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Separation of complex valued signals is a frequently arising problem in signal processing. For example,
separation of convolutively mixed source signals involves computations on complex valued signals. In
this article, it is assumed that the original, complex valued source signals are mutually statistically
independent, and the problem is solved by the independent component analysis (ICA) model. ICA is a
statistical method for transforming an observed multidimensional random vector into components that
are mutually as independent as possible. In this article, a fast fixed-point type algorithm that is capable
of separating complex valued, linearly mixed source signals is presented and its computational efficiency
is shown by simulations. Also, the local consistency of the estimator given by the algorithm is proved.

1. Introduction

Separation of complex valued signals is a frequently

arising problem in signal processing: frequency-

domain implementations involving complex valued

signals have advantages over time-domain implemen-

tations. Especially in the separation of convolutive

mixtures it is a common practice to Fourier trans-

form the signals, which results in complex valued sig-

nals. In this article, we present an algorithm for the

separation of complex valued signals. Our framework

is Independent Component Analysis.

Independent component analysis (ICA)1,2 is a

statistical model where the observed data is ex-

pressed as a linear combination of underlying latent

variables. The latent variables are assumed non-

Gaussian and mutually independent. The task is to

find out both the latent variables and the mixing

process. The ICA model used in this article is

x = As (1)

where x = (x1, . . . , xm) is the vector of observed

random variables, s = (s1, . . . , sn) is the vector of

statistically independent latent variables called the

independent components, and A is an unknown con-

stant mixing matrix. The above model is identifi-

able under the following fundamental restrictions:1

at most one of the independent components sj may

be Gaussian, and the matrix A must be of full col-

umn rank. (The identifiability of the model is proved

in Ref. 1 in the case n = m.)

A fast fixed point algorithm (FastICA) for the

separation of linearly mixed independent source sig-

nals was presented by Hyvärinen and Oja.3,4 The

FastICA algorithm is a computationally efficient and

robust fixed-point type algorithm for independent

component analysis and blind source separation.

In this article, we show how the FastICA algo-

rithm can be extended to complex valued signals.

Both the independent component variables s and the

observed variables x in model (1) assume complex
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values. For simplicity, the number of independent

component variables is the same as the number of

observed linear mixtures, that is, n = m. The mix-

ing matrix A is of full rank and it may be complex as

well, but this is optional. A necessary preprocessing

of the data x is whitening, which can always be ac-

complished by e.g., Principal Component Analysis.1

We assume that the signals sj are zero-mean and

white, i.e., real and imaginary parts of sj are uncor-

related and their variances are equal; this is quite

realistic in practical problems.

Algorithms for independent component analysis

of complex valued signals are also presented in Refs. 5

and 6. Both of these algorithms are computationally

more intensive than our algorithm, and no proofs of

consistency are given in either of the references. In

contrast, we prove the local consistency of the es-

timator given by our algorithm, and show its com-

putational efficiency by simulations. Our algorithm

is also more robust against outliers than kurtosis-

based ICA algorithms (see Ref. 3 for a discussion

on robust estimators for ICA). Also, our algorithm

is capable of deflationary separation of the inde-

pendent component signals; it is possible to esti-

mate only one or some of the independent compo-

nents, which is useful if the exact number of inde-

pendent components is not known beforehand. In

deflationary separation the components tend to sep-

arate in the order of decreasing non-Gaussianity,

which often equals decreasing “importance” of

the components.

This paper is organized as follows. We first go

through some basic concepts of complex random

variables in Sec. 2. We then discuss the indetermi-

nacy that is inherent in estimating complex valued

independent components (Sec. 3). In Sec. 4, we mo-

tivate our approach of ICA estimation and discuss

the contrast function used in our algorithm. The

fast fixed-point algorithm is presented in Sec. 5, and

simulation results confirming the usefulness of the

algorithm are shown in Sec. 6. Section 7 discusses

connections to other ICA research. Finally, some

conclusions are drawn in Sec. 8.

2. Basic Concepts of Complex

Random Variables

A complex random variable may be represented as

y = u + iv where u and v are real-valued random

variables. The density of y is f(y) = f(u, v) ∈ R2.

The expectation of y is E{y} = E{u}+ iE{v}. Two

complex random variables y1 and y2 are uncorrelated

if E{y1y
∗
2} = E{y1}E{y∗2}, where y∗ designates the

complex conjugate of y. The covariance matrix of a

zero-mean complex random vector y = (y1, . . . , yn)

is

E{yyH} =


C11 · · · C1n

...
. . .

...

Cn1 · · · Cnn

 (2)

where Cjk = E{yjy∗k} and yH stands for the

Hermitian of y, that is, y transposed and conju-

gated. In our complex ICA model, all source signals

sj are zero-mean and they have unit variances and

uncorrelated real and imaginary parts of equal vari-

ances. In short, these requirements are equivalent to

E{ssH} = I and E{ssT } = O. In the latter, the ex-

pectation of the outer product of a complex random

vector without the conjugate is a null matrix. These

assumptions imply that sj must be strictly complex;

that is, the imaginary part of sj may not in general

vanish.

A frequently encountered statistics in ICA is

kurtosis, or fourth-order cumulant. For zero-mean,

complex random variables it could be defined, for

example, as in Refs. 6 and 7

kurt(y)=E{|y|4}−E{yy∗}E{yy∗}−E{yy}E{y∗y∗}

−E{yy∗}E{y∗y} (3)

but the definitions vary with respect to the place-

ment of conjugates (∗) — actually, there are 24 ways

to define the kurtosis.7 We choose the definition in

Ref. 8, where

kurt(y) = E{|y|4} − 2(E{|y|2})2 − |E{y2}|2

= E{|y|4} − 2 (4)

where y is white, i.e., the real and imaginary parts

of y are uncorrelated and their variances are equal.

This definition of kurtosis is intuitive since it van-

ishes if y is Gaussian.

3. Indeterminacy of the Independent

Components

The independent components s in the ICA model (1)

are found by searching for a matrix W such that
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s = WHx up to some indeterminacies, which are

discussed in the following. In this paper, we use the

notation s = WHx which is analogous to the nota-

tion in Ref. 4 but differs from the notation s = Wx

used in Ref. 3.

In the real case, a scalar factor αj ∈ R, αj 6= 0

can be exchanged between sj and a column aj of

A without changing the distribution of x: ajsj =

(αjaj)(α
−1
j sj). In other words, the order, the signs

and the scaling of the independent components can-

not be determined. Anyhow, the order of sj may be

chosen arbitrarily and it is a common practice to set

E{s2
j} = 1; thus only the signs of the independent

components are indetermined.

Similarly in the complex case there is an unknown

phase vj for each sj : it is easily proved that

ajsj = (vjaj)

(
sj

vj

)
, |vj | = 1, vj ∈ C . (5)

If sj has a spherically symmetric distribution, i.e.,

the distribution depends on the modulus of sj
only, the multiplication by a variable vj does not

change the distribution of sj . Thus the distribution

of x remains unchanged as well.

From this indeterminacy it follows that it is im-

possible to retain the phases of sj , and WHA is a

matrix where in each row and each column there is

one nonzero element vj ∈ C that is of unit modulus.

Note that the indeterminacy is an inherent property

of complex ICA — it does not follow from the as-

sumptions made in this article.

4. Contrast Function

4.1. Choice of the contrast function

Now we generalize the framework in Refs. 3, 4 and 9

for complex valued signals. One might make a dis-

tinction between “top-down” and “bottom-up” ap-

proaches to ICA.9 In the top-down approach, inde-

pendence is measured by such measures as mutual

information which is often approximated by using

cumulants. This may result in non-robust contrast

functions and burdensome computations. We choose

here the bottom-up approach, where the higher-

order statistics are implicitly embedded into the al-

gorithm by arbitrary non-linearities. We start from

an arbitrary non-linear contrast function and prove

that its extrema coincide with the independent com-

ponents. This bottom-up approach is computation-

ally simple, and the non-linearity can be chosen quite

freely to optimize e.g., the statistical behavior of the

estimator.

Our contrast function is

JG(w) = E{G(|wHx|2)} (6)

where G : R+ ∪ {0} → R is a smooth even function,

w is an n-dimensional complex weight vector and

E{|wHx|2} = 1. Finding the extrema of a contrast

function is a well defined problem only if the func-

tion is real. For this reason our contrast functions

operate on absolute values rather than on complex

values.

Remember Formula (4) for the kurtosis of com-

plex variables: if we chooseG(y) = y2, then JG(w) =

E{|wHx|4}. Thus J essentially measures the kurto-

sis of wHx, which is a classic measure in higher-order

statistics.

Maximizing the sum of n one-unit contrast func-

tions, and taking into account the constraint of

decorrelation, one obtains the following optimization

problem:

maximize
n∑
j=1

JG(wj) with respect to wj ,

j = 1, . . . , n

under constraint E{(wH
k x)(wH

j x)∗} = δjk (7)

where δjk = 1 for j = k and δjk = 0 otherwise.

It is highly preferable that the estimator given by

the contrast function is robust against outliers. The

more slowly G grows as its argument increases, the

more robust is the estimator. For the choice of G we

propose now three different functions, the derivatives

g of which are also given:

G1(y) =
√
a1 + y , g1(y) =

1

2
√
a1 + y

(8)

G2(y) = log(a2 + y) , g2(y) =
1

a2 + y
(9)

G3(y) =
1

2
y2 , g3(y) = y (10)

where a1 and a2 are some arbitrary constants for

which values a1 ≈ 0.1 and a2 ≈ 0.1 were chosen in

this work. Of the above functions, G1 and G2 grow

more slowly than G3 and thus they give more robust

estimators. G3 is motivated by kurtosis (4).
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4.2. Consistency

In Ref. 9, in the context of ICA on real-valued sig-

nals, it was stated that any non-linear learning func-

tion G divides the space of probability distributions

into two half-spaces. Independent components can

be estimated by either maximizing or minimizing a

function similar to (6), depending on which half-

space their distribution lies in. In Ref. 9, a theo-

rem for real valued signals was presented that dis-

tinguished between maximization and minimization

and gave the exact conditions for convergence. In

the following, we show how this idea can be gen-

eralized to complex valued random variables. We

have the following theorem on the local consistency

of the estimators, the proof of which is given in

the Appendix:

Theorem

Assume that the input data follows the model (1).

The observed variables xk, k = 1, . . . , n in x are

prewhitened using E{xxH} = I. The indepen-

dent component variables sk, k = 1, . . . , n in s are

zero-mean and have unit variances and uncorrelated

real and imaginary parts of equal variances. Also,

G : R+ ∪ {0} → R is a sufficiently smooth even

function. Then the local maxima (resp. minima) of

E{G(|wHx|2)} under the constraint E{|wHx|2} =

‖w‖2 = 1 include those rows ak of the inverse of the

mixing matrix A such that the corresponding inde-

pendent components sk satisfy

E{g(|sk|2) + |sk|2g′(|sk|2)− |sk|2g(|sk|2)} < 0

(> 0, resp.) (11)

where g() is the derivative of G() and g′() is the

derivative of g(). The same is true for the points

−ak.

A special case of the theorem is when g(y) = y,

g′(y) = 1. Condition (11) reads now

E{|sk|2 + |sk|2 − |sk|2|sk|2}

= −E{|sk|4}+ 2 < 0 (> 0, resp.) . (12)

Thus the local maxima of E{G(|wHx|2)} are found

when E{|sk|4} − 2 > 0, i.e., the kurtosis (4) of sk is

positive.

5. Fixed-Point Algorithm

We now give the fixed-point algorithm for complex

signals under the ICA data model (1). The algorithm

searches for the extrema of E{G(|wHx|2)}. Details

of the derivation are presented in the Appendix.

The algorithm requires a preliminary sphering

or whitening of the data: the observed variable

xold is linearly transformed to a zero-mean variable

x = Qxold, x = (x1r + ix1i, . . . , xnr + ixni) such

that E{xxH} = I. Whitening can always be accom-

plished by e.g., Principal Component Analysis.1

The fixed-point algorithm for one unit is

w+ = E{x(wHx)∗g(|wHx|2)} −E{g(|wHx|2)

+ |wHx|2g′(|wHx|2)}w

wnew =
w+

‖w+‖ .

(13)

The one-unit algorithm can be extended to the esti-

mation of the whole ICA transformation s = WHx.

To prevent different neurons from converging to

the same maxima, the outputs wH
1 x, . . . , wH

n x are

decorrelated after every iteration. A simple way

to accomplish this is a deflation scheme based on

a Gram-Schmidt-like decorrelation:3 When we have

estimated p independent components, or p vectors

w1, . . . , wp, we run the one-unit fixed-point algo-

rithm for wp+1, and after every iteration step sub-

tract from wp+1 the projections of the previously

estimated p vectors, and then renormalize wp+1:

wp+1 = wp+1 −
p∑
j=1

wjw
H
j wp+1

wp+1 =
wp+1

‖wp+1‖
.

(14)

The above decorrelation scheme is suitable for defla-

tionary separation of the independent components.

Sometimes it is preferable to estimate all the inde-

pendent components simultaneously, and use a sym-

metric decorrelation. This can be accomplished e.g.,

by

W = W(WHW)−1/2 (15)

where W = (w1 · · ·wn) is the matrix of the vectors.
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6. Simulation Results

Complex signals were separated to test the per-

formance of the fast fixed-point algorithm and the

Theorem. Symmetric decorrelation scheme, pre-

sented in Formula (15), was used in the algorithm.

The data were artificially generated complex ran-

dom signals sj = rj(cos φj + i sin φj) where for each

signal j the radius rj was drawn from a different

distribution and the phase angle φj was uniformly

distributed on [−π, π], which implied that real and

imaginary parts of the signals were uncorrelated and

of equal variance. These assumptions are quite re-

alistic in practical problems. Also, each signal was

normalized to unit variance. There were a total of

eight complex random signals and 50,000 samples per

signal at each trial.

Source signals s were mixed using a randomly

generated complex mixing matrix A. The mixed sig-

nals xold = As were first whitened using x = Qxold

and then fed to the fixed point algorithm. A complex

unmixing matrix W was sought so that s = WHx.

The result of the separation can be measured by

WH(QA). It should converge to a matrix where

in each row and each column there is one non-zero

element v ∈ C of unit modulus; i.e., in the end,

|WH(QA)| should be a permutation matrix. Our

error measure is the sum of squared deviation of

|WH(QA)| from the nearest permutation matrix.
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Fig. 1. Convergence of the fixed-point algorithm using
contrast function G2(y) = log(a2 + y); average result
over ten runs. About six iteration steps were needed for
convergence.

All three contrast functions were successful

in that the Theorem was always fulfilled and

|WH(QA)| converged to a permutation matrix in

about six steps. Figure 1 shows the convergence

using G2.

7. Relation to Subspace Methods

Our complex ICA closely resembles independent sub-

space methods10 and multidimensional ICA.11 In

both methods, the components sj can be divided into

m-tuples such that the components inside a givenm-

tuple may be dependent on each other but indepen-

dent of other m-tuples. Each m-tuple corresponds to

m basis vectors that are orthogonal after prewhiten-

ing. In Ref. 10, it was proposed that the distributions

inside the m-tuples could be modeled by spherically

symmetric distributions. This implies that the con-

trast function (for one subspace) should be of the

form E{G(
∑m
j=1(wT

j x)2)} where wT
j wk = 0, j 6= k.

In our complex ICA, the contrast func-

tion operates on |wHx|2 which may be ex-

pressed as (w̃T x̃)2 + (w̃′T x̃)2. Here w =

(w1r + iw1i, . . . , wnr + iwni), x = (x1r +

ix1i, . . . , xnr + ixni), w̃ = (w1r, w1i, . . . , wnr , wni),

w̃′ = (−w1i, w1r, . . . , −wni, wnr) and x̃ =

(x1r, x1i, . . . , xnr , xni). Thus the subspace is two-

dimensional (real and imaginary parts of a complex

number) and there are two orthogonal basis vectors:

w̃T w̃′ = 0. In contrast to subspace methods, one of

the basis vectors is determined straightforward from

the other basis vector.

In independent subspace analysis, the indepen-

dent subspace is determined only up to an orthog-

onal m × m matrix factor.10 In complex ICA how-

ever, the indeterminacy is less severe: the sources are

determined up to a complex factor v, |v| = 1.

It can be concluded that complex ICA is a re-

stricted form of independent subspace methods.

8. Conclusion

We have presented a fixed-point type algorithm for

the separation of linearly mixed, complex valued sig-

nals in the ICA framework. Our algorithm is based

on a deflationary separation of independent compo-

nents. The algorithm is robust against outliers and

computationally simple, and the estimator given by

the algorithm is locally consistent. We have also

shown the computational efficiency of the algorithm

by simulations.
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Appendix A

Proof of Theorem

Denote by H(w) the function to be minimized or

maximized, E{G(|wHx|2)}. Make the orthogonal

change of coordinates z = AHw, giving H(z) =

E{G(|zHs|2)}. When w coincides with one of the

rows of A−1, we have z = (0, . . . , 0, v, 0, . . . , 0) —

remember that A is orthogonal due to the prewhiten-

ing of x. In the following, we shall analyze the sta-

bility of such z.

We now search for a Taylor expansion of H in

the extrema. We do not use complex differentiation

operators because H is in general not analytic and

thus it cannot be expanded as a Taylor series in the

complex form. The gradient of H with respect to z

is

∇H(z) =



∂

∂z1r

∂

∂z1i

...

∂

∂znr

∂

∂zni


H(z)

= 2



E{Re{s1(zHs)∗} g(|zHs|2)}
E{Im{s1(zHs)∗} g(|zHs|2)}

...

E{Re{sn(zHs)∗} g(|zHs|2)}
E{Im{sn(zHs)∗} g(|zHs|2)}



(16)

where zj = zjr + izji and sj = sjr + isji.

The Hessian of H is now a 2n× 2n real matrix:

denote ∇H as (hR1, hI1, . . . , hRn, hIn) where

hRj = E{Re{sj(zHs)∗} g(|zHs|2)} (17)

hIj = E{Im{sj(zHs)∗} g(|zHs|2)} (18)

whence the Hessian of H is

∇2H(z) = 2



∂hR1

∂z1r

∂hR1

∂z1i
· · · ∂hR1

∂znr

∂hR1

∂zni

∂hI1

∂z1r

∂hI1

∂z1i
· · · ∂hI1

∂znr

∂hI1

∂zni

...
...

. . .
...

...

∂hRn

∂z1r

∂hRn

∂z1i
· · · ∂hRn

∂znr

∂hRn

∂zni

∂hIn

∂z1r

∂hIn

∂z1i
· · · ∂hIn

∂znr

∂hIn

∂zni


.

(19)

Without loss of generality, it is enough to analyze

the stability of the point z = ve1 = (v, 0, . . . , 0),

which corresponds to w = va1. Now v = vr + ivi
and |zHs|2 = |s1|2. Evaluating the gradient (16) at

point z = ve1, we get

∇H(ve1) = 2



vrE{|s1|2 g(|s1|2)}
viE{|s1|2 g(|s1|2)}

0

...

0


(20)

using the independence of sj and the zero-mean and

unit-variance properties of sj .

For the Hessian at point z = ve1 we use the in-

dependence of sj and the assumptions E{ssH} = I

and E{ssT } = O, yielding

∇2H(ve1) = 2



E{|s1|2g(|s1|2) + 2v2
r |s1|4g′(|s1|2)} 2vrviE{|s1|4g′(|s1|2)} 0 · · · 0

2vrviE{|s1|4g′(|s1|2)} E{|s1|2g(|s1|2) + 2v2
i |s1|4g′(|s1|2)} 0 · · · 0

0 0 α · · · 0

...
...

...
. . .

...

0 0 0 . . . α


(21)

where

α = E{g(|s1|2) + |s1|2g′(|s1|2)} . (22)

Note that we do not assume that the real and imaginary parts of the same variable sj are independent, even
though we use the independence of sj and sk, j 6= k as discussed in Sec. 2.
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Now we make a small perturbation ε = (ε1r, ε1i, . . . , εnr, εni) where εjr and εji are the real and imaginary
parts of εj ∈ C and evaluate the Taylor expansion of H:

H(ve1 + ε) = H(ve1) + εT∇H(ve1) +
1

2
εT∇2H(ve1)ε+ o(‖ε‖2)

= H(e1) + 2(ε1rvr + ε1ivi)E{|s1|2g(|s1|2)}+ ε2
1rE{|s1|2g(|s1|) + 2v2

r |s1|4g′(|s1|2)}

+ 4vrviε1rε1iE{|s1|4g′(|s1|2)}+ ε2
1iE{|s1|2g(|s1|) + 2v2

i |s1|4g′(|s1|2)}

+E{g(|s1|2) + |s1|2g′(|s1|2)}
∑
j>1

(ε2
jr + ε2

ji) + o(‖ε‖2) . (23)

Furthermore, due to the constraint ‖w‖ = 1 and thus

‖ve1 + ε‖ = 1 we get

2(ε1rvr + ε1ivi) = −
n∑
j=1

(ε2
jr + ε2

ji) . (24)

Using this, we get

H(ve1 + ε) = H(ve1) +E{g(|s1|2) + |s1|2g′(|s1|2)

− |s1|2g(|s1|2)}
∑
j>1

(ε2
jr + ε2

ji)

+ 2(ε1rvr + ε1ivi)
2E{|s1|4g′(|s1|2)}

+ o(‖ε‖2) (25)

where the term of order (ε1rvr + ε1ivi)
2 is o(‖ε‖2)

according to (24), giving

H(ve1 + ε) = H(ve1) +E{g(|s1|2) + |s1|2g′(|s1|2)

− |s1|2g(|s1|2)}
∑
j>1

(ε2
jr + ε2

ji)

+ o(‖ε‖2) . (26)

Thus z = ve1 is an extremum, and it is the maximum

(minimum) if

E{g(|s1|2) + |s1|2g′(|s1|2)− |s1|2g(|s1|2)} < 0

(> 0, resp.) . (27)

Appendix B

Derivation of the algorithm

We shall derive the fixed-point algorithm for one

unit. Let w = wr + iwi and x = xr + ixi. For

the ease of derivations, the algorithm updates the

real and imaginary parts of w separately. We as-

sume that the source signals sj are white, i.e., they

are zero-mean and have unit variances and uncor-

related real and imaginary parts of equal variances,

that is, E{ssH} = I and E{ssT } = O. The ob-

served variable x is whitened so that it also obeys

E{xxH} = I.

According to the Kuhn-Tucker conditions, the

optima of E{G(|wHx|2)} under the constraint

E{|wHx|2} = ‖w‖2 = 1 are obtained at points

where

∇E{G(|wHx|2)} − β∇E{|wHx|2} = 0 (28)

where β ∈ R and the gradient is computed with re-
spect to real and imaginary parts of w separately.
The first term in (28) is

∇E{G(|wHx|2)} =



∂

∂w1r

∂

∂w1i

...

∂

∂wnr

∂

∂wni



E{G(|wHx|2)}

= 2



E{Re{x1(wHx)∗} g(|wHx|2)}

E{Im{x1(wHx)∗} g(|wHx|2)}
...

E{Re{xn(wHx)∗} g(|wHx|2)}

E{Im{xn(wHx)∗} g(|wHx|2)}



(29)
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and the second term in (28) is

∇E{|wHx|2} = 2



Re{w1}
Im{w1}

...

Re{wn}
Im{wn}

 (30)

where the assumption E{xxH} = I was used.
The Newton method is used to solve (28). The

Jacobian matrix of ∇E{G(|wHx|2)} as in (29) can
be approximated as

∇2E{G(|wHx|2)}

= 2E{(∇2|wHx|2)g(|wHx|2)

+ 2(∇|wHx|2)(∇|wHx|2)T g′(|wHx|2)} (31)

≈ 2E{g(|wHx|2) + |wHx|2g′(|wHx|2)}I (32)

where the approximation was done by separating

the expectations. Also, E{xxT } = O (which follows

straightforward from E{ssT } = O) was used. The

Jacobian matrix of β∇E{|wHx|2} is, using (30),

β∇2E{|wHx|2} = 2βI . (33)

The total approximative Jacobian of (28) is now

J = 2(E{g(|wHx|2) + |wHx|2g′(|wHx|2)} − β)I

(34)

which is diagonal and thus easy to invert. We obtain

the following approximative Newton iteration:

w+ =w− E{x(wHx)∗g(|wHx|2)}−βw

E{g(|wHx|2)+|wHx|2g′(|wHx|2)}−β

wnew =
w+

‖w+‖ .

(35)

If we multiply both sides of (35) by β −
E{g(|wHx|2) + |wHx|2g′(|wHx|2)}, the fixed-point

algorithm simplifies to

w+ = E{x(wHx)∗g(|wHx|2)}

−E{g(|wHx|2) + |wHx|2g′(|wHx|2)}w

wnew =
w+

‖w+‖ .
(36)

Decorrelation schemes suitable for deflationary or

symmetric separation of the independent compo-

nents were presented in Sec. 5.
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