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Abstract

We introduce an algorithm for learning a local metric to a continuous input space that measures
distances in terms of relevance to the processing task. The relevance is defined as local changes in
discrete auxiliary information, which may be for example the class of the data items, an index of
performance, or a contextual input. A set of neurons first learns representations that maximize the
mutual information between their outputs and the random variable representing the auxiliary infor-
mation. The implicit knowledge gained about relevance is then transformed into a new metric of the
input space that measures the change in the auxiliary information in the sense of local approxima-
tions to the Kullback-Leibler divergence. The new metric can be used in further processing by other
algorithms. It is especially useful in data analysis applications since the distances can be interpreted
in terms of the local relevance of the original variables.

1 Introduction

The success of unsupervised learning algorithms, including principal components analysis, various clustering algo-
rithms, and Self-Organizing Maps, depends crucially on feature extraction, i.e., the choice and relative scaling of
the input variables. Successful feature extraction stagesare often tailored according to the task at hand using expert
knowledge or heuristic rules of thumb.

There is, however, often some implicit auxiliary information available about the relevance of the input. A classification
of the samples may be known and the goal is to discover characteristics of the classes, or to find suitable features for
classification. Alternatively, for example in process monitoring, some indicator of the performance may be associated
with each data vector and the goal is to find out what factors affect the performance. In a prediction task the goal may
be to discover which features are important in successful prediction.

In this work we introduce an algorithm that learns to take such auxiliary information into account. In the first stage a
network learns features that maximize the mutual information between the features and the auxiliary information.

Mutual information between the outputs of different processing modules has been used already previously as a criterion
for building representations that are coherent over time orspace [2, 3, 8]. Our approach is similar up to this point but
we do not use the features as such. Instead, we explicitly transform the (local) metric of the original input space
so that original proximity relations are preserved but the new distances measure the (local) change of the auxiliary
information. Maximization of mutual information by itselfis not enough to produce such a metric.

If the auxiliary information has been chosen to indicate relevance to the overall goals of the learning task then distances
will be measured according to their relevance to the goals. Same distance always signifies equal relevance.

The relevance metric can be used by other algorithms. If the algorithms are unsupervised, the desirable properties
of unsupervised algorithms like fast learning, generalizability, and visualization capability are preserved. A demon-
stration of Self-Organizing Map learning in the new metric will be presented in Sec. 6. The new metric is especially
useful in data-analysis applications since it can be easilyinterpreted in terms of local relevance of the original input
variables.

2 Networks that maximize mutual information

Consider a network ofN neurons. Each neuron receives the same (stochastic) inputx ∈ R
n, and the activation of the

jth neuron in response to the input is denoted byyj(x) ≥ 0, with
∑

j yj(x) = 1.

The learning method presented here is general in the sense that it does not depend on the type of neurons used (the
exact form of the parameterization of theyj). In the next section a detailed learning algorithm is derived for one
suitable form of parameterization.

Unless the components ofx already come from a carefully optimized feature extractionstage they can be noisy and
some of them may even be completely irrelevant to the task at hand. A completely unsupervised network is unable
to distinguish between relevant and irrelevant information. The question addressed in this section is how the network
could be made to learn to utilize auxiliary information thatis available aboutx so that after learning the responses



of the neurons would reflect the auxiliary information as well as possible. Assuming that the auxiliary information is
relevant to the task the network is intended to perform, the neurons would then have learned to extract the relevant
features.

When an inputx is presented to the network, the output is a distribution of activity over the neurons. Since the
activations sum to unity, the distribution may be interpreted as the conditional probability distribution of a random
variable calledV : p(vj |x) ≡ yj(x), j = 1, . . . , N . Here the values ofV have been denoted byvj . The marginal
distribution ofV is thenp(vj) =

∫

yj(x)p(x)dx, wherep(x) is the probability density function of the input.

Assume that the auxiliary information related to the sampleis represented by a discrete-valued random variable de-
noted byC. Denote its values byci; the indicesi may denote, for example, the possible classes of data, alternative
contexts ofx, or the possible outcomes in a prediction task. If the space of the outcomes is continuous it may be
discretized suitably. Note that usually instead of the distributionp(ci|x) itself, only valuesc associated with the inputs
x are known.

The aim of learning is to optimize the parameters of the neurons so that the information that the activities of the
neurons mediate ofC is maximized, i.e., tomaximize the mutual informationI(C; V ) between the distribution of
activity over the neurons and the distribution of the auxiliary random variableC. The mutual information is

I(C; V ) =
∑

i,j

p(ci, vj) log
p(ci, vj)

p(ci)p(vj)

=

∫

∑

i,j

log
p(ci, vj)

p(ci)p(vj)
p(ci|x)p(vj |x)p(x)dx . (1)

Above we have decomposed the joint probabilityp(ci, vj) using the fact that the auxiliary information does not directly
affect the activity of the neurons. The variablesC andV are therefore conditionally independent, givenx.

In the next section we will introduce an algorithm that maximizes the mutual information (1) by adjusting the param-
eters of the network.

3 Maximization of mutual information for Gaussian neurons

It can be shown that the gradient ofI(C; V ) with respect to the parametersθ of the neurons is (derivation omitted)

∇θI(C; V ) =
∑

i,j

log
p(ci, vj)

p(ci)p(vj)

∫

p(ci|x)∇θyj(x)p(x) dx . (2)

The expression (2) is valid for any kinds of parameterized neurons. In this section we show how to maximizeI(C; V )
for normalized Gaussian neurons with ana priori set common widthσ. The response of such a neuron to the inputx
is

yj(x) =
Gj(x;wj)

∑

k Gk(x;wk)
, where Gj(x;wj) = e−‖x−wj‖

2/2σ2

(3)

where thewj are the parameters to be optimized. (Note that although we denoteyj(x) for brevity, eachyj(x) actually
depends on all thew’s). For these Gaussian neurons the gradient ofI(C; V ) is

∇wj
I(C; V ) =

1

σ2

∑

i

∑

l 6=j

log
p(ci|vj)

p(ci|vl)

∫

(x − wj)yj(x)yl(x)p(ci,x)dx . (4)

It is straightforward to maximizeI(C; V ) using (4). The integrals in (4) and inp(ci|vj) =
∫

vj(x)p(ci,x)dx can be
estimated as weighted sums over the data which is supposedlydrawn from the distributionp(ci,x). The parameters
wj can then be readily optimized using a general-purpose optimization algorithm.

In order to achieve on-line learning we have, however, used stochastic approximation to maximizeI(C; V ). For the
stochastic approximation the responsesyj(x) andyl(x) of neuronsj andl, respectively, are interpreted as the densities
p(vj |x) andp(vl|x) of two discrete random variables that are conditionally independent of each other and ofC. Then,
the expression

yj(x)yl(x)p(ci,x) = p(vj |x)p(vl|x)p(ci|x)p(x) = p(vj , vl, ci,x)
in (4) can be used as the sampling function for stochastic approximation. This leads to the following algorithm: At the
stept of stochastic approximation, draw an input(x(t), ci), and then two distinct neuronsj andl from the multinomial
distribution{yk(x(t))}. Adapt the parameters according to

wj(t + 1) = wj(t) + α(t) log
p̂(ci|vj)

p̂(ci|vl)
(x(t) − wj(t)) , (5)

whereα(t) is the gradually decreasing step size. The estimatesp̂(ci|vj) can be adapted simultaneously with leaky
integration at a rate of change larger thanα(t) in (5).



4 Metric that measures relevance

The mutual informationI(C; V ) is a measure of the statistical dependency between the outputs of the network and
the auxiliary informationC. The outputsyj(x) form a ’representation’ of the inputx which is our own construction
intended to capture the dependency betweenx andC, in the limits allowed by the parametrization ofV . The auxiliary
informationC, on the other hand, has been selected so that changes in its distribution signify relevance.

In this section our first aim is to make the dependency betweenx andC, as mediated byV , explicit, and then to use
this knowledge to judge the relevance oflocal changes ofx in variousdirections of the input space. Assuming thatC
has been selected suitably the relevance can be measured as changes in the estimated distribution ofC as a function of
x, and formulated as a new metric to the input space.

Let us start by making the dependency betweenx andC explicit. The mutual informationI(C; V ) can be written as
an integral over the probabilityp(x):

I(C; V ) = −

∫

∑

i

p(ci|x) log
p(ci|x)

p̂(ci|x)
p(x)dx + const., (6)

where
p̂(ci|x) = exp

∑

j

yj(x) log p(ci|vj) . (7)

The integral in (6) is equal to the average Kullback-Leiblerdivergence between the distributions{p(ci|x)} and
{p̂(ci|x)}. Therefore, if we wish to simultaneously maximizeI(C; V ) and construct good density estimates (in
the sense of the Kullback-Leibler divergence), we need to use p̂(ci|x) of equation (7) as our density estimate.

Now we could measure the relevance of the difference betweenany pair of input samples by the difference between the
corresponding{p̂(ci|x)}. Such distance measures are useful but they have a disadvantage: they generate a topology
which may be different than the original topology of the input space. Two points originally far away may have zero
distance if the density estimates{p̂(ci|x)} are identical!

Preservation of the topology of the input space is, of course, important unless we want the auxiliary information to
completely override the original identity of the data. Therefore we introduce one additional constraint: the topology
of the input space may not change, which can be guaranteed by measuring the distances locally and defining non-local
distances as path integrals along the minimal paths in the input space. This fixes the new metric to be locally similar
to the original one up to a local scaling, that is, the new distances will be of the formd2(x,x + dx) = dxT J(x)dx.

If the differences between the estimates of posterior distributionsp̂(ci|x) are measured in terms of the Kullback-Leibler
divergence, it is well known [6] that the distance can be computed locally as

D(p(ci|x)‖p(ci|x + dx)) = dxT J(x)dx , (8)

where
J(x) = EC|x

{

(∇x log P (C|x)) (∇x log P (C|x))
T
}

is the Fisher information matrix.

In the new metric the posterior density{p(ci|x)} changes evenly everywhere and in all directions of the inputspace.
The new metric can be used for visualization by unsupervisedmethods, or as a distance measure for later supervised
learning.

Note about an invariance property of the constructed metric. The distanced2 is invariant to certain mappings of
the input space. If we have a differentiable, one-to-one mapping fromx to x′ = s(x), thenp(c|x′) = p(c|x) and
ds(x) = Kdx, whereK(x) ≡ ∂s(y)/∂y|x is the Jacobian matrix of the mapping. The distance betweenx and
x + dx after the mapping then becomes

d2(x′,x′ + dx′) = EC

{

(

dxT KT (KT )−1∇x log p(c|x)
)2

}

= d2(x,x + dx) ,

i.e., thed2-distance is invariant under invertible, smooth mappings,if computed from the correct posterior probabilities
p(c|x). In reality we have only estimates for them, but if the estimates are good, any further processing stages based
ond2 would be insensitive to a large class of topology-preserving, nonlinear transformation of the input space.

5 Unsupervised learning in the relevance metric

We will next discuss how the new relevance metric can be used as a distance measure in subsequent processing. In this
paper we will use the Gaussian neurons discussed in Sec. 3 andderive the explicit metric generated by them. Similar
metrics could be derived for other types of representationsas well.



When Gaussian neurons are used to estimate the conditional probability distributionp(ci|x) according to (7), and the
estimate is used in the distance measure (8), we get the approximation

d2

G(x,x + δx) =
∑

i

p̂(ci|x)[(δx)T bi(x)]2 (9)

for the squared Kullback-Leibler distances. In the formulafor dG, we have denoted

bi(x) =
∑

j

yj(x) log p̂(ci|vj)(wj − x̂) (10)

andx̂ =
∑

j yj(x)wj . This distance measure can in principle be used in any further processing task. However, since
the metric was originally derived for differentialδx, it is most appropriate to use methods that rely mainly on distances
between close-by points of the input space if (9) is used as such.

We will demonstrate the use of the relevance metric by computing Self-Organizing Maps [5] in the new metric. The
Self-Organizing Map (SOM) is a regular grid of units in whicha model vectormi is associated with each uniti.
During the learning process the model vectors are modified sothat they learn to follow the distribution of the input
data in an ordered fashion: model vectors that are close-by on the map lattice attain close-by locations in the input
space as well. If the map grid is chosen to be two-dimensionalthe resulting map display can be used for visualizing
various properties of the input data which is useful in data analysis applications.

The SOM algorithm consists of iterative application of two steps. The winning unit that is closest to the current input
sample is first sought, and thereafter the winner and its neighbors on the map lattice are adapted towards the input
sample.

We will carry out these steps in the relevance metric. The winner is defined to be the unit for whichd2

G(x,mc) ≤
d2

G(x,mi), and the model vectors adapt at time stept according to

mi(t + 1) = mi(t) − hci(t)∇mi
d2

G(x,mi)

= mi(t) − hci(t)
∑

i

p̂(ci|x)(mi − x)T bi(x)bi(x) .

Herehci(t) is the so-called neighborhood function, a decreasing function of the distance between the unitsc andi on
the map lattice. The height and width ofhci(t) decrease gradually in time.

6 Experiments

In this section we demonstrate what kind of a metric ensues when a network learns to extract the essential character-
istics of a three-dimensional, easily visualizable artificial data set. The metric is then used in the SOM algorithm to
visualize the class distribution of the data. The experiment is intended to serve as an illustration only; we will report
on results with practical data in later papers.

The data was sampled from a spherically symmetric normal distribution (cf. the insets in Fig. 1). The available auxil-
iary information consisted of the class of each data sample.The two classes were highly overlapping and distributed
in a “cylindrical” fashion: the conditional probability distributionp(ci|x) was constant in each column directed along
the z-axis. On each plane orthogonal to the z-axis the first class was concentrated somewhat more in the middle of the
xy-plane (cf. the inset in the top left corner of Fig. 1a).

In summary, although the distribution of the data was spherically symmetric only the radial direction in the xy-plane
was relevant from the viewpoint of auxiliary information.

Fig. 1 shows the weight vectors (parameters) of neurons thathave learned according to the stochastic approximation
method described in Sec. 3. The vectors are located approximately on a plane that is orthogonal to the z-axis; they
do not represent the z-axis at all. On the xy-plane there are two neurons in the center and the others are located in an
almost regular symmetric configuration around the center tobe able to best represent the important radial direction.

In the information distancesdG estimated using the converged network, and illustrated with the small line segments in
Fig. 1, the radial direction on the xy-plane dominates. Distances are largest where the class distribution changes most
rapidly. In the direction of thez-axis the distances are practically zero.

Finally, we will demonstrate that the relevance metric can be used as a preprocessing stage for further processing. We
computed a self-organizing map in both the original Euclidean metric and in the relevance metric, and visualized the
class distribution on the resulting maps. It can be seen in Fig. 2 that the classes are more distinctly separated on the
SOM computed in the relevance metric, and that the border between the classes is well represented.

Note that in a data analysis application it would be possibleto use the same SOM displays for visualizing other
aspects of the data. For instance the distribution of the original variables could be visualized to reveal which variables
contribute to the separation of the classeslocally in the input space.
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Figure 1: Locations of weight vectors of neurons (here centers of Gaussian kernels) in a network that has learned to
maximize mutual information with auxiliary class information. Two different cross sections of the three-dimensional
space are shown; the circles denote the weight vectors projected on the cross sections. The gray levels indicate the
conditional probabilityp(c1|x) of the first class in each location, and the small line segments (or dots) depict the
dominant direction and relative distances in the local relevance metric. The insets in the bottom right corner depict
the distribution of the data, and the two curves in the inset in the top left corner ofa depict the conditional probability
distributions of the two classes on a cross-section of the plane.

a b c d

Figure 2: Distribution of the classes of data on the map unitsof two SOMs.a Class 1, SOM 1: relevance metric.b
Class 2, SOM 1: relevance metric.c Class 1, SOM 2: Euclidean metric.d Class 2, SOM 2: Euclidean metric. Light
shades denote high density and dark shades low density, respectively.



7 Discussion

In this paper we have shown that maximization of the mutual information between an auxiliary random variable and
a feature set derived from the input can be seen as a form of density estimation. The estimate defines a metric in the
input space that is additionally constrained to preserve the original topology of the space although it rescales the local
distances. If the auxiliary variable is chosen so that changes in its value signify relevance to the task at hand, then
the metric measures the relevance. The measure is optimal given the restrictions posed by the parametrization of the
network.

According to our knowledge the principle is new. Works in which some aspects resemble our approach exist, however.
Amari and Wu [1] have augmented support vector machines by making an isotropic change to the metric near the
class border. In contrast to this, our metric is non-isotropic and global. Jaakkola and Haussler [4] induced a distance
measure into a discrete input space using a generative probability model. The crucial differences are that they do not
use external information, and that they do not constrain themetric to preserve the topology. We have also recently
become aware of the Information Bottleneck framework of Tishby et al. [9]. Their setup is discrete, and therefore does
not aim at finding local metrics. The approach is related to ours in that the goal is to maximize mutual information
between a representation and a relevance indicator.

If an unsupervised algorithm learns using the relevance metric, or if the metric as such is used as the output of a
data analysis, then the learning process is somewhere in between supervised and unsupervised. The topology of the
input space is preserved as is typical to unsupervised methods, while the metric (local scaling of the space) is induced
in a supervised manner. Compared to using a standard separate feature extraction stage, the change of the metric
defines a manifold which cannot in general be projected to a Euclidean space of the same dimension. Therefore, no
dimensionality-preserving mapping with the same local properties exists which means that the change of the metric is
a more general operation than feature selection by a dimensionality-preserving (or dimensionality-reducing) nonlinear
mapping.

The most obvious applications of the method are in exploratory data analysis. Because the metric of theoriginal input
spaceis transformed, interpretation of the discovered relevantfactors is straightforward. For high-dimensional inputs,
the results can be visualized using a dimensionality-reducing method such as the Self-Organizing Map.

Forming the relevance metric can additionally be considered as a kind of a nonlinear discriminant analysis. The linear
discriminant analysis finds a linear transformation that maximizes class separability. Our metric transforms the input
space locally such that the change in the class distributionbecomes isotropic, the same in every direction, which allows
inspection of the class distributions even more closely.

Classical canonical correlation analysis has been generalized by replacing the linear combinations by nonlinear func-
tions [2, 7]. It would be possible to use our metric for the same task, finding statistical dependencies between two data
sets, by replacing the discrete auxiliary random variable with a parametrized set of features computed of an auxiliary
continuous random variable. The advantage of our method would then be that it creates an easily interpretable metric.
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