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Abstract

The microscopic structure of a silicon vacancy is studied theoretically
using first-principles supercell calculations. Both the standard Kohn—Sham
local-density approximation (LDA) scheme and the generalized Kohn—Sham
screened-exchange local-density approximation (sX-LDA) scheme are used.
The latter approximation is expected to improve the description of electronic
levels in the gap region substantially, while providing accurate total energies
and bond lengths.

The present LDA calculations are in line with the earlier corresponding
calculations of the silicon vacancy, predicting an inward relaxation of the nearest
neighbours of the vacant site. The LDA calculations also predict the Jahn—Teller
distortions and negative effective-U effects for charged vacancies, qualitatively
in agreement with the experimental results and the Watkins model. In contrast
to LDA results, the present sX-LDA calculations predict an outward relaxation
and sp? type hybridization for the ions surrounding the vacancy. This somewhat
surprising result is explained by the removal of the systematic overbinding
associated with LDA.

1. Introduction

Density-functional theory (DFT) [1] provides a practical theoretical means to investigate
complex many-body problems at the electronic structure level in many important areas
of computational physics, chemistry and biology. The most successful and widely used
realizations of the DFT are based on the standard Kohn—Sham (KS) scheme [2]. The use
of auxiliary single-particle orbitals in the KS scheme for the description of kinetic energy
yields a dramatic improvement in the calculated electronic structures of atoms, molecules
and solids, compared to functionals where the kinetic energy is estimated from the electron
density alone, as for example in the Thomas—Fermi approximation [3]. The many-particle
interactions in the standard KS scheme are grouped into an exchange—correlation (xc)
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functional. This unknown functional is usually approximated in an averaged fashion using
the local-density approximation (LDA) or the generalized-gradient approximation (GGA).
The success of these approximations has built up gradually, as experience has accumulated
on their use in a wide variety of systems [3]. As an important extension, the generalized
Kohn—Sham (GKS) scheme provides a theoretically solid framework in which to construct
new improved realizations of the density-functional theory [4, 5].

Local and quasi-local functionals of the density, such as LDA and GGA, cannot describe
the discontinuity of the xc potential with respect to particle number, which is considered to
be one of the reasons for a major shortcoming of the LDA, the band-gap underestimation in
semiconductors and insulators [6]. A qualitatively opposite problem is encountered with the
Hartree—Fock method, which is known to considerably overestimate the band gaps. Moreover,
its application in metallic systems leads to well known problems, such as a vanishing density
of states at the Fermi level. Intuitively, a hybrid method ‘interpolating’ between the two seems
to be a potentially effective approach [5].

In a similar spirit as with the use of auxiliary single-particle orbitals in the evaluation
of kinetic energy in the standard KS scheme, the auxiliary single-particle orbitals can be
used to also evaluate other parts of the total energy functional in the GKS scheme. In the
screened-exchange LDA (sX-LDA) realization of the GKS scheme the single-particle orbitals
are used to construct a non-local exchange operator improving the description of the exchange
interaction compared to LDA. The many-body correlations and screening missing from the
pure Hartree—Fock method are treated in a form of model screening and LDA correlation [4].

The previous applications of the sX-LDA method have concentrated on the possibility
of using the GKS eigenvalues in the description of the band structures of crystals and
surfaces [4, 7-9]. As part of the discontinuity in the xc potential is incorporated in the
GKS eigenvalues, the comparison of the eigenvalues with the experiment is more favourable.
In general, the agreement with experiment has been shown to be comparable to the predictions
from perturbation theory using Hedin’s GW approximation [10]. One of the particular cases
where qualitative improvement has been reported is germanium, where LDA yields a zero
energy gap, but sX-LDA correctly regains a finite value. However, one has to note that
these band structure calculations [4, 7] are done using the experimental lattice parameter
agl = 5.66 A, which practically coincides with the theoretical equilibrium lattice parameter
of sX-LDA, but deviates slightly from the LDA value aéeD 4 =5.56 A. The consistent use of
the theoretical equilibrium lattice constant and the removal of the spurious external applied
pressure effects on the band positions in the LDA calculations renders the difference less
dramatic [11]. As sX-LDA provides a total energy functional equivalent to LDA, it can also be
used to evaluate structural properties. Previously it has been shown to reduce the overbinding
associated with LDA, yielding equilibrium lattice parameters close to experimental values [4].

The silicon vacancy can be considered as the simplest example of a point defect in
a semiconductor. Despite its apparent simplicity, the silicon mono-vacancy is a highly
nontrivial test system for computational methods beyond perturbation approaches due to the
complicated interaction between the electronic structure and ionic relaxations. There exists a
wealth of experimental data, model Hamiltonians and detailed LDA/GGA calculations of the
vacancy [12-15]. The consensus at the moment is that the vacancy is qualitatively described
by the Watkins linear combination of atomic orbitals (LCAO) model [12]. In this model, four
dangling bond orbitals directed towards the centre of the vacancy are formed. The symmeric
linear combination a; accommodating two electrons is an s-like state, and it lies in energy
within the valence band. In a doubly positive charge state the p-type #,-triplet level is empty
and the vacancy remains in the perfect lattice T4-point symmetry. When electrons are added to
the defect, the degeneracy of the t, level is lifted and the symmetry of the defect is reduced first
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to Dyq for singly positive (V;’) and neutral (Vgi) charge states and then to C,, for the negative
charge states (V;i_) and (Véi_) resulting in a lower total energy compared to Ty symmetric
configurations. In addition to this Jahn-Teller effect, the silicon vacancy also exhibits the
negative effective-U effect, in which the effects of the symmetry lowering lattice relaxation
from Ty to Dpg more than compensate for the Coulomb repulsion between electrons in the
localized defect orbitals. The capture of a single electron to the doubly positive charge state
is immediately followed by a capture of another electron, and the singly positive charge state
is not energetically stable for any value of the electron chemical potential.

The experimental evidence supporting the Jahn-Teller distortions and the negative
effective-U effect in the Watkins model is strong [12]. On the other hand, the determination of
the magnitude, and even the direction, of the breathing mode relaxation from experiments relies
on rather indirect methods. According to theoretical estimates, the positron lifetime (PLT) for
the silicon vacancy depends strongly on the open volume of the vacancy [16]. Assuming that
the form of the electron—positron correlation remains the same in different charge states of the
vacancy, this directly relates the changes in the positron lifetime to the changes in the open
volume of the vacancy in different charge states. The PLT measurements of the vacancy—
phosphorus pair, thus interpreted with the help of theoretical results, imply that the breathing
mode relaxation of the negative charge state (Vs;i—P)!~ is almost negligible and the neutral
charge state (Vsi—P)? relaxes ~5% outwards [17]. The outward relaxations estimated from the
deep-level transient spectroscopy (DLTS) measurements of a vacancy—phosphorus pair under
hydrostatic pressure are ~3 and ~6% for (Vs;—P)!~ and (V;—P)°, respectively [18].

The previous systematic theoretical study [13] has demonstrated that the Born—
Oppenheimer surface for the vacancy is relatively flat and possesses several nearly degenerate
local minima with different local symmetries, which makes the silicon vacancy particularly
sensitive to the supercell size and different numerical approximations. The LDA calculations
presented in this paper are in line with previous LDA and GGA calculations [13, 14], with an
accompanying inward breathing-mode relaxation of the nearest-neighbour (NN) ions of the
vacant site in all charge states.

In contrast to the LDA results, the present sX-LDA calculations indicate an outward
breathing-mode relaxation of the vacancy in all charge states. The outward relaxation and the
sp? type bonding of the NN ions of the vacant site to the rest of the host lattice was already
proposed based on the early Green function calculations [19] and presents an alternative to
inward relaxation predicted by the LDA/GGA.

The main purpose of this paper is to report on the feasibility of the self-consistent
sX-LDA calculations for large supercells required for accurate description of point defects
in semiconductors and insulators. Such calculations, even without the non-local exchange
potential, are computationally very demanding, as they require the simultaneous consideration
of finite-size (supercell) effects, computational convergence and xc approximations. We use
well-tested plane-wave pseudopotential methods for the classic test case, the silicon vacancy.

2. The LDA calculations

We have performed first-principles DFT calculations for the silicon vacancy using 32 and 256
atomic-sites body-centred cubic (BCC) supercells. The core electrons are described using
norm-conserving pseudopotentials [20] generated within the LDA and without non-linear core
corrections [21]. The valence electron orbitals are described in a plane-wave basis with a cut-
off energy of 15 Ryd. The LDA correlation energy is given by the parametrized [22] Ceperley
and Alder [23] quantum Monte Carlo data. The first Brillouin zone (BZ) is sampled using
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Table 1. Distances between the NN ions of a vacant site in 32- and 256-atom supercells calculated
with LDA in different charge states g. The ideal theoretical NN distance is 3.81 A for LDA.
The eighth column, AQ = 100(V — Vp)/ W, is the change in the vacancy volume relative to the
corresponding volume in a perfect Si crystal. The local point-group symmetry based on the NN
ion positions is shown in the last column.

32-atomic site BCC supercell, LDA

q -2 B)-4 (50 A2 Symmetry
2+)  3.970 3.970 3.970 129 T4

(1+)  3.831 3.831 3.709 —2.0 Dyg

0) 3.608 3.608 3.084 —30.2  Dyg

(1-) 3592 3.504 3.222 —28.0 Dy

(2—) 3531 3.269 3.269 —329 Dyg

256-atomic site BCC supercell, LDA

(2+)  3.684 3.685 3.685 =97 Ty4
(1+) 3475 3.475 3.155 —323 Dyg
0) 3.490 3.490 2.950 —40.8  Dogq
(1-) 3.380 3.259 2.956 —428 Dy
2-) 3312 2.998 2.998 —47.6  Dog

the (1/4,1/4,1/4) point [24]. The 256-atom BCC supercell allows ionic relaxations within
LDA and provides the most accurate LDA calculations for the vacancy reported. A uniform
compensating charge is used to render the supercell neutral in the calculation of charged
states and the error associated with this approximation is estimated using a Madelung-type
correction [25]. The theoretical equilibrium lattice parameter a;ps = 5.39 A was obtained
using a 2-atom face-centred unit cell with eight irreducible k points in the first BZ [26].

The LDA vacancy geometries calculated using the 32-atom supercell agree qualitatively
with the 256-atom supercell results (see table 1) and are in line with previous calcula-
tions [13, 14]. The optimal k-point sampling and the use of a BCC supercell minimize the errors
caused by the defect—defect interactions, and the 32-atom results compare surprisingly well
with the ones acquired with larger supercells and multiple k-point sampling schemes [13].
Notably, the local symmetries obtained with the 32-atom supercell coincide with the
256-atom results. The breathing mode relaxation is inwards in all charge states, except for
the doubly positive vacancy, and increases as more electrons are bound to the vacancy. The
inward relaxation of the doubly positive vacancy is only obtained with supercells larger than
roughly 200 atoms [13]. The general trend of stronger binding with LDA than GGA is seen
in the comparison of the lattice relaxation volumes for the neutral vacancy in a 256-atom
supercell. The relaxation volumes obtained using LDA and GGA are AQ(LDA) = —41%
and AQ(GGA) = —27% [14], respectively.

The present LDA calculations agree with the symmetry lowering lattice relaxation patterns
in the Watkins LCAO model [12] for positive and neutral charge states. In the Watkins
model the third and fourth localized gap electrons, corresponding to the charge states V;i_
and Vé;, form an anti-bonding orbital between two ions neighbouring the vacancy. This
would indicate that one of the shorter bonds (5)—(6) in table 1 expands slightly compared to
the other. The calculated geometries show the formation of four short bonds, disagreeing with
the LCAO model. The discrepancy with the LCAO model can be associated with the large
lattice relaxations and the mixing of the dangling bond orbitals with conduction band states,
as the defect-level dispersion in the 216-atom supercell is estimated to be still of the order of
0.2eV [13].



sX-LDA calculation of vacancy in silicon 4391

6 N 1 N 1

S

o,

=5

2

(O]

[

© 4

S

3 [ (2+/0)

£ 3r (0/1-) -

81 YO (1-2) |
2 0.5 ' 1

Electron chemical potential [eV]

Figure 1. Formation energy of the vacancy in charge states from 2+ to 2— as a function of the
electron chemical potential j,. The positions of the ionization levels are shown as vertical full
lines.

The formation energies and ionization levels are calculated from the LDA total energies
of the 256-atom supercells. The formation energy of the defect E E,q ' in charge state g as a
function of the electron chemical potential ;. measured from the top of the valence band ¢, is
determined from

N —1
E‘(/q) = E](gil - TEN +Q(Me +GU)7 (1)

where E ](\',]1] is the total energy of the supercell containing the defect, N is the number of atoms
in the supercell and E is the total energy of a N-atom perfect silicon crystal supercell [27]. The
total energies of the charged supercells with a uniform compensating background charge are
corrected using a Madelung-type first-order correction, which for the 256-atom BCC supercell
is AE = 0.1g2 eV [25], and which is taken into account in figure 1. The ionization levels are
defined as the values of the electron chemical potential i, in which the thermodynamically
most stable charge state changes, indicated as short vertical lines in figure 1.

The formation energy calculated for the neutral vacancy in the present work using
a 256-atom supercell and the LDA is E ?/ (LDA, 256) = 3.6 eV. This can be compared with an
earlier LDA result using a 216-atomic-sites simple-cubic supercell, giving E?/ (LDA, 216) =
3.3eV[13]and E?, (LDA, 216) = 3.17 eV obtained using a 256-atom supercell and GGA [14].
The differences in the absolute values of the calculated formation energies can be assigned
to several numerical factors differing in the calculations, the pseudopotentials used and xc
descriptions for example, and thus suit general estimation of the accuracy of these state-of-
the-art methods.

The electron chemical potential p, is, in principle, given relative to the valence band
maximum €, occurring at the I point. The positions of the ionization levels depend linearly on
the choice of €,. As the first BZ in our supercell calculation is sampled using the (1/4,1/4,1/4)
point only, we use the value €, = 3.36 eV of the highest valence KS eigenvalue of the
corresponding perfect crystal supercell at that point. This choice also corresponds to the simple
total energy difference of the neutral and singly positive perfect lattice supercell, explicitly
describing the removal of an electron from the reservoir.
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The ionization levels in figure 1 calculated using the 256-atom supercell agree with the
experimental results [12] and are in line with previous calculations [13]. The ionization levels
for the 32-atom supercell are not shown, as the small supercell size effectively restricts the
necessary lattice relaxations and all the ionization levels are far too high in energy. The
trend of overestimated ionization level positions in small supercells can be seen in a previous
systematic study [13]. Also, the magnitude of the approximate A E = 0.2¢> eV correction for
the compensating background charge in the 32-atom supercell is relatively large compared to
the band gap, and the average potential correction [13] for the 32-atom supercell is ~0.2 eV,
i.e. significant compared to the almost negligible value of ~0.03 eV for the 256-atom supercell.

3. The sX-LDA calculations

The GKS method offers a possibility to split up the total energy in such a way that the variational
single-particle equations contain the screened-exchange potential. The GKS equations within
the sX-LDA [4] are

[—1V2 + verr (1)1 (r)

_ / dr/v)s(x,NL (r’ r/)(bi (r/) = 6i¢i(r)s (2)
N ) —krplr=r'l % (!
SX / ¢J (}")C ¢ '(r )
W) = =3 -

j=1
where the effective local potential is modified so that the functional remains exact at the
limit of a homogeneous electron gas v,r(r) = vffl;.A (r) — v’*(r) [4]. The Thomas—Fermi
screening was chosen with a wavevector k7 = 2.1 A~! corresponding to the average bulk
valence-electron density in silicon. The choice of the model dielectric screening function is
not unique, and other models have been presented [4, 5].

The non-local term of the sX-LDA functional introduces an increase in computational cost
comparable to the Hartree—Fock method. The numerical efficiency of the LDA implemented
in the plane-wave basis is explained by two factors. First, the kinetic energy operator and the
effective local potential are diagonal in reciprocal and real-space representations, respectively.
Second, the transformation from the real space to the reciprocal space and the evaluation of
the convolution-type products in the Coulomb integrals are effectively performed using the
fast Fourier transform (FFT). The FFT can also be used to speed up the evaluation of the
convolution-type products in the non-local screened-exchange operator. Even with the use
of FFT in the evaluation of the non-local integrals, one still faces extra double summations
over the electronic states and k points in the evaluation of the total energy. The use of the
inherent crystal symmetries with ‘special k-point sets’ in the evaluation of the BZ integrals
becomes more complicated for the non-local term. With the double summation it increases the
computational work, especially when calculating metallic systems, where the description of
the Fermi surface requires a large number of k points. We also note that the matrix (i|vS*"VE | j)
is usually dense, so the double summation over the states cannot be restricted to some subsets
of the states.

We use the Car—Parrinello-type Williams—Soler [28] iteration scheme for the electronic
degrees of freedom, in which the effective potential is updated for each eigenstate iteration
step. This differs from the conjugate-gradient density-mixing-type schemes where the KS
states are solved for a fixed effective potential, and after the solution is found the effective
potential is updated to reach self-consistency. With the current implementation of the sX-LDA
we are able to perform roughly one electronic iteration (one evaluation of the non-local term)
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Table 2. The total energies for various fixed ionic configurations for a neutral vacancy using LDA
and sX-LDA with a,, = 5.44 A. The distance of the first-neighbours shell from the vacant site d;
is given in angstroms. The total energies are given in electronvolts, relative to the ideal structures
calculated for both functionals separately.

Ton configuration di ELD A EsX
Ideal 2.356 0 0
Relaxed 256 LDA 2.095 —0.415 1.2

Embedded 32 sX-LDA  2.890 1.215 —-0.5

in four CPU hours for a 256-atom supercell, compared to 12 iterations per CPU hour with
LDA, when using eight Power4 processors in an IBM pSeries 690 server.

The geometries optimized using the sX-LDA functional and the equilibrium sX-LDA
lattice parameter a;x = 5.44 A in the 32-atom supercell differ qualitatively from the ones
obtained using LDA. The NN ions relax strongly outwards in all charge states. The outward
relaxation of the first shell ions increases monotonically as the charge state changes from Vé:’ to
Véi_ , with the distances from the vacant site increasing from 20 to 36%. The bonding between
the first- and second-neighbour shell ions resembles the more planar sp? type bonding than the
tetrahedral sp> bonding. The lengths of the sp> bonds remain roughly the same, 2.3 A, in all
charge states, with corresponding angles in sp? varying from 118° to 120°.

The 32-atom supercell is clearly too small to relieve the elastic stress of the strong
outward relaxation. To gain more confidence on the outward relaxation result, we have also
performed calculations with a 256-atom BCC supercell and the sX-LDA lattice parameter.
Since the number of evaluations of the non-local term (equation (3)) required for complete
ionic relaxation is of the order of thousands, and we are limited to tens of iterations in the
sX-LDA calculation, we can only compare the total energies and forces on ions for fixed ionic
configurations. The KS orbitals in all cases are first iterated using LDA until a self-consistent
electronic ground state is found. The functional is then switched to sX-LDA and a further 30
electronic iteration steps are run starting from the LDA KS orbitals.

The results for a 256-atom BCC supercell presented in table 2 and figure 2 support
the breathing-mode relaxation patterns already shown in the fully relaxed 32-atom supercell
calculations. The fully relaxed LDA minimum energy structure (relaxed 256 LDA), even with
the sX-LDA lattice parameter, shows inward relaxation very similar to the calculation using the
equilibrium LDA lattice parameter. The total energies clearly show that the optimal LDA ionic
structure is not the minimum energy structure for sX-LDA. Even unrelaxed ideal positions of
the crystal (ideal) give a sX-LDA total energy that is lower than the total energy of the inward-
relaxed structure predicted by LDA. The average forces on ion shells surrounding the vacancy
in ideal positions are shown in table 2. The difference between the LDA and sX-LDA forces
in the first-neighbour shell is clear, the LDA favouring inward relaxation and the sX-LDA
favouring outward relaxation. The forces on further shells are almost identical.

The outward stresses (in the sX-LDA) in different charge states for the ideal structure
agree with the experimental results [17, 18] that in electron emission V’éi — V‘gl the volume
of the vacancy increases. The outward force on the first ion shell increases roughly 40% in
charge state 2+ and decreases roughly the same amount in charge state 2— compared to the
forces for a neutral charge state.

The lowest sX-LDA total energy is achieved for the ionic structure in which the fully
relaxed 32-atom supercell is embedded in an otherwise ideal 256-atom supercell (embedded
32 sX-LDA). In the embedded 32 sX-LDA calculation the residual forces on first shell ions
are negligible compared to forces in the ideal calculation, —0.01 and 0.5 au, respectively,
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Figure 2. The average breathing-mode forces on ions in ideal positions for a neutral vacancy with
the lattice parameter as, = 5.44 A. The negative sign corresponds to inward stress.

suggesting that the immediate neighbourhood of the vacancy is described more accurately in
the embedded 32 sX-LDA configuration. In addition, the residual forces on other ions in the
embedded supercell are slightly larger than in other calculations, implying a larger potential
for reduction in the total energy when the lattice is allowed to relax, adding still more support
to the outward relaxation result.

We explain the outward relaxation within the sX-LDA with the removal of the systematic
LDA overbinding [3]. The outward lattice relaxation is not a mere consequence of the increased
lattice parameter, as the LDA calculations with the sX-LDA lattice parameter retain the inward
relaxation, as do the GGA calculations with aggs = 5.43 A for a neutral vacancy [14].

4. Summary

We have demonstrated that the sX-LDA method is a viable alternative to the LDA and GGA
realizations of the local-density theory, not only in the calculation of the band structures,
but also in the calculation of the fully self-consistent solutions to the electronic and ionic
structures of point defects in semiconductors. With the most accurate LDA calculations of the
silicon vacancy to date, we demonstrate that the dependence of the results on the numerical
approximations, especially the supercell size, is reduced to an acceptable level. The present
implementation of the sX-LDA allows us to perform full ionic relaxations of the modest
size 32-atom supercells and self-consistent electronic structure calculations of large 256-atom
supercells with fixed ionic positions.

The present calculations show definite qualitative differences between the LDA and
sX-LDA descriptions of the silicon vacancy. The LDA results in an inward relaxation and
Jahn-Teller distortions of the NNs of the vacant site, in agreement with the Watkins model
and the experimental results. The sX-LDA leads to an outward relaxation of the vacancy,
with the sp? type bonding of the NNs of the vacancy to the rest of the lattice. Complete ionic
relaxation calculations in the 256-atom supercell for silicon vacancy are needed before decisive
comparison to experiments can be made concerning sX-sLDA.
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