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Abstract. Visualization and clustering of multivariate data are usually based on
mutual distances of samples, measured by heuristic means such as the Euclidean
distance of vectors of extracted features. Our recently developed methods remove
this arbitrariness by learning to measure important differences. The effect is equiv-
alent to changing the metric of the data space. It is assumed that variation of the
data is important only to the extent it causes variation in auxiliary data which is
available paired to the primary data. The learning of the metric is supervised by
the auxiliary data, whereas the data analysis in the new metric is unsupervised.
We review two approaches: a clustering algorithm and another that is based on an
explicitly generated metric. Applications have so far been in exploratory analysis
of texts, gene function, and bankruptcy. Connections for the two approaches are
derived, which leads to new promising approaches to the clustering problem.

Keywords: Discriminative clustering, exploratory data analysis, Fisher informa-
tion matrix, information metric, learning metrics

1 Introduction

Unsupervised learning methods search for statistical dependencies in data. They are
often used as “discovery tools” or exploratory tools to reveal statistical structures
hidden in large data sets. It is sometimes even hoped for that “natural properties” of
the data could be discovered in a purely data-driven manner, i.e., without any prior
hypotheses. Such discoveries are possible, but the findings are always constrained
by the choice of the model family and the data set, including the variable selection
or feature extraction.

In a broader data analysis or modeling framework the model family specifies
which kinds of dependencies are sought for. Typically, selection of the data variables
and their preprocessing (feature extraction) specifies which aspects of the data are
deemed interesting or important. It might even be said that unsupervised learning
is always supervised by these choices.

The choice and transformation of the data variables is important because most
unsupervised methods depend heavily on the metric, i.e. the distance measure,
of the input space. Such methods include at least clustering, probability density
estimation, and most visualization methods.

The aim of the present work is to automatically learn metrics which measure
distances along important or relevant directions, and to use the metrics in unsu-
pervised learning. The laborious implicit supervision by manually tailored feature
extraction will to a large extent be replaced by an automatically learned metric,
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while discoveries can still be made with unsupervised learning methods within the
constraints set by the new metric.

The methods presented in this paper are applicable when there exist suitable
auxiliary data which implicitly reveals what is relevant or important in the primary
data. Such auxiliary data are available at least in the settings where supervised
learning methods, regression and classification, are usually applied. The difference
here is that the goal is to model and understand the primary data and learn what
is relevant there, whereas in supervised learning the sole purpose is to predict the
auxiliary data. In practical data analysis the analyst of course needs to find or
choose suitable auxiliary data, and the quality of the results is determined by this
choice.

Consequently, we assume that the data comes in pairs (x, c): the primary data
vectors x ∈ R

n are always paired with auxiliary data c which in this paper are
discrete. Important variation in x is supposed to be revealed by variation in the
conditional density p(c|x).

The distance d between two close-by data points x and x + dx is defined as the
difference between the corresponding distributions of c, measured by the Kullback-
Leibler divergence DKL, i.e.

d2
L(x,x + dx) ≡ DKL(p(c|x)‖p(c|x + dx)) . (1)

Bankruptcy risk is an example of auxiliary data that indicates importance in the
analysis of the financial states of companies: the c = 1 if the company goes bankrupt
and c = 0 if it stays alive.

Note that although the Kullback-Leibler divergence is not a metric per se, it
is symmetric for small distances and therefore locally a metric (see Section 2 for
details; note that locality can be relaxed by extending the metric). Proximity
relations (i.e., loosely speaking, the topology) of the data space are preserved, but
the arbitrariness of feature selection is removed by locally re-scaling the data space
to make it reflect important variation in data.

We call the idea of measuring distances in the data space by approximations of
(1) the learning metrics principle. Following the principle, we have so far developed
a clustering algorithm [1] and a way to explicitly generate metrics for practical
purposes such as visualization [2]. These methods are reviewed in Sections 2 and 3,
and in Section 4 they are shown to have a close connection, which leads to new
promising approaches to the clustering problem.

2 Learning Metrics Explicitly

The first approach is based on an explicit estimate p̂(c|x) of the conditional prob-
abilities. Several kinds of useful estimators exist; in the examples of this section
the probabilities will be derived using the Bayes rule from the Parzen and MDA2
(Mixture Discriminant Analysis; [3, 4]) estimates of the joint density p(c,x).

The estimate p̂(c|x) can be plugged into the definition of the metric (1). Local
instances dx are then approximated by the quadratic form

d2
L(x,x + dx) = DKL(p̂(c|x)‖p̂(c|x + dx)) = dxT Ĵ(x)dx , (2)

where Ĵ(x) is an approximation to the Fisher information matrix, computed from
p̂(c|x). For details, see [2].

The resulting metric resembles the information metric [5, 6] used to compare
generative probabilistic models. The novelty here is that now the Fisher information
matrix defines a metric in the data space. The x is used as the “parameters” of a
model that generates a probability distribution for the auxiliary c values.
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The definition (2) gives a local distance measure which could in principle be ex-
tended to non-local distances (Riemann metric) by integrating the local distances
along minimal paths in the data space. (Note that this extension preserves the
proximity relations of the data space, whereas the straightforward application of
(1) to non-local comparisons would not.) The integration would, of course, be com-
putationally demanding. We have used the local distances as approximations. They
are feasible for models such as several clustering methods and the Self-Organizing
Maps that rely mostly on local distances.

Note that transformations of the data space change the metric as well, and auto-
matic feature extraction methods are therefore an alternative for explicitly changing
the metric. For instance, mutual information-like criteria have been used for feature
extraction [7, 8] in classification tasks. Note, however, that the effects of all suitably
regular transformations (and more) can be obtained with a change of the metric;
it can be shown that our principle is in principle invariant to diffeomorphisms. If,
on the other hand, a change of topology is desirable then a suitable transformation
can be applied before the metric is learned.

2.1 Self-Organizing Maps in Learning Metrics

Learning metrics can be used with several unsupervised and supervised methods.
Our first experiments have been carried out with the Self-Organizing Map (SOM;
[9]), an algorithm with applications reported in over 4000 publications
(http://www.cis.hut.fi/research/som-bibl/; cf. [10]).

The SOM is a method for organizing data on a usually two-dimensional graphical
map display which preserves similarity relationships in the data: close-by locations
of the display represent similar data. The mapping is defined by a set of model
vectors that are attached to discrete grid points on the display, and the model
vectors learn to represent the probability distribution of the data in an orderly
fashion. The SOM display is especially useful for data visualization and exploratory
analysis: it provides an overview of the similarity relationships in large data sets,
and additional properties of the data, such as cluster structures and distribution of
the values of data variables, can be visualized on the same display.

The original on-line version of the SOM algorithm consists of two steps that are
applied iteratively. Denote the input vector at time step t by x(t); for a finite data
set it is chosen randomly. First the best matching SOM unit w is sought by

w = arg min
j
d2(x,mj) , (3)

where mj denotes the model vector attached to the map unit j and d is the distance
measure, usually the Euclidean distance. The model vectors are then updated
toward the negative gradient of their (squared) distance from the data point.

When computing the SOM in the new metric, the best-matching unit will be
sought using the local approximation (2) of the new metric. It is assumed that
replacing the true (global) distance with the approximation does not change the
winner, which is sensible since the potential winners are usually close to the data
point in both metrics. (The ultimate test of the assumption is, of course, in the
applications.)

While updating the model vectors to decrease their distance from the data vector
it is essential to keep in mind that the new metric is non-Euclidean, and that
therefore the direction of the steepest descent does not coincide with the ordinary
gradient. Instead, the correct direction is given by the so called natural gradient
[11]. When the new metric and the natural gradient are used in the SOM algorithm,
certain cancellations occur and the update rule becomes that of the Euclidean SOM,
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i.e.,
mj(t+ 1) = mj(t) + hwj(t)(x(t) − mj(t)) . (4)

Here hwj is the usual SOM neighborhood function, a decreasing function of the
distance between the units w and j on the map grid. The height and width of the
neighborhood function are decreased during learning.

In summary, the SOM is computed by iterative application of two expressions.
First the best matching unit is sought with (3), where the distance is given by
(2). Second, the model vectors are updated according to (4). The computational
complexity is somewhat higher than that of the Euclidean SOM; in the bankruptcy
case study discussed below it is about doubled. For more details see [2].

a b

c d

Figure 1: Two SOMs modeling data distributed uniformly within a three-
dimensional cube. The class distribution of the data changes only in the horizontal
direction, and the changes are assumed to indicate importance or relevance. (a)
SOM in the new metric, (b) SOM in the Euclidean metric. Projections from above:
c: New metric, d: Euclidean metric. Details omitted for brevity.

2.1.1 A Demonstration

The difference between SOMs computed in the learning metric and in the Euclidean
metric is demonstrated with a seemingly simple data set in Figure 1. The data is
three-dimensional but the distribution of the auxiliary data changes only in two
dimensions. Hence, assuming changes in only the auxiliary data are important, the
third (vertical) dimension is irrelevant and resources are wasted if it is modeled. It
can be seen in Figure 1 that the SOM in the new metric (derived from Parzen esti-
mates) does not model the vertical direction at all while it represents the horizontal
directions in an ordered fashion. The Euclidean SOM, in contrast, folds itself while
it tries to model the whole three-dimensional data distribution.

2.1.2 Application: Bankruptcy Analysis

Quantitative analyses of bankruptcy commonly aim at either prediction of bankrupt-
cies or rating of companies based on the probability of bankruptcy. Kiviluoto and
Bergius (see e.g. [12]) have used SOM-based analyses and visualizations to pursue a
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more comprehensive quantitative picture of corporate behavior than that provided
by a single figure of merit.

Since the bankruptcy risk is, after all, perhaps the most important single in-
dicator, we have used the knowledge of whether the company has gone bankrupt
within three years as the auxiliary data c to guide the analysis of a set of further
23 indicators [2]. The SOM computed in the learning metric was more accurate
than the Euclidean SOM in estimating the bankruptcy risk (p<0.002 for estimates
computed at the best-matching units). The resulting SOM was well-organized, and
it can be used for visualizing both the probability of bankruptcy (Fig. 2a) and the
distribution of the financial indicators (a sample indicator is shown in Fig. 2b).
Moreover, the contributions of the indicators to the metric can be visualized on the
map (Fig. 2c) to assess which indicators are important for the companies occupying
different locations of the map.

a b c

Figure 2: A SOM of companies. Each company has a certain location on the
map, and each location represents different kinds of companies. a Estimate of
the probability of bankruptcy at each map unit. b Distribution of the values of
a sample financial indicator (liquidity) on the map. c The (relative) contribution
of the liquidity indicator to the change in bankruptcy sensitivity. White: largest
values, black: smallest values.

3 Learning Metrics Implicitly: Discriminative Clus-

tering

In this section we describe an application of the learning metric principle to clus-
tering.

It would be possible to apply the method of Section 2 to clustering as well,
by explicitly constructing a density estimator to derive the new metric and using
it with a conventional clustering algorithm. Here we apply the new distance (1)
more directly, however. This is potentially more optimal than the use of a separate
density estimator, for we do not know which kind of estimators perform well with
the learning metrics (this question is discussed further in Section 4.4).

A general goal of clustering is to minimize within-cluster distortion or variation,
and to maximize between-cluster variation. We apply the learning metrics by re-
placing the distortion measure within each local cluster by a kind of within-cluster
Kullback-Leibler divergence. This causes the clusters to be internally as homo-
geneous as possible in p(c|x)—the other side of the coin is that between-cluster
differences in p(c|x) are maximized.

Below, we introduce the cost function of discriminative clustering. First, the cost
of classic vector quantization is presented in a “soft” form, then it is generalized to
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incorporate the auxiliary variable c. Hard clustering is included in the formulation
as a limit case.

In (soft) vector quantization the goal is to find a set of prototypes or codebook
vectors mj that minimizes the average distortion E caused if one represents data
by the prototypes:

E =
∑

j

∫

yj(x;M)D(x,mj) p(x) dx , (5)

where D(x,mj) is the distortion caused by representing x by mj, and yj(x;M) is
the (parameterized) “soft” cluster membership function that fulfills 0 ≤ yj(x) ≤ 1
and

∑

j yj(x) = 1 for all x. The M denotes the matrix consisting of all the model
vectors.

We have generalized the cost function (5) to measure the distortions of the
distributions p(c|x) caused by representing the conditional distribution of c at x by
a partition-wise prototype, denoted by ψj :

EKL =
∑

j

∫

yj(x;M)DKL(p(c|x),ψj) p(x) dx . (6)

Note that the clusters are still defined and kept local in the primary data space,
by the memberships yj(x;M). Distortion between distributions is measured by the
Kullback-Leibler divergence.

The cost (6) is minimized with respect to both sets of prototypes, mj and
ψj . This can be done by a simple, gradient-based on-line stochastic approximation
algorithm [1].

For normalized von Mises-Fisher (vMF) type membership functions

yj(x) = Z−1(x)e−κx
T
mj (with Z(x) such that

∑

j yj(x) = 1), defined on the hy-
persphere where ‖x‖ = ‖m‖ = 1, the algorithm is the following. Denote the i.i.d.
data pair at on-line step t by (x(t), c(t)) and index the (discrete) value of c(t) by i,
that is, c(t) = ci. Draw two clusters, j and l, independently with probabilities given
by the membership functions {yk(x(t))}k. Reparameterize the distributional pro-
totypes by the “soft-max”, logψji = γji − log

∑

m exp(γjm), to keep them summed
up to unity. Adapt the prototypes by

ml(t+ 1) = ml(t) − α(t)
[

x(t) − x(t)T ml(t)ml(t)
]

log
ψji(t)

ψli(t)
(7)

γlm(t+ 1) = γlm(t) − α(t) [ψlm(t) − δmi] , (8)

where δmi is the Kronecker delta. Due to the symmetry between j and l, it is
possible (and apparently beneficial) to adapt the parameters twice for each t by
swapping j and l in (7) and (8) for the second adaptation. Note that no updating
takes place if j = l, i.e. then ml(t+1) = ml(t). During learning the parameter α(t)
decreases gradually toward zero according to a schedule that fulfills the conditions
of the stochastic approximation theory. Convergence of the algorithm for the vMF-
type membership functions has been proven [13].

Similar algorithms can easily be derived for other kinds of membership functions
[1]. For example, for the normalized Gaussians, yj(x) = Z−1(x)e−‖x−mj‖

2/σ2

, the
first adaptation step becomes

ml(t+ 1) = ml(t) − α(t) [x(t) − ml(t)] log
ψji(t)

ψli(t)
.

It can be shown that the cost function is equal to the mutual information (plus
a constant) between the auxiliary data and the clusters interpreted as a discrete
random variable.
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Figure 3: A demonstration of (a) the K-means and (b) the learning metrics clus-
tering of a simple data set. The pdf of the data is shown in shades of gray, the
cluster centers as circles, and the distribution of one of the two classes (auxiliary
data) as shades of gray in the inset. (Note that the data on the right is singular in
that one of the directions of the input space is totally meaningless, and for example
a solution in which the units are ordered in two columns is almost as good in terms
of the cost function.)

The algorithm defines soft clusters even though hard, non-overlapping clusters
would be more suitable for data exploration-type of tasks where the data is to be
reduced to a small number of prototypes in order to make a large data set more
comprehensible. The reason for using soft clusters to approximate hard ones is
computational: the cluster structure is most efficiently optimized by gradient-based
algorithms, and at the limit of hard clusters only data exactly at the border of
the clusters, sets of probability measure zero, affect the gradient. Hard clusters
are therefore not optimizable by a gradient algorithm. (In the algorithm presented
above, we would almost always have j = l, with no updating taking place.)

In practice some kind of heuristic assumptions may be applicable to replace
the real gradient by an approximation which is actually computable, and we are
currently investigating these possibilities.

3.1 A Demonstration

Figure 3 shows a simple example in which the data is Gaussian and the auxiliary
distribution changes linearly in the y-direction (see the inset in Fig. 3b). The
optimal local clusters that have homogeneous class distribution are horizontal slices,
and hence the optimal configuration for the cluster centers is along a line in the
y-direction (Fig. 3b). The solution found by the familiar K-means clustering is
shown for reference in Figure 3a.

3.2 Applications

The clustering method has already been applied to several kinds of data sets, in-
cluding text documents, gene expression patterns, and company bankruptcies.

Application-specific auxiliary data has been used to “guide” the clustering to
concentrate on the important aspects of the primary data. For the text documents
we have used keywords provided by the authors of the documents. The clustering
then automatically utilizes the manual work of the authors to infer what is impor-
tant in the texts. In bankruptcy analysis the companies were clustered using the
bankruptcy risk as the auxiliary data; details have been provided in the previous
section. Figure 4a shows the mutual information between the bankruptcy and the
clusters. The clusters obtained with our method convey more information about

7



E
m

p
ir
ic

a
l
m

u
tu

a
l
in

fo
rm

a
ti
o
n

(m
b
it
s)

0

10

20

0.1 0.3 0.5 0.7

σ

MI for testset: ssc(−) mda2(−−) vMFmix(..)

κ

E
m

p
ir
ic

a
l
m

u
tu

a
l
in

fo
rm

a
ti
o
n

(b
it
s)

7 55 403 2980 2202600

0.05

0.1

0.15

0.2

0.25

a b

Figure 4: Mutual information between the clusters and the auxiliary variables for
(a) bankruptcy data and (b) gene expression data. Solid line: clustering in learning
metrics; dotted line: plain mixture model; dashed line: MDA2; σ: standard devia-
tion of (normalized) Gaussian membership functions; and κ: parameter governing
the width of vMF basis functions, cf. [1]. There were 10 clusters in a and 8 clus-
ters in b. In a the learning algorithm had numerical problems for small σ; we are
currently investigating alternatives to improve the results further.

bankruptcy than an alternative “baseline” method that can be used for the same
purpose (Mixture Discriminant Analysis 2 or MDA2; [3, 4]).

In earlier studies of gene expression data (measures of gene “activity” in vari-
ous experimental settings), the expression profiles have either been clustered with
traditional clustering methods or classified to a priori known categories. Discrim-
inative clustering combines the good sides of both approaches: prior knowledge in
the form of a known classification can be incorporated to an exploratory cluster
analysis. The knowledge can be about e.g. gene functions or on properties of the
proteins produced by the genes. In Figure 4b, the performance of the discriminative
clustering algorithm is compared to an alternative method in the analysis of yeast
genes and their functional classes; for details, see [1].

3.3 Related Methods

Mutual information has been used earlier as a cost function to construct neural
representations and clusterings [14]. Compared to that work, our main contributions
in the discriminative clustering algorithm are the simple stochastic approximation
algorithm and its interpretation as a distortion-minimizing VQ-like algorithm.

Interestingly, the on-line algorithm resembles Hebbian learning: Since only “ac-
tive” units are updated, the term x(t) within the parentheses in (7) can be con-
sidered a Hebbian term, and x(t)T ml(t)ml(t) a forgetting term. The difference
from traditional Hebbian learning is the multiplier log(ψji/ψli) which guides the
clustering by taking the auxiliary information into account. The resulting learning
algorithm also bears resemblance to the Learning Vector Quantization (LVQ; [9])
algorithms.

Another related line of work is distributional clustering of discrete co-occurrence
data [15, 16, 17], where both the primary and the auxiliary data spaces have been
discrete. In contrast, we cluster a continuous vector space, or effectively try to
find the best possible quantization of the space. If distributional clustering was
generalized to continuous spaces the clusters would become non-local, defined simply
as any collections of the points x of the primary data space with homogeneous
class distributions p(c|x). Our goal in this work has been to explore and mine
the primary data space, and therefore we have preferred local clusters or partitions.
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Asymptotically, the shape of the local regions has certain “metric” properties which
the non-restricted partitions lack (details in Section 4).

From the practical viewpoint, another difference is that a distributional cluster-
ing solution defines cluster identities only for pairs (x, p(c|x)) where the distribution
p(c|x) needs be known or estimated. After all, this is why it is called distributional
clustering. Our clusters are defined into the primary data space, and hence the
cluster identities are defined for single samples x. Our goal has been to quantize
the primary data space X in a way which discriminates different distributions p(c|x)
well, hence we have coined the term discriminative clustering.

We will return to distributional clustering briefly in Section 4.5 where optimal
partition shapes of discriminative clustering are considered.

4 Connections Between the Two Alternative Ways

of Learning Metrics

The two methods presented in Sections 2 and 3 are alternative approaches to the
same problem of deriving informative representations with the help of auxiliary
data. Besides having a common goal, the methods have theoretical connections
that will be derived in this section for the asymptotic case of local clusters, under
some simplifying assumptions. We will concentrate on “hard” forms of clustering or
quantization, meaning that partition cells are disjoint: The membership functions
yj(x) of Section 3 get only values zero and one. This holds asymptotically for the
soft Gaussian or vMF partitions used in the practical algorithms when σ → 0 or
κ→ ∞, respectively. Hence, the results are asymptotic in the sense that the number
of clusters increases and they become harder.

4.1 Asymptotically, Discriminative Clustering is Vector Quan-

tization in Fisher Metrics

At the limit of hard clusters the cost function of discriminative clustering (6) be-
comes

EKL =
∑

j

∫

Vj

DKL(p(c|x),ψj) p(x) dx . (9)

At the limit of zero dispersion (σ or κ−1), the membership of (almost) all points
x is one for one partition cell, indexed below by j(x), and zero for the others. In
the Euclidean case with normalized Gaussian membership functions the partitions
become Voronoi regions: j(x) points to the cluster for which the distance d(x,mj)
from the centroid mj is the smallest. We denote these regions by Vj ; formally,
x ∈ Vj if d(x,mj) ≤ d(x,mk) for all k. The borders of the regions are assumed to
have zero probability mass and therefore they are negligible.

It is assumed that almost all Voronoi regions become increasingly local when
their number increases. (In singular cases such as in Figure 3b we identify data
samples with their equivalence classes having zero mutual distance.) There are
always some non-compact Voronoi regions at the borders of the data manifold, but
it is assumed that the probability mass within them can be made arbitrarily small
by increasing the number of regions. Assume further that the densities p(c|x) are
differentiable. Then the class distributions p(c|x) can be made arbitrarily close to
linear within each region Vj by increasing the number of Voronoi regions.

Let EVj
denote the expectation over the Voronoi region Vj with respect to the

probability density p(x). At the optimum of the cost EKL, we have ψj = EVj
[p(c|x)],

i.e. the parameters ψj are equal to the means of the conditional distribution within
the Voronoi regions (see [1]; this holds even for the soft clusters).
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Since p(c|x) is linear within each Voronoi region, there exists a linear operator
Lj for each Vj , for which p(c|x) = Ljx. The distributional prototypes then become

ψj = EVj
[p(c|x)] = EVj

[Ljx] = LjEVj
[x] ≡ Ljm̃j = p(c|m̃j) ,

and the cost function becomes

EKL =
∑

j

∫

Vj

DKL(p(c|x), p(c|m̃j(x))) p(x) dx .

That is, given a locally linear p(c|x), there exists a point m̃j = EVj
[x] for each

Voronoi region such that the Kullback-Leibler divergence appearing in the cost
function can be measured with respect to the distribution p(c|m̃j(x)) instead of the
average over the whole Voronoi region.

Because the Kullback-Leibler divergence is locally equal to a quadratic form of
the Fisher information matrix (see e.g. [18]), we may expand the divergence around
m̃j to get

EKL =
∑

j

∫

Vj

(x − m̃j(x))
T J(m̃j(x))(x − m̃j(x)) p(x) dx , (10)

where J(m̃j(x)) is the Fisher information matrix evaluated at m̃j(x).
Note that the Voronoi regions Vj are still defined by the parameters mj and in

the original, usually Euclidean metric.
In summary, discriminative clustering or maximization of mutual information,

as presented in Section 3, asymptotically finds a partitioning from the family of
local Euclidean Voronoi partitionings, for which the within-cluster distortion in the
Fisher metric is minimized. In other words, discriminative clustering asymptotically
performs vector quantization in the Fisher metric by Euclidean Voronoi regions:
Euclidean metrics define the family of Voronoi partitionings {Vj}j over which the
optimization is done, and the Fisher metric is used to measure distortion inside the
regions.

4.2 Optimal Voronoi Regions are Approximately Spherical

in the Fisher Metric

The partitions of discriminative clustering have so far been constrained to consist
of Euclidean Voronoi regions. Let us next characterize the optimal shape of a single
Voronoi region. Supposedly, a constellation of Voronoi regions tries to approximate
this shape by setting the location parameters mj suitably, i.e., within the limits the
Voronoi condition allow.

In general, distortion within a Voronoi region V with the parameters m of the
center can be written as

EV ≡

∫

V

D(x,m)p(x)dx =

∫

u

∫ R0(u)

r=0

D(m + ru,m) rρ px(m + ru) dr du ,

where ρ is the dimensionality of the space, the outer integral goes over all unit
vectors u, px is the density before changing the variables, and R0(u) is the distance
of the centroid m from the border of the Voronoi region V in the direction u.

Imagine next that there is some freedom to set the borders R0(u). A necessary
condition for the optimal form of a Voronoi region of a fixed size

p(V ) ≡

∫

V

p(x)dx =

∫

u

∫ R0(u)

r=0

rρ px(m + ru) dr du

10



is obtained from the variation

δEV

δR(u)
(R0(u)) + λ

δp(V )

δR(u)
(R0(u)) = (λ+D(m +R0u,m)) Rρ

0 px(m +R0u)

by setting it to zero. Here λ is a Lagrange multiplier. The solutions are of the form

D(m +R0u,m) = const.,

which implies that at the optimum, the distortion is constant at the borders of the
Voronoi region.

For a Euclidean distortion the optimal shape is a sphere, and for a Fisher dis-
tortion the optimal Voronoi region would be the sphere of the Fisher metric. We
may conjecture that the actual Voronoi regions approximate spheres in the Fisher
metric, within the limits of the constraint that they must be Euclidean Voronoi
regions.

4.3 Optimal Partitioning

The discriminative clustering algorithm was shown above, in Section 4.1, to (asymp-
totically) carry out vector quantization in the Fisher metric, under the additional
constraint that the partitioning consists of Euclidean Voronoi regions. Let us next
relax this constraint.

We define the goal of discriminative clustering as follows: Find a partitioning
of the primary data space under two constraints: (1) The partitioning minimizes
the within-cell distortion of the auxiliary information or, equivalently, maximizes
mutual information, under the constraint that (2) the cells of the partitioning are
“local” in the primary data space.

We consider a partitioning local if it consists of Voronoi regions in any metric
M that generates the same topology as the original metric (i.e., does not tear the
space). The goal of discriminative clustering in this most general form is then to
find a local partitioning {V M

j }j that minimizes (9).
Asymptotically, discriminative clustering is equivalent to minimizing (10). It is

straightforward to show that the optimal partitioning {V M
j }j consists of Voronoi

regions of the Fisher metric. An x belongs to the Voronoi regions V F
j of the Fisher

metric, x ∈ V F
j , if

(x − m̃j)
TJ(m̃j)(x − m̃j) ≤ (x − m̃k)T J(m̃k)(x − m̃k) (11)

for all k. Assume tentatively that the partitioning is not {V F
j }j , and that the cluster

centroids m̃k are at their optimal locations. Then any modification of the parti-
tioning toward {V F

j }j in the sense of changing points to belong to their “correct”

Fisherian Voronoi regions V F
j decreases the distortion (10).

4.4 Optimal Discriminative Clustering by Optimal Density

Estimation

The new metric of Section 2 was based on the Fisher information matrix computed
from an explicit estimate p̂(c|x) of the conditional density p(c|x). The metric was
used in connection with the Self-Organizing Maps.

In a similar fashion, the metric could be used for clustering. The cost function
would then be (10), where J would be the Fisher information matrix computed from
the estimate p̂(c|x), and Vj would be Voronoi regions spanned by the estimate and
its Fisher metric. (A slight, asymptotically vanishing difference exists: we have so
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far computed the Fisher information matrix at x instead of at mj(x); it is an open
question which is better in practice.)

Asymptotically, for a large number of prototypes, the distortion of such a clus-
tering is equal to

ÊKL =
∑

j

∫

Vj

DKL(p̂(c|x), p̂(c|mj(x))) p(x) dx =
∑

j

∫

Vj

DKL(p̂(c|x), ψ̂j) p(x) dx ,

(12)

by the same reasoning as in Section 4.1. Here ψ̂j = EVj
[p̂(c|x)]. This is just the

cost function of discriminative clustering with the conditional densities replaced by
their estimates p̂(c|x).

Although conceptually simple and relatively easy to implement, the approach
of estimating the densities separately is problematic in that density estimators are
optimized in the sense of maximum likelihood or some other criteria of density
estimation, whereas here we are interested in the estimation of metrics, or ultimately
the estimation of partitions. The criteria of density estimation are not necessarily
optimal for discriminative clustering.

Equation (12), however, suggests a new alternative approach for discriminative
clustering: Given a density estimator p̂(c|x), define the Voronoi regions by (11) in
the Fisher metric induced by the estimator. Then, deviating from (12), measure
the distortion by the true Kullback-Leibler distortion. Effectively, the cost function
would be that of discriminative clustering (9), but the Voronoi regions would be
defined by the density estimator.

Assuming our goal is discriminative clustering we could then state a criterion
for the optimality of conditional density estimates: The estimate p̂(c|x) is optimal
if the Voronoi regions defined by it minimize the cost function (9) of discriminative
clustering.

4.5 Comparison to the Information Bottleneck Principle

The cost function of the Information Bottleneck, a distributional clustering frame-
work for discrete co-occurrence data [17], is (in our notation) I(X ;V ) + βI(C;V ).
This is equal to the cost function of discriminative clustering of Section 3, i.e. the
mutual information I(C;V ), combined with the ’bottleneck’ term I(X ;V ) which
restricts the representation efficiency of the partitioning V . (See Section 3.3 for a
general description of the differences of these two approaches.)

If we apply the Information Bottleneck principle to a continuous-valued random
variable X , the optimal form of the membership functions y(x) becomes [17]

yj(x) =
p(vj)

Z(x)
exp

(

−βDKL(p(c|x),ψj)
)

,

where p(vj) =
∫

y(x)p(x)dx is the size of the partition Vj , ψj = EVj
[p(c|x)] is the

average of p(c|x) over the partition, and Z(x) is such that
∑

j yj(x) = 1 for all x.
The partitions are not directly computable (for p(vj) and ψj depend on y(x)),

and the iterative, nonparametric approach of [17] useful in the discrete case fails for
a continuous X . It is, however, interesting to look at the limit of the partitions as
the cost function approaches our cost function, i.e. when β → ∞. The partitioning
then approaches Voronoi regions in the Kullback-Leibler distortion: x ∈ V KL

j if
DKL(p(c|x),ψj) ≤ DKL(p(c|x),ψk) for all k 6= j.

Although the V KL-regions are potentially nonlocal, the result can still be used
to characterize the optimal shapes of local Voronoi regions. One V KL-region may
become divided into several local regions in the primary data space. Asymptotically,
under the assumptions of Section 4.1, the distribution p(c|x) becomes linear in each
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region. As the KL-divergence asymptotically approaches the Fisher metric, the
subregions approach Fisherian Voronoi regions.

4.6 Connection to Maximum Likelihood Estimation

Note that for finite data minimizing the cost function (9) is equivalent to maximizing

L =
∑

j

∑

x∈Vj

logψj,c(x) , (13)

where c(x) is the index of the class of sample x. This is the log likelihood of
a piecewise constant conditional density estimator. The estimator predicts the
distribution of C to be ψj within the Voronoi region j. The likelihood is maximized
with respect to both the ψj and the partitioning, under the defined constraints.

4.7 New Potential Approaches to Discriminative Clustering

According to the suggestion of Section 4.3, the most general (theoretical) form
of discriminative clustering would be to find a metric in which Voronoi regions
are local and maximize the mutual information, or equivalently the distortion (9).
Asymptotically, the optimal partitioning was shown to consist of Voronoi regions
in the Fisher metric, and we suggest using such regions for non-asymptotic cases as
well.

The remaining problem is the computation of the partitions in practice, for the
results of this section apply only to hard clusters, in the asymptotic case and with
known densities p(c|x).

One of the most promising routes would be to use the soft discriminative cluster-
ing algorithm of Section 3 in an estimated Fisher metric, for example by replacing
the inverse covariance matrix of the Gaussian kernels by the Fisher information
matrix of a suitable density estimator.

Another path was already sketched in Section 4.4: Given a family of density
estimators p̂(c|x), define the Voronoi regions by the Fisher metric derived from the
estimators, and minimize the average distortion with respect to both the partition-
ing and the parameters of the density estimators.

Given a suboptimal partitioning with good estimates of the prototypes ψj , we
could iteratively improve the partitioning by re-estimating the Fisher matrices di-
rectly from the relationships of the Voronoi regions with their neighbors.

The parameterization of the kernels of the soft discriminative clustering could
also be directly relaxed, in principle. The many extra parameters would, however,
require extra data, presumably much more than the alternative solutions.

5 Discussion

We have introduced the concept of learning metrics. It is used to measure impor-
tant variation of the data, and to disregard meaningless variation. It is assumed
that the data of primary interest is available paired with so called auxiliary data,
and that variation in (the conditional distributions of) the auxiliary data indicates
importance of the associated variation of the primary data.

Natural candidate data sets are those used in the common supervised tasks, i.e.,
regression and classification. Methods based on learning metrics have, however, a
more general scope: that of exploring statistical dependencies between data sets
and within the primary data.

Two approaches utilizing the principle were reviewed. First, a metric was de-
rived from a density estimator of the conditional distributions of the auxiliary data.
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The relative performance of different density estimators is still an open question.
The second approach, discriminative clustering, incorporates the learning metric
principle directly into the cost function of clustering. Both approaches have been
successfully applied in data analysis.

Finally, we presented a relationship between the two approaches: Asymptoti-
cally, discriminative clustering performs vector quantization in Fisher metrics, but
with the Voronoi regions defined in the original, usually Euclidean metric. This and
other results point to new approaches toward practical algorithms.
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