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Abstract. Model checking by exhaustive state space enumeration is one
of the most developed analysis methods for distributed event systems.
Its main problem—the size of the state spaces—has been addressed by
various reduction methods.
Complex systems tend to consist of loosely connected modules, which
may perform internal tasks in parallel. The possible interleavings of these
parallel tasks easily leads to a large number of reachable global states. In
modular state space analysis, the internal actions are explored separately
in each module, and the global state space only includes synchronisations.
This article introduces nested modular nets, which are hierarchal
collections of nets synchronising via shared transitions, and presents
a simple algorithm for model checking safety properties in modular
systems.

Keywords: modular systems, state space enumeration, model checking,
high-level nets

1 Introduction

Complex systems are often divided into modules that can be managed more eas-
ily. The internal structure of the modules is hidden behind high-level interfaces,
the connection points for composing a complete system out of the components.
Abstracting from implementation details may make it easier to understand

how a system works. However, these details may become significant when one
wants to assert something about the behaviour of the composed system. To
verify whether a desired property holds in the system, one could analyse all
its reachable states. The question is whether the easily resulting state space
explosion [18] can be ameliorated by utilising the division of the system into
modules.
In a technique called compositional reachability analysis [19] or modular ver-

ification [7], a model is analysed in multiple phases. Sometimes, it is possible
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Fig. 1. A partial model of a control system. The gray rectangles denote internal transi-
tions. The three nets synchronise on two labels, t2 and t5. The model can be flattened
to a single net by fusing the transitions marked with t2 and t5.

to transform the property being checked into something that can be checked
on each component separately or on a composition of some of the components.
Also, the state space can be composed incrementally, collapsing the sequences
of internal actions in each intermediate composition.
A modular state space exploration algorithm may save space and time com-

pared to an algorithm for monolithic or flat models. Figure 1 corresponds to
part of [16, Figure 1], which models a controller of automated guided vehicles.
Maria [15] constructed the reachability graph of the full model—30,965,760
nodes and 216,489,984 edges—in almost eight hours on a 1GHz AMD Athlon
system equipped with 1GB of memory. In modular reachability analysis, the
edges of the synchronisation graph are occurrences of synchronisations. In Fig-
ure 2, these are the black edges. Our algorithm constructs the synchronisation
graph of the full model—512 nodes and 1,600 edges—in a split second.
Section 3 shows that it is safe to prohibit the occurrences of internal transi-

tions in non-synchronising modules. This reduces the number of synchronisation
states of the model in Figure 1 from six in Figure 2 to two.
Compositional or modular state space analysis has been presented for com-

municating state machines [7] and Petri nets. Input/output nets [10] commu-
nicate via dedicated places. Modular place/transition nets [5] use shared tran-
sitions. The techniques have also been sketched for high-level nets [1,4], but to
our knowledge, no state space exploration algorithm has been presented before.
This paper describes an algorithm for checking safety properties in modular

state spaces. Section 2 defines a class of modular high-level nets, and Section 3
defines state spaces for these nets. Section 4 describes our algorithm, and Sec-
tion 5 reports experimental results. Finally, Section 6 concludes the presentation.

2 Nested Modular Nets

High-level nets are based on net graphs, consisting of the disjoint sets of places
P and transitions T and the set of arcs F ⊆ (P × T ) ∪ (T × P ). Due to space
constraints, we refer the reader to [2] for a definition of high-level nets.
Christensen and Petrucci define modular nets [4, Definition 2.1] as triples

(S, PF , TF ). The set S contains modules, which are high-level nets with no
shared places or transitions. The sets PF ⊆ 2P and TF ⊆ 2T are the place
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Fig. 2. The complete state space of the model presented in Figure 1, consisting of
48 reachable states and 98 transition occurrences. The initial state is the node at
the top left. The gray edges and nodes denote the occurrences of internal transitions
and the resulting states. The states immediately before or after a synchronisation are
highlighted with a black border. There are four occurrences of t2, the bold arrows in
the centre of the picture, and two occurrences of t5, the black edges leading from the
right to the left of the figure.

fusion sets and transition fusion sets, respectively. The sets P and T refer to
the combined sets of places and transitions in all modules.
The elements of the transition fusion set tf ∈ TF are sets of transitions.

They can be thought as synchronisation labels. If a transition of a module does
not belong to any tf , it is an internal transition. Otherwise, it is an external
transition that cannot occur on its own, but only in a synchronous step with
other transitions in some tf to which it belongs.

Our definition of modular nets differs from [4, Section 2]. We make the simpli-
fying assumption that there is no place fusion: PF = ∅. Since communication via
shared places can be transformed into synchronisation via shared transitions [4,
Section 5], it suffices to support the latter.
Furthermore, instead of defining one top-level structure containing basic nets

as modules, we allow modules within modules. Cheung and Kramer motivate the
use of subsystem hierarchies by analysing a model of a gas station [3, Section
2.4]. We believe that nested modules could be useful in the verification of multi-
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layered protocols. Figure 3 illustrates how a modular model of a communication
protocol can be reused as a module of a distributed application.

Fig. 3. A possible module hierarchy of a distributed Internet application. The TCP/IP
layer consists of two TCP processes that synchronise with primitives provided by the
IP layer, which encapsulates some channels. Client–server communication takes place
via synchronisations with the TCP/IP module.

We shall define a nested modular net as a hierarchy tree of modules S.

Definition 1 (Hierarchy tree). Let S be a finite set of high-level nets, such
that each s ∈ S contains sets of places Ps and transitions Ts, and (Ps1 ∪ Ts1) ∩
(Ps2 ∪Ts2) = ∅ for all s1, s2 ∈ S, s1 �= s2. A hierarchy tree H of S is a connected
directed graph H = (S, C ⊂ S × S) for which the following hold:

1. H has a unique root s0 ∈ S, such that C(s) �= s0 for all s ∈ S, and
2. other nets in H have a unique ancestor: for each s ∈ S \ {s0}, there exists

exactly one s′ ∈ S such that s ∈ C(s′).

A modular net (S, PF , TF ) of Christensen and Petrucci can be represented
as a nested modular net that has a root module s0 �∈ S with Ps0 = Ts0 = ∅ and
a hierarchy tree ({s0} ∪ S, {s0} × S).
The fusion sets TF and PF shall be restricted in such a way that only

modules with a common parent in the tree can synchronise with each other.

Definition 2 (Hierarchal fusion sets). Let H = (S, C) be a hierarchy tree,
and let Ps and Ts be as in Definition 1. Let T =

⋃
s∈S Ts and P =

⋃
s∈S Ps. The

sets TF ⊆ 2T and PF ⊆ 2P are fusion sets.
TF (or PF) is H-hierarchal if for all tf ∈TF (or pf ∈PF), the modules of the

transitions included in tf (or places in pf) are siblings: for all (s1, s′
1), (s2, s

′
2)∈C,

either s1 = s2 or Ts′
1
∩ tf = ∅ ∨ Ts′

2
∩ tf = ∅ (or Ps′

1
∩ pf = ∅ ∨ Ps′

2
∩ pf = ∅).

A transition t ∈ Ts of a module s ∈ S is an internal transition if there is no
tf ∈ TF such that t ∈ tf . If t ∈ tf for some tf ∈ TF , t synchronises on tf .
The state of a collection of nets is an assignment of markings for each net. In

our hierarchy tree, we can define the state of a subtree of nets as an assignment
of markings for the root of the subtree and for all its descendants in the tree.
These are included in the transitive closure of the child relation:
Definition 3 (Transitive closure). Let C ⊆ S ×S be a binary relation. Then
C+ ⊆ S × S is the transitive closure of C, the smallest relation that fulfils the
following definition.
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1. (s, s′) ∈ C ⇒ (s, s′) ∈ C+,
2. (s, s′) ∈ C+ ∧ (s′, s′′) ∈ C+ ⇒ (s, s′′) ∈ C+.

Next, we shall define a transformation that imports the places of the descendent
nets into each ancestor net in the hierarchy tree. For each transition fusion set
tf ∈ TF , the transformation also instantiates a synchronisation transition by
the same name tf . A transition t ∈ tf is enabled if and only if all transitions
t′ ∈ tf are enabled—or tf is enabled in the parent.
Definition 4 (Nested modular net). Let H = (S, C) be a hierarchy tree, and
let TF be a H-hierarchal transition fusion set, and let PF = ∅ be the place fusion
set of S. Let s ∈ S be a module with the sets of places Ps, transitions Ts and
arcs Fs. The modular augmentation M(s) of s is defined as M(Ps) = Ps ∪ P ′

s,
M(Ts) = Ts ∪ T ′

s and M(Fs) = Fs ∪ F ′
s as follows.

1. a) P ′
s =

⋃
s′∈C+(s) Ps′ (import all places from the descendants)

b) T ′
s = {tf ∈ TF : ∃s′ ∈ C(s) : Ts′ ∩tf �= ∅} (transform the fusions between

transitions in child nets into synchronisation transitions in the parent)
2. each synchronisation transition tf ∈ T ′

s is a fusion of the transitions t ∈ tf :
a) the set of variables of tf is the union of the sets of variables of t ∈ tf .
b) the guard of tf is the conjunction of the guards of t ∈ tf .
c) for each t ∈ tf , if there is an arc f = (t, p) or f = (p, t) such that t ∈ Ts′

and f ∈ Fs′ for some s′ ∈ C(s), then there is an arc f ′ = (tf, p) or
f ′ = (p, tf ) in F ′

s, respectively. The label of f ′ is that of f .

The triple (H, TF ,M) is a nested modular net.

Definition 5 (Markings and projected markings). Let (H, TF ,M) be a
nested modular net with H = (S, C). Let s ∈ S, and let M be a marking of M(s).
For s′ ∈ C+(s), the projection of M on M(s′) is Ms′ :=

⋃
p∈M(Ps′ ){(p, M(p))}

where s′ has the set of places Ps′ .

Definition 6 (Occurrence rule for nested modular nets). Let (H, TF ,M)
be a nested modular net and let H = (S, C). Let s ∈ S be a net with the transition
set Ts. Let t ∈ M(Ts) and let m be an assignment for the variables of t. In a
given marking M1 of M(s), transition t is M(s)-enabled in mode m if

1. t ∈ Ts: M∗ = M1
t �∈ Ts: M∗ = M1 or there is a sequence of internal transitions t1 . . . tn such

that M1
t1−→ M2 · · · tn−→ M∗ and each ti belongs to some s′ ∈ C(s) that

synchronises on t—i.e., each s′ has a transition t′ ∈ Ts′ such that t′ ∈ t,
2. t is enabled in mode m in M∗.

Then, t may M(s)-occur in mode m, which results in the successor marking M ′

that is obtained by firing t in mode m in the marking M∗.

Definition 6 modifies the occurrence rule of the underlying high-level nets by
defining special treatment of synchronisation transitions. By Definition 4, a tran-
sition corresponding to a synchronisation label t �∈ Ts, t ∈ TF is a fusion of the
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transitions of the child nets s′ ∈ C(s) that synchronise on the label, or belong to
the set t. The fused transition t can only be enabled if all its components in the
child nets are enabled in some marking M∗ reachable from M1 via a possibly
empty sequence of internal transitions.
The synchronisation graph of a modular net can be constructed by exploring

its M(s0)-enabled transitions, where s0 is the root of the hierarchy tree. This
graph only contains the occurrences of synchronisation transitions.
The reachability graph of a modular net can be computed by flattening the

hierarchy to an ordinary high-level net and applying the occurrence rule of or-
dinary high-level nets on the flattened net. The reachability graph may contain
more occurrences of synchronisation transitions than the synchronisation graph,
since the occurrences of the internal transitions of child nets are not restricted.
Definition 7 (Flattened nested modular net). Let (H, TF ,M) be a nested
modular net with the hierarchy tree H = (S, C) whose root is s0. For each s ∈ S,
let there be the set of places Ps, the set of transitions Ts and the set of arcs
Fs ⊆ (Ps×Ts)∪(Ts×Ps). Let P =

⋃
s∈S Ps and T =

⋃
s∈S Ts. Then F(H, TF ,M)

is the flattened nested modular net of (H, TF ,M), with the following elements:

1. P = M(Ps0) =
⋃

s∈S Ps (all the places of all nets),
2. T =

⋃
s∈S M(Ts) \ ⋃

tf ∈TF tf (all internal transitions),
3. F =

⋃
s∈S M(Fs)∩ ((P ×T )∪ (T ×P )) (the arcs attached to the transitions).

Definition 7 also imports synchronisation transitions tf ∈ TF to the flattened
net, unless they are external, i.e., tf ∈ tf ′ ∈ TF . Only the “outermost” synchro-
nisation transitions tf ′ (such that tf ′ �∈ tf ′′ for all tf ′′ ∈ TF ) are imported.

3 Modular State Spaces

Next, we shall define the reachability graph of a high-level net and the synchro-
nisation graph of a nested modular high-level net. Both are called state spaces.
We shall also define the equivalent state space of a nested modular net and prove
that it is equivalent to the state space of a flattened nested modular net.

Definition 8 (State space). Let s be a high-level net with the initial marking
M0. The state space of s is a directed rooted graph G = (V, E, v0), with E ⊆
V × V and v0 ∈ V , the smallest graph for which the following hold:

1. v0 = M0 is the initial state,
2. for each M ∈ V , if M −→ M ′, then M ′ ∈ V and (M, M ′) ∈ E.

Let (H, TF ,M) be a nested modular net with the root net s0. The state space of
(H, TF ,M) is defined analogously, with v0 corresponding to the initial marking
of M(s0) and with the edges in E corresponding to the occurrences of M(s0)-
enabled transitions.

The three nets s1, s2, s3 in Figure 1 can be interpreted as (H, TF ,M), such
thatH = (S, C), S = {s0, s1, s2, s3}, s0 is empty, and C = {s0}×{s1, s2, s3}. The
synchronisations are TF = {{t12, t

2
2}, {t25, t

3
5}}, where the superscripts identify the
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Fig. 4. The construction of the synchronisation graph of the controller model (Fig-
ure 1). In the initial marking, only t2 is enabled, as all modules that synchronise on
it can internally reach a state where it is enabled. Similarly, only t5 is enabled in the
successor state. In a synchronisation, the states of non-participating modules do not
change.

modules, e.g., t22, t
2
5 ∈ Ts2 . Figure 2 represents the state space of F(H, TF ,M).

The state spaces of (H, TF ,M) are illustrated in Figure 4. We assert that the
two synchronisation states correspond to the two groups of states enclosed in a
thick border in Figure 2. These groups can be formalised as follows.
Definition 9 (Related markings [4, Definition 3.3.1]). Let (H, TF ,M) be
a nested modular net. Let H = (S, C) and s ∈ S. Let Ms be the set of all markings
of M(s). Let Πs map each marking M ∈ Ms to a set of markings reachable via
M(s′)-enabled internal transitions of the modules s′ ∈ C(s). Let Rs ⊆ Ms × Ms

identify markings with common internal successor states: (M1, M2) ∈ Rs ⇔
Πs(M1) ∩ Πs(M2) �= ∅. Let R+

s be the transitive closure of Rs.
Similar to Christensen and Petrucci [4], checking whether a stateM ′ is inΠs(M)
does not require Πs(M) to be generated—it is sufficient to check that in each
module s′ ∈ C(s), the local component M ′

s′ is either reachable from the local
component Ms′ via internal transitions, or M ′

s′ ∈ Πs′(Ms′).
The left half of Figure 2 represents the initial state of the model in Fig-

ure 1—M0 = {(I,T), (A, 4), (W, 11)}—and the internal states Πs0(M0). Let
M1 = {(I,F), (A, 4), (W, 11)}. Clearly, Πs0(M0) ∩ Πs0(M1) �= ∅, and thus Rs0

contains (M0, M1). Note that by definition, Rs0 is reflexive and symmetric. R+
s0

is also transitive and thus an equivalence relation. In this example, R+
s0
= Rs0 .

Next, we shall define a mapping for the state space of a nested modular net
and prove that it equals the state space of the corresponding flattened net.
Definition 10 (Equivalent state space [4, Definition 3.3.3]). Let G =
(V, E, v0) be the state space of the nested modular net (H, TF ,M) with H =
(S, C). Let s0 be the root of H, and let M and R+ be as in Definition 9. The
equivalent state space of G is G′ = (V ′, E′, v0), defined inductively as follows:

1. V ′ =
⋃

M∈V R+
s0
(M)

2. for all states v, v′ ∈ V ′, (v, v′) ∈ E if v
t,m−→ v′ where

a) t is M(s0)-enabled in mode m in the marking v, or
b) t is an internal transition of some s ∈ C(s0), and t is M(s)-enabled in

mode m in the marking v.
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Proposition 1 (Equivalence of state spaces [4, Theorem 3.3.4]). Let
(H, TF ,M) be a nested modular net and F(H, TF ,M) be a flattened nested
modular net. Let GF = (VF, EF, v0) be the state space of F(H, TF ,M). Let
G = (V, E, v0) be the state space of (H, TF ,M), and let G′ = (V ′, E′, v0) be the
equivalent state space of G. Then GF = G′.

By Definitions 7 and 10, each state space has the same initial state v0. The sets
of potential markings coincide for the modular and the flattened net, as they
both contain the same set of places, by Definition 7.
Compared to the flattened net (Definition 7), the occurrence rule for nested

modular nets (Definition 6) hides the occurrences of internal transitions. Thus,
for each (M, M ′) ∈ E, there is a path (M, M1), (M1, M2), . . . , (Mn, M ′) ∈ EF

where the intermediate states M1 . . . Mn result from the occurrences of internal
transitions. Thus, V ⊆ VF and E ⊆ E+

F . By Definitions 9 and 10, V ′ and
E′ are extended from V and E by adding states and edges corresponding to
the occurrences of internal transitions. Since GF and G′ only differ by these
occurrences, we have VF = V ′ and EF = E′.

4 Checking Safety Properties

4.1 Algorithm for Exhaustive Modular State Space Exploration

Figure 5 presents a basic algorithm for checking safety properties by exhaustive
modular state space enumeration. If we ignore the right column of this figure
and the invocation of Modules in the procedure Explore, we have the basic
exploration algorithm for flat state spaces.
The procedure Explore constructs the state space of a net M(s) by explor-

ing all enabled transitions in each state reachable from M1. It invokes Tran-
sitions in each state M ∈ V . For each enabled transition of s, Transitions
invokes Report in order to insert previously unknown states M ′ �∈ V into the
search queue Q and into the set of reachable states V .
While the procedure Transitions computes the successor states of M by

exploring the enabled transitions of s, the procedure Modules explores the
synchronising transitions of each module s′ ∈ C(s) and invokes Sync to compute
the synchronisations. The transition enabling test invoked by Transitions and
Sync has been described in [13].
By invoking Explore on each s′, the procedure Modules constructs a syn-

chronisation relation S that maps child nets to synchronisation labels and local
states where these synchronisations are enabled. If (s′, tf, Ms′

) ∈ S, the marking
Ms′

of s′ is reachable from Ms′—the projection of M on M(s′)—via internal
transitions, and a transition synchronising on tf is enabled in Ms′

. Each invoca-
tion of Modules is associated with such a relation S. The relation is extended
by Transitions and explored by Sync.

The procedure Sync iterates over certain subsets of the synchronisation re-
lation S. Maria implements the relation with some mappings and arrays. The
iteration has been implemented as a recursive loop over those modules s′ ∈ C(s)



Model Checking Safety Properties in Modular High-Level Nets 209

Explore s starting from M1

Explore(s, M1, S):
V := {M1}; E := ∅; Q := (M1)
while Q �= ()

M := Q.remove()
Transitions(s, M, V, E, Q, S)
Modules(s, M, V, E, Q)

Report the successors of M in s
Transitions(s, M, V, E, Q, S):
for each t, m, M ′ s.t. M

t,m−→M ′ in s:
for each tf ∈ TF s.t. t ∈ tf :

S := S ∪ {(s, tf, M)}
if not exists tf ∈ TF s.t. t ∈ tf

Report(M, M ′, V, E, Q)
Report(M, M ′, V, E, Q):
E := E ∪ {(M, M ′)}
if M ′ �∈ V

V := V ∪ {M ′}
if error(M ′) show trace to M ′

else Q.insert(M ′)

Explore the modules of s from M
Modules(s, M, V, E, Q):
S := ∅
for each s′ ∈ C(s):

Explore(s′, Ms′ , S)
for each tf ∈ M(Ts) \ Ts:

Sync(s, M, V, E, Q, S, tf )
Compute the synchronisations on tf
Sync(s, M, V, E, Q, S, tf ):
for each

⋃

s′ ∈ C(s)
tf ∩ Ts′ �= ∅

{(s′, tf, Ms′
)} ⊆ S:

M∗ := M ;∀(p, q) ∈ ⋃

s′ ∈ C(s)
tf ∩ Ts′ �= ∅

Ms′
: M∗(p) := q

for each tf, m, M ′ s.t. M∗tf,m−→M ′ in M(s):
Report(M, M ′, V, E, Q)

Explore Modules Sync

Transitions Report
❄

❍❍❍❍❥

✲✛ ✲

✲

Fig. 5. The basic algorithm for modular state space analysis and its call graph. All
parameters are passed by reference. The synchronisation information S is associated
with each invocation of Modules. V is a set of encountered states, E is a set of edges
and Q is a queue of unexplored states. Transitions assumes that there is at most
one t ∈ Ts ∩ tf . If t1, . . . , tn ∈ Ts ∩ tf , the transitions t1, . . . , tn will have to be fused
together in a pre-processing step. The algorithm is invoked for a nested modular net
(H = (S, C),TF , M) as Explore(s0, M0, S) where s0 is the root net, M0 is the initial
marking of M(s0) and S = ∅.

that synchronise on tf . On each round, a marking Ms′
of s′ is assigned to M∗.

That is, M∗ is first initialised to M , and the markings of the synchronising
modules M(s′) will be substituted in M∗.

An Example Run. We shall demonstrate the algorithm with the model pre-
sented in Figure 1 and discussed near Definition 9. The root net s0 of the model
contains no places or transitions. The modular augmentation M(s0) is depicted
in Figure 6. Its initial marking is M0 = {(I,T), (A, 4), (W, 11)}.
The algorithm is invoked as Explore(s0, M0, ∅). It initialises the set V and

the queue Q with the initial markingM0. It removes the marking from the queue
and passes it as a parameter to Transitions. Since s0 has no transitions (but
M(s0) has), invoking Transitions does not change anything.
Next, Explore invokes the procedure Modules. The left part of Figure 4

shows how Modules splits the marking into the markings of child nets and
invokes Explore on each of them. Let us look at the Explore call for s1, the
leftmost net in Figure 1. On the first round of thewhile loop, Transitions calls
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Fig. 6. The modular augmentation M(s0) of the empty root net s0 of the control
system presented in Figure 1.

Report({(I,T)}, {(I,F)}, V, E, Q), which inserts {(I,F)} into the local search
queue of Explore(s1, {(I,T)}, S). Thus, the while loop of Explore enters a
second round, with M = {(I,F)}. For this marking, Transitions finds out that
the transition synchronising on t2 is enabled. Thus, it adds (s1, t12, {(I,F)}) to
the synchronisation set S. After this, Explore returns to Modules.
By invoking Explore on all nets C(s0) = {s1, s2, s3}, Modules constructs

the set S = {(s1, t12, {(I,F)}), (s2, t22, {(A, 6)}), (s3, t35, {(W, 14)})}. Next, it in-
vokes Sync on t2 and t5. For t2, Sync finds exactly one subset of S, namely
{(s1, t12, {(I,F)}), (s2, t22, {(A, 6)})}. The markings M = M0, Ms1 = {(I,F)} and
Ms2 = {(A, 6)} are combined to M∗ = {(I,F), (A, 6), (W, 11)}. In M∗, the tran-
sition t2 is enabled, and a successor marking {(I,T), (A, 1), (W, 11)} of M is
reported. For t5, there is no subset {(s2, t25, Ms2), (s3, t35, M

s3)} of S, since there
is no (s2, t25, M

s2) ∈ S. This can be compared to the left part of Figure 4.
So,Modules returns to Explore after having recorded one successor mark-

ing. The second and last round of thewhile loop in Explore(s0, M0, ∅) proceeds
in a similar fashion; see the middle part of Figure 4.
It should be noted that the parameter M of Report and the sets E do not

affect the control flow of the algorithm, and thus they need not be implemented.

Correctness. We assert that the algorithm presented in Figure 5 computes
state spaces (Definition 8) of nested modular nets.
Definition 6, the occurrence rule for nested modular nets, has one essential

addition to the occurrence rule of the underlying nets. The case t �∈ Ts deals with
synchronisations, preceded by a sequence of internal transitions. Similarly, the
algorithm in Figure 5 extends the basic state space exploration algorithm [14,
Algorithm 1] with the procedures Modules and Sync that explore the internal
transitions of modules and make all possible synchronisations occur.
The subroutine Explore terminates when all states have been explored, or

the search queue Q runs out. States are added to Q by Report, which is the
only routine altering Q, the set of reachable states V and the set of edges E.
When Explore is invoked on a net s that contains no module, C(s) = ∅, the

invocation of Modules in the while loop of Explore does not affect anything.
Clearly, each invocation of Transitions augments V and E with the successor
states ofM—those states that result from the occurrences of internal transitions.
Since each reachable state is inserted into Q exactly once and since Explore
invokes Transitions on each state in Q, it is easy to see that after the while
loop terminates, the sets V and E correspond to the state space of s, with
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v0 = M . Provided that at most one transition of s synchronises on any given
tf (see the caption of Figure 5), the set S will contain a tuple for each enabled
external transition of the net and for each reachable state where it is enabled.
The procedureModules becomes significant when a net s contains modules.

It explores the reachable states in each module s′ ∈ C(s), starting from Ms′ ,
the current marking M projected on s′. Once all invocations of Explore have
returned to Modules, the set S contains an item for each module and for each
state where a synchronisation is possible. The outermost for each loop in Sync
iterates over all possible synchronisation points on tf and initialises a marking
M∗ on each iteration. The markingsM∗ are reachable fromM by the occurrences
of internal transitions of those modules that synchronise on tf . This is equivalent
to the case t �∈ Ts of Definition 6. Finally, Sync generates the successor states
of M by making each enabled instance of tf occur in each M∗.
We conclude that Explore(s0, M0, ∅) constructs the state space of a modular

algebraic system net (H, TF ,M) with the root s0 and the initial state M0.

4.2 Specifying Safety Properties

The procedureReport in Figure 5 checks a safety property on a newly generated
state. Erroneous states are not explored further—they are reported to the user.
The safety model checker inMaria recognises three kinds of erroneous states:

– states that satisfy a “reject” or “deadlock” formula,
– states that cannot be compacted due to a constraint violation, and
– states whose successors cannot be computed due to an evaluation error.

A “reject” formula is a Boolean condition on reachable markings. A “deadlock”
formula is a condition on reachable markings where no transition is enabled.
More generic properties can be specified in linear temporal logic. It covers

infinite executions, but its “safety” subset [12] is equivalent to finite state au-
tomata, which deal with finite execution sequences. The property “whenever A
becomes 2, it will remain less than 5” does not hold in the net s2 of Figure 1,
since its place A acts a counter from 1 to 6. In the automata-theoretic approach
to verification, a desired property of a system is negated and translated into
an automaton. The system is in error if an accepting state (the dashed one in
Figure 7) is reachable in the product automaton of the system’s state space and
the automaton corresponding to the negated property.
We would like to synchronise a modular state space with a property automa-

ton. In the left part of Figure 4, A �= 2 and the property automaton of Figure 7
remains in its initial state 0. In the middle part, the markings of A are 1, 2 and
3. In the state A = 2, the automaton moves to the state 1, but it cannot move
to its accepting state 2, even though the system clearly violates the property!
Obviously, the property automaton must be fused with the relevant module,

as in Figure 8. Figure 9 shows the state space of the fused model and the local
states that are reachable from the last synchronisation. The property is violated
in the dashed state. We see that the product of a property and a model may
have more states than the plain model (Figure 4). Thus, it may be wise to check
this kind of properties one at a time to avoid a combinatorial explosion.
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Fig. 7. A finite automaton for the formula ¬✷ ((A = 2) ⇒ ✷(A < 5)).

Fig. 8. The automaton of Figure 7 composed with the net s2 of Figure 1. Only the
occurrences of the internal transition can change the state of the automaton.

Fig. 9. An error trace of the property (Figure 7) and the model (Figures 1 and 8).

4.3 Constructing Error Traces

An error trace is a sequence of model actions that leads from the initial state to
an erroneous state or transition. The algorithm presented in Figure 5 does not
construct error traces—it is only aware of the last state on the trace.
The information needed for producing error traces should be stored in as

little space as possible, so that more memory is available for accommodating the
sets of encountered states and the collections of unprocessed states. Some infor-
mation can be omitted and recomputed when an error is detected. This allows
the verification of larger systems and more complex properties. For instance,
the complete set of edges E may need much more storage space than the set of
reachable states V if the state space contains many cycles and branches, or the
edges are labelled with the names and firing modes of the occurring transitions.
Efficient production of an error trace requires a function ancestor : M → M

that maps each new state to the state from which it was obtained (the parameters
M and M ′ of Report in Figure 5, M ′ �∈ V ). All states on an error trace can
be enumerated by repetitively applying this function on the error state until the
first state M1 is reached. Once all the states M1, . . . , Mn of the trace are known,
the transitions can be obtained by computing the successor states of each state
Mi in the trace and displaying a transition leading from Mi to Mi+1. There
might not be a unique shortest error trace—this method produces one of them.
The function ancestor could be defined as something that follows the edge

relation E backwards. Alas, we cannot store E, as we want to preserve mem-
ory. Stern and Dill [17] propose an addition to the algorithm: whenever a state
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M ′ is inserted into Q, it is also appended to an auxiliary file together with
the position of its ancestor M in the said file. The collection Q must associate
each unprocessed state with these file positions. This file provides the mapping
ancestor.
Writing the counterexample recovery information to a file does not signifi-

cantly affect the performance, since sequential file access is fast. Only when a
counterexample trace is produced, random (slow) access is needed. Even at that
point, the input/output overhead may be insignificant.
Our implementation of Modules (Figure 5) shows an error trace toM if any

of the Explore invocations reports an error. The tool can be told to stop after
reporting a specified number of errors. When the model in Figure 1 is checked
for the property in Figure 7, Maria reports the trace (part of Figure 9) in two
parts: from {(A, 4), (P, 1)} to {(A, 5), (P, 2)}, and from the initial state of the
modular system to the synchronisation state {(I,T), (A, 4), (P, 1), (W, 11)}.
This arrangement produces short error traces—in fact, the produced traces

are as short as possible if the state spaces are constructed in breadth-first order.

5 Experiments

5.1 Automated Guided Vehicles

The first system [16, Figure 1] that was analysed with our algorithm models the
coordination of automated guided vehicles on a factory floor. The state space
of the flattened model consists of 30,965,760 nodes and 216,489,984 edges. The
model is distributed with Maria in the file modular.pn.
For the modular model, the algorithm in Figure 5 produces a state space of

836 nodes and 2,644 edges. This state space consists of 325 strongly connected
components, one of which is terminal. This is somewhat surprising, since the
state space of the flattened model consists of a single strongly connected com-
ponent. Each of the remaining 324 components consists of a single state. Thus,
there are no cycles between the 324 states—all edges lead towards the terminal
component.
In the initial marking in [16, Figure 1], several modules are in an intermediate

state in the sense that some internal transitions have occurred after synchronisa-
tions. Starting from a marking where the occurrences of these internal transitions
have been undone, we obtained 512 nodes and 1,600 edges. This corresponds to
the terminal strongly connected component of the original state space.

Fig. 10. The state space of the modular model (Figure 1) with an initial marking
corresponding to [16, Figure 1]. The state space in Figure 4 is smaller.
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Fig. 11. A schematic view of two alternative implementations of the modules si of
the leader election protocol, 1 ≤ i ≤ n. The initial markings of vi and oi and the arc
inscriptions have been omitted, and qi should be accessed as a queue. The composition
is (H,TF , M) with H = (S, C), S = {s0, . . . , sn} (s0 is empty), C = {s0}×{s1, . . . , sn}
and TF =

⋃n
i=1{{sendi, recv(i mod n)+1}}.

Table 1. State space sizes and exploration times on a 1.67 GHz AMD Athlon XP for
the leader election protocol (Figure 11) for different numbers of processes.

flat (a) flat (b) modular
n nodes edges time nodes edges time nodes edges time
3 155 299 0.0 s 69 126 0.0 s 33 63 0.0 s
4 712 1,847 0.0 s 240 588 0.0 s 90 227 0.0 s
5 3,428 11,194 0.1 s 870 2,693 0.0 s 251 800 0.0 s
6 16,788 66,039 0.8 s 3,213 12,013 0.1 s 713 2,746 0.1 s
7 82,663 380,263 5.3 s 11,949 52,310 0.6 s 2,041 9,210 0.2 s
8 407,695 2,146,961 31.6 s 44,544 223,338 2.9 s 5,863 24,267 0.9 s

In Figure 1, if the internal transition in the middle occurs twice and the
ones at the sides occur once, the result corresponds to a subset of [16, Figure 1].
Figure 10 shows the state space starting from this marking.

5.2 Leader Election in Unidirectional Ring

One of the examples distributed with Spin [8] is the leader election protocol in
a unidirectional ring [6]. Figure 11 depicts the operation of the modules. Each
module si has an input queue qi, from which it takes messages mi that are
processed, affecting the local variables vi. The modules also contain an output
buffer oi that can hold at most one message. In the initial state, the output
buffers oi are filled with the initiating messages of the protocol.
According to Table 1, the modules sketched in Figure 11(a) generate much

bigger state spaces for the flattened net than those shown in Figure 11(b). The
state space of the root net is the same for both variations.
Karaçalı and Tai [11] have modelled the system with extended finite state

machines. The flat state spaces reported in [11, Table 1] are an order of magni-
tude bigger than those in Table 1. However, their reduction algorithm appears
to outperform modular analysis by generating only 8n + 13 states and 8n + 12
events for systems consisting of 3 ≤ n ≤ 6 processes.
The algorithm of Karaçalı and Tai [11, Section 5] makes use of a transition

dependency relation [11, Section 4]. Such relations are difficult to derive for high-
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Fig. 12. The modules of the sliding window protocol. The inscriptions have been omit-
ted. The message and acknowledgement channels support the actions send (send a
message wr), recv (receive a message rd) and ign (ignore rd). The parameters rd and
wr are shared variables among the synchronising transitions.

Fig. 13. The hierarchy tree of the sliding window protocol model (Figure 12). The
modules s are denoted by gray rectangles, and gray arrows represent the child rela-
tion C. The synchronisation labels and the places are indicated for each module. The
recipient–consumer module defines four synchronisation labels, three of which synchro-
nise on the similarly named labels of the root module.

level Petri nets, which do not have separate control and data flows. Karaçalı
and Tai have improved partial order reduction with something that resembles
modular state space exploration. It would be interesting to see if partial order
reduction could be efficiently implemented on top of modular analysis.

5.3 Sliding Window Protocol

Figures 12 and 13 show our modular model of the sliding window protocol, which
is distributed with Maria in the file swn-m.pn. There are two communication
channels, which are connected to a sending and a receiving process. The pro-
ducer entity that feeds the sending process is modelled by the internal transition
put, and the consumer is modelled by the transitions get. If the channels lose
messages, a sender timeout will eventually occur.
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Both channel modules in Figure 12 contain one place, which holds one token
that represents the contents of the queue. The producer–sender has a transmis-
sion buffer b for tw items and three indices to it: i and k to the bounds of the
transmission window and j to the next item to be sent (i ≤ j ≤ k). The receiver
has a buffer b′ for rw items, the index number k′ of the next awaited message
and an array acks that indicates which messages have been acknowledged.
The recipient–consumer module is divided further into two modules. Since

both modules are free of internal transitions, they could be fused into a single
module, a behaviour-equivalent replacement of their parent. The synchronisation
labels of the recipient–consumer module are invisible to the root module. We
must explicitly define the synchronisation transitions for recv′

m, ign′
m and send′

a

to synchronise on the labels recvm, ignm and senda of the root module.
Compared to previous examples, our sliding window protocol model is not

very well suited for modular analysis. The internal and external transitions are
rarely in conflict, except when the channels have very limited capacity. In fact,
synchronisations are possible in almost all local states of the modules.

Table 2. State space sizes (numbers of nodes and edges) for the protocol in Fig-
ure 12. The parameters are the transmission and reception window sizes tw and rw
and the type of the channel. Each state space is strongly connected. The third columns
for modular state spaces indicate the numbers of edges obtained by caching the pre-
synchronisation states.

tw , reliable channel lossy channel
rw flat modular flat modular
1,1 12 12 8 8 8 108 310 64 172 96
1,2 18 18 12 12 12 462 1,686 348 1,734 636
1,3 24 24 16 16 16 1,336 5,372 1,104 7,928 2,192
2,1 54 90 39 72 54 2,118 8,349 1,422 9,408 2,853
2,2 72 120 52 96 72 9,388 40,256 7,080 65,692 15,156
2,3 90 150 65 120 90 27,265 122,555 22,115 268,185 49,140
3,1 160 336 116 292 192 25,292 113,036 18,412 216,304 40,792
3,2 200 420 145 365 240 109,550 508,790 84,775 1,235,830 193,835
3,3 240 504 174 438 288 323,724 1,537,638 262,026 4,629,366 611,754

Caching Pre-Synchronisation States. Table 2 indicates that applying mod-
ular analysis to our model of the sliding window protocol slightly reduces the
number of reachable states but increases the number of edges.
The number of edges can be reduced by slightly modifying the procedure

Sync(s0, . . .) in Figure 5. Before generating the successors of M∗, it would add
the item (M∗, tf ) to a set and return if the set already contained that item.
Table 2 shows three columns of numbers for modular analysis. The leftmost

two columns indicate the numbers of states and edges in the state space of the
root net. The third column shows the number of edges reduced by applying this
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Table 3. Processor time consumption in seconds and peak heap memory consumption
in kilobytes of a 1.67 GHz AMD Athlon XP system running GNU/Linux when exploring
the protocol in Figure 12 on lossy channels.

tw , plain local cache pre-cache pre&local
rw nodes edges mem time mem time edges mem time mem time
1,1 64 172 309 0.0 311 0.0 96 343 0.0 342 0.0
1,2 348 1,734 309 0.1 307 0.0 636 339 0.1 382 0.0
1,3 1,104 7,928 309 0.3 523 0.1 2,192 339 0.3 494 0.1
2,1 1,422 9,408 309 0.3 451 0.1 2,853 339 0.3 422 0.1
2,2 7,080 65,692 309 1.8 2,007 0.5 15,156 343 1.8 2,314 0.5
2,3 22,115 268,185 309 6.0 7,735 2.0 49,140 343 6.0 9,270 1.9
3,1 18,412 216,304 309 4.8 4,475 1.4 40,792 339 4.7 5,754 1.3
3,2 84,775 1,235,830 473 24.2 23,763 8.4 193,835 2,335 24.2 29,914 8.4
3,3 262,026 4,629,366 1,021 82.7 100,679 32.5 611,754 535 84.4 125,290 33.1

method on the root net. The method can only be applied on the root net, since
it could prevent synchronisations from occurring in the parent net.
Clearly, this modification does not affect the set of reachable states. However,

it is questionable whether the modification is useful in practice. The number
of edges obtained by caching the pre-synchronisation states could serve as a
benchmark for a more intelligent reduction method.
The times in Table 3 exclude the time needed for invoking a C compiler

and linker. The peak memory usage was determined by making Maria allocate
everything via malloc and by tuning the memory allocator of GNU libc 2.3.1
with mallopt. The figures include some non-constant overhead due to pooling. A
comparison of the columns “plain” and “pre-cache” reveals only slight differences
in resource usage, even though our implementation does not make efficient use
of memory, since it stores each pair (M∗, tf ) separately.
The effect of this modification depends on implementation aspects and the

model. For the interpreter option of Maria, this modification reduces the time
needed for exploring the sliding window protocol by 25%. The model of the
automated guided vehicles (Section 5.1) is unaffected by this modification. In
the leader election protocol (Table 1), the number of edges is reduced by 20%.

Caching Local States. Our implementation of the algorithm presented in
Figure 5 of Section 4.1 includes an optional synchronisation state cache. Instead
of associating a set S with each invocation of Modules, this option associates
a set S′ with each invocation of Explore.
If (Ms′ , s′, tf, M ′) ∈ S′, the marking M ′ of s′ is reachable via internal transi-

tions from Ms′ and a transition synchronising on tf is enabled in M ′. The cache
maps a local state (Ms′ , s′) to pairs of synchronisation labels and states (tf, M ′).
The procedure Modules invokes Explore only once for each pair (Ms′ , s′).

This caching may save a considerable amount of time if only few of the local
successors of Ms′ are possible synchronisation points. But it will also consume
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more memory than the original algorithm, because the cache S′ associated with
the root net s0 must be preserved until the whole model has been explored.
The columns “local cache” and “pre&local” of Table 3 indicate up to 70%

shorter execution times and 200-fold increase in memory usage compared to the
columns “plain” and “pre-cache.” A more efficient data structure for managing
the cache would be needed to apply this modification in practice.

6 Conclusion and Future Work

We presented a slightly more general version of modular high-level nets than
Christensen and Petrucci [4] and an algorithm for checking safety properties
in these nets by exhaustive enumeration of modular state spaces. Unlike the
algorithm sketch of Christensen and Petrucci [5, Section 8.1], our algorithm
does not compute any strongly connected components of state space graphs,
and thus does not need to store the transition relation. Our implementation
consumes only slightly more memory per state than the algorithm for exploring
flat state spaces, and it is compatible with the parallel state space exploration
option [14].
From the theoretical point of view, it may be difficult to see the benefits of

modular analysis. An experienced modeller would eliminate the internal transi-
tions in Figure 1 by rewriting the arc inscriptions of the synchronising transitions
and by adapting the initial marking. The flat state space of the resulting model
is identical to the modular state space of the root net.
However, just like the precise modelling of complex systems is easier with

high-level nets or other high-level languages than with place/transition systems
or state machines, we believe that utilising modular analysis can improve pro-
ductivity. Some of the tedious work of preparing models for verification [18,
Section 7.1] can be avoided and shifted to the state space exploration algorithm.
It is unnecessary to reduce the number of internal states or to avoid interleav-
ings between local actions in different processes, as the algorithm takes care of
them. Unoptimised models are likely to be easier to maintain than optimised
ones. Finally, modules or entire models can be reused in other models.
Although we have described the algorithm in terms of Petri nets, we believe

that it can be applied to exploring any system that has a notion of processes
or modules that communicate via shared actions. It would be interesting to try
the algorithm on some real-world high-level models—such as communication
protocol specifications written in SDL [9]—and to see whether the results could
be improved by applying partial order reduction methods, as in [11].
Section 4.2 lacks an example of a property covering multiple modules, but

we believe that such properties can be checked with “assertion” or “fact” syn-
chronisation transitions that should never be enabled. Extending our algorithm
to model check liveness properties is the subject of future research.
The specification of modular systems deserves further research. A system can

be modularised in several ways. Ideally, the decomposition of the model should
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produce greatly reduced state spaces and cater for reuse. Further experiments
are needed in order to come up with recommended modularisation strategies.
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