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We consider a gas of trapped Cooper-paired fermionic atoms that are manipulated by laser light. The laser
induces a transition from an internal state with large negative scattering lesugtérfluid to one with weaker
interactions(normal gag We show that the process can be used to detect the presence of the superconducting
order parameter. Also, we propose a direct way of measuring the size of the gap in the trap. The efficiency and
feasibility of this probing method is investigated in detail in different physical situations.
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[. INTRODUCTION effectively creates a superconducting—normal state interface
across which the atomic population can move. There is a
Recent experiments on cooling and trapping fermionic atconceptual analogy to electron tunneling from a supercon-
oms have opened up new opportunities for studying fundaducting metal to a normal one that is used to measure the gap
mental quantum statistical and many-body physics. Trapped@nd the density of states for Cooper-paired elect{@%.
fermionic 4OK atoms were cooled down to temperatures atThe tUnablllty of the interaction Strengths that is required for
which the Fermi degeneracy setq ij. Two lithium isotopes  this scheme is obtained by the use of magnetic fields. This
were trapped simultaneously in a magneto-optical tr@jn  allows us to manipulate the scattering lengths between atoms
and optical trapping of fermionic lithium has been achievedn different internal states; see, e.g., the recent experimental
as well[3]. The richness of the internal energy structure offesults concerning optically trapped fermionic lithium atoms
the atoms and the possibility to accurately and efficienty{3] and the theoretical predictions f6PK [26].
manipulate these energy states by laser light and magnetic The basic idea in the propos@4] is that the absorption
fields allow excellent control of these gases. Furthermorepeak is shifted and becomes asymmetric because of the ex-
atomic gases are dilute and weakly interacting, thus offeringstence of the gap; the laser has to provide energy for break-
the ideal tool for developing and experimentally testing theoIng the Cooper pairs in order to transfer atoms from the
ries of many-body quantum physics. paired state to the unpaired one. This behavior is, however,
The degenerate Fermi gas is expected to show many irgtrongly influenced by the specific physical situation. In this
teresting phenomena in its thermodynamiid$ excitation Paper, we investigate in detail how the choice of chemical
spectrum[5—8], collisional dynamicg9], and scattering of potentials for the superfluid and the normal state, and the
light [1,10,11. A major goal is to observe the predicted choice of the interaction strengths and laser profiles, affect
[12,13 BCS transition for fermionic atoms; this would com- the absorption. We also compare the results in the cases of a
pare to the experimental realization of atomic Bose-Einsteiflomogeneous system and a trapped gas. In Sec. I, we intro-
condensatefl4]. It is still, however, an open question how duce the considered system. The linear response of the gas
to observe the BCS transition, because the value of the sifor a light probe is derived in Sec. lll, both for a homoge-
perconducting order paramet@yap is expected to be small neous and a trapped gas. In Sec. 1V, the various parameters
and the existence of the order parameter does not signifthat affect the observed absorption are discussed. In Sec. V,
Canﬂy Change the density prof"e and other bulk properties oﬂumerical results are presented for the limit when the laser
the gas. beam profile can be considered a constant. A beam profile
There are several proposals for measuring the supercotith nonzero intensity only in a small volume in the middle
ducting order parameter. Off-resonant light scattering as &f the trap is considered in Sec. VI. This case is very inter-
probe was proposed ii5,16. Superfluidity is predicted to €sting because then only the center of the trap is probed.
effect both the spectral and spatial distribution of the scatThus the order parameter seen by the laser is almost con-
tered light. In[17], superfluidity was found to increase the stant, and indeed we find a remarkable agreement with the
optical line shift and linewidth. Also nonoptical phenomena,results predicted for a homogeneous system. We finally sum-
such as collective and single-particle excitations, have beefarize the results in Sec. VII.
proposed to be used for observing the BCS transiti8+
22]. Probing by a magnetic field was considered48].
The use of on-resonant light as a probe for the order pa- [l. THE SUPERCONDUCTOR ~NORMAL STATE
rameter was proposed [24]. The basic idea is to transfer INTERFACE
atoms from one internghyperfing state for which the atoms We consider atoms with three internal states available, say
are Cooper-paired to another state for which the interatomige), |g), and|g’). They are chosen so that the interaction
interaction is not strong enough to lead to a BCS state. Thibetween atoms in statég) and|g’) is relatively strong and
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FIG. 1. Probing of the gap in a gas of attractively interacting H_ereA= @a— @ IS the (effective detuning a_ncﬂ(x) con-
cold fermionic atoms(a) Laser excitation with the couplin@ and tains the ;panal d_ependence of the Iasgr f'?ld multiplied by
the detuningA transfers a Cooper-paired atom from the internal the (effective Rabi frequency. The Hamiltonian for tﬂg}
state|g) to the statge). (b) The other atom in the initial Cooper and[g’) atoms reads
pair becomes an excitation in the BCS state, therefore the laser must 2
also provide the additional gap energy . In this picture, the H ,:f dx 2 [zﬂ(x)( _ V——I—Uo(x)

Fermi levelsuy and u, for the internal states have been chosen to 99 a=g.9' @ 2m
be different from each other but they could also be equal.

+ Geal Yo (X) e X)) — ua) 4(X)

their chemical potentials are nearly equal so tgatand|g’)
can be assumed to be Cooper-paired. All other interactions .
are small enough and/or the chemical potentials of the cor- +ggg’J dx lﬂ;(x)lﬂgr(x) by (X)hg(x), (3
responding states are different enough in order to assume
that the|e) atoms are in a normal stafé2]. The laser fre- where gyq=4mayy /m is the interaction potential for
quency is chosen to transfer the population betwerand  swave scattering between particles in the stdgs and
|g), but is not in resonance with any transition that could|g’), and ge,=4mae,/m is that betweerle) and |g) or
move population away from the stdig'). l9’); a4y andag, are the correspondingwave scattering

For small intensities, the laser interaction can be treated dgngths. The interaction of thigg) and|g’) atoms with the
a perturbation, the unperturbed states being the normal arl@) atoms is treated within the mean-figldartreg approxi-
the superconducting state. The transfer of atoms fignto ~ Mation. Using the usual BCS theory, the last line of B).
|e) is then analogous to tunneling of electrons from a normaf€COMposes into two kinds of term§) those that lead to
metal to a superconductor induced by an external voItagé?O"en'“""IT terms of the Hartree field formW(x)
which can be used as a method to probe the gap and the9gg'{#g(X) #4(X)), and(ii) contributions that produce the
density of states of the supercondudid§]. In our case, the Superconducting order parametgap Ag(x). Care has to
tunneling is between two internal states rather than two spa€ taken when calculating(x) because of the renormal-
tial regions. This resembles the idea of internal Josephsoation of the interaction potentialfor more details, see
oscillations in two-component Bose-Einstein condensatek28))- The possible spatial inhomogeneity, e.g., from the trap
[27]. Figure 1 illustrates the basic idea. The observable caPotential is contained iJy(x), and u, are the chemical
rying essential information about the superconducting state igotentials. The Hamiltonian for thestate is given by
the change in the population of the sté, we call this the P

\%
currentl. Hezf dx z//l(x)<——+Uo(X)—,ue

We define a two-component fermion field, 2m
Gul%) + 2 Qoo Vil(X) %(x») Je¥). @
e a=g,9'
w(x>=( ) (1) 9
thg(X)
Ill. THE CURRENT
where , and y, fulfill standard fermionic commutation re- The observable carrying essential information about the

lations. The fieldsye, can be expanded using some basisSuperconducting state is the_ rate of change in populatiqn of
functions(e.g., plane waves or trap wave functibasd cor- the |e) state. We may call it, after the electron tunneling
responding creation and annihilation operatorgy,(x) ~ analogy, the current

=3,cf99(x). The annihilation and creation operators ful- .

fill {c{",cf}=0 and{c{’?",c®%=s,;. The two components H(1)=—(Ne).

of the field, corresponding to the internal states and|g), whereN,= [d3x (X) e(x). The current (t) is calculated

are coupled by a laser. This can be either a direct eXCitatiOPonsidering the tunneling part of the Hamiltonian
or a Raman process; we denote the atomic energy level dif- '

ferencew, (A=1), the laser frequency, , and the wave Hr=H—[He+Hgg +A2(Ne—Ng)], 5)
vectork, ; in the case of a Raman process, these are effective

guantities. In the rotating-wave approximation, the Hamil-as a perturbation; the currehtbecomes the first-order re-
tonian reads sponse to the external perturbation caused by the laser. We
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calculate it both in the homogeneous case and in the case of e de ~

harmonic confinement. The calculations are done in the | =% | Tl f S, NF(e)—ne(e+A)]
grand-canonical ensemble, therefore the chemical potentials o

Mg andu, are introduced. They are defined as the derivatives XAg(k,e+Z)Ae(I e, 9)

of the free energy with respect to the number of atoms in the

statedg) and|e), respectively. Also the detuning acts like  wherenq(e)=1/(e®*+1) is the Fermi distribution function

a difference in chemical potentials, thus it becomes useful t@nd Ag/e are the Spectra| functions for the Superconducting
define an effective quantity of the fOI‘I’E:,u.e—,ug-f—A and normal states. We use the standard expresgiis
=Aup+A. In the derivation we assume finite temperature,

but most of the results will only be quoted for=0. Aell,e)=2mo(e— &)

and
A. Homogeneous case

The assumption of spatial homogeneity is appropriate Ag(k,e+A)=2a[uid(e+A—wy) +vid(et+A+wy)].
when the atoms are confined in a trap potential that changes ) .
very little compared to characteristic quantities of the sysHereé=E;—ue, whereE, is the energy for a free particle
tem, such as the coherence length and the size of the Coopy momentuml and uy, andvy and wy are given by the
pairs. In the present context, this assumption is also vali@ogoliubov transformaugn. Here we consider for simplicity
when the laser profile is chosen so that it only probes théhe term proportional to; ; uj is analogous. The laser field
middle of the trap where the order parameter is nearly conis chosen to be a running wave, that@s(x) = e’ *. The
stant in space; this will be discussed in more detail in Secterm|Tyy|* now produces a@-function enforcing momentum
VI. conservation. Note that this is very different from the as-

In the homogeneous case the fermion fiefls, can be ~ sumption of a constant transfer matriX | Tl *— [ T|*Z )
expanded into plane waves. The Hamiltonian becomes made in the standard calculation for tunneling of electrons

over a superconductor—normal metal surfg2®]. The final

A result becomegassuming for simplicity that the temperature
H=Hc+Hyy+ = > [cfTcE—cficd] T-0
2 % )
= — 2 —~— T —_
+% [TiceTcd+H.cl, (6) 1= m%p(A) 6~ A @iy —AR)
k-, ~ Ek—k,
where X k |’ (10
L
k-, T Ek—k, 1_f

1 3 ik —il
TkI:v d xQ(x)e‘ Xg—il-x ~
wherek is given by the following energy conservation con-
dition:
We calculate the current
— A+ o + &k =0,

W= \/§2k+AGZ, and
treatingH+ as a perturbation: terms of higher order th4h
are neglected. Because we are interested in the current be- \ Aé—AZ
tween the superconducting and normal states, correlations of p(A)= 2_772 A
the form(c,‘;clcgcg) (and H.c) are omitted since they corre-
spond to tunneling of pair€losephson currentThe current s the density of states, which appears when the summation
can be written over momenta is changed into an integration over energies.
The laser momenturk, can be very small compared to
(" iRt At the momentum of the atoms, especially in the case of a Ra-
| = f_wdt o(t){e”"*([A'(0),A()]) man process. By settig =0, the result becomes, including
now terms proportional to bothZ anduZ,

I =—(Ne)=—i([H,Ng]) (7)

+2u4 (12)

—e[A0),AT(D)])}, 8

2

A
. . I =+ 702p(A)9(AZ— A2+ 2A uA) —2 12
where A(t) =2 T, cdT(t)cf(t) and c/9(t) =e'KicF9e Kt T p(A)6( G K )AZ (12

where K=H—Hy—ucNe—ugNg. The two terms in the

above equation have the form of retarded and advancedherex are forA>0 andA <0, respectively. The term with
Green's-functions. These are evaluated using Matsubarthe — sign corresponds th <0, i.e., current fronjg) to|e),
Green'’s functions techniques, which leads to and the positive term corresponds to current fi@nto |g).
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To understand the results in terms of physics, let us firsand

consider the case of equal chemical potentigls=0:
A(X,1) = % (X) i (X) he(X). (18)
2

I=—WQZA—§p(A)[0(—A—AG)—G(A—AG)]. (13)  The retarded Green’s functiok,.( —A) is calculated using
A Matsubara techniques. To perform the Matsubara summa-
tions, the spatially dependent Green'’s functions for the nor-
In order to transfer one atom from the stagp to [€), the a1 and the superfluid state are expanded using the trap
laser has to break a Cooper pair. The minimum energy reg5ye functionsp,,(x) and the Bogoliubov—de GennéddG)
quired for this is the gap energ¥s, therefore the current eigenfunctionsu,(x) and v,(x), respectively. The BdG
does not flow before the laser detuning provides this energyaqyations are the standard equations for describing inhomo-

this is expressed by the first step function in E). As |A| geneous superconductdg]. This leads to the result
increases further, the current will decrease quadratically. This

is because the cagd|=Ag corresponds to the transfer of ~ = de (. 3

particles withp=pg, whereas largefA| means larger mo- Xied —A)= ﬁmﬁf d Xf d>x" Q% () Q(x")
menta, and there are simply fewer Cooper pairs away from

the Fermi surface. This behavior is very different from the X[ALXX',€)GI (X' X, e+ A

electron tunneling where the current grows\,ﬁsna\/)z—AG2 A el )

[25] (the voltageeV corresponds to the detuninf in our +GE (XX e—M)Ay(X' X €)], (19
cas@ because all momentum states are coupled to each other.

The second step function in E(L3) corresponds to tunnel- whereﬁe,g are defined as

ing into the superconductor. In this case, one has to provide

extra energy because a single-particle tunneling into a super- Ke,g(x,x’,e)z i[GE9(x,x",e)—GI(x,x',€)],
conductor becomes a quasiparticle excitation with the mini-
mum energy given by the gap energy. and
When the chemical potentials are not equal, the situation ok U
is more complicated, but the basic features are the séne: Gl X' x,e)=3) Un(X)Up (X) v (X)0n(X) 20
threshold for the onset of the current determined by the gap i €e—wp—id  €etw,—id’
energy and difference in chemical potentials, &@ndfurther
decay of the current because the density of the states that can . ) Dn(X) i (X")
fulfill energy and momentum conservation decreases. Grfx.X' €)= £t (21
n n
B. Harmonic confinement In taking the imaginary part of the expressiti®), we first

In the case of harmonic confinement, the spatial depenQO"eCt together all spatially dependent terms, which gives

3 2
dence of the current is nontrivial. We define the total curren{eal factors of the form/d XQ(X)U”(X). $m(X)|* [we also
use the fact that the trap wave functiors,(x) are real.

as Imaginary parts of the remaining terms give spectral func-
) tions in the usual way. The derivation leads to
I(t)=—J d*x(Ng(x)), (14) ,
=27, fd3xQ(x)un(x)¢m(x)
where n,m
Ne(0 =1TH NGO T=I[2* (0 w0 o)~ Hec.l XINe(wn) = Ne(Emn) 1 6lEm+ A= wn)
(15)

2
[Ne(—@n) = NE(&m) ]

+U A3X Q(X)v ¥ (X) pm(X)

No expansion in the plane waves or other basis functions is

made at this point and the first-order perturbation calculation X S(Emt A+ w,), (22)
leads to a result with explicitly spatially dependent correla-
tion functions: whereng is the Fermi distribution function at temperatdre
o, are the BdG energies for the sta), and &,=E,,
=2 Im[ X, —A)], (16 — e, WhereE,, are the single-particle energies for a trap
potential defined byJy(x) for the statele). Note that this
where form does not lead to a simple step-function-type behavior

like that in the homogeneous case. Due to the nonorthogo-
nality of the trap and the BdG wave functions, transitions
between many quantum numbers are allowed and the total
current is the sum of all these.

In the following sections, we use the res(#p) to inves-
tigate the feasibility of the method as a probe in different

X,et(—Z)zif:dte’iZte(t)f d3x

xfd3x'<[AT(x,0),A(x',t)]> (17)
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physical situations. The eigenfunctions and valugx) and
w, are calculated numerically from the BdG equations using
the pseudopotential method presentef?®]. We assume for
simplicity that the trap has spherical symmetry. The quantum
numbersn,min Eq. (22) then becomey,|,m, with |, m being

the usual angular momentum quantum numbers. The quasi
particle (QP) energies will only depend om,l. The method

of solving the BdG equations is described in detai[28].

Note that the above derivation assumes that the BdC
equations are solved exactly. One can, however, also use th
local-density approximatiof30] where the chemical poten-
tial of the superconducting state is assumed to have a pare
metric dependence on position and one solves the equatior _ : _ ! : : :
for the homogeneous case at eaclin this case, the deriva- B U SO UOE ST OON SO OOUOOOE SUROOUO-ORUO SOOI
tion is the same as above lxiis now a parameter and the 5 5 5 :
superfluid state HamiltoniaH 4, depends parametrically on - i i i
X. We may define—lgg, , which is the standard homogeneous ‘
system BCS Hamiltonian but with an effective local chemi-
cal potential u*=u—Uy(x). The result for the current is
identical to Eq(22) except that now, ,v,, are actually plane
waves but they have a parametric dependencewia u*, as
doesw,. We may denote the current for a chosemas | *.
The total current is then the averagel dffor all x.

ol

FIG. 2. The current=—(N,) as a function of the laser detun-
ing A for ug=31.5, ue=0 (in units of w) andgeg+gey =9gq -
The dashed line correponds to the normal-normal current and the
solid one is the normal-superconductor current, for which the peak
becomes asymmetric and is shifted.

V. CONSTANT BEAM PROFILE
IV. THE EFFECT OF CHEMICAL POTENTIAL,

LASER PROFILE, AND TRAPPING In this section, we present exact numerical results in the
limit when the laser beam intensity can be well approximated

The behavior of the current is strongly influenced by theb a constant. That is, we tal(x) = Q in Eq. (22). As the
choice of the physical parameters. This gives us a convemeﬁ)ical effective wavelength for the laser is much larger than

way to optimize the probing scheme as well as to investigat e extent of the trap for the relevant energies, such an ap-

mtergstmg phys!c§ such as the mflqence of th?‘ harmonlf)roximation should be good as long as the laser amplitude is
confinement. This is our twofold aim in the following. onstant over the whole extent of the cloud. We present re-
_Although, for Instance, the I_as_er pr_of|le can be chosen _Sults for two situations: the case in which there are no atoms
will, there are a few basic restrictions in choosing the Chem'"lnitially in the state|e) and the case in which the chemical
cal potentials and the interaction strengths between the ato"ﬂ)%tenti als forle) and|g) are the same
in different internal states. In order for a gas of fermionic '
atoms in two internal states to form Cooper pairs, the inter-
atomic interaction should be large enough and the chemical A. No |e) atoms initially
potentials corresponding to the two states should be very
close to each othdi.2]. This is the condition we assume for
|g) and|g’). The statde) is always assumed to have either
negligible interaction with the statég) and|g’), or a con-
siderably lower chemical potentigsmaller number of par- . ;
ticles). It turns out that not only the pairing affects the light atoms see the same Hartree field as gp atoms. This

absorption, but also normal interactions described by thénear}'_s }Qafgngr gbeg’:gﬁg’ sincedthd,e) atoms see the Har-
Hartree field are crucial. This is illuminated by a comparisonte field from both theig) and |g") atoms. Heregyq
=4magyy /M denotes the interaction strength between the

of these two cases having a negligible scatterin
ofe) 9 g1 9 o hyperfine stategg) and|g’) and likewise forg.q and

length or a small chemical potential. - )
In real experiments, the gas is trapped in a harmonic podeg - The parametery, is the usualswave scattering

tential. We have derived results also for the homogeneou§n9th for scattering betweejy) and|[g’) atoms. Experi-
case. These can be used in the case of very large traps aftgntally, this situation could possibly be achieved by ma-
they also give a simple intuitive picture of the basic physicsMiPulating an external magnetic field, thereby tuning the ef-
in this system. We will show that indeed the trapping has Jective low-energy interaction betwee_n the relevant hyperf_me
considerable effect on the results. On the other hand, an effates to an appropriate value. In Fig. 2, we show a typical
fectively homogeneous situation can be achieved by havingxample of the currerit(A) = —(N,). We have used param-
the laser probe only the center of the trap. As will be showngters such thagy, = —Iﬁow, 1g=31.50, and the tempera-
this avoids certain problems arising from the nonhomogeture T=0, with x4 denoting the chemical potential for the
neous potential and can give a very clear signature of thég) and|g’) atoms. Herel,=(mw) Y2 is the harmonic-
superconducting state. oscillator length. FofLi atoms withay, = —1140 A [31],

In the case considered in this subsection, we assume that
we have initially only a gas of interacting) and|g’) at-
oms. The laser beam then induces transitions to the hyperfine
level |e). To obtain clear results, we will assume that e
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this corresponds te-1.6x 10* atoms trapped in the states
|g) and|g’) with a trapping frequency of 820 Hz yielding a
critical temperaturd ;~110 nK for the BCS transition. We
have added an imaginary pdit=0.1w to the quasiparticle
energies such that thes(x) functions in Eq.(22) become
Lorentzians I'/2(x?+ "?/4).

Normal-normal current The dashed curve in Fig. 2 de-
picts the current when thég) and|g’) atoms are in the
normal phase. Since the) atoms see the same Hartree field ~
as the|g) atoms and both of them are in the normal phase,
the spatial part of the QP wave functions is the same for the
two hyperfine states, that is,, andv, are replaced by trap
potential wave functions. Becausg and v, correspond to
the probability of occupation on different sides of the Fermi
energy, one has to do the replacement in the following way:

for ¢,<0, v, becomes the trap wave functioth,, o, 2 ; ; ; ;

=|&,|, andu,=0, whereas forg,>0, we havev,=0, u, - B oy o5 k
=¢,, andw,=¢,. Assuming constant beam profil€) (x) )

—Q], Eq. (22 then reads FIG. 3. The current=—(N,). The solid/dashed lines are for

the |g) and |g’) atoms in the superfluid/normal phase fay

30 % =315, u=21.5 (trap unitg, and interactionyey+ ey =Ygg’ -
f d°X ¢ép (X) m(X) The asymmetry and the shift in the peak in the superfluid phase
compared to the normal phase are more pronounced than in Fig. 2.

2

l=—2702>,
n,m

X[Ne(€n) —Ne(Em)18(Em+tA—Ey).

pair. This requires an additional energy given by the pairing
energy of the QP state. As a fractienl ./ T of the particles
participates in the pairing and they have on average the pair-
ing energyT., one can estimate the order of magnitude of

gh/;?r{icg:usotbe?\?iaalljsﬁ :eﬁ(;reﬁc/fe f?lssu(j)e 25?;\[/1#&;?1)5 vtzr?- the shift in the center of the peak away from its normal phase
. P dep . valueA=0to beO(Tﬁ/TF). Here,T. is the critical tempera-
ishes. The overlap integrals of the trap wave functions PrO% re for the BCS transition anks Te = u, is the Fermi tem-
duce 6, functions, and the summation over one of the in- F~Hg

dices gives a simple expression wistfunctions of the form Ez\r/aeuk”eT f:rztgjg) isitr?m:?z /'_:I_Oitgezg riisezglﬁzﬁlrge;eg:ve

6(A). The remaining summing over the quasiparticle spec- B¢~ 2.00, gIVING 1/ Tgp~U. 9 g

trum (at T=0) and replacing(A) by a Lorentzian leads to ment with the results depicted in Fig. 2. We have performed
numerical calculations for several valugg, and uq, and

we find the general behavior as described in the present ex-
I'/2 ' (23) ample. In all the tested cases, the current peak for the super-
9A2+T2/4 fluid phase is shifted away to negative valueshoaind the
shape of the peak is asymmetric as opposed to the simple
whereNj is the number ofg) atoms trapped. One can also Lorentzian shape for the normal phase. The shift of the peak
derive this expression from the derivation of E#j2) for the s of the orde|O(T§/TF).
homogeneous case. Taking the expressionsAfprand A In order to enhance the effect of the pairinglgd) even
and performing the integration over the energyemoves further, one could initially also trap sonje) atoms. As long
one of thed functions, leading to an expression that is theasuyg—pe>Ag, the|e) atoms will not Cooper-pair with the
same as Eq(22) but withu,,, v,,, and¢,, replaced by plane- |g) or|g’) atoms even thougheg Or gey <O [12]. By hav-
wave functions. Then one can continue the derivation as exng the lower QP states for the) atoms filled, there will
plained above. only be transitions between the QP states around the Fermi
Superconductor-normal currenthe solid curve in Fig. 2 energy. Since these states are influenced the most by the
depicts the current whelg) and|g’) are in the superfluid pairing, the effect of the superfluidity drfA) will be even
phase. We see that the maximum of the current is displacestronger than for the parameters relevant for Fig. 2. This is
from A=0 and that the shape of the current profile is asymiillustrated by Fig. 3, where we pld{A) for the same pa-
metric. Both effects are quite straightforward to understandrameters as above apart from the fact that noy 21.50.
The asymmetry reflects the fact that the current now is giveWe see that both the asymmetry and the shift in the peak in
by a sum of Lorentzians centered at different frequencieshe superfluid phase as compared to the normal phase are
since the QP spectra fdg) and |e) are different and the more pronounced than in Fig. 2. This is simply because the
overlap integral in Eq(22) does not give a simple selection transitions deep below the Fermi level, which are essentially
rule. The shift in the center of the peak to negativés due  immune to the effects of superfluidity, are blocked by filling
to the fact that in order to induce a transition from a low- up the levels for thee) atoms up to the energy=21.50.
lying QP state in the superfluid, one needs to break a Coopétowever, it might be somewhat more difficult to achieve this

Energies for the stateg) and|e) were defined respective to
their chemical potentials, that i§,,=E,,— u. and é,=E,

[(A)=—-20Q°N
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FIG. 5. The current=—(N,). The solid/dashed lines are for
FIG. 4. The current=—(N,). The solid/dashed lines are for the|g’) and|g) atoms in the superfluid/normal phase. Herg
the [g') and |g) atoms in the superfluid/normal phase fay = pe=31.5(trap unitg andg.q=gey =0. The peaks correspond to
=315, ue=0 (trap unity, and geq+ ey =0.9944 . The current  individual QP energy bands overlapping.
profile is shifted and asymmetric for both the normal and supercon-
ducting phase, but pairing enhances both effects. AW= |ggg’_geg_ geg’lp denotes the difference in the Har-
tree fields withp being the average density of thg) atoms,
situation experimentally, as it requires the initial trapping ofand A is the average gap.
three (instead of two hyperfine states with a rather good  \We conclude that ifeq+ Jeg =Ugg 1O @ Very good ap-
control of the populations in each state. proximation so that the difference in the Hartree fields seen
One should note that it is important that the Hartree fieldpy the|g) and thee) is negligible, the effect of superfluidity
seen by thelg) and |e) atoms is approximately the same. on the currenti (A) should be straightforward to observe.
Otherwise, the wave functions and the spectra fofgheand  The current in the normal phase is a simple Lorentzian cen-
|e) atoms will be different even when thg) and|g’) atoms  tered aroundA=0, whereas in the superfluid phase it is
are in the normal phase. The overlap integrals will then nogsymmetric and shifted away from=0. Furthermore, the
give simple selection rules and there will be a contributionshift in the center of the peak provides an estimatd off
from many Lorentzians centered in general away frdm T_ is known. Both the asymmetry and the shift away from
=0. Consequently] (A) will not be given by the simple A=0 should be easily observable indications of the presence
formula in Eq.(23). This is illustrated in Fig. 4, where we of superfluidity. The effect is further enhanced if one initially
plot the current (A) for the same parameters as given aboveraps le) atoms keepingug—pue>Ag. In general, the
(with no |e) atoms initially, apart from which we now have scheme described in this section requires that the difference
JegtJeg =0.9qq . As expected, the current profile is in the Hartree fields seen by tig) and the|e) is smaller
shifted away fromA =0 and is asymmetric, even when the than the average pairing field in order to obtain a visible

lg) and [g’) atoms are in the normal phase. The shift toeffect of the superfluidity on the current.
negative frequencies is easy to understand: The attractive

mean(Hartres field seen by thée) atoms is smaller than the
attractive field seen by thég) atoms sincegeqt Jey
=0.994y - Therefore, the trap states for the) atoms in We now consider the case @f.=u4, Where there is
general have a slightly higher energy than for fipeatoms, initially many atoms trapped in the stg&. Hence, to avoid
and the normal phase current is shifted to negativ€igure  the otherwise interesting possibility of the) atoms partici-

4 demonstrates that the pairing field still causes a generglating in the pairing, we assume titgl,=g.,=0. In Fig. 5,
shift of I(A) to negative frequencies and introduces furtherwe plot the current(A) for ggq = —13 0, me= tg=31.50,
asymmetry since the pairing energy still needs to be broke=0, andgey=gey =0. We have takel’=0.1w. As can be

to generate a current from the superfluid phase. This effect iseen, there are several peaks$(a) both when|g) and|g’)
readily visible since the Hartree fields seen by g and  are in the normal phase and when they are in the superfluid
|e) atoms are approximately the same for the parametenshase. In both cases, the peaks simply correspond to indi-
chosen. However, if the difference in the Hartree fields bewvidual QP energy bands overlapping.

comes too large, the spread in the signal is determined by To see this, we plot in Fig. 6 the corresponding lowest QP
this difference and any additional effects coming from theenergies for thée), |g), and|g’) atoms in both phases as a
pairing field are correspondingly obscured. In general, to béunction of their angular momentulnAs we are in the Bo-
able to detect the presence of superfluidity using the schengoliubov picture, all QP energies are positive and measured
described in this section, one should ha\\MW/<A, where relative to the chemical potential. In the normal phase, nega-

B. Equal chemical potentials
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o To—o & o oo o 9 s I(A) as described above. We conclude that when we have
- I S =g and geq=0ey =0, the presence of superfluidity is
(eS8 668886886 somewhat harder to detect as compared to the situation de-
S R scribed in Sec. V A. This is because the Hartree field tends to
s 10 T 20 % 30 obscure any additional effect coming for the pairing. The
currentl (A) has in general many peaks corresponding to the
energetic overlap between individual QP bands for |)e
and the|g) atoms both for the normal and the superfluid
phases. The effect of the superfluidity is to make the peaks
sharper than in the normal phase since the pairing field tends
to restore the degeneracy in the QP energies with respect to

Ifor le>
- ;N
T

E
on
o

T

1

= o,
T

or |g> N phase
[
[3)]

E
o

g T s e ] the angular momentum. One could therefore possibly detect
& e B S 1 the onset of superfluidity as a sharpening of the peaks.

é1 " OUU SE R T 4;74—;—4—0——*—&

“9; ' : ; . . VI. PROBING THE CENTER OF THE TRAP—AN

% 5 10 15 20 2 30 EFFECTIVELY HOMOGENEOUS SYSTEM

We now assume that the laser intendityx) is large in
the center of the cloud and that it decreases quickly as a
function of the distance from the center of the trap. This

tive QP energies,=e,— u<0 are represented as positive situat_i(_)n can be exp_erimentally ach_ieved by using a Raman
QP energie€,,=|&,| with hole character. In Fig. 6, we label transition scheme with two perpendicular laser be{:lms Cross-
a hole state byD whereas a particle state is indicated by N9 each other at the center of the cloud. The profile of each
In the superfluid phase, the QP’s are in general a superpodaser beam should be narrow on the length scale of the
tion of a hole and a particle, which we label by. trapped cloud. Since the laser beams then effectively probe
We see that when the Hartree field is attractive, a norma®nly atoms in the center of the cloud where the Hartree and
phase energy band with a downward curvature in Fig. 6 is #airing fields are approximately constant, we would expect
hole band whereas a normal phase energy band with an uge observed signal to be V\(ell described by the results for a
ward curvature is a particle band. The reason is that particl@®mogeneous system as given by (£8). From Sec. Il A,
states with lower angular momentunhave a lower energy We conclude that, for a homogeneous system, the optimal
for an attractive interactiong<0) than states with a higher Way of detecting the presence of the pairing field is to have
| since the wave function overlap with the Hartree field de-tg= e [S€€ EQ(13)]. In this limit, all low-lying transitions
creases with increasing 4]. far away from the Fermi energy and thus very little affected
The QP bands for thée) atoms are flat as they are the _by the pairing are Fermi blocked. The transitions contribut-
simple unperturbed harmonic-oscillator states with energie§!d to 1(A) are all close to the Fermi level and hence
E,=|(n+3/2)w— ue|. The lowestE=0 band corresponds st_rongly influenced by the presence of. the pairing field. We
to the harmonic-oscillator states at the chemical potentialVill therefore concentrate on the case in which the effective
(n=30) with angular momenturh=0,2, . . .,30. The inter- chemical potentlall in the center of the trap is the sam¢g‘)ar_
pretation of the spectra is described in detail4i20]. There ~ and|e). As we will see, this case opens up the interesting
is a one-to-one correspondence between the peaks in Fig.P9ssibility of directly measuring the size of the gap in the
and the QP bands depicted in Fig. 6. For instance, the brogggnter of the cloud. _
peak centered arounti= w when thelg) and|g’) atoms are We use the same set of parameters as in Sec. V B for the
in the normal phase corresponds to transitions from the half9) and|g’) atoms. But now we assume that the intensity
filled QP band atE=0 for the |e) atoms into the empty profile for the beam can be well approximated by a sphere of
(particle band with 0.5 E/w=1.8 forl =0,2, . . . ,30 for the constar]t mtensny for<r, and zero intensity for>r, W|th
|g) atoms in the normal phase. r denoting the distance to the center_of the trap. That is, we
We note that the peaks for the superfluid phase are sharpkke Q(r)=Q0(ro—r) in Eq. (22) with ro=2lp,. From
than the peaks for the normal phase. This is because tfdd. 7, we see thatg(r)=6w and W(r)=15 for r
lowest QP bands for thigy) atoms are almost degenerate as<2lho- Thus, the effective local potential for the) atoms is
a function ofl in the superfluid phase, as can be seen fromttg~46.50. We therefore takeu=46.50 and geg=gey
Fig. 6. These states are strongly influenced by the pairing=0 in order to have the same effective local chemical po-
field, which “pushes” them away from the center of the trap. tential for|g) and|e) in the center of the trap. The result is
They are concentrated in the region between where the paighown in Fig. 8. Since the system is approximately homoge-
ing field and the trapping potential are significdB,20), neous for <2, one could expect the current profile to be
and they thus do not feel the Hartree field. Therefore, theitvell described by Eq(13), with ue=uy=46.5 and Ag
dependence on the quantum numbisrmuch weaker thanin = 6. We therefore also plot the result predicted by 8d).
the normal phase. Here we takeu,=uy=46.5% and Ag=6w and we have
We have performed calculations for a number of differentnormalizedl (A) to a volume ofV=47r3/3. We have taken
parameters and we have observed the general behavior afrather large value df = 1w such that the discrete nature of

FIG. 6. The lowest QP energigs, | as a function of the angular
momentuml; parameters are the same as in Fig. 4.
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(13), which, however, reproduces the general shape of the
current profile well. If we had chosen a larger system, the
individual peaks would be more numerous and smaller on
the scale of the gapg(r=0) and the agreement between
the homogeneous approximation and the exact result would
probably be even better.

We conclude that by concentrating the beam intensity to
the center of the cloud where the gas can be to a good ap-
proximation regarded as homogeneous, the current profile
I(A) is well described by the results presented in Sec. Il A.
An important result is that by adjusting the parameters such
that the local chemical potentials are the sgmg—Wy(r
=0)=pu.—W,(r=0)], one should be able to measure di-
rectly the size of the gap in the center of the cloud. It is
. . . : . . . _ _ simply given by the threshold detuning energy below which
: i i i i i ; ; i the observed current should be zero: [fdf=< A5 the current

0 1 2 3 4 5 6 7 8 9 10
I(A)=0.
Mo (4)
FIG. 7. The pairing fieldAg(r) and Hartree fieldW(r) VIl. CONCLUSIONS

=g {¥gty) in units of v; parameters are the same as in Fig. 4. The observation of the predicted BCS state in gases of
trapped atomic fermions poses a double challenge. The order
the trap spectrum is washed out. Note that a finite imaginarparameter is small, thus a sensitive probe has to be found.
part I' of the QP energies corresponds to convoluting EqFurthermore, the trapping potential leads to the appearance
(13) with a Lorentzian of widthl". of in-gap low-energy excitations, which may make it difficult
As can be seen, there is a good agreement between tff resolve the gap energy. In this paper, we have presented a
exact numerical result and the prediction based on(Eg).  Method based on the transfer of atomic population over a
Especially, the current is zero for6w<A=<6w as pre- Superconductor—normal state interface. This interface is ef-
dicted by Eq.(13), since one either needs to break a Coopelfe_ctlvely created by using a laser to couple |nterr_1al states
pair with pairing energy~Ag(r=0) to produce a current with Iarge and smgll scattering Iengths. The population trans-
into|e) (=A=—6w) or one has to create a QP with energyfe_r requwes_breaklng a Cooper pair _and the extra energy for
minimum ~Ag(r =0) (=A=6w) to generate a current into this is prowde(_j by the laser detuning. The change in the

there are only=500 particles trapped in the regior=2l},
for the parameters given above. Clearly, these peaks cann
be reproduced by the homogeneous treatment given by E

pmogeneous system, and we investigated the feasibility of

e method in different physical regimes.

" We found that, in the case of a constant laser profile, the
clearest signatures of the BCS state are observed when it is
assumed that there are initially no atoms in the normal state.
Furthermore, the scattering length between the normal state
atoms and the Cooper-paired ones is assumed to be about
half of the scattering length between the two Cooper-paired
ones; this causes all the atoms to see the same Hartree field.
In this physical situation, the effect of the BCS state is par-
ticularly simple and clear: the maximum in the current of
population as a function of the detuning is shifted and the
peak becomes asymmetric. Although this would probably be
the optimal choice, other initial conditions and probe param-
eters lead to clear signatures of the BCS state as well.

To avoid the problems arising from the nonhomogeneous
trapping potential, we propose to probe only the middle of
: : the trap. The order parameter is effectively homogeneous in
; ; the middle and the wave functions of the in-gap excitations
1o % % are located away from the center. In practice, this kind of

probing can be done by using two orthogonal Raman beams

FIG. 8. The current = —(N,) for fg=me=46.5 (trap unit$ that intersect only in the middle of the trap. We have shown
andgey=gey =0. The solid line is the numerical result obtained by that indeed this leads to a result very similar to the one in the
the inhomogeneous case treatment but with the laser focused on th@omogeneous case: the maximum of the current is shifted
center of the trap, whereas the dashed line is based on the homogexactly by the amount of the gap energy. This allows a direct
neous case result E¢L3), with Ag=6. measurement of the gap energy.

o ! ! T T T
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20

-30
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