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We study the problem of learning groups or categories that are local in
the continuous primary space but homogeneous by the distributions of
an associated auxiliary random variable over a discrete auxiliary space.
Assuming that variation in the auxiliary space is meaningful, categories
will emphasize similarly meaningful aspects of the primary space. From
a data set consisting of pairs of primary and auxiliary items, the cate-
gories are learned by minimizing a Kullback-Leibler divergence-based
distortion between (implicitly estimated) distributions of the auxiliary
data, conditioned on the primary data. Still, the categories are defined
in terms of the primary space. An online algorithm resembling the tra-
ditional Hebb-type competitive learning is introduced for learning the
categories. Minimizing the distortion criterion turns out to be equivalent
to maximizing the mutual information between the categories and the
auxiliary data. In addition, connections to density estimation and to the
distributional clustering paradigm are outlined. The method is demon-
strated by clustering yeast gene expression data from DNA chips, with
biological knowledge about the functional classes of the genes as the
auxiliary data.

1 Introduction

Clustering algorithms and their goals vary, but it is common to aim at clus-
ters that are relatively homogeneous while data in different clusters are
dissimilar. The results depend totally on the criterion of similarity. The dif-
ficult problem of selecting a suitable criterion is commonly addressed by
feature extraction and variable selection methods that define a metric in the
data space. Recently, metrics have also been derived by fitting a generative
model to the data and using information-geometric methods for extracting a
metric from the model (Hofmann, 2000; Jaakkola & Haussler, 1999; Tipping,
1999).

We study the related case in which additional useful information ex-
ists about the data items during the modeling process. The information is
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available as auxiliary samples ck; they form pairs (xk, ck) with the primary
samples xk. In this article, xk ∈ Rn, and the ck is multinomial. The extra
information may, for example, be labels of functional classes of genes, as in
our case study.

It is assumed that differences in the auxiliary data indicate what is im-
portant in the primary data space. More precisely, the difference between
samples xk and xl is significant if the corresponding values ck and cl are dif-
ferent. The usefulness of this assumption depends, of course, on the choice
of the auxiliary data.

Since the relationship between the auxiliary data and the primary data is
stochastic, we get a better description of the difference between values x and
x′ by measuring differences between the distributions of c, given x and x′.
The conditional densities p(c | x) and p(c | x′) are not known, however. Only
the set of sample pairs {(xk, ck)}k is available. Because our aim is to minimize
within-cluster dissimilarities, the clusters should be homogeneous in terms
of the (estimated) distributions p(c | x).

In order to retain the potentially useful structure of the primary space,
we use the auxiliary data only to indicate importance and define the clus-
ters in terms of localized basis functions within the primary space. Such a
clustering can then be used later for new samples from the primary data
space even when the corresponding auxiliary samples are not available.

Very loosely speaking, our aim is to preserve the topology of the primary
space but measure distances by similarity in the auxiliary space.

Clearly, almost any kind of paired data is applicable, but only good
auxiliary data improve clustering. If the auxiliary data are closely related
to the goal of the clustering task, as, for example, a performance index
would be, then the auxiliary data guide the clustering to emphasize the
important dimensions of the primary data space and to disregard the rest.
This automatic relevance detection is the main practical motivation for this
work.

We previously constructed a local metric in the primary space that mea-
sures distances in that space by approximating the corresponding differ-
ences between conditional distributions p(c | x) in the auxiliary space (Kaski,
Sinkkonen, & Peltonen, in press). The metric can be used for clustering, and
then maximally homogeneous clusters in terms of the conditional distribu-
tions appear. In this work, we introduce an alternative method that, contrary
to the approach generating an explicit metric, does not need an estimate of
the conditional distributions p(c | x) as an intermediate step.

We additionally show that minimizing the within-cluster distortion is
equivalent to maximizing the mutual information between the basis func-
tions used for defining the clusters (interpreted as a multinomial random
variable) and the auxiliary data. Maximization of mutual information has
been previously used for constructing neural representations (Becker, 1996;
Becker & Hinton, 1992). Other related works and paradigms include learn-
ing from (discrete) dyadic data (Hofmann, Puzicha, & Jordan, 1998) and
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distributional clustering (Pereira, Tishby, & Lee, 1993) with the information
bottleneck (Tishby, Pereira, & Bialek, 1999) principle.

2 Clustering Based on the Kullback-Leibler Divergence

We seek to cluster items x of the data space by using the information within
a set of pairs (xk, ck) of data. The set consists of paired samples of two
random variables. The vector-valued random variable X takes values x ∈
X ⊂ Rn, and the ck (or sometimes just c) are values of the multinomial
random variable C. We wish to keep the clusters local with respect to x
but measure similarities between the samples x by the differences of the
corresponding conditional distributions p(c | x). These distributions are
unknown and will be implicitly estimated from the data.

Vector quantization (VQ) or, equivalently, K-means clustering, is one ap-
proach to categorization. In VQ, the goal is to minimize the average distor-
tion E between the data and the prototypes or code book vectors mj, defined
by

E =
∑

j

∫
yj(x)D(x,mj) p(x) dx. (2.1)

Here, D(x,mj) denotes the measure of distortion between x and mj, and
yj(x) is the cluster membership function that fulfills 0 ≤ yj(x) ≤ 1 and∑

j yj(x) = 1. In the classic “hard” vector quantization, the membership func-
tion is binary valued: yj(x) = 1 if D(x,mj) ≤ D(x,mi) for all i, and yj(x) = 0
otherwise. Such functions define a partitioning of the space into discrete
cells, Voronoi regions, and the goal of learning is to find the partitioning that
minimizes the average distortion. If the membership functions yj(x)may at-
tain any values between zero and one, the approach may be called soft vector
quantization (Nowlan, 1990, has studied a maximum likelihood solution).

We measure distortions D as differences between the distributions
p(c | x) and model distributions. The measure of the differences will be
the Kullback–Leibler divergence, defined for two discrete-valued distribu-
tions with event probabilities {pi} and {ψi} as DKL(p,ψ) ≡ ∑

i pi log(pi/ψi).
In our case, the first distribution is the multinomial distribution in the aux-
iliary space that corresponds to the data x, that is, pi ≡ p(ci | x). The second
distribution is the prototype; let us denote the jth prototype by ψj.

When the Kullback–Leibler distortion measure is plugged into equa-
tion 2.1, the error function of VQ, the average distortion becomes

EKL =
∑

j

∫
yj(x)DKL(p(c | x),ψj) p(x) dx. (2.2)

Instead of the distortions between the vectorial samples and vectorial pro-
totypes as in equation 2.1, we now compute point-wise distortions between
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the distributions p(c | x) and the prototypes ψj. The prototypes are distri-
butions in the auxiliary space.

The average distortion will be minimized by parameterizing the func-
tions yj(x) and optimizing the distortion with respect to the cluster mem-
bership parameters and the prototypes. When the parameters of yj(x) are
denoted by θj, the average distortion can be written as

EKL = −
∑

i,j

∫
[yj(x;θj) logψji]p(ci, x) dx + const., (2.3)

where the constant is independent of the parameters.
The membership functions yj(x;θj) can be interpreted as conditional den-

sities p(vj | x) ≡ yj(x) of a multinomially distributed random variable V that
indicates the cluster identity. The value of the random variable V will be
denoted by v ∈ {vj}, and the value of the random variable C corresponding
to the multinomially distributed auxiliary distribution will be denoted by
c ∈ {ci}. Given x, the choice of the cluster v does not depend on the c. In other
words, C and V are conditionally independent: p(c, v | x) = p(c | x)p(v | x).
It follows that p(c, v) = ∫

p(c | x)p(v | x)p(x) dx.
It can be shown (see appendix A) that if the membership distributions

are of the normalized exponential form

yj(x;θj) = exp f (x;θj)∑
l exp f (x;θl)

, (2.4)

then the gradient of EKL with respect to the parameters θl becomes

∂EKL

∂θl
=

∑
i,j

∫
∂ f (x;θl)

∂θl
log

ψji

ψli
p(ci, vj, vl, x) dx. (2.5)

The prototypes ψj are probabilities of multinomial distributions, and
therefore they must fulfill 0 ≤ ψji ≤ 1 and

∑
i ψji = 1. We will incorpo-

rate these conditions into our model by reparameterizing the prototypes as
follows:

logψji ≡ γji − log
∑

m
eγjm . (2.6)

The gradient of the average distortion, equation 2.3, with respect to the
new parameters of the prototypes is

∂EKL

∂γlm
=

∑
i

∫
(ψlm − δmi) p(ci, vl, x) dx, (2.7)

where the Kronecker symbol δmi = 1 when m = i, and δmi = 0 otherwise.
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The average distortion can be minimized with stochastic approximation,
by sampling from yj(x)yl(x)p(ci, x) = p(vj, vl, ci, x). This leads to an on-line
algorithm in which the following steps are repeated for t = 0, 1, . . . with
α(t) gradually decreasing toward zero:

1. At the step t of stochastic approximation, draw a data sample
(x(t), c(t)). Assume that the value of c(t) is ci. This defines the value of
i in the following steps.

2. Draw two basis functions, j and l, from the multinomial distribution
with probabilities {yk(x(t))}k.

3. Adapt the parameters θl and γlm, m = 1, . . . ,Nc, by

θl(t + 1) = θl(t)− α(t)
[
∂ f (x;θl)

∂θl

]
θl=θl(t)

log
ψji

ψli
(2.8)

γlm(t + 1) = γlm(t)− α(t)(ψlm − δmi), (2.9)

where Nc is the number of possible values of the random variable
C. Due to the symmetry between j and l, it is possible to adapt the
parameters twice for one t by swapping j and l in equations 2.8 and
2.9 for the second adaptation. Note that θl(t + 1) = θl(t) if j = l.

In stochastic approximation, the α should fulfill the conditions∑
t α(t) = ∞ and

∑
t(α(t))

2 < ∞. In practice, we have used piecewise-
linear decreasing schedules.

We will consider two special cases. In the demonstrations in Figure 1,
the basis functions are normalized gaussians in the Euclidean space X =
Rn. In the second case in section 3, gene expression data mapped onto a
hypersphere, X = Sn are clustered by using normalized von Mises–Fisher
distributions (Mardia, 1975) as the basis functions.

For gaussians parameterized by their locations θl and having a diagonal
covariance matrix in which the variance σ 2 is equal in each dimension,
f (x;θl) = −‖x − θl‖2/2σ 2, and

∂ f (x;θl)

∂θl
= 1
σ 2 (x − θl). (2.10)

The von Mises–Fisher (vMF) distribution is an analog of the gaussian
distribution on a hypersphere (Mardia, 1975) in that it is the maximum
entropy distribution when the first two moments are fixed. The density of
an n-dimensional vMF distribution is

vMF(x;θ) = 1
Zn(κ)

exp κ
xTθ

‖θ‖ . (2.11)

Here, the parameter vector θ represents the mean direction vector. The
normalizing coefficient Zn(κ) ≡ (2π)

1
2 nI 1

2 n−1(κ)/κ
1
2 n−1 is not relevant here,
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Figure 1: The location parameters θj (small circles) of the gaussian basis func-
tions of two models, optimized for two-class (n(c) = 2), two-dimensional, and
three-dimensional data sets. The shades of gray at the background depict densi-
ties from which the data were sampled. (A) Two-dimensional data, with roughly
gaussian p(x). The inset shows the conditional density p(c0 | x) that is mono-
tonically decreasing as a function of the y-dimension. The model has learned
to represent only the dimension on which p(c | x) changes. (B, C) Two projec-
tions of three-dimensional data, with a symmetric gaussian p(x) (ideally, the
form of this distribution should not affect the solution). The insets show the
conditional density p(c0 | x), which decreases monotonically as a function of a
two-dimensional radius and stays constant with respect to the orthogonal third
dimension z. The one-dimensional cross section describing p(c0, x) and p(c1, x)
as a function of the two-dimensional radius is shown in the inset of C. The model
has learned to represent only variation in the direction of the radius and along
the dimensions x and y, and discards the dimension z as irrelevant.
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but it will be used in the mixture model of section 3. The function Ir(κ) is
the modified Bessel function of the first kind and order r.

In the clustering algorithm described, we use vMF basis functions,

f (x;θl) = κxTθl/‖θl‖, (2.12)

with a constant dispersion κ . Then,

∂ f (x;θl)

∂θl
= κ(x − xTθlθl/‖θl‖2)/‖θl‖.

The norm ‖θl‖ does not affect f , and we may normalize θl, whereby the
gradient becomes

∂ f (x;θl)

∂θl
= κ(x − xTθlθl). (2.13)

It can be shown (Kaski, 2000) that the stochastic approximation algorithm
defined by equations 2.8, 2.9, and 2.13 converges with probability one when
the θj are normalized after each step.

2.1 Connections to Mutual Information and Density Estimation. It can
be easily shown (using the information inequality) that at the minimum of
the distortion EKL, the prototype ψl takes the form

ψli = p(ci | vl). (2.14)

Hence, the distortion 2.3 can be expressed as

EKL = −
∑

i,j

p(ci, vj) log
p(ci, vj)

p(ci)p(vj)
+ const.

= −I(C; V)+ const., (2.15)

I(C; V) being the mutual information between the random variables C and
V. Thus, minimizing the average distortion EKL is equivalent to maximizing
the mutual information between the auxiliary variable C and the cluster
memberships V.

Minimization of the distortion has a connection to density estimation
as well; the details are described in appendix B. It can be shown that min-
imization of EKL minimizes an upper limit of the mean Kullback-Leibler
divergence between the real distribution p(c | x) and a certain estimate
p̂(c | x). The estimate is

p̂(ci | x) = 1
Z(x)

exp
∑

j

yj(x;θj) logψji, (2.16)

where Z(x) is a normalizing coefficient selected such that
∑

i p̂(ci | x) = 1.



224 Janne Sinkkonen and Samuel Kaski

For gaussian basis functions, the upper limit becomes tight when σ ap-
proaches zero and the cluster membership functions become binary. Then
the cluster membership functions approach indicator functions of Voronoi
regions. Note that the solution cannot be computed in practice for σ = 0;
smooth vector quantization with σ > 0 results in a compromise in which
the solution is tractable, but only an upper limit of the error will be mini-
mized.

Furthermore, the mean divergence can be expressed in terms of the di-
vergence of joint distributions as follows:

EX{DKL(p(c | x), p̂(c | x))} = DKL(p(c, x), p̂(c | x)p(x)). (2.17)

Here EX{·} denotes the expectation over values of X, and the latter DKL is the
divergence of the joint distribution. The expression 2.17 is a cost function
of an estimate of the conditional probability p(c | x). Intuitively speaking,
by minimizing equation 2.17, resources are not wasted in estimating the
marginal p(x), but all resources are concentrated on estimating p(c | x).

It can further be shown (see appendix B) that maximum likelihood esti-
mation of the model p̂(c | x) using a finite data set is asymptotically equiv-
alent to minimizing equation 2.17.

2.2 Related Works

2.2.1 Competitive Learning. The early work on competitive learning or
adaptive feature detectors (Didday, 1976; Grossberg, 1976; Nass & Cooper,
1975; Pérez, Glass, & Shlaer, 1975) has a close connection to vector quantiza-
tion (Gersho, 1979; Gray, 1984; Makhoul, Roucos, & Gish, 1985) and K-means
clustering (Forgy, 1965; MacQueen, 1967). The neurons in a competitive-
learning network are parameterized by vectors describing the synaptic
weights, denoted by mj for neuron j. In the simplest models, the activity
of a neuron due to external inputs is a nonlinear function f of the inputs x
multiplied by the synaptic weights, f (xTmj). The activities of the neurons
compete; the activity of each neuron reduces the activity of the others by
negative feedback.

If the competition is of the winner-take-all type (Kaski & Kohonen, 1994),
only the neuron with the largest f (xTmj) remains active. Each neuron there-
fore functions as a feature detector that detects whether the input comes
from a particular domain of the input space. During Hebbian-type learning,
the neurons gradually specialize in representing different types of domains.
(For recent more detailed accounts, see Kohonen, 1984, 1993; Kohonen &
Hari, 1999.)

Although the winner is usually defined in terms of inner products, it is
possible to generalize the model to an arbitrary metric. If the usual Euclidean
metric is used, the learning corresponds to minimization of a mean-squared
vector quantization distortion or, equivalently, minimization of the distance
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to the closest cluster center in the K-means clustering. The domain of the
input space that a neuron detects can hence be interpreted as a Voronoi
region in vector quantization.

The relationship of competitive learning to our work is that the “clus-
ter membership functions” yj(x;θj) in section 2 may be interpreted as the
outputs of a set of neurons, and in the limit of crisp membership functions
(for gaussians, σ → 0), only one neuron—the one having the largest exter-
nal input—is active and can be interpreted as the winner. After learning,
our algorithm therefore corresponds to a traditional competitive network.
The learning procedure makes the difference by making the network detect
features that are as homogeneous as possible with regard to the auxiliary
data.

The learning algorithm has a potentially interesting relation to Hebbian
or competitive learning as well. Assume that at most two of the neurons
may become active at a time, with probabilities yj(x;θj). Then the learning
algorithm, equation 2.8, for vMF kernels reads

θl(t + 1) = θl(t)+ α(t)(x − xTθlθl)(logψli − logψji)

(neuron j is adapted at the same time, swapping j and l). If the activity of
the neurons is binary valued, that is, the neurons j and l have activity value
one and the others value zero, then the adaptation rule for any neuron k can
be expressed by

θk(t + 1) = θk(t)+ α(t)ηk(t)(x − xTθkθk)(logψki − logψji). (2.18)

Here ηk(t) denotes the activity of the neuron k. The term ηk(t)x is Hebbian,
whereas ηk(t)xTθkθk is a kind of a forgetting term (cf. Kohonen, 1984; Oja,
1982). The difference from common competitive learning then lies within
the last parentheses in equation 2.18. The parameter vector of the neuron
of the active pair (j, l) that represents better the class i has a larger value of
logψ and is moved toward the current sample, whereas the other neuron
is moved away from the sample. (Note also the similarity to the learning
vector quantization algorithms, see e.g. Kohonen, 1995.)

Note that for normalized gaussian membership functions yj(x;θj) and
σ �= 0, our model is a kind of a variant of gaussian mixture models or soft
vector quantization. At the limit of crisp feature detectors (for gaussians,
σ → 0), the output of the network reduces to a 1-of-C-coded discrete value.
Similarly, the outputs of the soft version can be interpreted as probability
density functions of a multinomial random variable. Such an interpreta-
tion has already been made by Becker in some of her work, discussed in
section 2.2.2.

2.2.2 Multinomial Variables. Becker et al. (Becker & Hinton, 1992; Becker,
1996) have introduced a learning goal for neural networks called Imax.
Their networks consist of two separate modules having different inputs,
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and the learning algorithms aim at maximizing the mutual information
between the outputs of the modules. For example, if the inputs are two-
dimensional arrays of random dots with stereoscopic displacements simu-
lating the views of two eyes, the networks are able to infer depth from the
data.

The variant called discrete Imax (Becker, 1996) is closely related to the
clustering algorithm of this article. In Imax, the outputs of the neurons in
each module are interpreted as the probabilities of a multinomial random
variable, and the goal of learning is to maximize the mutual information
between the variables of the two modules.

Our model differs from Becker’s in two ways. First, Becker uses (nor-
malized) exp(xTθj) as basis functions, whereas our parameterization makes
the basis functions invariant to the norms of θj (cf. equation 2.11). With-
out such invariance, the units with the largest norms may dominate the
representation, a phenomenon that Becker noted as well.

The other difference is that Becker optimizes the model using gradient
descent based on the whole batch of input vectors, whereas we have a simple
on-line algorithm, 2.18, adapting on the basis of one data sample at a time.

The gradient of the discrete Imax with respect to the parameters θl is,
after simplification and in our notation,

∂I
∂θj

=
∑

i,j

∫
x log

p(ci | vj)

p(ci | vl)
p(vj, vl, ci, x) dx. (2.19)

It would be possible to apply stochastic approximation here by sampling
from p(vj, vl, ci, x), which leads to a different adaptation rule from ours.

Becker (1996) has also used gaussian basis functions, but with some ap-
proximations and ending up with a different formula for the gradient.

2.2.3 Continuous Variables. The mutual information between continu-
ously valued outputs of two neurons can be maximized as well (Becker &
Hinton, 1992; Becker, 1996). Some assumptions about the continuously val-
ued signals and the noise have to be made, however. In Becker and Hinton
(1992), the outputs were assumed to consist of gaussian signals corrupted
by independent, additive gaussian noise.

In this article, the multinomial Imax has been reinterpreted as (soft) vec-
tor quantization in the Kullback-Leibler “metric” in which the distance is
measured in an auxiliary space. In neural terms, the model builds a repre-
sentation of the input space: each neuron is a detector specialized to repre-
sent a certain domain. In contrast, the continuous version tries to represent
the input space by generating a parametric transformation to a continu-
ous, lower-dimensional output space. If the parameterization and the as-
sumptions about the noise are correct, the continuous representations are
potentially more accurate. The advantage of the quantized representation
is that no such assumptions need to be made; the model is almost purely
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data driven (semiparametric) and, of course, very useful for clustering-type
applications.1

It is particularly difficult to maximize the mutual information if each
module has several continuously valued outputs. In some recent works
(Fisher & Principe, 1998; Torkkola & Campbell, 2000), the Shannon entropy
has been replaced by the quadratic Renyi entropy, yielding simpler formulas
for the mutual information.

2.2.4 Information Bottleneck and Distributional Clustering. In distribution-
al clustering works (Pereira et al., 1993) with the information bottleneck
principle (Tishby et al., 1999), mutual information between two discrete
variables has been maximized. Tishby et al. get their motivation from the
rate distortion theory of Shannon and Kolmogorov (see Cover & Thomas,
1991, for a review). In the rate distortion theory, the aim is to find an opti-
mal code book for a set of discrete symbols when a “cost” in the form of a
distortion function describing the effects of a transmission line is given.

In our notation, the authors consider the problem of building an optimal
representation V for a discrete random variable X. In the rate distortion the-
ory, a real-valued distortion function d(x, v) is assumed known, and I(X; V)
is minimized with respect to the representation (or conventionally, the code
book) p(v | x) subject to the constraint EX,V{d(x, v)} < k. At the minimum,
the conditional distributions defining the code book are

p(vl | x) = p(vl) exp [−βd(x, vl)]∑
j p(vj) exp

[−βd(x, vj)
] , (2.20)

where β depends on k. The authors realized that if the average distortion
EX,V{d(x, v)} is replaced by the mutual information −I(C; V), then the rate
distortion theory gives a solution that captures as much information of the
“relevance variable” C as possible. Here, the multinomial random variable
C has the same role as our auxiliary data.

The functional to be minimized becomes I(X; V)−βI(C; V), and its vari-
ational optimization with respect to the conditional densities p(v | x) leads
to the solution 2.20 with

d(x, vj) = DKL(p(c | x), p(c | vj)). (2.21)

Together, these two equations give a characterization of the optimal repre-
sentation V once we accept the criterion I(X; V)−βI(C; V) for the goodness
of the representation. The characterization is self-referential through p(c | v)
and therefore does not in itself present an algorithm for finding the p(v | x)

1 We have made some assumptions by parameterizing the f (x; θ) in equation 2.4.
However, the model becomes semiparametric as a scale parameter, similar to the σ for
gaussians and 1/κ for the vMF kernels, approaches zero.
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and p(c | v), but Tishby et al. (1999) introduced an algorithm for finding a
solution in the case of a multinomial X.

Like the method presented in this article, the bottleneck aims at revealing
nonlinear relationships between two data sets by maximizing a mutual
information-based cost function. The relation between the two approaches
is that although we started from the clustering viewpoint, our error criterion
EKL turned out to be equivalent to the (negative) mutual information I(C; V).
The bottleneck has an additional term in its error function for keeping the
complexity of the representation low, while the complexity of our clusters
is restricted by their number and their parameterization.

The most fundamental difference between our clustering approach and
the published bottleneck works, however, arises from the continuity of our
random variable X. The theoretical form of the bottleneck principle, equa-
tion 2.21, is not limited to discrete or finite spaces. According to our knowl-
edge, however, no continuous applications of the principle have so far been
published. For a continuous X, the distortion d(x, v) in equation 2.21 cannot
be readily evaluated without some additional assumptions, such as restric-
tions to the form of the cluster memberships p(v | x). Our solution is to
parameterize p(v | x), which allows us to optimize the partitioning of the
data space X into (soft) clusters.2

3 Case Study: Clustering of Gene Expression Data

We tested our approach by clustering a large, high-dimensional data set,
i.e., expressions of the genes of the budding yeast Saccharomyces cerevisiae
in various experimental conditions. Such measurements, obtained from so-
called DNA chips, are used in functional genomics to infer similarity of
function of different genes. There are two popular approaches for analyzing
expression data: traditional clustering methods (see, e.g., Eisen, Spellman,
Brown, & Botstein, 1998) and supervised classification methods (support
vector machines; Brown et al., 2000). In this case study, we intend to show
that our method has the good sides of both of the approaches.

For the majority of yeast genes, there exists a functional classification
based on biological knowledge. The goal of the supervised classifiers is to
learn this classification in order to predict functions for new genes. The clas-
sifiers may additionally be useful in that the errors they make on the genes
having known classes may suggest that the original functional classification
has errors.

The traditional unsupervised clustering methods group solely on the
basis of the expression data and do not use the known functional classes.

2 Alternatively, instead of solving a continuous problem, X could be (suboptimally)
partitioned into predefined clusters, after which the standard distributional clustering
algorithms are applicable.
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Hence, they are applicable to sets of genes without known classification,
and they may additionally generate new discoveries. There may be hidden
similarities between the classes in the hierarchical functional classification,
and there may even exist new subclasses that are revealed as more experi-
mental data are collected. The clustering methods can therefore be used as
hypothesis-generating machines.

The disadvantage of the clustering algorithms is that the results are de-
termined by the metric used for measuring similarity of the expression data.
The metric is always somewhat arbitrary unless it is based on a considerable
amount of knowledge about the functioning of the genes.

Our goal is to use the known functional classification to define implicitly
which aspects of the expression data are important. The clusters are local
in the expression data space, but the prototypes are placed to minimize the
average distortion 2.2 in the space of the functional classes. The difference
from supervised classification methods is that while classification methods
cannot surpass the original classes, the (supervised) clusters are not tied to
the classification and may reveal substructures within and relations between
the known functional classes.

In this case study, we compare our method empirically with alternative
methods and demonstrate its convergence properties and the potential use-
fulness of the results. More detailed biological interpretation of the results
will be presented in subsequent articles.

We compared our model with two standard state-of-the-art mixture den-
sity models. The first is a totally unsupervised mixture of vMF distributions.
The model is analogous to the usual mixture of gaussians; the gaussian mix-
ture components are simply replaced by the vMF components. The model
is

p(x) =
∑

j

p(x | vj)pj, (3.1)

where p(x | vj) = vMF(x;θj), and vMF is defined in equation 2.11. The pj
are the mixing parameters.

In the second model, mixture discriminant analysis 2 (MDA2; Hastie, Tib-
shirani, & Buja, 1995), the joint distribution between the functional classes
c and the expression data x is modeled by a set of additive components
denoted by uj:

p(ci, x) =
∑

j

p(ci | uj)p(x | uj)pj, (3.2)

where p(ci | uj) and pj are parameters to be estimated, and
p(x | uj) = vMF(x;θj). Both models are fitted to the data by maximizing
their log likelihood with the expectation-maximization algorithm (Demp-
ster, Laird, & Rubin, 1977).
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3.1 The Data. Temporal expression patterns of 2476 genes of the yeast
were measured with DNA chips in nine experimental settings (for more
details, see Eisen et al., 1998; the data are available online at http://rana.
Stanford.edu/clustering/). Each sample measures the expression level of
a gene compared to the expression in a reference state. Altogether, there
were 79 time points for each gene, represented below by the feature vec-
tor x.

The data were preprocessed in the same way as in Brown et al. (2000)—
by taking logarithms of the individual values and normalizing the length
of x to unity. The data were then divided into a training set containing two-
thirds of the samples and a test set containing the remaining third. All the
reported results except those reported in Table 1 are computed for the test
set.

The functional classification was obtained from the Munich Information
Center for Protein Sequences Yeast Genome Database (MYGD).3 The classi-
fication system is hierarchic, and we chose to use the 16 highest-level classes
to supervise the clustering. Sample classes include metabolism, transcrip-
tion, and protein synthesis. Some genes belonged to several classes. Seven
genes were removed because of a missing classification at the highest level
of the hierarchy.

3.2 The Experiments. We first compared the performance of the three
models—the mixture of gaussians, MDA2, and our own—after the algo-
rithms had converged. All models had 8 clusters and were run until there
was no doubt on convergence. The mixture of gaussians and MDA2 were
run for 150 epochs through the whole data and our model for 4.5 million
stochastic iterations (α(t) decreased first with a piecewise-linear approxi-
mation to an exponential curve, and then linearly to zero in the end). All
models were run three times with different randomized initializations, and
the best of the three results was chosen.

We measured the quality of the resulting clusterings by the average
distortion error or, equivalently, the empirical mutual information. When
estimating the empirical mutual information, the table of the joint distri-
butions p(ci, vj) is first estimated. In our model, the ith row of the table
is updated by p(vj | x) = yj(x;θj) (equation 2.4 with f defined by equa-
tion 2.12) for each sample (ci, x). In the gaussian mixture model, the update
is p(vj | x) = p(x | vj)pj/p(x), and in MDA2 it is p(uj | x) = p(x | uj)pj/p(x).
After the table p(ci, vj) is computed, the performance criterion is obtained
from equation 2.15 without the constant.4

3 http://www.mips.biochem.mpg.de/proj/yeast.
4 The empirical mutual information is an upward-biased estimate of the real mutual

information, and the bias grows with decreasing data. Because the size of our sample is
rather large and constant across the compared distributions and the number of values of
the discrete variables is small, the bias does not markedly affect the results.
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Figure 2: Empirical mutual information between the generated gene expression
categories and the functional classes of the genes, as a function of parameter κ ,
which governs the width of the basis functions. Solid line: our model; dashed
line: mixture of vMFs; dotted line: MDA2.

The results are shown in Figure 2 for different values of the parameter κ
that governs the width of the vMF kernels, equation 2.11. Our model clearly
outperforms the other models for a wide range of widths of the kernels and
produces the best overall performance; the clusters of our model convey
more information about the functional classification of the genes than the
alternative models do.

There is a somewhat surprising sideline in the results: the gaussian mix-
ture model is about as good as the MDA2, although it does not use the class
information at all. The reason is probably in some special property of the data
since for other data sets, MDA2 has outperformed the plain mixture model.

Next we demonstrate the number of iterations required for convergence.
The empirical mutual information is plotted in Figure 3 as a function of
the number of iterations. In our model, the schedule for decreasing the
coefficient α(t) was the same in each run, stretched to cover the number of
iterations and decaying to zero in the end. The number of complete data
epochs for the MDA2 was made comparable to the number of stochastic
iterations by multiplying it with the number of data and the number of
kernels, divided by two (in our algorithm, two kernels are updated at each
iteration step).

The performance of MDA2 attains its maximum quickly, but our model
surpasses MDA2 well before 500,000 iterations (see Figure 3).
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Figure 3: Empirical mutual information as a function of the number of iterations.
Solid line: our model; dashed line: MDA2. κ = 148.

Finally, we demonstrate the quality of the clustering by showing the
distribution of the genes into the clusters from a few functional subclasses,
known to be regulated in the experimental conditions like those of our data
(Eisen et al., 1998). Note that these subclasses were not included in the values
of the auxiliary variable C. Instead, they were picked from the second and
third level of the functional gene classification. To characterize all the genes,
the learning and the test sets were now combined. In Table 1, each gene is
assigned to the cluster having the largest value of the membership function
for that gene. The table reveals that many subclasses are concentrated in one
of the clusters found by our algorithm. The first four subclasses (a–d) belong
to the same first-level class and are placed in the same cluster, number 2.

For comparison, the distribution of the same subset of genes into clus-
ters formed by the mixture of vMFs and MDA2 is shown in Table 2. The
concentratedness of the classes in different clusters can be summarized by
the empirical mutual information within the table; the mutual information
is 1.2 bits for our approach and 0.92 for the other two.

In Table 1, produced by our method, three of the subclasses (c, e, and f)
have been clearly divided into two clusters, suggesting a possible biologi-
cally interesting division. Its relevance will be determined later by further
biological inspection; in this article, our goal is to demonstrate that the
semisupervised clustering approach can be used to explore the data set and
provide potential further hypotheses about its structure.



Clustering in an Auxiliary Space 233

Table 1: Distribution of Genes (Learning and Test Set Combined) of Sample
Functional Subclasses into the Eight Clusters Obtained with Our Method.

Cluster Number

Class 1 2 3 4 5 6 7 8

a 0 1 6 0 1 0 0 0
b 0 1 16 0 0 0 0 0
c 1 5 39 1 1 4 14 3
d 0 3 8 1 0 0 0 2
e 122 1 0 2 0 2 44 2
f 3 3 1 20 0 46 2 12
g 0 1 0 21 0 0 0 7

Note: These subclasses were not used in supervising the cluster-
ing. a: the pentose-phosphate pathway; b: the tricarboxylic acid
pathway; c: respiration; d: fermentation; e: ribosomal proteins; f:
cytoplasmic degradation; g: organization of chromosome struc-
ture.

Table 2: Distribution of Genes (Learning and Test Set Combined) of Sample
Functional Subclasses into the Eight Clusters Obtained by the Mixture of vMFs
model and MDA2.

Cluster Number

Class 1 2 3 4 5 6 7 8

a 0 3 1 0 0 2 1 1
b 1 1 0 0 0 14 0 1
c 3 16 2 5 23 14 4 1
d 0 9 0 2 0 0 2 1
e 0 6 1 4 32 1 125 4
f 42 12 6 8 0 4 4 11
g 3 1 10 5 0 0 2 8

Note: Both methods yield the same table for these subclasses. For
an explanation of the classes, see Table 1.

4 Conclusion

We have described a soft clustering method for continuous data that mini-
mizes the within-cluster distortion between distributions of associated, dis-
crete auxiliary data. The approach was inspired by our earlier work in which
an explicit density estimator was used to derive an information-geometric
metric for similar kinds of clustering tasks (Kaski et al., in press). The method
presented here is conceptually simpler and does not require explicit density
estimation, which is known to be difficult in high-dimensional spaces.

The task is analogous to that of distributional clustering (Pereira et al.,
1993) of multinomial data with the information bottleneck method (Tishby
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et al., 1999), or learning from dyadic data (Hofmann et al., 1998). The main
difference from our method is that these works operate on a discrete and
finite data space, while our data are continuous. Our setup and cost function
have connections to the information bottleneck method, but the approaches
are not equivalent.

We showed that minimizing our Kullback-Leibler divergence-based dis-
tortion criterion is equivalent to maximizing the mutual information be-
tween (neural) representations of the inputs and a discrete variable stud-
ied by Becker (Becker & Hinton, 1992; Becker, 1996). The distortion was
additionally shown to be bounded by a conditional likelihood, which it
approaches in the limit where the clusters sharpen toward Voronoi re-
gions.

We derived a simple on-line algorithm for optimizing the distortion mea-
sure. The convergence of the algorithm is proven for vMF basis functions
in Kaski (2000). The algorithm was shown to have a close connection to
competitive learning.

We applied the clustering method to a yeast gene expression data set
that was augmented with an independent, functional classification for the
genes. The algorithm performs better than other algorithms available for
continuous data, the mixture of gaussians and MDA2, a model for the joint
density of the expression data and the classes. Our method turned out to be
relatively insensitive to the (a priori set) width parameter of the gaussian
parameterization, outperforming the competing methods for a wide range
of parameter values.

It was shown that the obtained clusters mediate information about the
function of the genes, and although the results have not yet been biologically
analyzed, they potentially suggest novel cluster structures for the yeast
genes.

Topics of future work include investigation of more flexible parameteri-
zations for the clusters, the relationship of the method to the metric defined
in our earlier work, and variations of the algorithm toward visualizable
clusterings and continuous auxiliary distributions.

Appendix A: Gradient of the Error Criterion with Respect to the
Parameters of the Basis Functions

If we denote

Kil(x) ≡
∑

j

∂yj(x;θj)

∂θl
logψji, (A.1)

then

∂EKL

∂θl
= −

∑
i

∫
Kil(x) p(ci, x) dx. (A.2)
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Since the basis functions yj(x;θj) are of the normalized exponential form
(see equation 2.4), the gradient of yj is5

∂yj(x;θj)

∂θl
= δljyj(x;θj)

∂ fj(x; θj)

∂θl
− yj(x;θj)yl(x;θl)

∂ fl(x;θl)

∂θl
. (A.3)

Substituting the result into equation A.1 gives

Kil(x) = yl(x;θl)


logψli −

∑
j

yj(x; θj) logψji


 ∂ fl(x; θl)

∂θl

= yl(x;θl)


∑

j

yj(x; θj) log
ψli

ψji


 ∂ fl(x;θl)

∂θl
. (A.4)

Since the V and C are conditionally independent with respect to X, we may
write

yj(x;θj)yl(x;θl)p(ci, x) = p(ci, vj, vl, x). (A.5)

Substituting this and equation A.4 into A.2, we arrive at equation 2.5.

Appendix B: Connection to Conditional Density Estimation

Let us denote yj(x;θj) = yj(x) for brevity, and note that the conditional
entropy of C given X, or H(C | X) = − ∫ ∑

i p(ci, x) log p(ci | x) dx, is in-
dependent of the parameters θj and ψji. The distortion of equation 2.3 can
then be expressed as

EKL = −
∑

i,j

∫
yj(x) logψji p(ci, x) dx − H(C | X)+ const. (B.1)

=
∫ ∑

i


log p(ci | x)−

∑
j

yj(x) logψji


p(ci, x) dx + const. (B.2)

=
∫ ∑

i
p(ci | x) log

p(ci | x)
exp

∑
j yj(x) logψji

p(x) dx + const. (B.3)

=
∫ ∑

i
p(ci | x) log

p(ci | x)
qi(x)

p(x) dx + const., (B.4)

5 Note that the normalized versions of the densities of the so-called exponential family
are included—if the yj(x;θj) are interpreted as densities of the random variables p(vj | x).
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where

qi(x) ≡ exp
∑

j

yj(x) log p(ci | vj). (B.5)

The {qi(x)}i is not a proper density. However,
∑

i qi(x) ≤ 1 based on Jensen’s
inequality. Hence, for all x,

∑
i

p(ci | x) log
p(ci | x)

qi(x)
p(x) ≥

∑
i

p(ci | x) log
p(ci | x)
p̂(ci | x)

p(x), (B.6)

where

p̂(ci | x) ≡ qi(x)∑
i qi(x)

. (B.7)

Therefore, minimizing the clustering criterion EKL minimizes an upper limit
of

∫ ∑
i

p(ci | x) log
p(ci | x)
p̂(ci | x)

p(x) dx = EX{DKL(p(c | x), p̂(c | x))}, (B.8)

the expected KL divergence between the conditional density p(c | x) and its
estimate p̂(c | x). (Here EX{·} denotes the expectation over x.) One can also
write

EX{DKL(p(c | x), p̂(c | x))} =
∫ ∑

i
p(ci, x) log

p(ci, x)
p̂(ci | x)p(x)

dx

= DKL(p(c, x), p̂(c | x)p(x)). (B.9)

Maximizing the likelihood of the model p̂(ck | xk) for data {(ck, xk)}k sam-
pled from p(c, x) is asymptotically equivalent to minimizing the Kullback-
Leibler divergence, equation B.9. This is because for the N independent and
identically distributed samples {(ck, xk)}k, the scaled log likelihood,

1
N

∑
k

log p̂(ck | xk),

converges to

∫ ∑
i

p(ci, x) log p̂(ci | x) dx

= −
∫ ∑

i
p(ci | x) log

p(ci | x)
p̂(ci | x)

p(x)dx + const.

= −EX{DKL(p(c | x), p̂(c | x))} + const. (B.10)
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with probability 1 when N → ∞, and because maximizing equation B.10
minimizes equation B.9.

In the special case when the yj(x) are binary valued, the qi(x) = p̂(ci | x) is
a proper density and the equality in equation B.6 holds for almost every x.
Therefore, the minimization of (an approximation of) the average distortion
EKL on a finite data set is equivalent to maximizing the likelihood of p̂(c | x)
on the same sample.
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