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Abstract

We introduce an algorithm for learning a local metric to atagmwmous input space that measures
distances in terms of relevance to the processing task. dlbeance is defined as local changes in
discrete auxiliary information, which may be for example ttiass of the data items, an index of
performance, or a contextual input. A set of neurons firshnieaepresentations that maximize the
mutual information between their outputs and the randoriakbe representing the auxiliary infor-
mation. The implicit knowledge gained about relevanceéntiiansformed into a new metric of the
input space that measures the change in the auxiliary irgfoomin the sense of local approxima-
tions to the Kullback-Leibler divergence. The new metrin ba used in further processing by other
algorithms. It is especially useful in data analysis agglans since the distances can be interpreted
in terms of the local relevance of the original variables.

1 Introduction

The success of unsupervised learning algorithms, inctugimcipal components analysis, various clustering algo-

rithms, and Self-Organizing Maps, depends crucially oriuieaextraction, i.e., the choice and relative scaling of

the input variables. Successful feature extraction stagesften tailored according to the task at hand using expert
knowledge or heuristic rules of thumb.

There is, however, often some implicit auxiliary infornuatiavailable about the relevance of the input. A classificati

of the samples may be known and the goal is to discover claaistats of the classes, or to find suitable features for
classification. Alternatively, for example in process ntoring, some indicator of the performance may be associated
with each data vector and the goal is to find out what factdexathe performance. In a prediction task the goal may
be to discover which features are important in successédiption.

In this work we introduce an algorithm that learns to takehsauaxiliary information into account. In the first stage a
network learns features that maximize the mutual inforamelietween the features and the auxiliary information.

Mutual information between the outputs of different preieg modules has been used already previously as a criterion
for building representations that are coherent over timgpace [2, 3, 8]. Our approach is similar up to this point but
we do not use the features as such. Instead, we explicithgfivam the (local) metric of the original input space
so that original proximity relations are preserved but tee mistances measure the (local) change of the auxiliary
information. Maximization of mutual information by itse#f not enough to produce such a metric.

If the auxiliary information has been chosen to indicatevahce to the overall goals of the learning task then disanc
will be measured according to their relevance to the goamesdistance always signifies equal relevance.

The relevance metric can be used by other algorithms. If llp@rithms are unsupervised, the desirable properties
of unsupervised algorithms like fast learning, generdli#g, and visualization capability are preserved. A demo
stration of Self-Organizing Map learning in the new metritl tve presented in Sec. 6. The new metric is especially
useful in data-analysis applications since it can be eadiéypreted in terms of local relevance of the original inpu
variables.

2 Networksthat maximize mutual information

Consider a network oV neurons. Each neuron receives the same (stochasticyxnpR"™, and the activation of the
jth neuron in response to the input is denoted/jx) > 0, with 3 y;(x) = 1.

The learning method presented here is general in the seati tloes not depend on the type of neurons used (the
exact form of the parameterization of thg). In the next section a detailed learning algorithm is dedivor one
suitable form of parameterization.

Unless the components &falready come from a carefully optimized feature extracitage they can be noisy and
some of them may even be completely irrelevant to the taskatl.hA completely unsupervised network is unable
to distinguish between relevant and irrelevant inforntatibhe question addressed in this section is how the network
could be made to learn to utilize auxiliary information tigtavailable abouk so that after learning the responses



of the neurons would reflect the auxiliary information ashaslpossible. Assuming that the auxiliary information is
relevant to the task the network is intended to perform, gmgrons would then have learned to extract the relevant
features.

When an inputx is presented to the network, the output is a distributionativily over the neurons. Since the
activations sum to unity, the distribution may be interpdeas the conditional probability distribution of a random
variable calledV: p(v;|x) = y;(x), j = 1 ,N. Here the values of have been denoted hy. The marginal
distribution of V' is thenp(v;) = [ y;(x dx wherep(x) is the probability density function of the input.

Assume that the auxiliary mformatron related to the saniplepresented by a discrete-valued random variable de-
noted byC. Denote its values by;; the indices may denote, for example, the possible classes of datanaties
contexts ofx, or the possible outcomes in a prediction task. If the spdd¢beooutcomes is continuous it may be

discretized suitably. Note that usually instead of theritistion p(c;|x) itself, only values: associated with the inputs
x are known.

The aim of learning is to optimize the parameters of the nesisp that the information that the activities of the
neurons mediate of’ is maximized, i.e., tanaximize the mutual informatiof(C; V') between the distribution of
activity over the neurons and the distribution of the aaxifirandom variable”. The mutual information is
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Above we have decomposed the joint probabﬁm, vj) using the fact that the auxiliary information does not disec

affect the activity of the neurons. The variabliésandV” are therefore conditionally independent, given

In the next section we will introduce an algorithm that maizies the mutual information (1) by adjusting the param-
eters of the network.

3 Maximization of mutual information for Gaussian neurons

It can be shown that the gradient&fC; V') with respect to the parameteé?f the neurons is (derivation omitted)

VelI(C;V) Zlo c“vj )/p(ci|x)V9yj(x)p(x) dx . 2

The expression (2) is valid for any krnds of parameterrzeﬂoes. In this section we show how to maximiz&”; V')
for normalized Gaussian neurons withapriori set common widtlr. The response of such a neuron to the input
is
Gji(x;wj)
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where thew ; are the parameters to be optimized. (Note that although wetdg; (x) for brevity, eachy, (x) actually
depends on all thes's). For these Gaussian neurons the gradied{6f. V) is
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It is straightforward to maximizé(C; V) usmg (4). The integrals in (4) and jric;|v;) = [v;j(x)p(ci, x)dx can be

estimated as weighted sums over the data which is suppodisiisn from the distributiop(c;, ) The parameters
w; can then be readily optimized using a general-purpose @gtion algorithm.

In order to achieve on-line learning we have, however, usechastic approximation to maximiz¢C; V). For the
stochastic approximation the responggsc) andy; (x) of neuronsgj and!, respectively, are interpreted as the densities
p(v;]x) andp(v;|x) of two discrete random variables that are conditionallejpehdent of each other and@f Then,
the expression
y; (X)yi(x)p(ci, x) = p(vj[x)p(vi[x)p(cilx)p(x) = p(vj, v, ¢, %)

in (4) can be used as the sampling function for stochastiojpation. This leads to the following algorithm: At the
stept of stochastic approximation, draw an ingstt), ¢; ), and then two distinct neurogisand! from the multinomial
distribution{yx(x(t))}. Adapt the parameters according to

it 1) = wj0) + a(t) log B (x(t) ~ i 1) )
whereca(t) is the gradually decreasing step size. The estimaie$v;) can be adapted simultaneously with leaky
integration at a rate of change larger the) in (5).




4 Metricthat measuresreevance

The mutual informatiord (C; V') is a measure of the statistical dependency between thetsuipthe network and
the auxiliary informatiorC'. The outputsgy;(x) form a 'representation’ of the input which is our own construction
intended to capture the dependency betweandC, in the limits allowed by the parametrizationf The auxiliary
informationC, on the other hand, has been selected so that changes istitbudion signify relevance.

In this section our first aim is to make the dependency betweamdC, as mediated by, explicit, and then to use
this knowledge to judge the relevancdadal changes ok in variousdirections of the input spacéssuming that”
has been selected suitably the relevance can be measuteahaes in the estimated distribution@fas a function of
x, and formulated as a new metric to the input space.

Let us start by making the dependency betweemndC' explicit. The mutual informatiod (C; V') can be written as
an integral over the probabiligy(x):

. _ , p(cilx)
I(c,v)= / ;p(cz|x) log ) p(x)dx + const, (6)
where
Pleilx) = exp Y y;(x)log pleifv;) - @)
J

The integral in (6) is equal to the average Kullback-Leildarergence between the distributiofis(c;|x)} and
{p(c;|x)}. Therefore, if we wish to simultaneously maximizéC'; V') and construct good density estimates (in
the sense of the Kullback-Leibler divergence), we need ép(i5|x) of equation (7) as our density estimate.

Now we could measure the relevance of the difference betaregpair of input samples by the difference between the
correspondindp(c;|x)}. Such distance measures are useful but they have a disadeathey generate a topology
which may be different than the original topology of the ihppace. Two points originally far away may have zero
distance if the density estimatés(c;|x)} are identical!

Preservation of the topology of the input space is, of cqumportant unless we want the auxiliary information to

completely override the original identity of the data. Téfere we introduce one additional constraint: the topology
of the input space may not change, which can be guarantee@asuring the distances locally and defining non-local
distances as path integrals along the minimal paths in {ngt ispace. This fixes the new metric to be locally similar

to the original one up to a local scaling, that is, the newadtisés will be of the forna?(x, x + dx) = dx’ J(x)dx.

If the differences between the estimates of posterioriigipnsp(c;|x) are measured in terms of the Kullback-Leibler
divergence, it is well known [6] that the distance can be coreg locally as

D(p(es|x)||p(cilx + dx)) = dx I (x)dx (8)
where
J(x) = Eope { (Vxlog P(CIx) (Vx log P(CIx))" }
is the Fisher information matrix.

In the new metric the posterior densify(c;|x)} changes evenly everywhere and in all directions of the ispate.
The new metric can be used for visualization by unsupervisetthods, or as a distance measure for later supervised
learning.

Note about an invariance property of the constructed metiibe distancei? is invariant to certain mappings of
the input space. If we have a differentiable, one-to-onepimapfromx to x’ = s(x), thenp(¢|x’) = p(c|x) and
ds(x) = Kdx, whereK(x) = 0s(y)/0y|x is the Jacobian matrix of the mapping. The distance betweand
x + dx after the mapping then becomes

d*(x',x' +dx') = Ec {(deKT(KT)AVx 10gp(c|x))2} = d*(x,x + dx) ,
i.e., thed?-distance is invariant under invertible, smooth mappiifg@mputed from the correct posterior probabilities

p(c|x). In reality we have only estimates for them, but if the estesare good, any further processing stages based
ond? would be insensitive to a large class of topology-preseimionlinear transformation of the input space.

5 Unsupervised learningin the relevance metric

We will next discuss how the new relevance metric can be useddistance measure in subsequent processing. In this
paper we will use the Gaussian neurons discussed in Sec. @eaind the explicit metric generated by them. Similar
metrics could be derived for other types of representatisnsell.



When Gaussian neurons are used to estimate the conditimieltplity distributionp(c;|x) according to (7), and the
estimate is used in the distance measure (8), we get thexapyation

dg(x,x + 0x) = > plei|x)[(6%) " bi(x)]? )
for the squared Kullback-Leibler distances. In the fornfolad;, we have denoted
bi(x) = > y;(x)log p(e;|v;)(w; — %) (10)
J

andx = Zj y;(x)w;. This distance measure can in principle be used in any fuptteeessing task. However, since

the metric was originally derived for differentiéx, it is most appropriate to use methods that rely mainly otadises
between close-by points of the input space if (9) is used els.su

We will demonstrate the use of the relevance metric by comg®&elf-Organizing Maps [5] in the new metric. The
Self-Organizing Map (SOM) is a regular grid of units in whiahmodel vectomm; is associated with each unit
During the learning process the model vectors are modifigtiaothey learn to follow the distribution of the input
data in an ordered fashion: model vectors that are closealth@ map lattice attain close-by locations in the input
space as well. If the map grid is chosen to be two-dimensitheatesulting map display can be used for visualizing
various properties of the input data which is useful in datysis applications.

The SOM algorithm consists of iterative application of tweps. The winning unit that is closest to the current input
sample is first sought, and thereafter the winner and itshibeigs on the map lattice are adapted towards the input
sample.

We will carry out these steps in the relevance metric. Thenesiris defined to be the unit for whiatf, (x, m.) <
d%(x, m;), and the model vectors adapt at time steygcording to

l’l’li(t + 1) = mi(t) - hci(t)vmidé(xa ml)
= my(t) — hei(t) Z p(ei|x)(m; — x) b (x)b; (x)

Hereh.;(t) is the so-called neighborhood function, a decreasing foncif the distance between the unitandi on
the map lattice. The height and widthiof; (¢) decrease gradually in time.

6 Experiments

In this section we demonstrate what kind of a metric ensueswehnetwork learns to extract the essential character-
istics of a three-dimensional, easily visualizable aitifidata set. The metric is then used in the SOM algorithm to
visualize the class distribution of the data. The experingemtended to serve as an illustration only; we will report
on results with practical data in later papers.

The data was sampled from a spherically symmetric normailligion (cf. the insets in Fig. 1). The available auxil-
iary information consisted of the class of each data sanigie.two classes were highly overlapping and distributed
in a “cylindrical” fashion: the conditional probability stiributionp(c; |x) was constant in each column directed along
the z-axis. On each plane orthogonal to the z-axis the fiassalvas concentrated somewhat more in the middle of the
xy-plane (cf. the inset in the top left corner of Fig)1

In summary, although the distribution of the data was sjgh#lyi symmetric only the radial direction in the xy-plane
was relevant from the viewpoint of auxiliary information.

Fig. 1 shows the weight vectors (parameters) of neurondhéhnat learned according to the stochastic approximation
method described in Sec. 3. The vectors are located appataiyron a plane that is orthogonal to the z-axis; they
do not represent the z-axis at all. On the xy-plane therevaseneurons in the center and the others are located in an
almost regular symmetric configuration around the centbetable to best represent the important radial direction.

In the information distancefs estimated using the converged network, and illustrateld thuit small line segments in
Fig. 1, the radial direction on the xy-plane dominates. &¥ises are largest where the class distribution changes most
rapidly. In the direction of the-axis the distances are practically zero.

Finally, we will demonstrate that the relevance metric cambed as a preprocessing stage for further processing. We
computed a self-organizing map in both the original Eudidenetric and in the relevance metric, and visualized the
class distribution on the resulting maps. It can be seengnZthat the classes are more distinctly separated on the
SOM computed in the relevance metric, and that the borderdmat the classes is well represented.

Note that in a data analysis application it would be posdiblese the same SOM displays for visualizing other
aspects of the data. For instance the distribution of ttegraal variables could be visualized to reveal which vagabl
contribute to the separation of the claskeslly in the input space.



Figure 1: Locations of weight vectors of neurons (here asniéGaussian kernels) in a network that has learned to
maximize mutual information with auxiliary class inforrmmat. Two different cross sections of the three-dimensional
space are shown; the circles denote the weight vectorsgbedj®n the cross sections. The gray levels indicate the
conditional probabilityp(cq|x) of the first class in each location, and the small line segméot dots) depict the
dominant direction and relative distances in the locaiatee metric. The insets in the bottom right corner depict
the distribution of the data, and the two curves in the insé¢té top left corner o depict the conditional probability
distributions of the two classes on a cross-section of taeel
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Figure 2: Distribution of the classes of data on the map wfitsvo SOMs. a Class 1, SOM 1: relevance metrio.

Class 2, SOM 1: relevance metricClass 1, SOM 2: Euclidean metrid.Class 2, SOM 2: Euclidean metric. Light
shades denote high density and dark shades low densitgctesgy.



7 Discussion

In this paper we have shown that maximization of the mutuarmation between an auxiliary random variable and
a feature set derived from the input can be seen as a form sftgastimation. The estimate defines a metric in the
input space that is additionally constrained to presergetiginal topology of the space although it rescales thalloc
distances. If the auxiliary variable is chosen so that ckarig its value signify relevance to the task at hand, then
the metric measures the relevance. The measure is optiveal tfie restrictions posed by the parametrization of the
network.

According to our knowledge the principle is new. Works in efhsome aspects resemble our approach exist, however.
Amari and Wu [1] have augmented support vector machines lingan isotropic change to the metric near the
class border. In contrast to this, our metric is non-isatramd global. Jaakkola and Haussler [4] induced a distance
measure into a discrete input space using a generativelglitypeodel. The crucial differences are that they do not
use external information, and that they do not constraimtbéric to preserve the topology. We have also recently
become aware of the Information Bottleneck framework ohibiset al. [9]. Their setup is discrete, and therefore does
not aim at finding local metrics. The approach is related tis aquthat the goal is to maximize mutual information
between a representation and a relevance indicator.

If an unsupervised algorithm learns using the relevanceicnetr if the metric as such is used as the output of a
data analysis, then the learning process is somewherewvrebntsupervised and unsupervised. The topology of the
input space is preserved as is typical to unsupervised mdsthdile the metric (local scaling of the space) is induced
in a supervised manner. Compared to using a standard seffeadtire extraction stage, the change of the metric
defines a manifold which cannot in general be projected todidaan space of the same dimension. Therefore, no
dimensionality-preserving mapping with the same locapprties exists which means that the change of the metric is
a more general operation than feature selection by a ditmeaigy-preserving (or dimensionality-reducing) nolan
mapping.

The most obvious applications of the method are in exployatata analysis. Because the metric of dhiginal input
spaceds transformed, interpretation of the discovered relefaetbrs is straightforward. For high-dimensional inputs,
the results can be visualized using a dimensionality-riedurnethod such as the Self-Organizing Map.

Forming the relevance metric can additionally be considlasea kind of a nonlinear discriminant analysis. The linear
discriminant analysis finds a linear transformation thaximées class separability. Our metric transforms the tnpu
space locally such that the change in the class distribbgaomes isotropic, the same in every direction, which alow
inspection of the class distributions even more closely.

Classical canonical correlation analysis has been ganeddby replacing the linear combinations by nonlinear func
tions [2, 7]. It would be possible to use our metric for the saask, finding statistical dependencies between two data
sets, by replacing the discrete auxiliary random varialite wparametrized set of features computed of an auxiliary
continuous random variable. The advantage of our methoddtban be that it creates an easily interpretable metric.
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