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Laser-induced collective excitations in a two-component Fermi gas

M. Rodriguez1 and P. To¨rmä2
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~Received 22 February 2002; published 5 September 2002!

We consider the linear density response of a two-component~superfluid! Fermi gas of atoms when the
perturbation is caused by laser light. We show that various types of laser excitation scheme can be transformed
into linear density perturbations; however, a Bragg spectroscopy scheme is needed for transferring energy and
momentum into a collective mode. This makes other types of laser probing schemes insensitive for collective
excitations and therefore well suited for the detection of the superfluid order parameter. We show that, for the
special case when laser light is coupled between the two components of the Fermi gas, density response is
always absent in a homogeneous system.
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I. INTRODUCTION

Fermionic atoms have already been cooled well below
Fermi temperature@1#. Once the quantum regime has be
achieved, the predicted BCS superfluid transition@2# for two
different hyperfine states with attractive interactions betw
them would be the next goal to achieve. There are sev
methods proposed for probing the superconducting
@3–6#. Some of them are based on the use of laser light.
instance, it has been proposed to measure the superfluid
herence and the existence of the superfluid gap by the
sorption of almost on-resonance laser light coupled betw
the two hyperfine states@4# or between one of them an
another atomic hyperfine state@3#. The use of off-resonan
~or very low intensity! laser light@5# has also been propose
There both hyperfine components are coupled to other
cited states not involved in the pairing, and the excited s
populations remain negligible.

In this paper we review and analyze the linear dens
response of the system to the different laser excitations in
collisionless regime where the lifetime of the quasipartic
is much longer than the period of the applied field. The m
tivation for studying the response is twofold. First, in t
above-mentioned probing schemes for the gap a below
density response~e.g., Anderson-Bogoliubov phonons!
would be undesirable because the schemes rely on the
sence of below-gap excitations. Therefore it is of interes
clarify in what kind of laser probing schemes density
ponses can be avoided. Second, the density response
may be the object of study and the laser excitation sche
that can produce a response are of interest.

Off-resonant laser excitation caused by two intersect
waves which form a density grating in space and time~Bragg
spectroscopy! has been used to induce collective excitatio
in atomic Bose-Einstein condenstates@7#. In the case of near
resonant laser excitations, we transform the nondiago
atom-light interaction Hamiltonian into a form of a densi
perturbation. We show that the initial Hamiltonian of th
interacting two-component Fermi gas is preserved by
transformation in case of a contact interaction and therefo
standard linear density response calculation for a BCS
tem can be applied. In general, an intensity grating in sp
1050-2947/2002/66~3!/033601~6!/$20.00 66 0336
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and time is needed for providing momentum and ene
transfer for density perturbations. We show that when
laser light is coupled between the two paired hyperfine co
ponents, phonons cannot be excited even when the l
forms an intensity grating. We will also discuss the conn
tion to other light-induced collective excitations such as p
laritons @8#.

In Sec. II, the Hamiltonian for a two-component Ferm
gas is given and the density response is defined. The l
probing schemes considered in this article are summarize
Sec. III. In Sec. IV we transform the perturbation caused
the probing lasers into a density perturbation by approp
rotation of the coupled states. The results are presente
detail in Sec. V and summarized in Sec. VI. The linear
sponse calculation is presented in the Appendix.

II. THE SYSTEM

The Hamiltonian for the two-component Fermi gas, i
cluding only two-body interactions between the atoms re

H05E dr (
a5↑,↓

Fca
†~r !S 2

¹2

2m
1Va~r !2maDca~r !G

1
1

2 (
a,b5↑,↓

E drE dr 8gab~r2r 8!

3ca
†~r !cb

†~r 8!cb~r 8!ca~r !, ~1!

where the two hyperfine states trapped are denoted by↑ and
↓. When the interactiong↑↓(r2r 8) is attractive, the system
has been predicted to undergo a BCS transition@2# associ-
ated with the appearance of an order parameter. We ass
the system to be below the critical temperature and
HamiltonianH0 is treated within the BCS approximation.

The density response of the system to perturbatio
caused by, e.g., probe lasers or the trapping fields, is stu
in the linear response regime@9#. The density perturbation is
a linear function of an external potentialU(r ,t) expressed
through the density-density response functionx(r ,t;r 8,t8):
©2002 The American Physical Society01-1
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dn~r ,t !5dn↑~r ,t !1dn↓~r ,t !

5E drdtx~r ,t;r 8,t8!U~r ,t !, ~2!

where the density operators are defined in the usual
na5↑,↓(r )5ca

†(r )ca(r ). Fourier transforming the previou
expression one obtains

dn~k,v!5x~k,v!U~k,v!. ~3!

The poles of the reponse functionx give the collective
modes of the system while its modulus gives the spec
weight of the modes.

It is known that a perturbation of the formU(r ,t)
3@c↑

†(r )c↑(r )1c↓
†(r )c↓(r )# leads in the long wavelengt

limit to appearance of the Anderson-Bogoliubov phon
@10–12#, that is, a collective mode with energy below th
superconducting gap.

In this paper we study the reponse functionx(k,v) and
potentialU(k,v) for a perturbationH8 created by different
laser probing schemes. Most of the schemes have been
sidered in the literature as proposed techniques for obser
the superconducting gap.

III. PROBING SCHEMES

A. Laser coupling between two states

(a) Coupling the two paired states.Let us assume that th
states↑ and↓ are coupled by light@4#. Using the rotating-
wave approximation~RWA! @13#, the interaction of the lase
light with the matter fields can be described by a tim
independent Hamiltonian in which the detuningd plays the
role of a chemical potential and a Rabi frequencyV(r ) char-
acterizes the local strength of the interaction. The pertur
tion Hamiltonian is H85Hm1HT , where the transfer
Hamiltonian (HT) andHm are given by

HT5E drV~r !c↑
†~r !c↓~r !1V* ~r !c↓

†~r !c↑~r !,

Hm5
d

2E drc↑
†~r !c↑~r !2

d

2E drc↓
†~r !c↓~r !. ~4!

In principle, one can imagine a direct coupling of the state↑
and ↓ by one field, in which cased and V correspond di-
rectly to that field. In practice, for coupling of two hyperfin
states which have an energy difference far from any la
frequency one may prefer a Raman transition. In that c
the Rabi frequencies andd depend on the parameters fro
both lasers, especiallyV}V1* V2.

(b) Coupling to a nonpaired state.When one of the state
a5$↑ or ↓% is coupled to some excited hyperfine statee @3#,
the perturbation reads

HT5E drV~r !ca
†~r !ce~r !1V* ~r !ce

†~r !ca~r !,
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d

2E drca
†~r !ca~r !2

d

2E drce
†~r !ce~r !. ~5!

(c) Far-off-resonant light.In @3,4# the coupled light was
proposed to be almost on resonance, that is, atomic pop
tion is transferred in the excitation process. In@5# coupling of
the paired states with some excited states was assumed
done by far-off-resonant or very weak intensity light, mea
ing that the excited state population remains negligible a
the excited state can be eliminated from the problem. F
off-resonance coupling can be treated by starting with
initial Hamiltonian of the same form as Eq.~5!; then after
adiabatically eliminating the excited states one arrives
(uVu2/d)ca

†ca ~cf. Sec. IV!.
Polaritons are predicted to appear in thermal atomic ga

and Bose condensates@8# whenever the wavelengthl of the
exciting laser is large compared to the interparticle distan
l3n@1, and the process is nearly resonant, i.e.,d<nd2

5gnl3. Heren is the density of the gas,d the dipole mo-
ment of the atomic transition (}V) andg the decay rate. In
our case the conditionl3n@1 is valid. However, in cases~a!
and~b!, the transfer of population is between two long-live
hyperfine states~rather than a transfer to some highly excit
state!. The transfer process is realized by a Raman~or mi-
crowave! transition where both of the participating las
fields are far detuned from the intermediate excited st
Thus the second condition is valid neither in cases~a!,~b! nor
in case~c!. Existence of polaritons in a BCS-paired gas u
der suitable conditions would be an interesting topic of f
ther study.

B. Space and time dependence of the perturbation

(d) Spatial variation of the intensity.The common way of
creating intensity gratings used, e.g., for creating collect
excitations in Bose-Einstein condensates@7# is to use two
intersecting waves. When two intersecting waves with
same polarization but different wave vector and frequen
are coupled to the same two-level system, the total R
frequency isV5V1eik1•r2 iv1t1V2eik2•r2 iv2t. After mak-
ing the RWA for the frequency v1 , V5V1eik1•r

1V2eik2•r1 iv12t wherev125v12v2.
Also the beam profile may vary spatially on the cloud s

scale. The Rabi frequency would then be, for instan
V(r )}e2r 2/(2s2) for a Gaussian beam shape.

As will be shown in the following section, the essenti
feature in considering a possible density response is whe
uVu2 is time and space dependent. Clearly, for Bragg sp
troscopy as considered above this is true. For the Gaus
beam profile,uVu2 is dependent on position but not on tim
In contrast, for a single laserV5uVueik•r2 ivt and for a Ra-
man excitationV}uV1uuV2ueik1•r2 iv1te2 ik2•r1 iv2t; thus in
both casesuVu2 is a constant.

(e) Time dependence of the perturbation.As discussed
above, Bragg scattering schemes lead to a time-varying
tensity grating, that is, the energyv12 is transferred to the
system via a perturbation that is proportional to the intens

Another possible source of time dependence is the turn
on of the perturbation. As is usually done in the linear
1-2
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sponse theory@9#, we consider smooth turning on of th
perturbing potential.

Direct intensity modulation of the probing laser~s! would
be one more source of time dependence.

IV. TRANSFORMING H T INTO A DENSITY
PERTURBATION

In order to use linear response theory we have to con
all the perturbing Hamiltonians of the previous section int
density perturbation.

~a! The perturbation termHT involves products of the
field operators of the different atomic states. In the me
field approach they correspond to the Fock ter
^c↑

†(r )c↓(r )&, which are zero. Therefore no linear respon
theory can be directly applied.

A perturbation of the type~note that the two-componentc
here isnot the same as that in the standard BCS theory, u
for instance, in the Appendix!

~c↑
†~r !c↓

†~r !!S d/2 V~r !

V* ~r ! 2d/2D S c↑~r !

c↓~r !
D[c†~r !Wc~r !

~6!

can be diagonalized for anyd andV by an appropiate rota
tion in the space of the two states↑ and↓, wherec5Uc̃ and
U5Rz(a)Ry(b)Rz(g) with Rj (u)5exp(isju), j 5$x,y,z%,
ands j is the corresponding Pauli spin matrix. The transf
mation matrix is

U5S ei (a1g)/2cosb/2 ei (a2g)/2sinb/2

2e2 i (a2g)/2sinb/2 e2 i (a1g)/2cosb/2D . ~7!

The rotated perturbation matrix isU †WU. The off-diagonal
terms are

e2 ig@~d/2!sin~b!2eiaV* sin2~b/2!

1V cos2~b/2!e2 ia# ~8!

and the complex conjugate. Off-diagonal terms that are z
can be obtained by a rotation with the Euler angles$g
50,cosa5(V1V* )/2uVu,tanb522uVu/d% which yields

SAS d

2D 2

1VV* 0

0 2AVV* 1S d

2D 2D ~9!

for the perturbation matrix. This procedure is extensiv
used in describing the interaction of laser light with a tw
level system. The formuVu2/d for far-off-resonant light
comes from Eq.~9! for udu@uVu.

One has to check whether the rotated states experienc
same two-body interaction as the nonrotated ones, tha
whether the rotated states are still described by a Ha
tonian of the initial form which implies BCS pairing. Assum
ing, for simplicity, thatc↑ and c↓ experience the same po
tential Va2ma , we obtain c↑

†(r )c↑(r )1c↓
†(r )c↓(r )
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→c̃↑
†(r )c̃↑(r )1c̃↓

†(r )c̃↓(r ). The kinetic energy term
transforms as “c↑

†(r )“c↑(r )1“c↓
†(r )“c↓(r )

→“c̃↑
†(r )“c̃↑(r )1“c̃↓

†(r )“c̃↓(r ) if the momentum k
transferred by the laser is small. The extra terms coming
the transformation of the kinetic energy are;k,k2. The mo-
mentum of the laser and the recoil energy are very sm
compared to the momentum of the atoms participating in
process~typically close to the Fermi surface,;kF).

The interaction term in the Hamiltonian transform
c↑

†(r )c↓
†(r 8)c↓(r 8)c↑(r )→c̃↑

†c̃↓
†c̃↓c̃↑ in the case of a con-

tact interactiong(r2r 8)}d(r2r 8). As c̃a is a linear com-
bination of the two species↑ and↓, one might expect inter-
action terms between the same species for the new m
fields~interactions between bothc̃↑ andc̃↑ , and betweenc̃↑
andc̃↓). But the interactions of the typec̃ac̃a are forbidden
by fermionic behavior~commutation rules are preserved b
the rotation!. The requirement of a contact interaction is o
vious here:c̃a(r )c̃a(r )50, but c̃a(r )c̃a(r 8) can be non-
zero. As a summary, since the fermionic field commuta
relations are preserved by the rotation, for contact interac
H̃05H0.

We have thus shown that the system can be transfor
in such a way that one can study the collective mode spe
by linear response theory for a BCS system for a pertur
tion of the type U(n↑2n↓), where U(k,v)
5F@AV(r ,t)V(r ,t)* 1(d/2)2#, and the rest of the Hamil-
tonian still corresponds to the BCS Hamiltonian. The ma
difference from the standard linear density response tr
ment for a BCS system is the minus sign betweenn↑ andn↓ .
We will show that this leads to zero overall response in
homogeneous case.

~b! When diagonalizing the interaction Hamiltonian
Eq. ~5! in the same way as in case~a!, the initial Hamiltonian
H0 is not preserved. We thus obtain a perturbationU(na
2ne) with U(k,v) as given above, but with the initia
Hamiltonian modified,H̃0ÞH0.

~c! In the case of coupling to an excited state by fa
detuned light the rotation does not modify the initial Ham
tonian because at the limitudu@uVu the transformed state
are very close to the initial ones,ca;c̃a andce;c̃e ; more-
over, the excited state population is assumed to be neglig
Thus the light-atom interaction Hamiltonian is in the form
a density perturbation, and the initial Hamiltonian is pr
served.

In all these cases,U(k,v) can be either a constan
U(k,v)5U8 or dependent onk and v. The latter happens
when the intensityuVu2 is space and time dependent. No
that thek dependenceVeik•r is not sufficient, that is, the
laser momentum given in a single-laser or Raman two-le
excitation ~near-resonant or off-resonant! is not enough to
transfer momentum through a density perturbation.

V. RESULTS

A. GRPA for the case of light coupled between two
paired states

The response of the system to the perturbationU(k,v)
3(n↑2n↓) in a homogenous system is calculated in the A
1-3
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pendix using the generalized random-phase approxima
~GRPA! following the derivation in@11#. The result is that
for the homogeneous case the responses of the two com
nents are equal but with opposite signs and no collec
modes are excited at any frequencies.

The response of one of the spin components isL115(a
1b)(11g0R)/(12g0R)(g01a1b), where we use the in
tegralsa, b, c, d, andR as defined in@11#. The reponse of the
spin component has the factor (a1b) which atT50 in the
low-q,v region is a1b'2N(eF)cB

2q2/(12D2) where
N(eF) is the density of states at the Fermi surface and
sound velocitycB

25vF
2/3. This factor is very small and i

makes the response for one spin component negligible e
without the cancellation effect. This is because the superfl
cannot participate in the relative motion of the two spin co
ponents@15#. AboveTc , b vanishes and the response of o
of the spins is no longer negligible, as the integrala is some
fraction ofN(eF). However, due to the cancellation the ove
all response is zero.

We have considered the homogeneous case, that is, w
the trapping potential treated within the local density a
proximation is sufficient. The strongly trapped case can
approached by using multipole expansions@16#: the overall
response is not zero for spin-dipole excitations in the trap
case aboveTc . The difference in our results is a cons
quence of the geometry, as in the homogeneous case w
the same spatially uniform response in opposite directi
for both spin species. AsT→0, one gets vanishing respons
also for the inhomogeneous case@16#, at least at energie
below the gap, because one needs to break pairs in ord
have relative motion of the two components.

B. Density response for different probing schemes

(a) Coupling the paired states.The perturbation read
U(n↑2n↓) for the rotated states, whereU(k,v)
5F@AuV(r ,t)u21d2#. When the light is far off resonant, on
can take the limitU(k,v);F@ uV(r ,t)u2/d#. In the case of
homogeneous laser intensityV5uVueik"r, U}d(v)d(k).
There is no density reponse simply becauseU does not pro-
vide the momentum and energy for a collective excitatio

A different behavior arises when using a Bragg scatter
scheme to provide an intensity grating. AssuminguV1u
5uV2u @V1 ,V2 as introduced in Sec. III B case~d!# one
obtains uVu25uV1u2@212 cos(v12t2k12•r )#
;uV1u22 cos(v12t2k12•r ) and the density responsex(v,k)
has to be analyzed atx(v12,k12). The density responsex
gives zero in the homogeneous case for all temperature
one component annihilates the response of the other, an
the inhomogeneous case well belowTc @16#, as considered in
the previous subsection.

For a general case where the beam profile of the la
light gives a spatially varying intensity of the formuV(r )u2

;er 2/s2
, the far-off-resonant perturbation readsU(k,v)

5uV(k)u2/d;es2k2/4. If s is some fractionf of the trap size
RTF , one can estimate the momentum given byp5\/s. A
collective mode with an energy of the order of the gap
ergy ~e.g., half the gap! has momentumq;A3DG /vF @9,10#
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and the ratio between them isp/q5\vT / f DG . For typical
parameters, this could be a non-negligible number; howe
this alone is not enough to produce a density response
cause of the lack of time dependence, i.e.,U(v,k)
}d(v) f (k).

(b) Coupling to an excited state.When diagonalizing the
interaction Hamiltonian in this case the initial Hamiltonia
was modified. Therefore the linear response calculation fo
BCS system cannot be directly applied. One may gue
however, that the arguments about the perturbationU being
time and space dependent will hold also in this case e
when the response functionx has a different form. Therefore
we do not expect a density response except when a B
spectroscopy scheme is used.

(c) Far-off-resonant coupling.When both paired states ar
coupled to some excited states and the light is far detun
the density perturbation potential is proportional touVu2/d.
No collective mode of the system is excited if there is
intensity variation in space and time. When considering
tensity modulations of the typeuVu2;uV1u22 cos(vt2k•r ),
an Anderson-Bogoliubov phonon can be excited@10–12#.

VI. CONCLUSIONS

We have reviewed the density response of some typ
laser excitation schemes. We have shown that, since the
Hamiltonian for a contact interaction is preserved unde
rotation, most of the considered laser excitations can be
pressed in terms of a perturbation acting on the density
this form, the perturbation potential is proportional touVu2

whereV is the ~effective! Rabi frequency. Therefore, eve
when the laser light provides momentum and energyV
}eikL•reivLt), the transformed potential acting as a dens
perturbation is not time and space dependent. This lead
absence of a density response wheneveruVu2 is a constant
spatially and temporally. This makes many proposed la
probing schemes well suited for observing the supercond
ing gap since they do not induce below-gap collective ex
tations.

For Bragg scattering,uVu2} f (r ,t). In this case Anderson
Bogoliubov phonons can be excited, in general. The exc
tion is the case when the laser~s! couple between the two
paired components of the gas. We have shown that, in
homogeneous case, the density response becomes zer
cause the contributions of the components cancel each o
In a harmonic trap, spin-dipole response is predicted for te
peratures nearTc . Therefore, the presence or absence
low-energy collective excitations under a perturbation of
type U(v,k)(n↑2n↓) could be used to observe whether t
trapped system can be approximated by a homogeneous
tem ~local density approximation! or whether the trapping
effects are dominant.
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APPENDIX

The formalism used is based on the functional differen
tion technique as described in@14# following the derivation
in @11#. The response functionx is viewed as a functiona
derivative of the one-particle matrix Green’s functionsG
with respect to the external fieldU(r ,t). To allow for pairing
in the superconducting phase, it is convenient to work wit
single-particle Green’s functionG given by a 232 matrix
defined as

G~1,2![2^TC~1!C†~2!&

5S G↑~1,2! F~1,2!

F* ~1,2! 2G↓~2,1!
D , ~A1!

whereC5(c↑c↓
†)T and 1[(r1 ,t1). Imaginary times~Mat-

subara formalism! are used so that one can deal with fin
temperatures. In the absence of external fields, the equal
(t25t1

1) single-particle Green’s function components r
duce toF(r )[^c↓(r )c↑(r )&, the s-wave order parameter
andG↑,↓(r )5^n↑,↓(r )&.

From the equation of motion of the Green’s function o
gets the generalized Dyson equation forG(1,2) in terms of
G0, the noninteracting single-particle Green’s function, t
matrix self-energyS(1,2) which is evaluated in the pairin
approximation~Hartree-Fock-Bogoliubov!, andW(1) which
is the the external perturbing field matrix.

The density response matrix is obtained in the rand
phase approximation~RPA! by taking the functional deriva
tive of the Green’s function with respect to the external fie
U. One can define the three-point correlation functi
L(1,2,5)[2s3dG(1,2)/dU(5), whose limit L(1,2)
[L(1,11,2) will give the density-density response functio
x(1,2)5L11(1,2)1L22(1,2). Heres3 is the third Pauli ma-
trix.

When deriving the Dyson equation forG(1,2) with re-
spect toU in order to get the three-point correlation functio
L, both the self-energy matrix and the external field matrixW
contribute. The lowest-order~single-bubble! result@11# for L
is given by

L0~1,2,5!52s3E d3̄E d4̄G~1,3̄!
dW~ 3̄,4̄!

dU~5!
G~ 4̄,2!.

~A2!

For the Anderson-Bogoliubov phonon~see@10,11#! the per-
tubation matrix W(1)5U(1)s3, and LAB

0 (1,2,5)

5G̃(1,5)G̃(5,2), where we have introducedG̃[s3G. In
our caseL0(1,2,5)5G̃(1,5)G(5,2) because the perturbatio
matrix W(1)5U(1)I due to the minus sign inU(n↑2n↓).
From now on, we denote by the subindex AB the quantit
that are calculated for the perturbation matrixW(1)
5U(1)s3.

It is useful to rewrite the GRPA integral equations
terms of irreducible two-particle Green’s function
L̄ i j (1,2,5), and for the homogeneous system, to Fou
transform in order to solve coupled equations. The re
reads@11#
03360
-
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Li j ~q,ivn!5L̄ i j ~q,ivn!1
L̄ABi j~q,ivn!g↑↓~q!L̄ l l ~q,ivn!

12g↑↓~q!L̄ABll~q,ivn!
,

~A3!

where equal indices mean summation over the possible
ues. We denote by the subindex AB the three-point corre
tion functions for the Anderson-Bogoliubov phonon type
perturbation.

The sum of diagonal terms reduces to

x~q,ivn!5L11~q,ivn!1L22~q,ivn!

5
L̄ i i ~q,ivn!

12g↑↓~q!L̄ABll~q,ivn!
. ~A4!

This shows that all linear perturbations have the same p
as the Anderson-Bogoliubov phonon~plus possibly some ad
ditional ones!, but the spectral weight depends on the trace
the irreducible two-particle Green’s functionsL̄ i i (q,ivn) of
the specific perturbation.

For a contact interaction@g↑↓(q)5g0#, the equation for
the irreducible correlation function@11# reduces to a set o
linear algebraic equations

L̄ i j ~q,ivn!5Li j
0 ~q,ivn!2LABikl j

0 ~q,ivn!g0L̄kl~q,ivn!,
~A5!

where we have defined the four-index tensorLABikl j
0 , indi-

cating components of the two factor matrices. Defining c
umn vectors L̄5(L̄11 L̄12 L̄21 L̄22)

T and a 434 matrix
L (AB)mn

0 as in @11#, Eq. ~A5! reduces to

L̄5@ I 1g0LAB
0 #21L0. ~A6!

As discussed in@11# one can getLi jkl
0 by Matsubara fre-

quency summations,@Eq. ~4.27! in @11## and using the sym-
metry properties they then reduce just to six independ
elements. For the weak-coupling limit and contact inter
tion, the independent elements are reduced to four:a, b, c,
andd, which are integrals defined in@11# @Eq. ~A8!#. Lm

0 can
be calculated from the 434 matrix by Lm

0T

5(L1l l 1
0 L1l l 2

0 L2l l 1
0 L2l l 2

0 ).
Now we derive the 434 matrix for our case when

W(1)5UI by reconsidering the symmetry properties of t
matrix elements in order to derive the vectorLm

0 that we
insert in Eq.~A6!. The sum of the first and last componen
of L̄m contributes to Eq.~A4! and characterizes the spectr
weight and perhaps some additional poles of the respo
function. Such a perturbation gives from Eq.~A2! the
lowest-order correlation functionL0(1,2,5)5G̃(1,5)G(5,2)
@cf. LAB

0 (1,2,5)5G̃(1,5)G̃(5,2)]. We calculate the 434 ma-
trix Lmn

0 using the symmetry properties of the newLi jkl
0 ele-

ments, in the same fashion as in@11# ~see Appendix A there!,
obtaining
1-5
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Lmn
0 5S a c 2c b

c 2d b 2c

c 2b d 2c

2b c 2c 2a

D . ~A7!

This leads to Lm
0T5(a1b 0 0 2a2b). Multiplying Lm

0

by @ I 1g0LABmn
0 #21 as in Eq.~A6! one getsL̄m

T 5„(a1b)/
(g01a1b) 0 0 2(a1b)/(g01a1b)…. This means
L̄1152L̄22, and the spectral weight in Eq.~A4! vanishes
andx50.

Inserting the well-known result@11,10# L̄ABll52R/(1
1g0R) into Eq. ~A4!, one obtains the spin-density respon
L115(a1b)(11g0R)/(12g0R)(g01a1b), where R5A
14c2/(11g0B) andB[b1d, A[a2b are defined in@11#.

In the case of a general perturbation

W5US 1 0

0 cu
D , ~A8!

wherecu is any real number, the single-bubble result is

Li jkl
0 5G̃i j XS 1 0

0 cu
D

ks

GC
sl

. ~A9!
.

i-

r-

et,

s.
.

y

03360
By calculating the symmetry properties of the elements
Lmn , one obtains Lm

0T5(a1cub c2cuc c2cuc 2cua
2b), which leads to

L̄112L̄225
~cu11!~a1b!

11g0~a1b!
~A10!

and

L̄111L̄225
~12cu!R

11g0R
. ~A11!

The reponse for one spin would be

L115
r u

~11g0R!~11g0B!
~A12!

where r u5g0AB1g02c2@(12cu)12g0(a1b)#/@11g0(a
1b)#1$(a1cub)1g0@a21cub21db(11cu)#%/@11g0(a
1b)#.
s

,
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