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Abstract

Building enterprise applications using component-based frameworks has been suggested
as a way to help companies manage their software assets. We propose tool support for man-
aging these high-level data-centric applications with formal methods. Our method is based
on extracting a system model from the models of components and from the application code
which glues the components together. This model is used for generating state spaces that can
be checked for desired or undesired properties. In order to manage the state space explosion
problem we propose that the application developer controls some parameters of the model.
Even though the insight of the application developer is still needed, we believe that creating
tool support for the proposed method could contribute to the success of the component-based
approach.
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1 Introduction

Enterprise application systems have traditionally been used to integrate internal business processes
within companies.

The current trend is to expand integration across organisations. The objective is to create
more dynamic trading partner relationships, to reduce costs and to increase the productivity of
companies participating in a networked economy. This trend sets high demands for companies to
maintain and modify their core systems.

Enterprise application systems have often evolved from in-house development projects. The
alternative is to buy a packaged solution from an outside software vendor. Compared to a packaged
product, an internally developed system could better match the needs of the company. On the other
hand, in-house development costs must be carried solely by the company, while software vendors
can distribute their costs to a larger number of clients. Also, the package vendor gains experience
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when delivering solutions to different companies, which allows it to incorporate best practice into
the package. With internal development this is harder to achieve.

Buying a packaged solution does not come without difficulties either. When the package is
installed and configured, the final result can be more determined by the abilities and options of
the package rather than the needs of the organisation [12]. Choosing a monolithic package is a
commitment that locks the customer into a business relationship with the vendor for a long time.
Sometimes this is mutually beneficial, but it could turn out to become harmful if the vendor is not
capable of offering the support needed, or goes out of business.

1.1 The Component Approach

A middle course between the “make” and “buy” approaches is to build the system from reusable
components. In this approach, the core system contains only minimal functionality, and the nec-
essary tailoring is done by composing distinct encapsulated entities within the system framework.
Component-based frameworks are partial implementations that provide fundamental elements,
structural integrity and extension points.

Components are packaged software artifacts that provide functionality through a set of well
defined interfaces. Component-based systems are expected to become a key business productivity
solution for suppliers and consumers in the application market [22]. The anticipated benefit is
a flexible and economical infrastructure, where organisations have a considerable choice of pro-
curement to create customised solutions [22]. System acquisition and modifications should also
become more manageable, because the modular architecture allows components to be deployed
and updated individually [12]. Well-defined interfaces isolate component development from the
rest of the system.

Figure1 gives a simplified picture of a component-based framework application. The picture
demonstrates how the framework invokes application code, which extends and refines the frame-
work. The application code acts as glue between the framework and the components. Some of the
business rules are contained within the application code, but most program code, such as database
access, is hidden behind the component interfaces.

We believe that there is a great demand for tool support for managing applications built using
component-based frameworks. This article presents a proposal for extracting models from applica-
tion code and the components it accesses. These formal models can be explored to check whether
the application behaves as required. Many problems must be solved to make such an approach
possible. Among other things, the process of extracting a model should be highly automated, and
the state spaces generated by the resulting model should at the same time be both manageable and
correspond to the implemented behaviour. Last but not least, application coders must be able to
specify the system requirements and to see the error traces in terms familiar to them.

1.2 Outline

The rest of this article is organised as follows. Section2 discusses the economic and environ-
mental preconditions that must be satisfied before software verification can be used for manag-
ing component-based framework applications. Section3 describes an application environment in
terms of architecture, software processes and tools that make it possible to extract verifiable mod-
els from applications developed in the environment. It also contains a code excerpt from a sample
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Figure 1:Simplified view of an application in a component-based framework.

application we use to clarify our method. Section4 defines our modelling framework of enterprise
applications at a conceptual level. It describes what kind of questions the model should be able to
answer, and it discusses some modelling considerations, which must be taken into account. Sec-
tion 5 revisits our example and shows how a developer might use the proposed tool. Finally, we
discuss some related work and conclude our presentation.

2 Preconditions for Component Software Verification

2.1 Economic and Environmental Preconditions

The component approach, as such, does not guarantee to solve all the problems in enterprise
application software management. The components and the framework must be designed to meet
industry requirements—not a trivial task at all. Everything must adapt to the customer environment
and be manageable by both the customer and the vendor. The integrity and the functionality of
the system must be guaranteed even when third party components are integrated. Conventional
software engineering practices, such as requirements analysis, system modelling, version control,
testing and documentation, retain their importance in component-based system development.

More advanced software engineering techniques, such as automated software verification,
could contribute to the success of component-based systems. Applying formal methods to com-
ponent systems gives a profoundly different starting point for third-party component markets. A
formal model—an abstract description of a system—can be thoroughly analysed by computer tools
to increase confidence in the system working according to the specification. System models can be
derived by composing the high-level application logic with models of the system framework and
the components. Verification techniques have the potential to decrease maintenance costs, too.
Costs could be saved by simulating or verifying the impact of application changes on a formal
model. Automated verification runs could replace some of the otherwise required testing.

2.2 Architecture, Process and Tool Preconditions

To successfully apply verification techniques in industrial-scale application development, the en-
vironment has to fulfil a number of requirements:

Precisely defined architecture. As verification is based on a model, the results are meaningful
only if the model corresponds to the executable application on an abstract level. This requires that
the application structure is precisely defined and implemented.
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High quality repeatable processes. In the same way, the correspondence between the model
and the application necessitates that the design processes used to create the executable code and
the verifiable model are repeatable and of such quality that small deviations in the design process
do not lead to substantial differences.

Integrated tool support in the development environment. Constructing verifiable models
manually would consume too much time and require highly specialised skill. Automated tool
support eliminates these problems as well as errors in translation. Verification tools should accept
input directly from the elements created by the developer in the design domain and map the output
back to the design domain.

3 The Environment of the Component Framework

3.1 Enterprise Application Architecture

Enterprise applications are data-centric systems where persistent data is stored in databases and
processed by application programs. Typically, enterprise applications build upon a client–server
architecture where business rules are implemented on the server side, and clients take care of the
user interface.

In industrial software packages, databases usually follow the relational model [23, Chapter
2.3]. The conflicts that may arise when several processes access the database simultaneously are
resolved usingtransactions[23, Chapter 9]—atomic sequences of operations. Either the effect of
all operations are committed to the database, or the whole transaction is rejected.

In a database management system, operations belonging to different transactions are inter-
leaved with each other for performance reasons. In a formal model, the operations of database
management system can be abstracted by serialising the transactions, allowing the model to pro-
cess only one transaction at a time.

3.2 An Example Application: Processing Orders

To gain more insight into component-based enterprise application frameworks, we show an extract
from an example application in Figure2(a). The application code1 is invoked by the framework
when an order is entered. The involved components are shown in the UML diagram of Figure2(b).
The code retrieves customer and item information from the database, updates the order with this
information and stores the order into the database.

The semantics of the example deserves some additional remarks:

• If the method raises an exception or returns the error code offalse, the framework will roll
back the transaction, so that no changes are committed to the database.

• The method does not store any internal state between successive calls. The persistent state
is kept in the database.

• Most of the implementation is hidden behind component interfaces.

1This method could be implemented in the J2EE architecture [21] in a session bean.
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(a) a method implemented in Java

private boolean process_OrderEntry(Order o)
throws Exception {
Customer c = dbCustomer.load(o.getCustomer_id());
if (c == null) {

error_notfound(o.getOrder_id(), o.getCustomer_id());
return false;

}
Item i = dbItem.load(o.getItem_id());
if (i == null) {

error_notfound(o.getOrder_id(), o.getItem_id());
return false;

}
o.updateOrder(c, i);
dbOrder.store(o);
report_ok(o.getOrder_id(), "order entry");
return true;

}

(b) the components

Order

Customer

Item

Figure 2:An application for processing orders.

– The objectsdbCustomer anddbItem are simple components, whoseload methods sim-
ply retrieve objects from the database.

– The composite componentdbOrder hides a more complicated implementation. In this
example, we assume that the methodstore tries to combine the new order with an open
order the customer might have. If no such order exists, a new order is stored into the
database.

• Some code, such as calls to the logging facilitieserror_notfound and report_ok, does not
affect the state of the application and should be omitted from the model.

3.3 Software Processes

Maintaining a component-based software system requires that repeatable processes be followed to
manage the framework, the components, and the application code. The majority of the application
lifetime costs are incurred by the maintenance period [20, Chapter 30]. From the customers’
point of view, most maintenance tasks are likely to concern application code modifications and
occasional deployment of new components.

In order to make application modifications more effective, we propose that automated veri-
fication takes place before system level testing. The objective is to gain more insight into the
application than could be achieved by pure static analysis techniques. In this step, a system
model—derived from the application code and the components—is explored with a verification
tool that presents any errors as executions of the application code.

The proposed automated verification step requires that for each deployed component, there is a
model of its implementation. In order to guarantee this, both the models and the implementations
should be the results of the component design process.
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The tools that assist in these processes are described in the following section.

3.4 Tool support

To automate the verification step, we need a tool which parses the application code, accesses a
library of component models, composes the parsed application code with the component models
and feeds the result to a model checker. This tool should also map any error traces from the model
checker back to execution traces of the application code.

To ensure that a component implementation conforms to its model, we propose the following
procedures to be aided by tools:

Automated derivation of simple models. Models for simple components could be produced
automatically from the same repository information from which the implementations are gener-
ated. Examples of such components are object/relational mapping routines, which allow the data
in relational databases to be stored and retrieved as objects.

Automated derivation of composite models. When a component is implemented by wrapping
other components together with application code, its model can be derived automatically by com-
posing the parsed application code with the models of the wrapped components. This can be
accomplished with the same tool that creates system models.

Manually maintained models. Models for the most complex components must be maintained
manually. This is tedious, but the involved cost is justified if the component can be sold to several
installation sites.

Manual work easily leads to differences between the model and the implementation. Confor-
mance testing [8] could help to locate the errors. The manually constructed component model acts
as the specification that the implementation can be formally tested against. Again, conformance
testing should be supported by tools.

4 Formalising Component-Based Applications

In order to analyse a system, an automated tool needs a description of both the implemented
and the desired behaviour. The system implementation is transformed into a formal model that
generates a state space, such as a high-level Petri net. The desired properties are formulated in
logic or as automata. Some properties can be derived automatically, others are retrieved from a
library or specified by the application developer.

A model of an enterprise application is bound to have a huge number of reachable states.
Therefore, the model must be structured and designed carefully. This section describes the main
elements of the model and how they relate to the application. It also discusses the properties we
would like to extract from the state space graph, and how the model should be built to limit the
effects of the state space explosion as much as possible.
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4.1 Modelling Elements

The core model can be mapped to shared memory multiprocessing. The shared memory is the
database, and the competing processes are the transactions initiated by the environment.

These elements relate to the architecture in Figure1 in the following way:

Environment. The environment models the application framework and the inputs from the
clients. When state space exploration techniques are applied to a model, the model must rep-
resent a closed system, which means that the behaviour of the environment must be specified. The
environment invokes methods of the application code, initiating a transaction for each request.

Transactions. Transactions model service execution within the application framework. If all
operations succeed within the application code and within the components invoked to serve a
request, the changes made to the persistent objects are committed to the database. Otherwise, the
persistent state remains unchanged as the transaction is rolled back.

Application code. Application code may implement business logic or components, or extend or
connect existing components.

To ease the extraction of models, application code is written in a subset of the Java program-
ming language, comprising assignments, conditions, loops and virtual method calls. Some con-
structs, such as threads, have been deliberately excluded.

Simple components. These are the basic building blocks made available to application develop-
ers. Each operation in the component interface is defined with one or more transitions. The model
can behave nondeterministically.

Database. The database is the persistent data-store of the application. Operations are grouped
in transactions, which can be either committed or rolled back.

4.2 The Properties

Verification or model checking refers to the process of checking whether a model of a system
behaves according to its specification. Automating this step requires that both the model and the
behaviour requirements are in machine readable format.

Model checking is a useful tool in situations where new functionality is added to the system.
Implementing the functionality might require changes to be made in several locations in the appli-
cation code, and the application coder would like to gain assurance that he has correctly identified
these locations.

When a property is violated, the verification tool should report an error trace, an execution
sequence leading from the initial state of the system to the error. At the coarsest level, the error
trace should display the names and parameters of the components that are executed. Sometimes
the user would like to view parts of the trace in more detail, showing individual statements and
variables in the application code.

In enterprise applications, many properties can be derived automatically from database defini-
tions and program code. Only high-level requirements need to be formulated interactively.
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4.2.1 Safety Properties

Safety properties are requirements on finite executions. Intuitively, they are statements of the form
“nothing bad happens”. For example, if a business function requires that a new database field is
always initialised in certain business situations, the application coder can phrase rules or assertions
such as “Fieldx is set whenevery holds.”

Enterprise application databases are most likely designed to contain fields recording status
information, such as whether an order has been accepted, or whether it has resulted in a delivery
or a sent invoice. Safety properties can express requirements which may refer not only to several
such status fields at once, but also to a history of states. This allows us, for example, to verify that
the status fields fulfil a requirement such as “if an invoice is sent, a delivery must have occurred
and the order must have been accepted.”

Data integrity rules. Many relational database management systems have built-in mechanisms
for ensuring the integrity of stored data. It is possible to restrict the set of allowed tuples by
defining row constraints (e.g., “the delivery date of an order must be either null or later than the
registration date”) or foreign keys (e.g., “each order item row must refer to an existing order”).

Whenever a tuple is inserted, modified or removed, the database management system checks
all relevant rules and rolls back the transaction if any rule is violated. The rules form a safety
net against errors that may occur in exceptional situations. These rules might never be violated in
basic tests, but exhaustive verification will find all violations by testing all possible cases.

Assertions in program code. Many programming frameworks include an assertion facility. The
program code may be instrumented with Boolean conditions that reflect the programmer’s assump-
tions. Rules can be specified for the data passed to or returned by methods, or as arguments to a
special “assert” macro that aborts program execution if the specified condition does not hold.

Such assertions can be automatically transformed to safety properties of the model. Similarly
to database integrity rules, the assertions are most likely to fail in exceptional situations that can
be best found in exhaustive testing.

Identifier pool alert. Section4.3.2explains why abstract identifiers are needed in the model
and describes our solution for managing the state space explosion problem by using small enough
data domains. Deadlocks may occur if these identifiers run out. This is not necessarily an error
in the application, but it may be caused by the model where the number of available identifiers is
limited. A safety guard can assist the user in managing the identifier domain sizes. When the last
identifier is taken, the safety guard is triggered to indicate a potential problem. The occurrence of
this event would suggest that the domain should be enlarged. Such checks should be optional.

4.2.2 Liveness Properties

Verifying that a system never reaches an erroneous state is a very powerful way to increase con-
fidence in the correctness of the system. However, sometimes this is not enough, and we want to
claim that “something good eventually happens,” such as “an order entered into the system will
eventually also be processed.”
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A liveness property is violated if there is an infinite execution where progress is not guaranteed.
Usually this means that some actions can be repeated infinitely in the system, and the same states
are visited again and again.

When expressing liveness properties we need also to assume that certain actions receive fair
treatment. When strong fairness is assumed for a transition, it must be executed infinitely often if
it becomes enabled infinitely often.

In our example, where orders are entered and processed separately, we must assume that nei-
ther transaction is neglected in order to verify that each order eventually results in a delivery.

Some of the more complicated application behaviour requirements can only be specified by
the designer, who expects the application to behave in a certain way. This task can be eased by
providing the designer withspecification patterns[6], templates of formulae or property automata.

4.3 Modelling Considerations

We shall now consider the modelling elements from Section4.1 in more detail.

4.3.1 The Environment

Domains of transaction parameters. The domains of transaction parameters greatly affect the
number of reachable model states. Validated input is stored into a database, which can become
quite large. This behaviour is reflected in the model so that enlarging the input domains result
in even larger state spaces. In order to manage the state explosion problem, we have to limit the
domains. When the application developer is allowed to select the input domain sizes individually,
he can check different aspects of the system. Obviously this approach relies on the intelligence
of the user and does not prove the absence of errors. However, checking a restricted model might
reveal errors more easily than testing or simulating a more complete model.

Automatic unification of transaction parameter domains. The application code is statically
analysed to identify the relations between database fields and transaction parameters. Each group
of related fields and parameters is assigned an own domain. Developers cannot be assumed to
keep such mappings up to date, as the system is maintained over a long period of time by different
persons. Unifying the domains is essential for models with scalable domain sizes.

Controlling transaction invocations. One way to attack the state space explosion is to guide
the search by restricting the behaviour of the environment. For instance, transactions for filling in
basic information could have priority over the actual processing transactions. One way to arrange
this is to divide the behaviour of the environment into phases where only certain transactions will
be invoked. Formally, the environment can be defined as a finite automaton whose actions are
labelled with transactions.

4.3.2 The Database and the Transactions

Initialising the database. In the initial state of the model, the database is empty. The model
generates all the possible database states allowed by the application logic, as the environment
nondeterministically initiates transactions.
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Figure 4: Modelling a rolled back transaction. Solid arrows denote committed transactions that
lead from one persistent state to another. A rollback (dotted arrow) leads back to the originating
persistent state, or to an artificial deadlock.

Symmetry reduction of transaction parameter domains and object identifiers. Identifier val-
ues model objects references in the application code and surrogate keys in the database, such as
item numbers. Symmetry reduction [14] can lead to exponential savings by exploiting the fact that
the actual values of these identifiers are irrelevant.

Static analysis can determine the set of operations performed on each domain. Symmetry
reduction is only compatible with assignment and equality test. For instance, integer arithmetics
requires a (limited) domain of integers or equivalence classes.

For each identifier domain, the model contains a pool of available values.

Transactions and resource tokens. Since the database management system isolates transac-
tions from each other, the transactions can be modelled to be mutually exclusive. This can be
arranged by introducing aresource token[11] that must be “possessed” by the active transaction.

Figure3 illustrates the effect of a resource token. There are two enabled transactions, consist-
ing of 2 and 3 operations. Depending on the order in which the operations in the transactions are
performed, the system will follow different paths to the final state, shown rightmost in Figures3(b)
and3(c). Only the corner states of the depicted lattices arepersistent, meaning that the database
is in a committed state. Some of thetransientstates have been eliminated in Figure3(c).

The resource token abstraction may interfere with partial order reductions [9]. Those tech-
niques work best when the processes in the system are as independent as possible. The resource
token makes all transactions depend on each other. Also, verifying liveness properties requires a
strong fairness assumption for the first transition of each transaction and a weak fairness assump-
tion for the transitions that return the resource token. The model checker algorithm inMARIA [15]
manages these assumptions in an efficient way.

Rolling back transactions. When a transaction is rolled back, the requested changes to the
persistent data must be ignored. This can be accomplished in two ways (Figure4):

(a) by restoring the persistent data from a back-up copy, or

(b) by setting a “rollback” flag that disables all transitions in the model—an artificial deadlock.
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Translating rolled back transitions to deadlocks simplifies both the model and its state space. In a
real system, rolling back a transaction should restore the database to its original state, as depicted
in Figure4(a). In exhaustive state space enumeration, all reachable states of the system are con-
sidered, and deadlock states pose no problem. The search algorithm can still distinguish genuine
deadlock states of the system from these artificial deadlocks by examining the “rollback” flag.

4.3.3 Components and Application Code

Mapping objects to relations. There are two types of data in enterprise applications. The tran-
sient data that is being processed is managed in objects, while the persistent data in the database
is stored as tuples from relational calculus. The models of the components that provide mappings
between tuples and objects must address the following issues:

object identifiers: Compared to the relational data model, the object model adds a level of indi-
rection in the form of object identifiers. A unique identifier or reference is assigned to each
created object. When an object is no longer needed, the identifier can be freed. The dy-
namic allocation of identifiers can lead to a combinatorial explosion unless some reduction
techniques are applied. Our model limits the explosion by purging all objects and identifiers
upon entering a persistent states.

existence tests:Databases are often tested for the existence of records. For instance, the compo-
nentdbOrder introduced in Section3.2 must determine whether the customer has an open
order, and place a new order if necessary. In Petri nets, transitions are enabled if enough
items exist in their input places. Defining an action for the case when something is absent
requires a modelling trick, such as using a complement place or a counter, or reserving a
special value for denoting absent items.

aggregate operations:Sometimes it is necessary to perform an operation on a group of data, such
as all items that belong to an invoice. The total invoiced amount is the sum of the prices of
the ordered items multiplied by the ordered quantities. When an invoice header is deleted,
the invoice lines listing the billed quantities and identifying the items are deleted as well.
This kind of operations can be modelled in high-level nets by making use of inhibitor arcs,
as Billington demonstrates [3, Chapter 8], or by introducing auxiliary attributes that can be
used to limit dynamic quantifications in theMARIA net class [16]. For instance, there could
be a derived place that maps invoice identifiers to invoice line counts.

Components and their composition. Component services can be modelled as transitions that
define the effect of invoking the service interface. Nondeterminism can be modelled by defining
conflicting transitions for a service. We call this kind of model elementssimple components.

Transitions can be difficult to derive automatically, if the logic of the program code is com-
plicated. This limits the use of simple components. More complicated cases can be maintained
manually as discussed in Section3.4. Another possibility is to create composite component mod-
els. They are derived automatically from the application code. Each statement in the application
code is assigned a program counter value within the composite component. A statement corre-
sponds to a transition that performs a computation step and updates the program counter.

77



Composite components allow program logic to be extracted automatically from the application
code. The program counter values increase the state space, even though the counter is reset when
the transaction is completed. However, this information is relevant when mapping an error trace to
application code statements. The source code file names and line numbers can be encoded either
in enumerated program counter values or in transition names.

Simple components do not need program counters. Thus, they can be composed with the rest
of the application model by transition substitution. Modelling component execution with a single
transition does not introduce intermediate states in the same way as using a program counter does.

Path compression and nondeterministic choices.Eliminating interleavings with the resource
token, as illustrated in Figure3, can result in some non-branching state sequences in the state
graph. Such sequences can be collapsed by applying path compression [17].

Nondeterministic components and conditions within application code introduce branches in
the state space. The branch target states cannot be eliminated by path compression. However,
MARIA is able to distinguish “visible” and “hidden” states. Only the visible states, corresponding
to the persistent states of the model, need to be permanently stored.

Eliminating input validation code with static analysis. Typically, application code validates
its input. Nearly half the code in Figure2(a) deals with erroneous input. This code can be omitted
from the formal model if the environment is constrained in such a way that it sends only such
parameter combinations to the method that would pass the validation. This may lead to significant
reductions at the cost of additional static analysis.

Method calls. Object-oriented programs typically contain a large number of method calls. When
avirtual methodis called, the run-time system must determine the type of the object anddispatch
the call to the applicable method. Sometimes the call target can be determined at compilation time.

The translation of virtual method calls can be simplified by generating a dispatcher method for
each virtual method. The dispatcher contains aswitch block that branches according to the type of
the object. In each branch, the dispatcher jumps to a method of a derived class. In this way, each
virtual method invocation can be implemented as a non-virtual call to a dispatcher procedure.

Method calls involve some overhead of storing return addresses and copying parameters. For
short methods, it is more efficient to substitute calls to the method with the program code in the
method body. This technique is referred to asinlining. It can eliminate trivial intermediate states,
but it may also produce significantly bigger models. In essence, it is a tradeoff between the model
size and the number of reachable states.

Folding. Some entities can be modelled as a single high-level Petri net place or as a collection
of simpler places. The choice whether to fold may affect the space and time requirements of state
space enumeration. Folding places adds flexibility to transitions.

For instance, when the control flow of a program is modelled with a single high-level “program
counter” place, aswitch statement can be translated into a single transition that jumps to one of the
case labels. If there was a separate program counter place for each statement in the program, the
program flow might be more clearly visible from a graphical presentation of the net, but translating
theswitch statement would require more transitions, in fact one for eachcase label.
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Figure 5:An abstract view of an order processing application.

Similar choices can be made in data type definitions. When a class hierarchy is translated to a
single data type definition, objects of a base class can be stored in the same place, no matter which
derived class it belongs to. Defining separate data types for derived classes requires a set of places
(and transitions) for each derived class.

5 Analysing the Example Application

To evaluate the feasibility of the presented approach, we manually constructed a high-level Petri
net model for our example application that was introduced in Section3.2.

Figure5 presents a simplified view of the main information flows of the application as a Petri
net like graph. The processing starts when an order is entered into the system. Deliveries are
controlled by a separate system, to which the order processing system sends a delivery request
message, once the order has been accepted.

The delivery system informs the order processing system of completed deliveries. Either sys-
tem may also initiate a procedure to discard the order and the delivery request.

A delivery confirmation message is transformed into an invoice that will be sent later. If there
is an unsent invoice for the customer who made the order, the delivery is merged with this invoice.
The last step in the processing chain is to send the invoice to the customer.

5.1 The Model of the Demo Application

In the generated model of the application, each transaction comprises a simple component. Since
there are no program counters, all reachable states of this model are persistent database states.

This model was hand crafted, and some abstractions were made. Most notably, the database
tables “customer” and “item” were eliminated, because they do not control the behaviour of the
transactions we are interested in.

The implementation of the application contains functions for entering and updating informa-
tion that does not control the application logic, such as names, addresses and prices. Without
loss of generality, the domains of these data fields were restricted to one value, which essentially
removes the fields from the formal model.

The “order” table contains, among others, three columns for quantities: the quantity of ordered
items, the quantity of delivered items, and the quantity of items that have been invoiced. The last
column is redundant, as its data can be derived from deliveries and invoices. Databases sometimes
contain redundant information, either because deriving the information is computationally too
expensive or because the data used for deriving the information might be cleaned up later from the
live database to a data warehouse system. Such redundancy could be detected in static analysis,
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which may be expensive. On the other hand, eliminating redundant fields does not reduce the
number of reachable states, but the space needed for representing a state.

Invoices are stored in two tables. The “invoice row” table links deliveries to the header table
“invoice.” In the implementation, the invoice rows are numbered, so that invoices can be retrieved
in a consistent order. While the order of invoiced items may be relevant in printed documents, it
does not matter in our formal analysis. Therefore, the row number column was abstracted away.

The resulting model inMARIA format [18] has 12 transitions and 10 places. Four places
correspond to the modelled database tables. The markings of the remaining six places are functions
of the database contents. Three places are identifier pools of unassigned order, delivery and invoice
numbers and one place counts the lines belonging to each invoice. Two places—which would be
connected to the transitionscreate and merge depicted in Figure5—indicate which customers
have unsent invoices and which do not.

5.2 A Usage Scenario

In this example scenario, an application coder wants to verify that all the referential integrity rules
are respected, and that an order entered will eventually be processed. Processing an order means
that the order is delivered and invoiced, or it is cancelled.

The referential integrity rules are translated into safety properties, and the liveness require-
ments are specified in LTL. Both are checked on the fly by theMARIA tool.

The application designer is likely to begin the analysis of the model by assigning all data
domains the cardinality 1. In this configuration, some transactions are permanently disabled. For
instance, the transitionmerge of Figure5 cannot be enabled unless there may be multiple orders
and deliveries.MARIA can detect and report dead transactions.

Next, the user might want to enlarge some domains in order to enable more behaviour in the
model. Increasing the cardinalities may reveal spurious errors. For instance, when the database
accepts multiple orders but only has room for one invoice, it will be impossible to invoice all
deliveries unless they can be combined to the single invoice.

Verifying high-level liveness properties is an interactive procedure where the domain sizes,
fairness assumptions and the environment need to be adjusted if an unjustified error is reported.

5.3 Some Results

As Table1 shows, the state space of the model grows significantly when any of the domains is
enlarged. Some of the growth is inherent in the application, as discussed in Section4.3.1, but much
of it is due to the lack of symmetry reduction in the tool we used. Because the system behaviour
does not depend on actual data values, exploiting symmetries could lead to exponential savings.

Some domains have a greater impact on the state space size than others. If the system accepts
at most one order, it does not matter much how many customers there are who can place the order
or how many items are available to be ordered. But as soon as there can be multiple orders and
deliveries, the state space explosion breaks loose.

In Table1, not all parameters of the system are varied. Orders are never cancelled, and the
database has room for only one invoice. The system has a large state space, and only parts of it
can be viewed at a time. When one parameter is incremented, other parameters must be limited
and some transactions may need to be disabled. Obviously, not all errors can be guaranteed to be
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Table 1:Sizes of reachability graphs generated by the model without and with path compression
reduction when at most one invoice can be generated and orders cannot be cancelled. Increasing
the cardinalities of orders and deliveries (O), customers (C) or items (I) affects the numbers of
reachable states|V| and transition occurrences|E|.

O=1 Original Reduced
C I |V| |E| |V| |E|
1 1 16 19 7 11
1 2 31 46 13 29
1 3 46 81 19 55
1 4 61 124 25 89
2 1 43 58 25 41
2 2 85 148 49 113
2 3 127 270 73 217
2 4 169 424 97 353
3 1 82 117 46 82
3 2 163 306 91 235
3 3 244 567 136 460
3 4 325 900 181 757
4 1 133 196 73 137
4 2 265 520 145 401
4 3 397 972 217 793
4 4 529 1,552 289 1,313

O=2 Original Reduced
C I |V| |E| |V| |E|
1 1 427 986 409 1,003
1 2 1,609 4,616 1,537 4,591
1 3 3,547 12,042 3,385 11,915
2 1 2,665 7,376 2,521 7,279
2 2 10,369 38,432 9,793 37,759
2 3 23,113 106,992 21,817 105,263
3 1 8,227 26,118 7,741 25,595
3 2 32,329 145,368 30,385 142,703
3 3 72,307 419,958 67,933 413,531

O=3 Original Reduced
C I |V| |E| |V| |E|
1 1 14,680 49,341 14,518 50,809
1 2 107,983 447,870 106,687 451,345
2 1 194,923 794,226 192,331 798,889
2 2 1,496,197 8,197,284 1,475,461 8,175,073

found in this kind of analysis, but even partial verification has better coverage than testing. None
of the data integrity rules built in the model are violated in the combinations we checked.

6 Related Work

Modelling database systems with Petri nets is nothing new. One earlier method is NetCASE [19],
a Petri net based computer aided software engineering (CASE) technique that covers everything
from requirements analysis to code generation. It may be hard to apply this kind of methods in
practice, where things tend to be built on top of existing systems. We believe in automated reverse
engineering, the opposite of code generation.

The PathStar project at Bell Labs [10] showed that a programming language can be treated as
a formal model, provided that the source code is annotated appropriately for an automated trans-
lator that makes suitable abstractions. In that project, verification experts translated requirement
specifications from English prose to LTL and maintained the abstraction rules of the translator, so
that it was possible to model check the software under development on a daily basis.

The Bandera [5] and SLAM [2] toolkits create abstract verification models from source code.
Bandera inputs the abstractions from the user, while SLAM iteratively refines them by itself.
Neither tool seems to support the composition of derived models with hand-crafted fragments.

Lie et al. [13] present a method for automatically extracting models from low level software
implementations. The extracted model is combined with a model of the hardware. Their approach
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Figure 6:A block diagram of the proposed tool. The prototype will be based onMARIA , but our
Intermediate Formal Language can be easily interfaced with other model checkers.

is similar to ours, except that we combine models extracted from high level program code with
abstract models of software components.

7 Conclusion and Future Work

Component based software systems are expected to create a flexible and economical infrastruc-
ture where companies have a considerable choice of procurement to create customised solutions.
When components can be deployed and updated individually, system acquisition and modifica-
tions should become more manageable than before. With a simple example, we demonstrated how
these data-centric applications are constructed and what their environment looks like.

The architectural style of component-oriented applications, where functionality is hidden be-
hind high-level interfaces, creates an opportunity for applying formal methods, such as state space
analysis. Our approach is based on extracting a formal system model from the models of software
components and from the application code which glues the components together. This model is
formally checked for desired or undesired properties.

Adopting advanced software engineering techniques, such as model checking, in an industrial
setting requires well integrated and automated tool support. We propose a tool that allows software
maintainers to verify the correctness of systems before system level testing. The objective of this
verification step is to gain more insight than could be achieved by pure static analysis techniques.

This tool, depicted in Figure6, transforms application code, database schema and a reposi-
tory of component models into a verifiable model of the system. Many desired properties of the
system are derived automatically from database definitions and assertions in the application code.
Some safety guards, such as the identifier pool alert, are optional. Verifying high-level liveness
properties is likely to be an interactive procedure, where the user is required to control the fairness
assumptions and the model parameters, such as input domain sizes, if an unjustified error trace is
reported. If errors are found, they are presented in terms of the application code.

The application behaviour is mapped to a formal model based on shared memory multipro-
cessing. In the model, the shared memory is the database and the competing processes are the
transactions initiated by the environment. The structure of the application is restricted in such a
way that the relations between transaction parameters and database contents can be derived auto-
matically. Each group of related fields and parameters is assigned an own domain.

The state explosion problem is tackled from two directions. Primarily, we rely on the user
managing the parameters of the model. Secondly, we build the model in such a way that state
space reduction can be accomplished in verification tools.
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The state explosion problem can be alleviated by keeping the data domains small. Minimising
the data domains could result in some of the application behaviour missing from the model. Here
we rely on the user insight and allow him to individually select the sizes of various data domains.
The developer may also specify how the environment should behave: which transactions should
be invoked and in which order. In this way, users can generate state spaces revealing different
aspects of the application behaviour. This partial verification resembles testing, but it can have
better coverage.

Our modelling framework abstracts from the inner workings of database management systems.
Only one database transaction is processed at a time. Ideally, we would like to store only the
persistent database states and the transitions between these states. The state explosion can also be
attacked with symmetry reduction [14]. It relies on the fact that the actual values of identifiers are
irrelevant, as long as only assignments and equality tests are applied to them. These conditions
can be checked by the tool that constructs the verifiable model.

We believe that the proposed tool could help in reducing application maintenance costs. Sav-
ings are possible if some of the otherwise required testing can be substituted with verification
runs. Applying formal methods to component systems gives a profoundly different starting point
for third-party component markets. A formal model—an abstract description of a system—can be
thoroughly analysed by computer tools to increase confidence in the system working according
to the specification. Without such confidence, customers are easily locked in ordering all further
development from the original system vendors.

This article describes “work in progress.” Sections4 and5 were mainly written by the second
author, while the idea of applying state space analysis to component-based software originated
from the first author who is preparing his licentiate’s thesis on the subject. His plans include writ-
ing a front-end for theMARIA tool [16] and using it in simulated application maintenance work.
If the results are positive, it will be most interesting to find industrial applications and to see how
our approach could be augmented by modelling the business processes [1] and database perfor-
mance [4]. Also, conformance testing of components [8] could be implemented in the framework.
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