids or the clus-
ter representatives. The best cluster or clusters, according to the used similarity
measure, are then selected and the data items belonging to those clusters are eval-
uated and k nearest neighbors are returned. If the number of clusters is high, we
can further cluster the centroids to obtain clusters of clusters, i.e. superclusters, or
use some hierarchical clustering method in which the data is gradually clustered
from the original data to a single cluster. Many clustering methods have been pro-
posed for image indexing, including competitive learning (King and Lau 1997), the
ClusterTree algorithm (Yu and Zhang 2000), agglomerative hierarchical clustering
(Duffing and Smäıl 2000), vector quantization (k-means clustering) (Publication IV
or V, or e.g. Chen et al. 1997, Wood et al. 1998, Iyengar and Lippman 1998, Lu
and Teng 1999, Yoo et al. 2002, Qiu 2002, Ye and Xu 2003), k-medians clustering
(Volmer 2002), and SOM (see Section 3.3.1; or Vesanto and Alhoniemi (2000) for a
general study on using SOM for clustering).

3.2.4 Vantage points

Vantage point methods rely on selecting a set of m vantage points (a.k.a. interest
points or anchors) for which the similarity to all data items is calculated during
the indexing phase. This way we get an ordering of decreasing similarity for the
data items to each of the m vantage points. Images with similar feature vectors
are located in similar positions in these orderings due to the triangle inequality.
Clearly, images with dissimilar feature vectors may also end up in nearby positions
but their count can be reduced by using multiple vantage points. Still, false positive
findings can remain but the indexing method guarantees zero false negatives. During
query time, we can thus obtain all similar data items to the query by computing the
similarity of the query point to the vantage points and selecting all images that have
alike similarity values to all vantage points. False positives can then be eliminated
by calculating the similarities of the candidates in the original feature space.

Indexing by vantage points has similarities with both dimensionality reduction and
clustering. By using m vantage points, each data item is represented as a point in
a new m-dimensional space through a nonlinear transform. In clustering, cluster
centroids share a similar purpose as vantage points. The difference here is that only
the nearest centroid matters in clustering whereas these methods store and use the
similarities from data items to all vantage points. Studies on using vantage points in
image indexing include Vleugels and Veltkamp (2002) and Natsev and Smith (2002).
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3.2.5 Inverted file

In text-based IR, individual documents in a corpus are often represented by the
words they contain and all structure is neglected i.e. the so called “bag of words”
model is assumed. The contents of the documents are gathered into a term-by-
document matrix X where the (j, k)th element of X is a function of the number of
times term j occurs in document k. Typically, any given document contains only
a small subset of the available terms and certain terms occur very frequently. This
phenomenon is commonly referred to as the Zipf’s Law: f ∝ 1/n, i.e. the frequency
f of a word is inversely proportional to its frequency rank n. This means that X
is typically very sparse and the similarity computation can be restricted to a small
subspace spanned by the query terms. This enables us to use an efficient indexing
technique called the inverted file, which contains an entry for each possible term
with a list of documents containing that term.

Inverted files can also be used in image retrieval, provided that the image features
fulfill the requirement of sparsity. Generally, this is not the case but the features can
be especially designed so that this condition is fulfilled. A well-known example of
using inverted files in image retrieval is the GIFT system (Squire et al. 1999a, Squire
et al. 2000).

3.3 Tree Structured Self-Organizing Maps

The main image indexing tool used throughout the work constituting this thesis and
in the PicSOM system is the Self-Organizing Map (SOM) (Kohonen 1982, Kohonen
2001). The object has been to utilize the strong self-organizing power of the SOM
in unsupervised statistical data analysis for image retrieval.

In this section, the use of the SOM as an image indexing method is discussed. First,
we review the standard SOM and discuss its usage in this application field. The
SOM is then augmented with a hierarchy using a tree structure, which provides
useful properties for the algorithm especially in image retrieval.

3.3.1 The Self-Organizing Map

The SOM consists of a (usually two-dimensional) regular lattice or grid of map units.
The most common SOM grid type is probably the hexagonal grid but a more natural
choice with images is to use a rectangular grid (used also in Figures 3.1, 3.2, and 5.3).
A model vector mi ∈ RK is associated with each map unit i. The map attempts to
represent all the available observations x ∈ RK with optimal accuracy by using the
map units as a restricted set of models. During the training phase, the set of feature
vectors is presented to the map multiple times (usually either in random sequence
or in batch mode) and the model vectors stored in the map units are modified to
match the distribution and topological ordering of the feature vector space. It can
thus be used to visualize high-dimensional data, usually on a two-dimensional grid.
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The fitting of the model vectors is usually carried out by a sequential regression
process, where t = 0, 1, 2, . . . , tmax−1 is the step index: For each input sample x(t),
first the index c(x) of the best-matching unit (BMU) or the winner model mc(x)(t)
is identified by the condition

∀i : ‖x(t)−mc(x)(t)‖ ≤ ‖x(t)−mi(t)‖ . (3.1)

The usual distance metric used here is the Euclidean distance (4.4). After finding the
BMU, a subset of the model vectors constituting a neighborhood centered around
the BMU (node c(x)) are updated as

mi(t + 1) = mi(t) + h(t; c(x), i)(x(t)−mi(t)) . (3.2)

Here h(t; c(x), i) is the neighborhood function, a decreasing function of the distance
between the ith and c(x)th nodes on the map grid. This regression is reiterated
over the available samples and the value of h(t; c(x), i) is allowed to decrease in
time to guarantee the convergence of the prototype vectors mi. Large values of the
neighborhood function h(t; c(x), i) in the beginning of the training initialize the map
and small values on later iterations are needed in fine-tuning.

The SOM algorithm has a number of important properties (see e.g. Haykin 1999)
that make it suitable for indexing image feature data. The SOM grid provides a good
approximation of the input space in a way that preserves topological ordering, which
is a useful property lacking in basic clustering algorithms and especially convenient
for database browsing and visualization. Image features are often characterized by
high dimensionalities which are problematic for many indexing methods, especially
those based on recursive partitioning of the feature space or the data points. In
comparison, the SOM has a remarkable tolerance for high input dimensionalities
and an innate ability to perform feature selection. In addition, the dimensionality
reduction aspect of the SOM is advantageous for interactive retrieval systems due
to the reduction in online computational requirements. The common property of
unsupervised learning, that classes with only a small number of samples are easily
lost among the predominant characteristics of the data, is present also in SOMs of
limited number of map units. Still, it is often the case that this effect is less striking
in the SOM when compared i.e. to linear methods like PCA or methods based on
global optimization such as MDS.

After the training phase, all feature vectors are mapped to the SOM, each one to its
BMU, i.e. to the map unit whose model vector is nearest to it. In image indexing,
each feature vector has an associated image, so each map unit which has at least
one feature vector mapped to it can then be given a visual or image label. The
natural choice for this label is the image whose feature vector is nearest to the
model vector of the map unit. In this manner, we can produce visualizations of the
image database. Examples are shown in Figure 3.1, in which the image labels of
two 16×16-sized SOMs are displayed in the SOM grid. The image database used to
produce Figure 3.1 is the Columbia Object Image Library (Nene et al. 1996). The
Color Layout and Edge Histogram Descriptors from the MPEG-7 standard (MPEG
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2002), see Section 6.3, were used as low-level features. From the SOM grids, the
topological ordering of the label images based on their color content (above) and
direction of edges (below) can be clearly observed. Another example is shown in
Figure 3.2, in which a SOM trained with MPEG-7 Edge Histogram descriptors of
general images (from Corel Photo CDs) is displayed. This way, the SOM provides
an overview of the whole database which can readily be used to aid browsing. Then,
by clicking on any of the displayed images, all images associated with that map unit
can be listed.

Typical applications of SOM include visualization of process states or financial re-
sults by representing the central dependencies within the data on the map (Kohonen
et al. 1996). An extensive listing of SOM papers is presented in Kaski et al. (1998)
and Oja et al. (2003). The SOM has been successfully applied to text documents in
the WEBSOM document browsing and exploration tool (Honkela et al. 1997, Koho-
nen et al. 2000). WEBSOM is a means for organizing miscellaneous text documents
into meaningful maps for exploration and search. It automatically organizes the
documents into a two-dimensional grid so that related documents appear close to
each other. Furthermore, the SOM has been applied directly to text retrieval in
Lagus (2002), where the SOM is used as a filter to reduce the number of prospec-
tive documents by determining the best map units to a given query and focusing
only on documents mapped to those units. An exhaustive search is then performed
among the remaining documents to identify the actual best-matching documents to
the query.

The first study that the author is aware of on using the SOM in image indexing
was done by Zhang and Zhong (1995). They applied the SOM as a filter of unlikely
relevant images based on color and texture features. Within the images mapped
to the BMU, a search for k nearest neighbors is then performed. Han and Myaeng
(1996) applied the SOM to image database visualization and retrieval based on a
set of simple boundary shape features. Later work on using SOM in image indexing
outside the PicSOM project includes Golshani and Park (1997), Ren and Means
(1998), Sethi and Coman (1999), Suganthan (2002), Hussain et al. (2002), and Oh
et al. (2002). The SOM has been used in the above-mentioned studies mostly to
reduce the number of candidate images before a more exhaustive similarity measure
is applied and for visualization purposes.

The SOM has also been used for other tasks in image retrieval. In Ma and Manju-
nath (1996), the SOM was used to classify and retrieve similar subimages by their
textural content. In FourEyes (Minka and Picard 1997), the SOM was used to
classify different learning problems so that each SOM unit represents a prototype
learning problem with the associated image region grouping weights. The unsuper-
vised clustering property of the SOM was used for image segmentation in Chen et
al. (1999) and Ong et al. (2002). Csillaghy et al. (2000) used the SOM to classify
regions of similar texture in astronomical images with an image retrieval system
called ASPECT. In the RETIN system (Fournier et al. 2001b), the SOM was used
to classify image pixels randomly sampled from the database images and thereby to
construct a representation of the content of the database.
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Figure 3.1: The image labels of 16×16-sized SOMs trained with Color Layout (above) and
Edge Histogram (below) descriptors of the MPEG-7 standard.
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Figure 3.2: The image labels of a 16×16-sized SOM trained with the MPEG-7 Edge His-
togram descriptors of general images.

3.3.2 The tree structure

The search for the BMU dominates the computing time of the SOM algorithm
and it makes training large SOMs computationally too expensive especially if the
dimensionality of the input vectors is high. The basic algorithm uses linear search, in
which all map units must be evaluated to find the BMU. This makes the complexity
of the search O(n), where n is the number of map units. To speed up the BMU
search, Koikkalainen and Oja introduced a variant of SOM called the Tree Structured
Self-Organizing Map (TS-SOM) (Koikkalainen and Oja 1990, Koikkalainen 1994).
TS-SOM is a tree-structured vector quantization algorithm that uses normal SOMs
at each of its hierarchical levels. It is loosely based on the traditional tree-search
algorithm. Due to the tree structure, the number of map units increases when
moving downwards the SOM levels of the TS-SOM. The search space for the BMU
(3.1) on the underlying SOM level is restricted to a fixed-sized portion just below the
BMU on the above SOM. Unlike most tree-structured algorithms, the search space
does not have to be limited to the direct children of the upper level BMU. Instead,
the search space can be set to include also neighboring nodes having different parent
nodes in the upper level. Still, restricting the number of considered map units in the
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BMU search entails the possibility of obtaining a different result than with using full
search, i.e. the standard SOM algorithm. In experiments presented in Koikkalainen
(1994), however, no notable differences between the results of the two algorithms
were observed. The structure of a TS-SOM in one-dimensional case and the overlap
of the search space in BMU search with three SOM levels is illustrated in Figure 3.3.

Figure 3.3: The structure of a three-level one-dimensional TS-SOM. The solid lines repre-
sent parent-child relations and the dash lines represent neighboring nodes included in the
BMU search space.

The feature vectors are used to train the levels of the TS-SOM beginning from the
top (smallest) level. As every TS-SOM level corresponds to a normal SOM, the
training can be performed as in the standard SOM algorithm. When a level has
been organized, its model vectors are frozen and the organization process advances
to the next level. The upper levels are then used as a search tree to limit the search
to a subset of the map units on the current level, resulting in the reduction of the
time complexity of the search from O(n) to O(log n). The complexity of the searches
using TS-SOM is thus remarkably lower than if the bottommost SOM level had been
accessed without the tree structure. This was confirmed also in an experiment in
which TS-SOM was compared with the standard SOM (Koikkalainen 1994). In the
experiment, TS-SOM was observed to be faster with networks having more than 128
map units.

The reduced computational requirements obtained by using the TS-SOM algorithm
facilitate the creation and use of large SOMs, needed for indexing huge image
databases. As a concrete example, calculating the TS-SOMs for the MPEG-7 de-
scriptors (see Section 6.3 or Publication V) used in the experiments of Publica-
tions V–VII took from one and a half to 10 hours each, depending on the dimen-
sionality of the descriptor, when an SGI Origin 2000 server equipped with 250 MHz
processors was used. The used TS-SOM structure had 4 levels with sizes 4 × 4,
16 × 16, 64 × 64, and 256 × 256 map units. The data indexed by each TS-SOM
consisted of 59 995 feature vectors and each vector was presented 100 times in the
adaptation of each map level.

It should be highlighted that the TS-SOM differs from many approaches to pro-
ducing hierarchical SOMs by the order in which the levels are trained. Hierarchical
SOMs in, for example, Zhang and Zhong (1995) and Sethi and Coman (1999) are
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produced by starting the learning with the bottommost (largest) level and the upper
levels are learned later to form a tree index to the largest SOM. Therefore, these
approaches do not alleviate the computational complexity of training large SOMs
but only provide a fast access to the BMU during the query phase.
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4 ONLINE QUERY PROCESSING

The most important part of the functionality of a CBIR system is the processing
of user requests. In this stage, the system operation is explicitly characterized by
an inevitable tradeoff between system effectiveness and efficiency: the system must
strive to return relevant images as accurately as possible but, on the other hand,
should return its results promptly since the user is actively waiting for the retrieval
algorithm to complete.

In this chapter, the main aspects of online processing in a CBIR system are de-
scribed. These include measuring image similarity using either one feature or several
features simultaneously, different query types, and supporting image browsing. A
general system structure for reducing the computational requirements is also pre-
sented. Relevance feedback techniques are, however, bypassed in this chapter since
relevance feedback forms a major topic in this thesis and will be discussed in more
detail in Chapter 5.

4.1 Query specification

With low-level visual features, it is not possible to base image queries on verbal
terms or other fundamental data fragments. Therefore, different query methods
from those in text retrieval must generally be applied. On the other hand, a human
screener can assess the relevance of an image or even a set of images to a given query
very quickly with a glance whereas determining the relevance of a textual document
requires much more effort.

The most common approach to formulate queries in CBIR is query by (pictorial) ex-
ample (QBE or QBPE), the name originating from the Query-by-Pictorial-Example
relational query language designed for manipulating queries with pictorial relations
for retrieving LANDSAT images (Chang and Fu 1980). In QBE, the image query is
based on an example or reference image shown either from the database itself (query
by internal example) or, in some cases, the user may provide the image externally
(query by external example). These query types have the functional difference that
using an externally-provided image requires the system to index the external im-
age on-line in order to be able to determine the similarity scores between it and
the images in the database. Either way, the task of the retrieval system is then to
return images as similar to the example image as possible. A closely related query
type to using an external example is query by sketch, in which the example image
is generated by the user on the fly using a sketching tool included in the retrieval
interface (see e.g. Flickner et al. 1995, Del Bimbo and Pala 1997). The main problem
with sketching is that users often find it difficult to produce an adequate sketch of
the visual concept they are looking for. In certain restricted domains such as trade-
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mark retrieval, query-by-sketch functionality can, however, be a valuable addition.
In query by icons or query by visual keywords, the example query is constructed by
selecting appropriate visual elements from a prespecified selection, represented by
pictorial icons, to the query. This approach is also usually infeasible in a general
setting, as it requires rather sophisticated object recognition and the queries can
only contain visual concepts supported by the system.

Multiple examples can be inherently supported by QBE-type queries. This is ad-
vantageous as a single example image rarely contains all and only the characterizing
elements the user is looking for (Assfalg et al. 2000) whereas if the user has more
than one example images to give as input, the system should be able to use them
jointly and concentrate on those aspects the example images have in common. Neg-
ative examples can also be provided, highlighting undesired visual elements. In
Assfalg et al. (2000), a multiple-example query is represented as a composite his-
togram constructed from the positive and negative examples. Zhu and Zhang (2000)
presented several linear and non-linear methods for multi-example retrieval. On the
other hand, the images returned by the system on earlier rounds can be considered
as potential example images. This leads to relevance feedback where the user eval-
uates the relevance of the retrieved images and thereby guides the system toward
more relevant images.

The query by example approach has also been extended for groupings of images. In
query by groups, user-gathered groups of images are considered as the basic units
of a query (Nakazato et al. 2002). In a similar manner, the query is defined by
manipulating the image space by moving and grouping images by using the provided
interface in the retrieval method presented by Santini and Jain (2000).

One drawback with QBE is that the success of the query considerably depends on
the initial set of images as users generally do not have suitable external example
images at hand. With large image databases, selecting the initially shown images is
a significant problem as they should preferably contain at least one relevant image
as frequently as possible. This problem is usually called the page zero problem
(La Cascia et al. 1998). The initially shown images may be chosen so that they
form an extensive coverage of the whole database, e.g. by selecting images that are
as different from each other as possible or the initial images can be the result of image
clustering or categorization (see e.g. Le Saux and Boujemaa 2002). Alternatively,
the retrieval process may begin with a distinct browsing phase where the system
shows sets of random images and the user looks for a suitable starting-point for the
query phase.

A straightforward query type but only suitable to low-dimensional feature spaces in
which the feature components have concrete meaning is query by feature values. A
fixed value or a range of values is given for some or all of the feature components
and images with matching feature representations are retrieved. This query type
can be used e.g. for features like dominant colors and heuristic region-based shape
features such as area, circularity, and elongatedness of segmented objects.

Techniques which have been used in traditional textual information retrieval would
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be applicable to image searching if textual descriptions of the contents of the images
were available or they could be automatically produced. The latter is, unfortunately,
still generally out of reach with the current state of image processing and machine
vision techniques, although significant development has also been made (see e.g.
Chang et al. 1998a, Naphade et al. 1998, Wang et al. 2001). As already discussed
in Section 3.1.2, the image database may, however, contain such captions or other
annotations either explicitly (e.g. commercial image libraries and medical databases)
or implicitly (e.g. from the text surrounding an image in the WWW). If this is
the case, traditional query by keywords can be used, either independently or in
conjunction with other querying methods.

4.2 Image similarity

In a traditional database implementation, the user ordinarily makes exact queries
and the items matching the query criteria are returned. Matching is a fundamental
database operation, which consists of comparing the database items with the current
query and deciding for each item whether or not the item satisfies the query terms.
In the vector space model (VSM) framework, this query type is equivalent with a
point query. A related query type is range query, in which a range of accepted values
is provided for each feature. In image processing, point or range queries are used on
tasks like object recognition or classification. In image retrieval, this kind of exact
queries are not that useful as with general images it is difficult to find appropriate
matching criteria which would pick only the relevant images. These query types
are thus mostly used on retrieving images based on metadata or other non-visual
features which can effectively be managed with traditional database systems.

A different approach is generally applied with visual data. Instead of matching,
images are graded using a similarity criterion, resulting in a permutation of all the
images in the database sorted according to the used measure of similarity. A preset
number k of most-similar images are then typically presented as the query result
to the user, resulting in a kNN query. Or, the result may consist of all images
below a certain dissimilarity threshold α to the query. This query type is denoted as
within-distance or α-cut query. An alternative basis for the image retrieval problem
is to take a probabilistic approach and, instead of geometric similarity measures,
consider the probabilities of images to belong to the classes of relevant and non-
relevant images. This approach is discussed in Section 5.2.2.

As the goal of CBIR is to accurately retrieve images relevant to the user, the image
similarity measure used in the retrieval system should correspond to the user’s notion
of perceptual similarity. This can only be achieved if there is enough overlap between
the machine and human measures of image similarity (Squire et al. 1999b). This
also emphasizes the need for certain flexibility in the similarity measure as human
judgments of image similarity are subjective and context-dependent.
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4.2.1 Distance measures

In addition to extracting a suitable set of features describing the contents of the
images, we need a suitable measure of similarity between images in the database. For
this purpose, we define a real-valued function called global distance D : D×D → R

+

between all pairs of images in the database. However, since the images are in the
commonly-employed VSM represented as feature vectors in a feature space, a more
useful definition is the feature-wise distance d : RK × RK → R

+ of two images Ii

and Ij according to a K-dimensional feature f

d(f(Ii), f(Ij)) = d(fi, fj) . (4.1)

Feature-wise distances are typically defined using suitable metrics on the correspond-
ing feature spaces. It should also be noted that distance is actually a measure of
dissimilarity with the value of zero denoting exact match and larger values indicat-
ing less similar images whereas similarity is usually defined in the range [0, 1] with
1 meaning perfect similarity and 0 no similarity. Still, distance values can easily be
converted to similarity values if explicitly required and, therefore, in the following
discussion we use the terms distance and similarity rather nonchalantly.

A common example of distance is the Minkowski-form distance based on the Lλ

norm

dLλ
(fi, fj) =

[
K∑

k=1

|fi(k)− fj(k)|λ
] 1

λ

(4.2)

and thus containing a parameter λ. fi(k) is the kth component of fi. By setting
λ = 1, we obtain the Manhattan or city-block distance

dL1(fi, fj) =
K∑

k=1

|fi(k)− fj(k)| (4.3)

and by setting λ = 2, we get the common Euclidean distance

dL2(fi, fj) = ‖fi − fj‖ =

√√√√ K∑
k=1

(fi(k)− fj(k))2 (4.4)

which is the basic metric for Self-Organizing Maps and thereby used extensively in
this work.

The generalized Euclidean distance is defined as

dGE(fi, fj) =
√

(fi − fj)TA(fi − fj) =

√√√√ K∑
k=1

K∑
l=1

akl(fi(k)− fj(k))(fi(l)− fj(l))

(4.5)
where akl is the (k, l)th element of matrix A. Generalized Euclidean distance con-
tains the Euclidean distance as a special case when A = I, i.e. the identity matrix.
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When the values of a diagonal A are not equal, the isosurfaces of the generalized
Euclidean distance become ellipses. If A is not diagonal, the generalized Euclidean
distance takes correlations between feature dimensions into account. An important
distance measure of this type is the Mahalanobis distance

dMA(fi, fj) =
√

(fi − fj)TΣ−1(fi − fj) (4.6)

in which A = Σ−1 is the inverse of the covariance matrix of the feature distribu-
tion. The Mahalanobis distance is useful to limit the effect of correlations. If two
feature components are strongly correlated, they capture similar characteristics of
the image and this similarity is essentially taken twice into account in the above
distance measures. In this sense, the Mahalanobis distance can be seen to normalize
component-wise correlations in addition to normalizing variance.

Another similarity measure, widely used in text retrieval and closely related to
Euclidean distance, is the cosine measure

dcos(fi, fj) =
fT
i fj

‖fi‖ ‖fj‖
=

∑K
k=1 fi(k)fj(k)√∑K

k=1 fi(k)2

√∑K
k=1 fj(k)2

(4.7)

which gives the same rankings as the Euclidean distance (4.4) if the vectors fi and
fj were normalized to unit length. With normalized vectors, (4.7) can also be con-
sidered as the correlation between fi and fj.

One shortcoming of the Minkowski-form distances is that the resulting distance is
a function of the whole feature vectors, but the feature vectors of similar images
are not always similar with respect to every feature component. Thereby, Li et al.
(2002b) proposed the dynamic partial distance function (DPF) which takes only a
subset of feature components into account when calculating feature distance. DPF
is calculated as

dDPFλ
(fi, fj) =

[∑
k∈∆m

|fi(k)− fj(k)|λ
] 1

λ

(4.8)

where ∆m is a set containing the m ≤ K components of the feature space with the
smallest values for |fi(k)− fj(k)|, k = 1, . . . , K.

Multidimensional distributions are often compressed by partitioning the multidimen-
sional space into bins, resulting in the data represented by a histogram. Histograms
are an important structure for image retrieval as many commonly-used visual fea-
tures are represented as histograms. A histogram with K bins can be interpreted
either as a point in a K-dimensional space or as a probability distribution. Therefore,
the distance measures presented above can be applied to histograms, but distance
measures suitable for histograms in particular exist. Measuring the similarity of
two histograms is a significant and widely studied issue in the CBIR field (see e.g.
Smith 1997, Rubner 1999, Brunelli and Mich 2001, Cha and Shihari 2002). Fur-
thermore, a number of methods to improve the efficiency of using histograms with
large databases has been presented. An exhaustive search where each image in the
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database is considered easily becomes a bottleneck for system scalability with respect
to database size. A method for further reducing the amount of needed computa-
tions by using simple low-dimensional distance measures obtained with SVD which
are lower bounds of histogram distances was presented in Hafner et al. (1995). In
Berman and Shapiro (1997), the triangle inequality was utilized to eliminate un-
necessary histogram comparisons. Song et al. (2001) presented a multiresolution
comparison method for histograms which can remove candidate histograms whose
lower bound is larger than the current minimum distance.

Histogram-based distances can be divided to two categories: bin-by-bin and cross-
bin or quadratic distances. Bin-by-bin distances compare only the corresponding
histogram bins whereas cross-bin distances compare also non-corresponding bins. In
addition to the Minkowski-form distances, typical examples of bin-by-bin distances
include histogram intersection defined by

dHI(fi, fj) =

∑K
k=1 min(fi(k), fj(k))∑K

k=1 fi(k)
, (4.9)

Kullback-Leibler divergence

dKL(fi, fj) =
K∑

k=1

fi(k) log
fi(k)

fj(k)
, (4.10)

and Jeffrey divergence

dJD(fi, fj) =
K∑

k=1

(
fi(k) log

fi(k)

f̂(k)
+ fj(k) log

fj(k)

f̂(k)

)
(4.11)

where f̂(k) = (fi(k) + fj(k))/2 is the mean histogram. Of the above distances, the
first two are not true metrics as they are not symmetric. For histogram intersection,
this is easily fixed by normalizing the histograms. In fact, the histogram intersection
equals the Manhattan distance if the histograms are normalized (Swain and Ballard
1991). Using the Kullback-Leibler and Jeffrey divergences requires normalizing the
histograms so that they sum up to unity as the measures are only meaningful to
probability distributions. In contrast to the Kullback-Leibler divergence, the Jef-
frey divergence is symmetric and numerically stable with empirical distributions.
Nonparametric test statistics, providing a sound procedure for testing the hypothe-
sis that two empirical distributions were generated from the same distribution, can
also be used for histogram comparison (Rubner et al. 2001). While being compu-
tationally inexpensive, all bin-by-bin measures are sensitive to the selection of bin
boundaries since they do not share information across the boundaries. Bin-by-bin
distances are also sensitive to the dimensionality of the histogram, i.e. the selection
of K.

The sensitivity problems of bin-by-bin distances can be alleviated by using cross-bin
distances, which are usually defined using (4.5) with a non-diagonal A. Then, akl

is the weight associated with the similarity of bins k and l. A cross-bin histogram
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distance measure was suggested for color histograms in Niblack et al. (1993), in
which the elements of matrix A were set to

akl = 1− d(k, l)

dmax

(4.12)

where d(k, l) is the distance between colors k and l in the used color space and dmax

is the maximum distance of any two colors. A basic implementation of a cross-bin
distance has quadratic complexity, i.e. O(K2), although it can be reduced to O(K)
with certain precomputations.

A different approach is taken by Rubner et al. (1998) who consider histogram
distance as a transportation problem. They propose the Earth Mover’s Distance
(EMD) which is based on determining the minimal cost to transform one histogram
to another by moving “histogram mass”. EMD is computed using a linear optimiza-
tion algorithm, which makes it computationally rather heavy and thus less useful in
online retrieval applications.

4.2.2 Feature selection and synthesis

Due to the gap between high-level semantics and low-level visual features, the re-
trieval performance of any low-level visual feature is bound to remain low at least
for some retrieval tasks. On the other hand, finding a single metric which would
universally capture image similarity as perceived by humans is altogether an ill-
posed problem due to the inherent subjectivity. Therefore, it can be stated that
effective CBIR generally requires the use of multiple features. This can also be seen
as analogous to classifier combination in statistical pattern recognition. In addition
to the development of improved classifiers, the performance of a pattern recognition
system can be improved by using multiple classifiers in parallel and combining their
responses. If the classifiers are designed to complement each other and the combi-
nation algorithm can utilize the strengths of individual classifiers, this approach can
lead to superior performance. A study of using multiple classifiers in image retrieval
is presented in Hsieh and Fan (2001).

Combining multiple features can be achieved with either a sequential or a parallel
approach. In sequential combination or feature filtering each feature is invoked
in a linear sequence to remove non-relevant images according to that particular
feature. A natural choice is to set the order of features so that the computationally
cheapest features are invoked first. After all feature filters have been applied, the
final selection of images can be performed for the remaining images. However, a
more common approach is to consider the features independently and in parallel,
which is generally achieved by two overlapping approaches, feature selection and
feature weighting, both of which can be automatic, interactive (semi-automatic), or
manual. For feature selection, one solution would be to offer a wide range of object
and scene intrinsic features for the user to select from. For instance, we could make
available custom-made shape detectors for different objects that might be present
in the images and the user would select the ones suitable for the given query. One
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important application for this type of approach is human face detection. In general-
purpose retrieval systems with unconstrained images, however, this approach is not
very practical. Generally, the discrimination abilities of different features are not
evident and selecting a viable feature set for a given task is difficult. Automatic
or semi-automatic methods would thus be preferable. Automatic feature selection
is discussed e.g. in Breiteneder and Eidenberger (2000). Alternatively, the retrieval
algorithm may be designed so that it is capable of neglecting poorly-working features
and focusing on the ones providing the most useful information, in which case explicit
feature selection is not needed.

Most of the early CBIR systems supporting multi-feature retrieval, such as QBIC
and Virage, relied on user-provided weights for a given set of features. However,
the results of the retrieval are often strongly dependent on the given values for the
weights, but providing suitable ones is again a difficult task, even for a knowledgeable
expert, let alone a normal user (Picard et al. 1996). Therefore, these decisions
should be made automatically by the retrieval system or semi-automatically, which
generally leads to interactive retrieval and learning from user interaction (discussed
in Chapter 5).

In a setting supporting multiple features, the global distance D of two images is, in
general, a function of feature-wise distances dm, m = 1, . . . ,M of the images in all
M used feature spaces:

D(Ii, Ij) = g(d1(f
1
i , f1

j ), d2(f
2
i , f2

j ), . . . , dM(fM
i , fM

j )) . (4.13)

Simple possibilities for the function g(·) are e.g. g = min, g = max, and g = median.
In many cases, however, the above definition is overly broad and the global distance
is simply a linear combination of the feature distances. The above equation can thus
be simplified to

D(Ii, Ij) =
M∑

m=1

Wmdm(fm
i , fm

j ) (4.14)

where Wm is the weight parameter associated with the mth feature space. Feature
combination can also be performed with other approaches such as voting and Borda
count. For example, a voting procedure is presented in Nastar et al. (1998), where
each feature is used to grade images separately and the final ranks of retrieved
images are obtained by averaging the separate ratings. A modified Borda count
method was used to combine results from multiple features in Jeong et al. (1999).
In Sheikholeslami et al. (1998), a MLP network was used for this purpose.

4.3 Image browsing and database visualization

There are two general methods for finding images from large databases: querying
and browsing. Until now, this section has discussed the querying approach where the
retrieval consists of strictly defined alternating user-system interaction. Database
browsing, on the other hand, is much more vague since it basically means some
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kind of free-form maneuvering by the user in the image space. The query paradigm,
although being currently the method of choice in most CBIR research, has its prob-
lems and limitations. The search task itself can be indefinite, the user may just be
looking for interesting images whatever they might be (open-ended search), or she
may change the query target during a query. Effective query by example requires
positive example images and locating one or more of them in the beginning of the
query is a recognized problem (cf. Section 4.1). Images gathered during browsing
can be used as initial examples for later QBE-type queries. Browsing and querying
may and even should be tightly integrated so that it is possible to switch between
them at any time as, for example, in Pečenović et al. (2000).

An integrated browsing tool can thus be very useful in image retrieval applications.
Designing effective interfaces for browsing is, however, not at all a trivial task. Since
browsing involves processing the entire database, some type of database visualiza-
tion and a tool for navigation are needed. Browsing and navigating a database can
be disorienting unless the user can form a mental picture of the entire database.
An insight of the surrounding environment is required to be able to effectively de-
cide where to proceed next (Rubner 1999). To assist browsing, images should be
organized so that similar images are grouped together or located near each other in
the visualization. Image similarity, as already discussed in Section 4.2, is a difficult
issue but even organization by low-level features can be useful for browsing (Rodden
et al. 2001). A common approach to provide a database overview is to use dimen-
sionality reduction of the image features to (usually) a two-dimensional plane using
techniques like PCA (e.g. Hiroike et al. 1999, Tian et al. 2002), MDS (e.g. Rodden
et al. 1999, Rubner 1999, Stan and Sethi 2003) or SOM (as shown e.g. in Figures 3.1
and 3.2). The resolution of the display area is limited and therefore the original
images are typically represented by small thumbnail images. Also, label images or
textual labels can be used to represent groups of similar images. Distorted displays
such as fish-eye lenses and magnifying glasses can also be used.

To aid browsing of large databases, a common method is to provide a hierarchical
display of the database and support traversing both on the current level of the
hierarchy and between levels of the hierarchy with operations such as panning and
zooming. Tree Structured SOMs, as discussed in Section 3.3, have been used in
PicSOM for this purpose. This is illustrated in Figure 4.1, where the image labels of
a three-level TS-SOM are displayed. First, the uppermost SOM contains a cursory
view of the database with only a small number of map units. The level of detail
is then increased when moving downwards in the hierarchy until the full contents
of individual map units can be reached from the bottommost map level. Similar
approaches with hierarchical SOMs were presented in Zhang and Zhong (1995) and
Sethi and Coman (1999). MDS can also be used for hierarchical browsing, for
instance, by incorporating it with a clustering method as in Stan and Sethi (2003).
In Chen et al. (2000), the hierarchical browsing environment is constructed using
a similarity pyramid. Hierarchical clustering has also been used for this purpose
(Krishnamachari and Abdel-Mottaleb 1999, Pečenović et al. 2000).

Another approach, which can be seen as a combination of querying and browsing, is
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Figure 4.1: An illustration of image labels of a three-level TS-SOMs trained with MPEG-
7’s Color Layout descriptor. Only a small portion of the bottommost SOM is displayed
due to limited space. The dashed lines indicate the hierarchy. In addition, the whole set
of images mapped to one map unit on the bottommost SOM is displayed.
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Figure 4.2: A two-stage structure for CBIR systems.

to use dynamic visualization. The user interface is designed to allow more compli-
cated interaction and direct manipulation of images inside the visualization display,
instead of just providing navigation aids in a static environment. The visualization
display can be used to form groupings of relevant example images and to move non-
relevant images away as in Santini and Jain (2000), Caenen et al. (2000), Nakazato
et al. (2002), and Tian et al. (2002).

4.4 A generic structure of multi-feature CBIR systems

With large databases, the requirement of immediate or speedy responses during
query processing often limits the amount of computations which can be performed
and, in many cases, computational shortcuts must be applied. One such shortcut is
to divide and conquer the image selection process by making it in multiple stages.
This approach is presented and discussed in more detail in Publication IV. Figure 4.2
illustrates the idea within a two-stage structure corresponding to the parallel method
for feature combination (Section 4.2.2). In a multi-feature retrieval setting, each
feature representation m = 1, . . . ,M can be used separately for finding a set Dα

m

of image candidates according to that feature. This is especially advantageous if
the distances calculated in the different feature spaces are weighted dynamically as
in such a case it is not possible to order the images by their mutual distances in
advance. Considerable savings in computational requirements may be achieved if we
can set Nα

m � N provided that satisfactory retrieval precision can still be reached.
At minimum, the number of images in each subset, Nα

m, should exceed the count of
images to be finally shown to the user.

The per-feature subsets are then combined into a larger set Dβ of images which may
be further processed in a more exhaustive manner. Depending on the sizes of the
subsets, for example, the union of the initial sets, Dβ =

⋃M
m=1Dα

m, or only those
which are included in more than one of them, can be taken into the combined set Dβ.
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Nevertheless, the objective is that in the final selection process there will be involved
a substantially smaller number of images than the whole database, i.e. Nβ � N .
This enables to use computationally more demanding techniques for selecting the
finally shown images among the images in this set.

A variety of different CBIR techniques can be represented in terms of this kind of
common system structure. In Publication IV, the PicSOM method and reference
CBIR methods based on vector and scalar quantization are represented within the
structure illustrated in Figure 4.2. The structure of Figure 4.2 is also compatible
with the feature combination and weighting presented in (4.13) and (4.14). Generally
in this setting Nα

m = Nβ = N , so there is no computational savings for the processing
in the second stage due to a reduced number of potential images. In any event,
the operation of different CBIR systems can then be analyzed by studying the
functionality of these blocks.
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5 RELEVANCE FEEDBACK

The iterative and interactive refinement of the original formulation of a query is
known as relevance feedback in IR literature (Salton and McGill 1983, Baeza-Yates
and Ribeiro-Neto 1999). The essence of relevance feedback is to move from one-
shot or batch mode queries, as provided by standard tools like SQL, to navigational
queries where one query consists of multiple rounds of interaction and the user
becomes an inseparable part of the query process. During a round of relevance
feedback, the user is presented with a list of retrieved items and is expected to
evaluate their relevance, which information is then fed back to the retrieval system.
The expected effect is that the new query round better represents the need of the
user as the query is steered toward the relevant items and away from the non-relevant
ones. Ever since the early experiments with the SMART system (Salton 1971), using
relevance feedback has shown considerable improvements in retrieval precision and
user interaction has remained a major topic in IR research (see e.g. Ingwersen 1992).
Three distinct strengths of relevance feedback are listed by Baeza-Yates and Ribeiro-
Neto (1999): (a) It shields the user from the inner details of the retrieval system.
(b) It brings down the retrieval task to small steps which are easier to grasp. (c) It
provides a controlled setting to emphasize some features and de-emphasize others.

In the first part of this chapter, the major variants of today’s relevance feedback
algorithms in CBIR are introduced. Relevance feedback has excited a formidable
amount of research interest in the CBIR field, especially in the few recent years,
so this chapter does not contain a comprehensive survey of all the existing and
proposed techniques. Instead, the major approach types into which most of the
current methods can be categorized are described. A taxonomy for the algorithms
is presented, although the categorization is not a strict one; the categories of several
methods are more results of the methods’ point of view. Next, the chapter contains
a fairly detailed description of the relevance feedback technique proposed by our
research group. Finally, the chapter is concluded with a discussion on using relevance
assessments recorded during normal usage of the retrieval system in a longer-term
learning scheme devised by the author of this thesis.

5.1 Relevance feedback in image retrieval

Soon after the first prototype CBIR systems, relevance feedback was quickly adopted
to image retrieval (see e.g. Picard et al. 1996, Rui et al. 1997, Huang et al. 1997a),
where it has proven out to be widely successful and the majority of current CBIR
systems include some kind of a relevance feedback mechanism. There are two main
reasons for this popularity. First, more ambiguity arises in interpreting images
than text, making user interaction more necessary (Zhou and Huang 2003) Second,
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manual modification of the initial query formulation is much more difficult in CBIR
than with textual queries. Still, the research on relevance feedback in the CBIR
setting can be seen as a direct descendant of general interaction research in IR.
Reviews of relevance feedback techniques used in CBIR have recently been published
by Zhou and Huang (2003) and Ortega-Binderberger and Mehrotha (2003).

Relevance feedback can be seen as a form of supervised learning to steer the sub-
sequent query toward the relevant images by using the information gathered from
the user’s feedback. Another way to view relevance feedback in CBIR is to regard
a system implementing relevance feedback as one trying to gradually learn the op-
timal correspondence between the high-level concepts people use and the low-level
features obtained from the images. The user thus does not need to explicitly specify
priorities for different similarity assessments because they are formed implicitly by
the system based on the user–system interaction. This is advantageous also since
the correspondence between concepts and features is temporal and case specific.
This means that, in general, every image query is different from the others due
to the hidden conceptions on the relevance of images and their mutual similarity
and therefore using a static image similarity measure may not be sufficient. On
the other hand, Santini et al. (2001) have argued that the user feedback should be
seen, instead of as filtering images based on some preexisting meaning, as a process
of creating meaning through the interaction. They argue that images do not have
intrinsic meanings but rather the semantics of an image emerge from the context of
other images and user interaction, e.g. in a CBIR setting.

In implementing relevance feedback in a CBIR system, three minimum requirements
need to be fulfilled. First, the system must show the user a series of images, remem-
ber what images have already been shown, and not display them again. Thus, the
system will not end up in a loop and all images will eventually be displayed. Second,
the user must somehow be able to indicate which images are to some extent relevant
to the present query and which are not. In this work, these images are denoted as
positive and negative seen images. It is thus not sufficient that the user picks just one
of the shown images, but rather a set of images must be indicated as positive ones
while the remaining images can implicitly be regarded as negative ones. Clearly, this
granularity of relevance assessments is only one possibility among others. In some
systems, for example, the negative examples must also be explicitly provided and the
non-selected images are considered to be neutral. The relevance scale may also be
finer, e.g. containing options like “very relevant”, “relevant”, “somewhat relevant”,
and so on. Relevance feedback can also be in the form of direct manipulation of the
query structure as with the dynamic visualization methods discussed in Section 4.3.
As the third requirement, the system must change its behavior depending on the
relevance scores provided for the seen images. During the retrieval process more
and more images are assessed and the system has increasing amount of data to use
in retrieving the succeeding image sets. The art of relevance feedback is finding the
ways which use this information most efficiently.

The interactive process of relevance feedback where each seen image is classified
either as positive or negative can be formalized as follows. In Section 2.1, we denoted
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the image database asD and its non-intersecting subsets of relevant and non-relevant
images to a given query as D⊕ and D	, respectively. During the nth round of the
retrieval session, the set of retrieved images is denoted as Dn and the cumulative set
of retrieved images since the beginning of the query as D(n). After user interaction
on round n, the images in Dn will have attached relevance assessments, i.e. the
images are split into two sets, D+

n and D−
n . The interpretation of these sets is to some

extent ambiguous. A common assumption, especially in automated performance
evaluation, is categorical feedback, where the images are assumed to be rated either
as relevant or non-relevant according to whether the image in question belongs to
the same image category as the target of the query. In this case, D+

n ⊂ D⊕ and
D−

n ⊂ D	. Alternatively, we can consider the set D+
n as seen images that are, at this

time instance, more similar to the current target than the others but not necessarily
relevant in the final assessment (Cox et al. 2000). The sets D+

n and D−
n , gathered

since the beginning of the query, are the basis for query improvement by relevance
feedback. Often, the sets containing images with similar relevance assessments are
combined, i.e. information of the round in which a certain image was shown is
neglected. Assuming categorical feedback, this results in non-intersecting sets of
all positive and all negative seen images, denoted as D+(n) =

⋃n
i=1D

+
i ⊂ D⊕ and

D−(n) =
⋃n

i=1D
−
i ⊂ D	, respectively. The still unseen images can then be marked

as D′(n), which leads to D′(n) = D \ D(n) = D \ (D+(n) ∪ D−(n)). The symbol N
with the same superscripts and subscripts is used for denoting the cardinalities of
the respective image sets.

Three specific characteristics of relevance feedback, distinguishing it from many
other applications of machine learning, were identified by Zhou and Huang (2003):
(a) Small number of training samples. Compared to many supervised learning tasks,
the number of samples relative to the dimensionality of the feature spaces is very
small in relevance feedback. Only a rather small number of images (typically Nn <
30) is usually evaluated on one round of the query and users are often impatient and
unwilling to provide much feedback. This makes many traditional inductive learning
methods ill-suited since they fail to produce stable results. (b) Asymmetry of the
training data. All images in D+(n) are relevant in some specific way but every image
in D−(n) is non-relevant in its own way. Therefore, while D+(n) may be a reasonable
sample of relevant images, D−(n) usually cannot represent the distribution of all non-
relevant images well. (c) Real-time processing requirements. Relevance feedback is
used when the user is interacting with the system and thus waiting for the completion
of the algorithm. An image query may well take several rounds until the results are
satisfactory, so fast response time is essential. With large databases, this usually
limits the range of possible methods to ones which do not rely on processing the
whole database on each query round.

5.2 Methods adopted from text-based information retrieval

Text-based IR has been intensively studied for more than forty years and the useful-
ness of relevance feedback has been long recognized in the research field. Therefore,
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a natural basis for developing relevance feedback techniques for CBIR is to study
the methodology of IR and apply suitable methods in image retrieval. Two such
main approaches exist, one based on the vector space model (VSM) and the other
on building a probabilistic model for text retrieval. Use of these approaches in image
retrieval is briefly discussed next.

5.2.1 Vector space model based methods

In VSM, each database item is represented as a point in K-dimensional space.
Textual documents are commonly represented by the words they contain using the
bag of words model (see Section 3.2.5). This information is then encoded into a
term-by-document matrix X. Similarly to the database items, the query is also
represented as a point or vector q in the same vector space. In order to do retrieval,
the documents are ranked according to their similarity to q. In text-based retrieval,
the standard similarity measure here is the cosine measure (4.7).

The dimensionality of the data in VSM equals the number of distinct terms present
in the corpus after preprocessing. Dimensions of the data are typically reduced in
the preprocessing step by removing the most common terms from the data. Overly
rare terms can also be removed. Still, the remaining dimensions of the data may
still well be in the order of thousands: O(104) dimensions are typical for large
corpora. Fortunately, X is typically very sparse and it is thereby feasible to utilize
inverted files (Section 3.2.5). An alternate method to reduce on-line query evaluation
time is to perform dimensionality reduction on the term-by-document matrix X.
Latent semantic indexing (LSI) (Deerwester et al. 1990), i.e. applying singular value
decomposition on X, is a very common method to perform dimensionality reduction
in IR.

In the VSM framework, two general methods for query improvement or reformulation
exist, namely query point movement and feature (component) re-weighting. These
will be briefly discussed next.

Query point movement. Since the query is represented as a query point q in
the vector space, a straightforward approach is to relocate q based on the new
information obtained with relevance feedback about the relevancy of nearby data
items. The basic idea is to move the query point toward the part of vector space
where the relevant documents are located. In image retrieval with QBE queries this
can be seen as transforming the original example image to a virtual query image
with statistics matching to the location of the new query point.

A classical method for moving the query point based on positive and negative ex-
amples is the Rocchio’s formula (Rocchio 1971):

qn+1 = αqn +
β

N+(n)

∑
Ij∈D+(n)

fj −
γ

N−(n)

∑
Ij∈D−(n)

fj (5.1)
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where qn is the query point on the nth round of the query and α, β, and γ are
weight parameters (α+β+γ = 1) controlling the relative importance of the previous
query point, the average of relevant images, and the average of non-relevant images,
respectively. Usually, the information contained in the relevant images is more
valuable than the information provided by the non-relevant ones. This is due to
the fact that the relevant items can be reasonably assumed to be concentrated on
a specific area of the vector space whereas the non-relevant items are often more
heterogeneous. Therefore, we should set the weights so that β > γ. Setting γ = 0 is
also possible, resulting in purely positive feedback. It is also plausible to set α = 0
which results in ignoring the query history including the user-provided initial query
and setting the new query point solely based on the currently available relevance
assessments. In practice, the original query often contains important information
which should not be neglected (Salton and McGill 1983).

Early implementations of relevance feedback via query point movement in CBIR
include Rui et al. (1997), Huang et al. (1997a) and Chua et al. (1998). The effect
of positive and negative feedback for query point movement in image retrieval was
studied by Müller et al. (2000a). In their experiments using negative feedback
improved the results, although care must be taken not to incorporate too much
negative feedback to the query.

Feature component re-weighting. The basic idea is to increase the importance
of those components (dimensions) of the used feature vectors which seem to aid the
most in retrieving relevant images. Each component in a feature representation can
be given a weight which is used in calculating the distances between images. This
can be easily done by augmenting the used distance measure (see Section 4.2.1) with
component-wise weights: the weight of kth component of the mth feature is denoted
as wmk. These weights should not be mixed with feature weights (the weight of mth
feature was denoted as Wm in Section 4.2.2) but rather seen as an extension of that
approach to a lower level in the similarity measurement hierarchy. As an example,
the general form of Minkowski-type distances becomes

dwLλ
(fi, fj) =

[
K∑

k=1

wmk|fi(k)− fj(k)|λ
] 1

λ

(5.2)

when augmented with component-wise weights (compare with (4.2)).

Assuming that the feature components are independent, the case when the relevant
items have similar values for f(k), i.e. the kth component of feature f , it can be as-
sumed that f(k) captures something the relevant items have in common and which
corresponds to the user’s information need. Conversely, a component which has a
wide spread of values for the relevant items is likely to be a poor descriptor. There-
fore, an intuitive weighting scheme is to use the inverse of the standard deviation of
the relevant items as component-wise weights

wmk =
c

σ+
mk

. (5.3)
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where c is a normalizing constant, often set so that
∑K

k=1 wmk = 1. This scheme
is used by many CBIR researchers (e.g. Rui et al. 1997, Yang et al. 1998, Aksoy
et al. 2000, Brunelli and Mich 2000, Wu and Manjunath 2001). Naturally, other
decreasing functions of σ+

mk could also be applied. The estimation of standard devi-
ation requires at least two relevant items and the estimate may well be inaccurate
until enough training samples have been obtained, which is a well-known problem
in relevance feedback. Before using (5.3), the feature should be normalized so that
equal emphasis is placed on components with different ranges of values. A common
solution is to use Gaussian normalization

f(k)norm =
f(k)− µk

Kσk

(5.4)

where K is a parameter controlling the probability that a feature component value
lies inside a specific range after normalization. E.g., assuming a Gaussian distribu-
tion, 68% of the samples lie in [−1, 1] with K = 1. For an extensive discussion on
feature normalization in CBIR, see e.g. Aksoy and Haralick (2001).

The inverse standard deviation weighting of (5.3) neglects the negative seen images
and several extensions for including them have been proposed. For example, the
weighting of feature components can be made dependent on the difference of the
inverse variances of the positive and all shown images (Schettini et al. 1999) or the
component’s ability to separate the positive and negative examples can be measured
using the difference of their means (Yang et al. 1998) or the distribution pattern
of the negative examples (Wu and Zhang 2002). Doulamis and Doulamis (2001)
presented a weighting scheme where the importance of each component is estimated
by simultaneously maximizing the correlation (4.7) between the query point and the
positive examples and minimizing the correlation with the negative examples.

Upper-level weights can be updated using a similar approach. In Section 4.2.2,
feature weights Wm (4.14) were discussed as a method to combine several features
into an image query. Relevance feedback provides a way to automatically infer the
Wms based on how well the corresponding feature seems to work in the current
query. A three-level weighting model was presented in Rui et al. (1998): separate
weights are used at feature, representation, and component levels. In their terminol-
ogy, a “feature” corresponds to modalities of low-level features (e.g. color) whereas
“representations” are specific means to compute that feature (e.g. color histogram,
dominant colors). All weights are updated via relevance feedback. A similar multi-
level weighting approach and a back-propagation algorithm for weight updating was
presented by Fournier et al. (2001a).

A method incorporating both query point movement and feature component re-
weighting was proposed by Ishikawa et al. (1998). The method also supports in-
corporating correlations between feature components. The starting point in their
method is the generalized Euclidean distance (4.5). The user’s relevance assessments
are used to estimate both the coefficients of the matrix A (i.e. the implied distance
function) and the optimal query point q. This is done by solving the optimization
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problem

min
q,A

∑
Ij∈D(n)

vj(fj − q)TA(fj − q) (5.5)

s.t. det(A) = 1

where [v1, . . . , vN(n)]
T is a vector containing the user’s relevance scores for the seen

images. They also showed that inverse standard deviation weighting (5.3) gives
the optimal solution to (5.5) if A is restricted to a diagonal matrix. Despite its
theoretical appeal, the method is not feasible in practice since it requires much more
data than is available in typical settings where relevance feedback is applied. When
estimating both A and q, the number of parameters is inevitably high compared
to the number of typically available relevance assessments in relevance feedback,
especially if A is not restricted to a diagonal matrix.

5.2.2 Probabilistic model

The probabilistic model is another classical model in information retrieval (Salton
and McGill 1983, Baeza-Yates and Ribeiro-Neto 1999). Now, the retrieval problem
is expressed within a framework provided by probability theory. Each database item
I is associated with the estimated probabilities P (I ∈ D⊕) and P (I ∈ D	). Items
with the highest probabilities to belong to the ideal answer set D⊕ are then returned
as the query result.

Relevance feedback can be incorporated to this framework by introducing the query
history Hn where n is the number of the query round. Hn consists of the images
displayed on query rounds up to round n (D1,D2, . . . ,Dn) and the corresponding
actions A1,A2, . . . ,An taken by the user. Often, the action Aj consists only of
marking the relevant items of the returned ones, in which case we can writeAj = D+

j .
Generally, Hn = {D1,A1,D2,A2, . . . ,Dn−1,An−1,Dn, An} and the probabilities of
database items being relevant or non-relevant to the query given the session history
are written P (I ∈ D⊕ |Hn) and P (I ∈ D	 |Hn). The task is then to determine
Dn+1.

In the CBIR field, the probabilistic model was first used by Cox et al. in their
PicHunter CBIR system (Cox et al. 1996, Cox et al. 2000). In their basic formula-
tion, they considered only target search (cf. Section 2.1) so D⊕ = {I⊕}. Therefore,
we only need to compute P (I = I⊕ |Hn) for all unseen images in the database.
Using Bayes’ rule we can write

P (I = I⊕ |Hn) =
P (Hn | I = I⊕)P (I = I⊕)

P (Hn)
(5.6)

where P (Hn | I = I⊕) is the likelihood of the history given that I is the target
image and P (I = I⊕) is the a priori probability of I being the target image. In
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PicHunter, P (I = I⊕ |Hn) is computed incrementally from P (I = I⊕ |Hn−1) with

P (I = I⊕ |Hn) = P (I = I⊕ | Dn,An,Hn−1) = (5.7)

P (An | I = I⊕,Hn−1)P (I = I⊕ |Hn−1)∑
I∈D P (An | I = I⊕,Hn−1)P (I = I⊕ |Hn−1)

where the likelihood functions are written without the variable Dn as it is a deter-
ministic function of Hn−1. The term P (An | I = I⊕,Hn−1), referred to as the user
model, is a critical component of the method as it models the user’s response given
the query history Hn−1 and the target image I⊕.

Bayesian relevance feedback for category search has been studied by Vasconcelos
and Lippman (1999). They presented a similar technique as above to determine
the posterior probabilities for images to belong to the class of relevant images to
minimize the probability of retrieval error. Later work based on the PicHunter
framework include Geman and Moquet (1999), Müller et al. (1999), and Su et al.
(2001).

5.3 Other relevance feedback techniques in CBIR

5.3.1 Set-theoretic machine learning

Picard et al. were among the first to study learning from user interaction in image
retrieval (Picard et al. 1996, Minka and Picard 1997). Their FourEyes system first
forms initial within-image and across-image groupings of related image regions by
hierarchical clustering. User feedback is then used for set-theoretic machine learning
of new rules with three classical algorithms: set covering, decision list, and decision
tree. In set covering, the task is to find a set of groupings which cover as much
positive examples as possible but not any negative examples. In decision list and
decision tree algorithms, the asymmetry of set covering is removed by allowing also
sets of only negative examples and the use of set complements.

5.3.2 Density estimation

The purpose of relevance feedback can be viewed as a task of probability density
estimation. In fact, the VSM-based methods described in Section 5.2.1 can be con-
sidered as density estimation of relevant images with the assumption of a unimodal
Gaussian distribution (Wu et al. 2002). Given a set of positive example images
D+(n) provided by the user and using parametric density estimation, the task is to
estimate the probability density of relevant images p(x | D+(n) ; θ), where θ contains
the parameters of the distribution. In order to make the estimation feasible during
query-time, simplifying assumptions have to be made. In Nastar et al. (1998), the
feature components are assumed to be independent and their distribution is assumed
to be unimodal and Gaussian. The images to be shown on the next round are de-
termined using modified maximum likelihood estimation which takes into account
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also the set of non-relevant seen images D−(n). In Meilhac and Nastar (1999), the
assumption that the distribution of relevant images is single Gaussian is lifted and
replaced by non-parametric and multimodal density estimation using Parzen win-
dows. In this approach, a spherical kernel function K(·) is centered on each of the
positive examples and the density of relevant images is estimated as

p(x | D+(n)) =
1

N+(n)

∑
Ij∈D+(n)

K(x− fj) . (5.8)

Another approach to estimate the probability density of relevant images without the
assumption of unimodality is to use mixture models, of which the most popular is
the Gaussian mixture model (GMM)

p(x | D+(n) ; θ) =
G∑

i=1

πiN (x |µi,Σi) (5.9)

where G is the number of Gaussian mixtures N (·) and πi the mixing parameter sat-
isfying

∑G
i=1 πi = 1. Estimation of the GMM parameters θ = {πi, µi,Σi}, i =

{1, 2, . . . , G} is a nontrivial task for which the standard method is to use the
Expectation-Maximization (EM) algorithm (Dempster et al. 1977). GMM-based
relevance feedback techniques using the EM algorithm have been proposed by Vas-
concelos and Lippman (1998), Yoon and Jayant (2001), and Najjar et al. (2003).
In Qian et al. (2002), the EM algorithm was replaced by a method based on hy-
persphere coverings of the relevant images in the feature space. Unlike the ones
based on the EM algorithm, their method is also able to estimate G, the number of
mixtures.

The probability density of relevant images can also be estimated using Support
Vector Machines (SVMs) (Vapnik 1995). Chen et al. (2001) presented a relevance
feedback scheme based on a one-class SVM (1-SVM) which fits a tight hypersphere
in a nonlinearly transformed feature space to include as much positive examples
as possible. Due to the nonlinear transform, implemented using a Gaussian kernel
function, the model is able to capture also multimodal probability densities.

5.3.3 Classification methods

The methods of feature component re-weighting (Section 5.2.1) and density esti-
mation, described above, consider only positive example images in the basic form,
although extensions which include negative examples have also been introduced. An
alternate approach to take negative images into account is to treat relevance feed-
back as a problem of classification. The problem of image retrieval is now considered
as a standard two-class classification problem: to separate the class of positive ex-
amples from the class of negative examples. As these classes are not usually linearly
separable, some kind of a nonlinear classification method must be applied. However,
the actual goal here is different from classification; instead of predicting class labels
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of input vectors, we are interested in finding more images belonging to the class of
positive images.

Asymmetry of the training data was identified as one of the distinct characteristics
of relevance feedback in Section 5.1. This is manifested here in the compactness
of the classes, as the positive images are typically concentrated to certain area or
areas in the feature space and the negative images are scattered. In Huang and
Zhou (2001), this is taken into account by defining a biased classification problem
in which an unknown number of classes is assumed but the user is only interested in
one of them. They formulate relevance feedback as a classification problem where
the classes are separated by kernel-based nonlinear discriminant functions. SVMs
(Hong et al. 2000, Zhang et al. 2001) and a discriminant EM algorithm (Wu et al.
2000b) have also been proposed for this purpose. Other methods for classification-
based relevance feedback include the use of boosting (Tieu and Viola 2000, Guo et
al. 2002), decision trees (MacArthur et al. 2000), and RBF networks (Qian et al.
2003)

5.3.4 Selecting the distance metric

One method to apply relevance feedback is to use it to select the used distance met-
ric (Taycher et al. 1997). Since it is difficult to determine which Minkowski distance
measure dLλ

(fi, fj) (4.2) is best for a particular query, the value of λ is selected so
that the smallest attainable relative distance between the positive seen images is ob-
tained. Their ImageRover system introduced a relevance feedback algorithm which,
in addition to estimating subvector-wise weights, also selects the distance metric to
be used.

5.3.5 Active learning

Active learning refers to methods in which the learning machine actively selects
the unlabeled samples to query the teacher for their labels in order to maximize
information gain. Active learning has also been applied to relevance feedback (Tong
and Chang 2001, Li et al. 2001), where it has a fundamental difference with the
other relevance feedback techniques presented in this chapter as here the aim is not
to retrieve the most probably relevant images but rather the most informative ones.
Selecting the most informative images has also been studied by Cox et al. (2000),
who present a method where the shown images are selected in order to minimize
the expected number of future iterations in the query. In King and Jin (2001), the
maximum entropy principle was used to determine the most informative images.

5.4 Relevance feedback with SOMs

Most of the relevance feedback techniques described in this chapter treat the feature
space more in a global than local manner. This global attitude is manifested, for
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example, in linear weighting of the distances along individual feature components
discussed in Section 5.2.1. However, a distance measure or feature weighting which
is advantageous in the vicinity of a set of images similar to each other, may not
produce favorable results for the rest of the images. Rules which are applicable in
one part of the feature space are not as such generalizable to handle the whole space
due to the inherent nonlinear nature of image similarity (Santini and Jain 1999).

The assumption of a single query point and decreasing relevance of images as the
distance to the query point increases does not generally capture high-level semantics
well due to the semantic gap, no matter how complex or efficient distance function
is used. This problem is common for all methods assuming a unimodal probability
density for the relevant images. A number of solutions to this problem have al-
ready been introduced in the previous sections, including the use of nonparametric
density estimation with Parzen windows or techniques like GMM or SVM to model
multimodal probability densities.

We now turn our attention into describing how relevance feedback can be imple-
mented by using multiple Self-Organizing Maps. The introduced technique is the
backbone of our PicSOM CBIR system and has been tested with numerous feature
extraction methods and various databases; in the publications included in this thesis
and also e.g. in Laakso et al. (2001), Brandt et al. (2002), Iivarinen and Pakkanen
(2002), and Sjöberg et al. (2003). Contrary to most of the existing methods, the
presented relevance feedback technique is local in the sense that it operates only in
the local neighborhoods of images marked positive or negative by the user. There-
fore, the method respects better the nonlinear nature of image similarity. On the
other hand, our method dynamically produces an implicit weighting of the differ-
ent features so that those features which seem to perform better than the others in
that particular task are given more weight. The feature combination ability of the
method was studied in Publication I. In the experiments of the article, it was seen
that the proposed method is able to effectively utilize a set of parallel SOMs so that
the combined retrieval result exceeds the performance of any of the features used
separately.

5.4.1 Generating the sparse value fields

The PicSOM system presents the user a set of images she has not seen before on each
round of the image query. The user is then expected to mark the relevant images
as positive, and the system implicitly interprets the unmarked images as negative.
As all images in the database have been previously mapped in their best-matching
SOM units (BMUs) at the time the SOMs were trained (see Section 3.3.1), it is
now easy to locate the positive and negative images on each SOM (or each level
of every TS-SOM) in use. The map units are awarded a positive score for every
positive image mapped in them resulting in an attached positive impulse. Likewise,
associated negative images result in negative scores and impulses. These positive
and negative scores are scaled so that the total sum of all scores on each map is
equal to zero. If the total numbers of positive and negative images are N+(n) and
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N−(n) at query round n, the positive and negative scores are

x+(n) =
1

N+(n)
and x−(n) = − 1

N−(n)
. (5.10)

This way, we obtain a zero-sum sparse value field on every SOM in use.

The system remembers all responses the user has given since the query was started
in these sparse value fields. The cumulative query history and the user’s opinions
on the relevance of shown images thus become stored in every SOM in the system.
If a particular SOM unit has been the BMU for many positive images and for none
or only few negative ones, it can be deduced that its content coincides well with the
user’s opinion. By assumption the neighboring SOM units are similar to it and the
images mapped in them can likewise be supposed to be relevant for the user.

Each TS-SOM has been trained with a different feature extraction method and there-
fore the resulting sparse value fields are different on different SOMs. Some feature
extractions may spread the responses evenly all over the map surface, resulting in a
seemingly random distribution of impulses on the map. Other features may, how-
ever, cluster the positive responses densely in certain area or areas of the map. The
latter situation can be interpreted as being an indication on the good performance
of those particular features in the current query. The denser the positive responses
are the better the feature coincides in that specific area of the feature space with
the user’s perception on image relevance.

Now, these three factors, namely (a) the degree of the separation of the positive
and negative images on the SOM, (b) the relative denseness of the positive images,
and (c) the similarity of images in neighboring map units, can be accounted for
in a single action. This joint action is low-pass filtering of the sparse value fields
on the two-dimensional map surfaces. This way, strong positive values from dense
relevant responses get expanded into neighboring SOM units, whereas weak positive
and negative values in the map areas where the responses are sparse and mixed
cancel each other out. What follows in the low-pass filtering is the polarization of
the entire map surface in areas of positive and negative cumulative relevance.

5.4.2 Shift-invariant window functions

Spreading of the response values can be performed by convolving the sparse value
fields with a tapered (or rectangular) window or kernel function. The one-dimen-
sional convolution of a discrete-time signal x[n] and window w[n] of length L = 2l+1
is a basic signal processing operation defined as

y[n] = x[n] ∗ w[n] =
l∑

k=−l

x[n− k]w[k] . (5.11)

On SOM surfaces the convolutions have to be two-dimensional. Due to computa-
tional reasons this is best implemented as one-dimensional horizontal convolution
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followed by one-dimensional vertical convolution (or vice versa). This can be done
assuming the used convolution kernel is separable and shift-invariant. The follow-
ing one-dimensional window functions were experimented with in Publication VI
(n = −l,−l + 1, . . . , l):

wr[n] = 1 (rectangular) (5.12)

wt[n] =
l − |n|

l
(triangular) (5.13)

wg[n] = e−( n
α

)2 (truncated Gaussian) (5.14)

wx[n] = e−
|n|
β (truncated exponential) (5.15)

The truncated Gaussian and exponential windows above require a parameter (de-
noted here as α and β, respectively) controlling the decay of the window. For
example, the parameters α and β were selected so that wg[± l

2
] = wx[± l

4
] = 1

2
in

Publication VI.

The length of the window is a predominant parameter of the method regardless of
the used window function. With small l, the search expands only to the immediate
neighbors of the relevant items and the search area widens as l grows. As the
computational complexity of the convolution is linearly dependent on the window
length, it is beneficial to be able to use as small windows as possible.

5.4.3 Location-dependent window functions

Information on the distances between neighboring SOM model vectors in the feature
space has earlier been used mainly in visualization. The average relative distance of
a model vector to its neighbors can be color-coded with gray-level shades or pseudo-
colors, resulting in a SOM visualization known as the U-matrix (Ultsch and Siemon
1990, Kraaijveld et al. 1992). Dark or dim shades are often used to visualize long
distances whereas bright colors correspond to close similarity between neighboring
model vectors. Especially the clustering ability of the SOM can be illustrated in
this manner (see e.g. Vesanto and Alhoniemi 2000).

The relative distances between neighboring SOM units can also be utilized in our
setting, leading to an alternative method for spreading the relevance responses on the
SOMs. In this method, we relax the property of symmetry in the window function.
Intuitively, if the relative distance of two SOM units in the original feature space
is small, they can be regarded as belonging to the same cluster and, therefore, the
relevance response should easily spread between the neighboring map units. Cluster
borders, on the other hand, are characterized by large distances between map units
and the spreading of responses should be less intensive.

For each neighboring pair of map units according to 4-neighborhood, say i and j,
the distance in the original feature space is calculated. The distances are then scaled
so that the average neighbor distance is equal to one. The normalized distances dij

are then used for calculating location-dependent convolutions with two alternative
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Figure 5.1: An illustration of the two methods for calculating the location-dependent con-
volutions on the SOM grid. In the path method (solid line), the minimum path ◦ → • is
solved with dynamic programming. In the sum method (dashed lines), horizontal and ver-
tical one-dimensional location-dependent convolutions are calculated in both orders and
then averaged.

methods, illustrated in Figure 5.1. The path method uses dynamic programming
to solve the minimum path length along the 4-neighborhood grid between two ar-
bitrary map units. Given a maximum allowed distance l, we can calculate and
tabularize the between-node distances dij for non-neighboring map units i and j.
Then the two-dimensional convolution functions can be formed from (5.12)–(5.15)
by setting n = dij. In the alternative sum method, a computationally faster so-
lution is obtained by performing one-dimensional location-dependent convolution
first horizontally with kernel values obtained again from (5.12)–(5.15) with n = dij.
The result of the horizontal convolution is then similarly convolved with vertical
one-dimensional location-dependent kernels. As the order of the successive one-
dimensional convolutions now matters, the original impulse-valued SOM surface is
convolved again, now first vertically and then horizontally, and the two convolution
results are averaged.

Figure 5.2 illustrates how the positive and negative impulses on a sparse value field,
displayed with red and blue map units on a neutral (white) background, are first
mapped on a 16×16-sized SOM and how the responses are expanded into “relevance
landscapes”. Shift-invariant convolution is obtained with a fixed window function,
such as the ones presented in (5.12)–(5.15). In Figure 5.2, triangular window (5.13)
with l = 4 was used. Location-dependent convolution includes information about
the relative distances between neighboring SOM units.

5.4.4 Combining multiple features

If we limit our consideration to only one feature or SOM, the unseen images mapped
to SOM units which have the strongest positive score after the low-pass filtering are
the obvious candidate images to be shown to the user on the next round. This
can be easily extended to multiple SOMs. As the response values of map units of
different SOMs are mutually comparable, we can determine a global ordering to find
the overall best candidate images. By locating the corresponding images in all the
SOMs, we get their scores with respect to different feature extraction methods. To
perform a comprehensive evaluation, the scores of all images on every map should
be determined. For computational reasons, this is not usually performed. Instead,
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Figure 5.2: An example of how positive and negative map units, shown with red and blue
marks on the top-left figure, are convolved. Shift-invariant convolution (bottom-left figure)
is obtained with a fixed window function. Location-dependent convolution (bottom-right
figure) takes also the relative distances between SOM units (top-right figure) into account.
In the top-right figure, the relative distances are illustrated with gray level bars so that a
darker shade of gray corresponds to a longer relative distance between neighboring map
units.

a set of preliminary candidates Dα
m, m = 1, 2, . . . ,M , consisting of Nα

m images with
the highest positive scores, is gathered for each of the M SOMs in use. The values
of the parameters Nα

m have a clear effect on the computational requirements of the
algorithm. To support the event that all images finally selected for showing to the
user come from a single map, it should hold that Nα

m ≥ Nn. With large databases
(N is large), the computational requirements often lead to Nα

m � N .

For determining the final score or qualification value of an image, there exist now
three alternate options. First of all, we can choose to disregard the possibility that
an image which obtained a strong positive score on one SOM (and therefore appears
as a good candidate image) obtained a strong negative score on another at the same
time. In this case, duplicate entries for a single image in the subsets Dα

m are simply
removed so that the entry with the maximum value of the available scores is used
as the qualification value of that image. This method also omits images which
obtained moderately good responses from multiple maps but not strong positive
responses on any map from the final set of images to be shown to the user. Second,
we can take the above kind of situations into account and implement a stage of value
combination for the images in the candidate sets. This can easily be done if we limit
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Figure 5.3: The image labels of a 16×16-sized SOM trained with user interaction data.

our consideration to the image instances present in the feature-wise sets as the scores
are commensurable: we can, for example, simply sum the multiple scores together.
The above two methods were compared in Publication IV, where they yielded rather
similar results. The value summation method was used also in the experiments of
Publications I and III. These methods are computationally advantageous as they
only require a sorted access to the best-scoring images in the feature-wise image
indexes to determine the sets Dα

m. The third option is to thoroughly consider all
images present in the sets of preliminary candidates. For this purpose, we have to
locate all these images in all the used SOMs and record all their feature-wise scores.
These scores are then e.g. summed together to obtain the final qualification values.
This method inevitably increases the needed processing in every query iteration as
a random access to the mth SOM index is required to locate a candidate image if
the image is not in Dα

m. On the other hand, this method maximally reinforces the
interplay of the different features. It has been used in Publications V–VII.

The image retrieval method presented in this section conforms to the block diagram
of a general CBIR structure presented in Figure 4.2. In the first stage, the feature-
wise image subsets Dα

m are gathered by determining the images with strongest posi-
tive relevance scores according to that particular feature. The combined set is then
the union of the subsets, Dβ =

⋃M
m=1Dα

m. The second stage of processing consists
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of determining the final qualification values as described above.

The way the relevance feedback is implemented in this method has one additional
advantage to be noted. As the cumulative responses are calculated for each SOM
separately and the topologies of the feature spaces of the SOMs are different, the
images which become selected due to the good performance of only one feature
type are likely to be mapped in nonadjacent and sparsely distributed areas on the
other SOMs. These areas will be neglected as long as areas with strong positive
responses remain and contain unseen images. But, when good candidate images
are no longer found, the search will proceed to these new regions. If more images
from the neighboring map units are then marked as relevant by the user, these new
areas of relevance will be discovered. The search will thus not be stuck in the local
environments of the first relevant images found but will eventually expand to all
neighborhoods of the different feature types of all positive seen images. This is
important for two reasons. First, due to the possible folding effect of the SOM, in
which the map folds in the high-dimensional feature space so that one original data
cluster is represented by SOM units in more than one location of the map. Second,
because the class of relevant images may form complex multimodal distributions in
feature spaces due to the semantic gap.

5.4.5 Depth-first or breadth-first search

The policy of selecting the Nn best-scoring images as the ones to be shown to the user
is valid when one or more areas of distinct positive response have been discovered.
Concentrating the search on these areas, leading to a depth-first type search on the
SOM structure, is justified as it can be assumed that the probability of finding more
relevant images is high on these parts of the SOM grid. If this is not the case, it
often is a better strategy to widen the scope of the search so that the user obtains a
broader view of the database. For this purpose, we can use the mutual dissimilarity
of the images as an alternative or secondary criterion. This leads to a breadth-first
type selection of images. Breadth-first search can be directly implemented using
the SOMs and their image labels. The image label of a SOM unit is the image
whose feature vector is nearest to the model vector of the map unit (Section 3.3.1).
Therefore, it can be considered as a kind of average among the images mapped to
that map unit. Breadth-first search can thus be implemented by returning only
label images of map units on the intermediate (i.e. non-bottommost) SOM levels.

An important use for breadth-first search is in the beginning of the queries if no
initial reference images are available (the page zero problem, Section 4.1). In this
mode of operation, it is important to return diverse images from the database.
With TS-SOM structures, a natural compromise is to use depth-first search on
the bottommost TS-SOM levels and breadth-first search on the other levels. Upper
(i.e. smaller) TS-SOM levels generally have sharper convolution masks, so the system
tends to return images from the upper TS-SOM levels in the early rounds of the
image query. Later, as the convolutions begin to produce large positive values also
on lower map levels, the images on these levels are shown to the user. The images
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are thus gradually picked more and more from the lower map levels as the query is
continued. The balance between breadth-first and depth-first searches can be tuned
with the selections of the size of the bottommost SOM level relative to the size of the
image database and the window functions on different SOM levels. Initial reference
images are not used and, therefore, this kind of setting is applied in the experiments
of Publications I, III, and IV. On the other hand, if one or more initial reference
images are available, there is no need for an initial browsing phase. Instead, the
retrieval can be initiated straight in the neighborhoods of the reference image on
the bottommost SOM levels as they provide the most detailed resolution. The upper
TS-SOM hierarchy is thus neglected and only the largest SOMs of each feature are
used. Experiments reported in Publications V–VII have been performed in this
mode of operation.

5.4.6 Relations to other methods

The SOM can be seen as a method for clustering and for dimensionality reduction.
The mapping of feature vectors and their associated images to the BMUs after the
training of the map can be interpreted as clustering. This, however, ignores the
topology of the SOM, so a portion of the provided data organization is dismissed.
In most of the applications of the SOM in CBIR listed in Section 3.3.1, it is used to
perform clustering. The SOM can be seen as a special case of vector quantization
in which the neighborhood function (3.2) is not a delta function. The reference
method used to compare PicSOM with in Publications III–V is directly based on
this correspondence. The method is based on clustering the images by using the
well-known k-means or Linde-Buzo-Gray (LBG) vector quantization (Linde et al.
1980). As reported in Publication IV, the LBG codebook yields better performance
than the SOM used as a pure vector quantizer. This is understandable as the SOM
algorithm can be regarded as a trade-off between two objectives, namely clustering
and topological ordering. This trade-off is dependent on the size of the SOM; the
clustering property is dominant with relatively small SOMs whereas the topology
of the map becomes more significant as the size of the SOM is increased. Vector
quantization has also been used in CBIR by other researchers, e.g. by Chen et al.
(1997), Wood et al. (1998), Iyengar and Lippman (1998), Lu and Teng (1999), Yoo
et al. (2002), Qiu (2002), and Ye and Xu (2003).

On the other hand, the SOM attempts to represent the data with optimal accuracy
in a lower-dimensional space of fixed grid of points, thus performing dimensionality
reduction. This functionality is integral to our relevance feedback method as the
computational complexity of measuring image similarity is drastically reduced by
transforming the original high-dimensional space into a two-dimensional grid. This
makes our method scale well to large databases. For example, in Laakso et al.
(2001), a 1024×1024-unit SOM was trained for a database of over 1 000 000 images
obtained from the WWW, and the retrieval experiments in the publications included
in this thesis have been performed using a database of 59 995 images. In the reduced
space, the construction of sparse value fields and performing the low-pass filtering
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bear a similarity to using Parzen windows for density estimation (as was done in
Meilhac and Nastar 1999). In addition to the dimensionality reduction and the
SOM grid structure, another difference is that, in the PicSOM method, the result
is interpreted only as a response invoked by the positive and negative examples and
not as a probability density estimation of the class of relevant images. Therefore,
negative cumulative responses do not matter and we can use the negative examples
directly.

5.5 Long-term learning from relevance feedback

As discussed in this section, relevance feedback is a widely-used method for query
improvement or intra-query learning. Current relevance feedback systems are gen-
erally designed so that the accumulated relevance information is discarded between
successive queries. Each retrieval session is started from the same initial situation
and preceding uses of the system have no influence on the present query. This is
because the object of the search usually changes from one query to the next, and so
the previous relevance assessments have no significance any more. Therefore, with
relevance feedback, the learning is by nature intra-query, i.e. it takes place during a
single query instance and the results are erased when beginning a new query.

As an additional property, the user–system interaction taking place in relevance
feedback can be recorded and used in a long-term or inter-query learning scheme.
Assuming binary relevance assessments, the feedback provided by the user during a
specific query session divides the set of seen images D(n) into relevant images D+(n)
and non-relevant images D−(n). These classes can be seen as subsets of the actual
sets of relevant and non-relevant images (D⊕ and D	) with respect to the current
query target. The fact that two images belong to the same relevance class is a cue for
similarities in their semantic contents. On the other hand, using previously stored
retrieval sessions, presumably performed also by other users of the system, might
conflict with the subjectivity and context-dependency of human notion of image
similarity. In practice, however, it turns out that previous user assessments provide
valuable accumulated information about image semantics and can be a considerable
asset in improving retrieval performance, albeit being static in nature.

5.5.1 Existing approaches to long-term learning

While intra-query learning by relevance feedback has achieved prevailing popularity
in current CBIR, less research has been focused on exploiting long-term learning.
However, a number of approaches have recently been presented and incorporated
into various CBIR systems. In FourEyes, the image groupings and their associated
weights are stored across query sessions and updated based on the new user in-
teraction information (Minka and Picard 1997). In MetaSeek, all user interactions
were stored and used in later queries in selecting between a set of independent image
search engines (Benitez et al. 1998). Müller et al. (2000b) presented a method where
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the log files of their Viper system (later renamed to GIFT or GNU Image Find-
ing Tool) are used to adjust weights for different feature components. A Bayesian
framework for both short-time and long-time learning was presented in Vasconce-
los and Lippman (2000). Graph-based methods have been presented by Sull et al.
(2000) and Zhang and Chen (2002). The images in the database are represented
as nodes and the semantic similarity between two images as an arc between the
corresponding nodes. Heisterkamp (2002) presented the idea of using VSM and LSI
by considering the images as the vocabulary of the system and the classes of rele-
vant images as documents whose words are the images. Li et al. (2002b) presented
a method where feature-based similarities are first computed and the images are
ranked correspondingly. Then, the images are re-ranked based on pair-wise seman-
tic correlations obtained from recorded relevance feedback. In Fournier and Cord
(2002), the visual similarity measure is weighted by a long-term similarity measure.

5.5.2 User interaction feature in PicSOM

In most approaches to utilizing relevance feedback in long-term learning, the recorded
user interaction information is used to weight or otherwise modify the results the
system would normally return with the existing visual features. These approaches
are valid and lead to improved results as reported in the research articles cited in
the previous section. Still, an alternative approach is to consider the previous user
interaction as metadata associated with the images and use it to construct a user
interaction or relevance feature, to be used alongside with the visual features. In the
PicSOM framework, this approach has desirable properties since one of the strengths
of the system is that it inherently uses multiple features and generally benefits from
adding new ones. This way the user interaction data is treated similarly as any
other source of information about image similarity without the need for any special
processing. This method was presented and experimented with by the author of this
thesis in Publication VII.

As already discussed, the user evaluates the shown images either as relevant or non-
relevant during a query with PicSOM. In the context of long-term learning, we only
consider the set of relevant images gathered during the query. It is assumed that
since these images were all selected as relevant during a single query, they share
common semantic characteristics. This information is coded into a binary feature
which has the value one for the images in the set of relevant images and zero for
other images. A finer granularity of relevance assessments could also be supported
by converting the assessments to suitable scalar values.

The basis for the user interaction feature is the vector space model of textual doc-
uments (Section 5.2.1) where the m documents in a corpus are represented by the
words in them by using an n×m term-by-document matrix X, where n is the num-
ber of different words. The dimensionality of X is then reduced by LSI, i.e. first
applying singular value decomposition:

X = USVT (5.16)
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where U and V are n×r and m×r orthonormal matrices, and S is an r×r diagonal
matrix containing the singular values of X on the diagonal and r ≤ min(n,m) is
the rank of X. After the decomposition, we only consider k (k < r) dimensions
corresponding to the k largest singular values of S:

X̂ = Û Ŝ V̂T ≈ X (5.17)

where Ŝ is a k × k diagonal matrix containing the k largest singular values and Û
and V̂ are n × k and m × k matrices containing the corresponding left and right
singular vectors, respectively. Thus, we obtain a representation of the originally
m-dimensional data in k dimensions as the rows of Y = Û Ŝ.

In this setting, VSM is applied as in Heisterkamp (2002). That is, instead of consid-
ering images as documents as in the retrieval phase, here the user-provided relevance
evaluations are considered as the documents (i.e. one recorded query equals one doc-
ument) and the images in the database as the words in the vocabulary. Term or
image frequency weighting is unnecessary as each image may appear at most once in
one relevance evaluation, but document frequency weighting, i.e. weighting elements
of X by the number of documents in which the corresponding term occurs in, can be
applied. In our setting, LSI is primarily used to perform dimensionality reduction.
This is needed as the dimensionality of the data equals the number of image queries
in the training data, which may well be in the order of hundreds or thousands and
thus excessive for direct usage in SOM training.

The rows of matrix Y, each corresponding to one image, are treated as a user
interaction feature of dimensionality k and the corresponding TS-SOM is trained
and used in parallel and similarly as the TS-SOMs trained with visual features. An
example of a resulting SOM is illustrated in Figure 5.3. In the figure, the 16×16-sized
map level of a TS-SOM trained with user interaction data, gathered as described
in Publication VII, is shown. It can be observed that images with similar semantic
content have been mapped near each other on the map. The sparsity of the map is
a direct consequence of the sparsity of the data; the cardinality of the set of relevant
images is typically much lower than the size of the database and the images in the
same relevance evaluation tend to get mapped into the same map unit.

5.5.3 Hidden annotations

In some cases, the image database may contain manually assigned or implicit anno-
tations as discussed in Section 3.1.2. These annotations describe high-level semantic
content of the image and often contain invaluable information for retrieval. There-
fore, it is useful to note that the user-provided relevance evaluations discussed above
are notably similar to hidden annotations (Section 3.1.2). In particular, hidden an-
notations can be seen as high-quality user assessments. Images having a certain
term in their annotations can be seen as the set of relevant images when the user
was querying for images containing the concept corresponding to the term in ques-
tion. Alternatively, hidden annotations can be regarded as a goal toward which
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the user interaction feature evolves as more user interaction data is recorded. The
technique described in the previous section can thus be readily utilized for keyword
annotations, even if only a subset of the images contains these annotations. This
was also experimented with in Publication VII.
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6 RETRIEVAL EVALUATION

Evaluating CBIR systems is paramount for further development in the research
field. A wide range of retrieval techniques and feature extraction methods have
already been proposed and it is essential to be able to objectively compare these
in order to identify the most efficient ones for various image retrieval tasks and
domains. This would guide research into right directions and lead to improvements
in used techniques and overall development of better image retrieval systems. For a
specific CBIR system, it is also useful to be able to evaluate the effects of changing
environment: does an established method continue to perform well when e.g. the
image domain or the query type is changed.

Researchers in text-based IR have long identified retrieval evaluation as a challenging
and important problem and addressed it for decades. The inherent subjectiveness
associated with deciding the relevance of a document, which in fact can be seen
to distinguish information from data and IR from ordinary data processing, makes
objective performance evaluation difficult. Early research was carried out already
in the 1950s and, in the 1960s, a seminal effort on the field was the SMART sys-
tem (Salton 1971). A major milestone was accomplished when the annual Text
REtrieval Conference (TREC) project was started in the early 1990s (TREC 2003).
TREC provides a common benchmark setup with large test collections. For each
conference, a set of reference experiments is designed and participants use these ex-
periments for comparing their IR systems. Different aspects of IR are highlighted on
various tracks, e.g. user interaction is studied on the interactive track. Since 2001,
TREC has also included a benchmark for visual data in the video track (Smeaton and
Over 2003, TRECVID 2003). Overviews of retrieval evaluation in IR are presented
e.g. in Salton and McGill (1983), Salton (1992), and Baeza-Yates and Ribeiro-Neto
(1999). Many of the well-established solutions in IR can directly be used in CBIR, so
the IR methodology provides a natural starting point for CBIR system evaluation.

Human subjectivity plays perhaps an even more prominent role when dealing with
visual data. As each user of an image retrieval system has her individual expecta-
tions and an image can be relevant to a query in a multitude of ways, there does not
exist a definite right answer to an image query. User assessments of images often
vary considerably, as was shown e.g. in the experiments performed by Squire and
Pun (1998). Still, some kind of a ground truth classification of images is usually
performed to form a basis for the evaluation process. A simple method—employed
also in the experiments performed in the publications included in this thesis—is to
form a set of image classes by first selecting appropriate verbal criteria for member-
ship in a class and then manually assigning the corresponding Boolean membership
value for each image in the database. In this manner, a set of ground truth image
classes, not necessary non-overlapping, can be formed and then used as the basis
of retrieval evaluation. Unfortunately, obtaining these relevance judgments may be
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difficult and costly, particularly in certain specialized domains, e.g. with medical
images, where making these assessments requires domain expert knowledge. Fur-
thermore, this approach requires an exhaustive examination of the whole database,
which may be infeasible with large databases and makes it evident that there will be
a perpetual lack of ground truth information even if suitable image databases would
be abundantly available for CBIR researchers. In TREC, the following pooling tech-
nique is used instead. First, a pool of possibly relevant documents is obtained by
gathering rather large sets of documents (e.g. 200 as in TREC-1) returned by the
participating retrieval systems. These sets are then merged, duplicate documents
are removed, and the relevance of only this subset of documents is assessed manually
(Harman 1992). The set of relevant images can also be obtained by transforming
the query image, for example, by rotation, scaling, cropping, or adding noise (Lew
and Denteneer 2001, Li et al. 2002a).

Still, a more pressing issue is the lack of common and standardized benchmarks.
CBIR researchers use different image collections, query images, retrieval settings,
and evaluation measures when reporting on the performance of their methods. Tun-
ing the settings of the evaluation environment to highlight the advantages of the pre-
sented method is tempting, since retrieval algorithms often have distinct strengths
and weaknesses. Unfortunately, this makes it essentially impossible to compare
the relative superiority of different methods without standardized evaluation bench-
marks. An informative discussion on the relativity of CBIR benchmark results is
presented in Müller et al. (2002), where it is shown that even with a single source
of images (Corel Photo CDs), it is possible to obtain almost arbitrary results by
adjusting the evaluation parameters. Therefore, the need for a standardized full
evaluation suite is persistent.

The ultimate measure of CBIR system performance is the satisfaction of the sys-
tem’s users. Therefore, experiments with human users will become inevitable at
some point of system development. This kind of experiments are, however, labo-
rious and time-consuming as they require a lot of human effort and test users. In
addition, these evaluations are by nature subjective, so extreme care is required for
performing system comparisons with test users. User judgments of the merits of one
retrieval system over another depend on multiple causes, including the subjective
overall ease of achieving the desired result, responsiveness of the system, whether the
system matches the preconceptions and intuition of the user, and the user interface
in general. Typically, these issues have not been much contemplated in research pro-
totype systems. For these reasons, it would be advantageous to be able to automate
the evaluation process.

For one-shot queries with QBE and ground-truth relevance classes this is relatively
straightforward, as we can use images for which the ground-truth class is known as
reference images and measure how well the system is able to return images belonging
to the same ground-truth class. This approach can be applied to both target and
categorical searches. For systems using relevance feedback, the task is more complex
as the system has to be able to decide the relevance scores of images returned during
a query session. A common solution is to use categorical feedback (cf. Section 5.1)
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although it may not be the optimal query strategy. An experienced human user
might obtain better results with more flexible relevance assessments and possibly
backtracking in the query structure if the results seem to deteriorate.

6.1 What to evaluate?

Individual features can be studied separately and independently from the other
features for assessing their capability to efficiently index visual content. Such an
analysis should account both for local and global clustering of image classes since
semantic image classes may form complex multimodal densities in the feature spaces.
In this type of evaluations, it is often unnecessary to simulate the actual retrieval
system, which can be time-consuming with an extensive evaluation set-up. Rather, a
direct measure based on the ability of the feature extraction to discriminate images
belonging to a certain set of semantic similarity or relevancy from other images
may be sufficient. Within the PicSOM project, this kind of experiments have been
performed in Publication I and also e.g. in Oja et al. (1999), Brandt et al. (2002), and
Laaksonen et al. (2003). Other research groups have also reported many studies on
the performance of separate features in different image retrieval settings; see e.g. Ma
and Zhang (1998), Di Lecce and Guerriero (1999), Rubner et al. (2001), or Ojala
et al. (2002). Evaluations of this type are essential in developing effective feature
extraction methods for CBIR.

For CBIR system development, the feature-wise assessments, however, have limited
usefulness as they do not generally portray the operation of the entire CBIR system.
Often, an effective CBIR system has to rely on multiple features, as was discussed in
Section 4.2.2. In addition, a straightforward feature-wise evaluation does not take
any relevance feedback mechanism into account. Therefore, there is a clear need
also for retrieval efficiency evaluations of whole CBIR systems. A broad set of this
kind of experiments are presented in Publications I and III–VII. The block structure
approach for CBIR systems, discussed in Section 4.4 and Publication IV, can also be
utilized here. If the retrieval system has been built as a series of smaller functional
blocks, we can assess the retrieval performance of different paths through the block
structure and discover the one with the best performance in the given setting, as
was done in Publication IV.

In addition to the efficiency of the retrieval, other measures for evaluating CBIR
systems should also be considered. An important criterion is time, as an inter-
active system has to promptly present the results. So far this has been deemed
secondary and the focus has been on evaluating performance by the retrieval results
only. Anyhow, when designing real CBIR applications, time requirements have to
be taken into account, presumably resulting in inevitable trade-offs between speed
and efficiency of retrieval. A related evaluation criterion is the scalability of the
retrieval method, especially with respect to the size of the database, N . Although
the database size may be small in some specific settings, general-purpose CBIR sys-
tems have to be able to handle large numbers of images without severe performance
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deterioration or excessive storage space requirements for the image indices. Gen-
erally, this means that the time complexity of the algorithm should be sublinear
and the space complexity polynomial, preferably linear, with respect to N . Eval-
uation benchmarks should therefore be designed to use sufficiently large data sets.
For example, in Gunther and Beretta (2000), it was suggested that even an initial
benchmark database should contain at least 10 000 images. The scalability require-
ment has also been long recognized in the IR community and TREC, for example,
has always concentrated on retrieval from large test collections. Other relevant cri-
teria for CBIR system evaluation include the flexibility of the system to different
application areas and environments, robustness, and user interface issues, etc.

6.2 Evaluation measures

The best-known and most widely used measures of retrieval efficiency in IR are
precision

P =
number of relevant items retrieved

total number of retrieved items
(6.1)

and recall

R =
number of relevant items retrieved

total number of relevant items
. (6.2)

To some extent, these two measures are opposed to each other as precision is usually
higher in the beginning of a query and it deteriorates as more items are returned. On
the other hand, if the whole database is returned, recall reaches one, but precision
is low i.e. the a priori probability of relevant items. As a result, both precision and
recall are insufficient measures when used alone and should either be used together,
e.g. precision when recall attains a certain value, or at a fixed cutoff point, i.e. when
a fixed number of database items have been returned. Precision and recall are
also commonly represented as a recall-precision graph, in which precision values
are plotted against values of recall. Both precision and recall can also be plotted
against the number of retrieved images. These graphs are very informative methods
for illustrating system performance and e.g. show clearly the effect of relevance
feedback. Comparing two graphs is, however, more difficult than comparing scalars,
so interpreting recall-precision graphs requires some experience. In the experiments
performed in the publications included in this thesis, the recall-precision graph was
used as the performance evaluation measure in Publications V and VII. Still, due
to the difficulties in dealing with two evaluation parameters, several methods for
combining precision and recall to a single measure have been proposed, although
none of these measures contain as much information as recall-precision graphs. For
example, average precision is obtained by computing precision at each point when
a relevant item is found and then averaging these precision values. With the F-
measure, a parameter α ∈ [0, 1] is used to attach degrees of importance to precision
and recall and a single measure is obtained with

F = [α(1/P)− (1− α)(1/R)]−1 . (6.3)
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Another commonly used approach to retrieval performance measurement is to use
some of the existing rank-based methods. The rank of an image is defined as its
ordinal number among the returned images. For target search, a simple measure
is the rank of the target image. In category search, the ranks of relevant images
are usually averaged or, in some cases, the rank of the first relevant image is used.
Variations of the average rank include normalized average rank (Müller et al. 2001),
the BIRDS-I measure (Gunther and Beretta 2000) and the so-called τ measure used
by our research group (Publications I, III, IV, and VI). The τ measure coincides with
the question “how large portion of the whole database needs to be browsed through
until, on the average, the searched image will be found” when we assume that one
(random) image from the class in question is the actual target image the user is
looking for and she uses categorical feedback to guide the retrieval system. Since
the selection procedure of relevant images is fixed, this process can be automated. To
eliminate the effect of different initial configurations, a common setup is to provide
a single initial example image to start the query with. A complete treatment of
an image class is then obtained by using every image in the class one at a time as
the example image. The τ measure is obtained by calculating the average ranks
of all relevant images and dividing their average with the size of the database. It
yields a value in the range τ ∈ [ρ

2
, 1− ρ

2
] where ρ is the a priori probability of the

ground-truth image class in question. For values τ < 0.5, the performance of the
system is thus better than random browsing of images and, in general, the smaller
the τ value the better the performance.

As discussed above, retrieval performance can be evaluated with many different mea-
sures and any single measure cannot capture all aspects of the retrieval performance
of CBIR systems. Therefore, it may be justified to use an extensive repertoire of
measures, especially when comparing two considerably different systems. Recom-
mendations for selections of benchmark measures are provided by Smith (1998),
Leung and Ip (2000), and Müller et al. (2001).

6.3 Standardization initiatives

Performance evaluation in CBIR is currently more or less in a state of disarray
and far from the level of maturity of retrieval evaluation in IR. However, the need
for benchmark standardization has been recognized in the field, and notable initia-
tives have been started. The first objective is to gather common image collections,
ground truth relevance classes, and test queries, which would be freely available to
all research groups. The de facto standard image collection has been to use images
from the Corel Photo CDs, which usually contain sets of 100 images each under
a common theme. Unfortunately, there is no single uniform Corel image set and
thus the Corel databases different research groups possess are usually not identical.
This leaves room for tuning the database in order to obtain desirable results, as
illustrated in Müller et al. (2002). In addition, the Corel images are copyrighted
and no longer even available. Therefore, researchers have begun to compile their
own royalty-free collections. These include the University of Washington database
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(ANN 2003), the Benchathlon database (Benchathlon 2003), and the IAPR Techni-
cal Committee TC12 database (TC12 2003). At the moment, these databases are
rather small, containing only a few thousand images, and not fixed. As yet, none
of them has obtained wider endorsement. In addition to a common database, a
complete benchmark setting would also require a representative set of ground truth
classes and test queries. Especially the compilation of ground truth classes is dif-
ficult and time-consuming. Commercial image databases, for example the Corel
Photo CDs, occasionally contain manually constructed annotations, which can be
used as ground truth, as e.g. in Barnard and Shirahatti (2003), although these an-
notations may be somewhat inconsistent with the image content. Therefore, for
our experiments with the Corel images, we created our ground truth image classes
manually with clearly specified membership criteria (see Section 6.4).

MPEG-7. MPEG-7 (MPEG 2002, Manjunath et al. 2002), formally “Multimedia
Content Description Interface”, is an ISO standard developed by the Moving Pic-
tures Expert Group. MPEG-7 aims at standardizing the description of multimedia
content data. Among other issues, it defines a standard set of Descriptors that can
be used to describe various types of multimedia information. One of the main appli-
cation areas of MPEG-7 will undoubtedly be to extend the current modest search
capabilities for multimedia data for creating effective digital libraries. It is expected
that MPEG-7 will have a similar prominent impact on multimedia content descrip-
tion as the previous MPEG standards (MPEG-1, MPEG-2, and MPEG-4) on their
respective application areas.

Color Descriptors Texture Descriptors Shape Descriptors
Dominant Color Edge Histogram Region-Based Shape
Scalable Color Homogenous Texture Contour-Based Shape
Color Layout Texture Browsing Shape 3D
Color Structure
GoF/GoP Color

Table 6.1: MPEG-7 Visual Descriptors applicable for still images.

As a non-normative part of the standard, a software eXperimentation Model (XM)
(MPEG 2001, MPEG 2003) has been released for public use. The XM software is
a framework for the reference code of the standard. In the scope of this work, the
most relevant part of XM is the implementation of MPEG-7-defined Descriptors. Ta-
ble 6.1 lists MPEG-7’s Visual Descriptors applicable for still images. From a CBIR
benchmarking viewpoint, a set of common feature extraction methods is extremely
useful as it can be used to remove the effect of different features from the evalua-
tion. MPEG-7 Descriptors have been used as visual features in the experiments of
Publications V–VII.
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Benchathlon. Benchathlon (Benchathlon 2003) is an initiative for creating a pub-
lic contest to assess the merits of various image retrieval algorithms. The aim of the
initiative is to set up a collaborative environment where standard CBIR evaluation
protocols and frameworks can be developed. The leading principle in designing the
benchmark has been to use a distributed client–server architecture, as described in
Gunther and Beretta (2000). The purpose is to divide CBIR systems into separate
client and server parts, in order to be able to measure CBIR performance over the
Internet. For the client–server communication, a specific language, Multimedia Re-
trieval Markup Language (MRML) (Müller et al. 2000c, MRML 2003), has been
developed.

The support for MRML has recently been added also to the PicSOM system (Rum-
mukainen 2003). As PicSOM includes a benchmarking tool which has been used
to perform all the experiments with the system, we can now use it for testing
other MRML-based CBIR systems as well. In anticipation of a general Benchathlon
contest, a set of comparable experiments with PicSOM and GIFT (Squire et al.
1999a, Squire et al. 2000), which is both publicly available and uses MRML for
client–server communication, are presented in Rummukainen et al. (2003) and more
broadly in Rummukainen (2003).

Generating ground truth classes has been a major issue within the Benchathlon
project. Building and testing a general vocabulary for image annotation is discussed
in Jörgensen and Jörgensen (2002). Pfund and Marchand-Maillet (2002) presented
an image annotation tool designed to aid in the tedious task of annotating large
databases.

6.4 Summary of experiments

An extensive set of experiments was performed during the research project described
in this thesis. Distinct experiments were carried out and described in Publications I
and III–VII. In this section, an overview of the experiment settings and the obtained
results is presented.

All experiments in this thesis have been performed using a database of 59 995 mis-
cellaneous images originating from Corel Photo CDs (the Corel Gallery 1 000 000
product). The images are mainly photographs, most of them in color, but a small
number of artificial images are also included. The database was originally com-
pressed with a wavelet compression algorithm and was thus first locally converted
to JPEG format with a utility provided by Corel. The size of each image is ei-
ther 384×256 or 256×384 pixels. For other studies on using the PicSOM system
with different databases, see Oja et al. (1999), Laakso et al. (2001), Viitaniemi and
Laaksonen (2002), Iivarinen and Pakkanen (2002), or Matinmikko (2002).

A number of different image features have been extracted from the database images.
The used features in the experiments of Publications I, III, and IV were implemented
by our research group. These features are Average color, Color moments, Texture
neighborhood, Shape histogram, and Shape FFT. Within the included publications,
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the most detailed description of these visual low-level features is presented in Publi-
cation II. A comprehensive treatment of the shape-based features is given in Brandt
et al. (2002). Apart from Shape FFT, all the above features were calculated sep-
arately in five fixed image regions (see Publication II). In Publication V, a set of
MPEG-7 Descriptors (Section 6.3) applicable for still images was adapted as fea-
tures for the PicSOM system and these Descriptors were used as visual features
in the experiments of Publications V–VII. The MPEG-7 Descriptors were always
calculated from the entire image. In Publication VII, additional features based on
recorded user interaction data and existing keyword annotations were presented and
experimented with.

The images in the used database have been grouped by Corel into thematic groups,
usually consisting of 100 images each. Keyword annotations for almost every image
are also provided. However, we found these image groups and annotations often
rather inconsistent with the content of the images. Therefore, we created for the
experiments a total of seven manually-picked ground truth image sets with tight
membership criteria. All image sets were gathered by a single subject. The used
sets and membership criteria were:

• faces, 1115 images (a priori probability 1.85%), where the main target of the
image has to be a human head which has both eyes visible and the head has
to fill at least 1/9 of the image area.

• cars, 864 images (1.44%), where the main target of the image has to be a car,
and at least one side of the car has to be completely shown in the image and
its body to fill at least 1/9 of the image area.

• planes, 292 images (0.49%), where all airplane images have been accepted.

• sunsets, 663 images (1.11%), where the image has to contain a sunset with
the sun clearly visible in the image.

• houses, 526 images (0.88%), where the main target of the image has to be
a single house, not severely obstructed, and it has to fill at least 1/16 of the
image area.

• horses, 486 images (0.81%), where the main target of the image has to be one
or more horses, shown completely in the image.

• traffic signs, 123 images (0.21%), where the main target of the image is one
or more official traffic signs, so commercial and other signs were rejected.

In order to make it feasible to run automated experiments, categorical feedback
was assumed in all experiments. This basis enables the construction of justifiable
test cases of target and categorical searching at query levels 1 and 2 (Section 2.2).
More vague retrieval scenarios, such as level 3 queries or free image browsing, would
undoubtedly require a more elaborate experiment setup. Two distinct cases were
experimented with for the initial setting of the query. In Publications I, III, and
IV, we assumed no initial reference images in the beginning of the query and the
retrieval began with an implicit browsing phase. In Publications V–VII, the retrieval
was initiated by providing one relevant example image. For details, see Section 5.4.5.

80



It may be argued that the scope of the performed experiments remains somewhat
limited and further experiments e.g. with actual test users would be beneficial.
However, a study in which the PicSOM system was compared with other retrieval
systems in an experiment settings involving test users has been conducted by Matin-
mikko (2002). The database visualization and image browsing side of the PicSOM
system was inevitably belittled due to the type of the performed experiments. User
interface aspects have clearly remained secondary within the system and should be
underscored in further development.

The results of the single-feature experiments in Publication I showed that the tested
shape features outperfomed the simple color and texture features, which is under-
standable as they undoubtedly are more sophisticated. Consistent results were ob-
tained by directly measuring the features’ abilities to discriminate images belonging
to a certain category and by using the actual retrieval system with a single feature.

From the experiments involving varying combinations of multiple features (Publi-
cations I and V), a prevailing observation is that the use of a larger set of features
generally yields better results than using a smaller set. Most notably, the best re-
sults are usually obtained by utilizing all available features. Therefore, it can be
stated that the proposed retrieval technique provides a robust method for using a
set of different features in parallel. The importance of this observation should be
emphasized, since general-purpose CBIR systems will undoubtedly have to rely on
multiple features and the users do not generally possess the necessary background
knowledge required for initial feature selection.

The proposed method was compared with a reference method based on vector quan-
tization (VQ) in Publications III–V. The SOM turned out to be inferior to the
k-means algorithm as a plain clustering algorithm. This is understandable as a con-
siderable part of the indexing power of the SOM lies in the preservation of topology.
When comparing k-means clustering and the proposed SOM indexing method with
the τ performance measure, the observed results were rather similar to each other.
In Publication III, the best results were obtained with k-means vector quantiza-
tion. The recall-precision curves of Publication V, however, display considerably
different retrieval behavior and illustrate the efficiency of relevance feedback with
the proposed method. The initial precision of VQ is better but the ranking of the
methods’ precision values can switch even after one or two query rounds. Overall in
the experiments of Publication V, the reported performance of the proposed method
is increased due to a change in the retrieval algorithm. Now, all the images present
in the feature-wise candidate sets are considered thoroughly in the second stage of
processing (see Section 5.4.4). This increase of performance does translate into in-
creased computational requirements, but the practical effect of this increase turned
out to be rather insignificant. Moreover, the immensely useful ability to perform
feature selection is not observed with the VQ method as adding inferior features
soon begins to degrade retrieval results. Using scalar quantization (SQ) was also
experimented with in Publication IV, but the results obtained with SQ were clearly
inferior to the results of VQ or SOM-based methods.
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In addition, the relative performances of MPEG-7’s Color Descriptors, excluding the
GoF/GoP Color, were experimented with in Publication V. The results indicate
that none of the tested Descriptors seems to dominate the other Descriptors and
the results vary considerably on different image classes. This result can be seen
to emphasize the need to use many different features in parallel. Also, the results
were similar regardless of the used retrieval algorithm (the proposed method or the
VQ-based reference).

An informative by-product concerning the ground-truth image classes can be ob-
tained by visualizing how the image classes are mapped on different SOM surfaces
(Publications II, III, and V). With large SOMs, it is useful to low-pass filter the
distributions in order to ease the inspection. This kind of visualization reveals the
capability of a feature extraction method to map similar images near each other
in the feature space and also the SOM training algorithm’s ability to preserve the
spatial ordering of the feature space. In general, the visual inspection of the ob-
tained distributions conformed with the results obtained by running the retrieval
algorithm.

Choosing the size and shape of the convolution window, which are central parame-
ters of the presented SOM-based relevance feedback method, was studied in Publi-
cation VI. With the experiments, it was verified that using a small window length
is sufficient as the best results were obtained with windows of size 2 ≤ l ≤ 4 (see
Section 5.4.2). This result is valuable especially when considering computational
requirements of the online part of the method. Apart from the poorly-working rect-
angular window, the exact shape of the window function was found to be rather
insignificant. In addition, using location-dependent window functions was also ex-
perimented with in Publication VI. In the used experiment setting, they did not
improve the results, but may still prove out to be useful in some applications.

In Publication VII, a method for long-term learning based on previous user–system
interaction was presented and experimented with. Based on the experiments, it was
observed that the recorded usage data can improve retrieval precision considerably,
even with only a rather small number of queries available. This enables the de-
velopment of retrieval systems which increase their performance gradually as they
are used. For semantic image retrieval, this can be a considerable asset, especially
if no actual semantic annotations are available. The presented method was also
tested with real keyword annotations. Using these can lead to greatly improved
precision especially in category search, as was observed in the experiments. Overall,
the best results were nonetheless obtained by incorporating the visual features with
the keyword feature.
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7 CONCLUSIONS

Image retrieval is a lucid example of user-centric computing. Image relevance or
semantics cannot be objectively defined and the correct action of a retrieval system is
always context and user-dependent. This makes designing and especially evaluating
automatic tools for CBIR a challenging task.

On the other hand, a distinct characterizing aspect of CBIR is the semantic gap. Po-
tential users of these technologies are generally interested in searching for images of
particular semantic attributes, scenes, objects, or events and the similarity measure-
ments based on low-level features are not always able to provide this functionality.
Therefore, with general images, additional data may be needed for reaching an ac-
ceptable performance level.

Thirdly, emphasis in CBIR research should be increasingly placed on the effective-
ness of the developed techniques. Visual data is evermore widespread and image
databases will be required to store and handle massive amounts of data. Appli-
cations of this kind will also be more and more designed for handheld and mobile
devices with limited processing and memory resources instead of standard desktop
workstations and servers. Scalability should, therefore, be a major concern when
developing general-purpose techniques for CBIR.

At present, CBIR has been an active research topic roughly for a decade. Although a
number of prominent advances have undoubtedly been achieved, none of the current
systems has established wide success or adoption, and practical image retrieval is
still mostly based on manually entered or implicit textual annotations. This should
not be regarded as discouraging due to the evident difficulties in developing CBIR
systems with a level of sophistication comparable to the current state-of-the-art
in traditional IR. Rather, CBIR should be seen as a rapidly evolving but highly
challenging research topic. Note that even text-based IR remains a widely researched
issue after at least forty years of significant research effort.

The literature survey and the bibliography in this work aim at presenting a summary
of notable recent work and advances in the field of image indexing and retrieval. An
all-inclusive treatment of relevant research to the topic is no longer feasible nor
was the intent here due to the vast amount of novel works published in the recent
years. Still, certain methodologies can be seen to have achieved a considerable level
of maturity and also recognition in the field. An effort was made to bring these
forward in this introductory part of the thesis. All the presented types of indexing
methods, viz. dimensionality reduction, recursive partitioning, clustering, vantage
points, and inverted file, have their characteristic strengths and weaknesses. There-
fore, the distinct criteria of the application in question should dictate the selection
of the indexing method. The same applies also to different methods for relevance
feedback presented in this work. With the relevance feedback methods, however, the
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suitability for general retrieval applications varies considerably due to diverse com-
putational requirements. Apart from classical methods originating from IR, such
as query point movement and feature component re-weighting, the techniques are
rather immature. Considerable improvements can thus still be expected.

The central part of this thesis is a novel CBIR system framework, the PicSOM sys-
tem, developed by the author and his coworkers. The leading principle has been to
develop a general system structure and to study effective relevance feedback tech-
niques suited for SOM-based image indices. Image indexing with the SOM was
perceived to be a robust and effective solution which tolerates even very high in-
put vector dimensionalities. As an indexing method, the SOM was interpreted as a
combination of clustering and dimensionality reduction. Unlike basic clustering al-
gorithms, the SOM has the advantage of providing a natural ordering for the clusters
due to the preserved topology. This way, the relevance information obtained from
the user can be spread to neighboring image clusters. The dimensionality reduc-
tion aspect of the algorithm alleviates computational requirements of the algorithm;
for time-critical online processing the high-dimensional feature space is substituted
by a two-dimensional grid. Dimensionality reduction to 2D also enables straightfor-
ward image database visualization, for which the rectangular SOM grid is inherently
suited.

One drawback is that the SOM algorithm is linked with the Euclidean distance
measure in its basic form. Euclidean distance was thus used with all features in this
work. For certain features this probably is suboptimal as for example the MPEG-7
Descriptors have their own distance measures defined. However, with experiments it
was observed that the Euclidean SOM yields a serviceable index also in these cases.
Specific treatment for each feature separately could result in performance increase,
although this would require a more complex training algorithm. Still, the online
part of the presented retrieval method would remain unaltered as the method for
constructing the SOM indices has no bearing on the relevance feedback technique.

A number of divergent experiments were performed in the included publications,
demonstrating the versatility of the proposed technique. Overall, the results es-
tablish that relevance feedback with the proposed method is indeed able to adapt
to different query types. Unlike many existing relevance feedback methods, the
proposed method can also take negative examples into account in a straightforward
manner. In the experiments, a broad set of different features were employed. Among
these were a subset of visual descriptors from the MPEG-7 standard and features
based on previous user interaction and keyword annotations. These diverse features
are all represented in a common way, i.e. with a SOM structure.

Scalability to large databases has invariably been a central design principle in the
development of the PicSOM retrieval method. Scalability of the method was verified
with experiments reported in the included publications, which were performed with
a large image database of 59 995 images. In addition, we have successfully indexed
also a database of over a million images from the WWW with the PicSOM indexing
method. With suitable values to a few parameters, such as the convolution window
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length and the number of images considered in the intermediate stages, which control
the computational complexity of the online processing, the presented method is
capable of response times of only a few seconds even with large image databases.
Another important parameter is naturally the size of the bottommost TS-SOM level
as it controls the interplay of clustering and topological ordering tendencies of the
indexing method. Large SOMs have a more detailed resolution and can be beneficial
in many application domains. By using the TS-SOM algorithm, the computational
requirements of training large maps is drastically reduced.

The state of the retrieval system described in this thesis leaves a lot of interesting
directions for further research. In this work, the focus has been toward universality
of the retrieval method. According to this point of view, the discussion has been
intended to be neutral to any application domain, database type, or the repertoire
of available features. In specific application domains, the general approach may
not be optimal and domain-specific development and modifications are likely to be
justified.

Although much work has been done in developing efficient feature extraction meth-
ods for CBIR, there is still room for considerable improvement. The MPEG-7 de-
scriptors can be regarded as the current baseline, against which new feature extrac-
tion methods can be compared. However, the most prominent advances are likely
to be achieved with further research on intermediate semantic features.

Image database visualization and inexact forms of image retrieval are the flip side
of typical CBIR embodied also in the relevance feedback technique proposed in this
thesis. The user interface of the system does support switching to browsing at any
time, but the automatic benchmarking mechanisms cannot support this functional-
ity. This makes evaluating the browsing parts of CBIR systems an enormously hard
problem. Anyhow, further research on suitable user interfaces for providing more
flexible browsing tools are clearly needed. Overall, there has been a notable shift of
focus into supporting retrieval by browsing in recent CBIR research.

Automatic image segmentation is an ever fascinating concept for image retrieval and
has the potential to lead to prominent steps ahead in the research field. However,
since general object recognition is beyond current technologies, short-term interest
should be placed mainly in developing methods based on weak segmentation or
identifying interest points in the images.

Finally, a crucial task is to develop a common setting for CBIR benchmarking. The
CBIR evaluation methodology is still in its infancy and, without a common setting,
all published performance evaluations should be taken with a grain of salt. A stan-
dardized benchmark will be a significant step ahead as it helps to objectively identify
the merits and deficiencies of the current techniques and to guide further research
into right directions. Furthermore, a necessary requirement for the development of
real image retrieval applications is to test promising approaches with actual test users
and retrieval tasks. Due to the inherent human factor in this kind of experiments,
a successful evaluation initiative should therefore preferably be an interdisciplinary
effort involving computer scientists, IR researchers, and psychologists.
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