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We consider the linear density response of a two-compo(mmgerfluid Fermi gas of atoms when the
perturbation is caused by laser light. We show that various types of laser excitation scheme can be transformed
into linear density perturbations; however, a Bragg spectroscopy scheme is needed for transferring energy and
momentum into a collective mode. This makes other types of laser probing schemes insensitive for collective
excitations and therefore well suited for the detection of the superfluid order parameter. We show that, for the
special case when laser light is coupled between the two components of the Fermi gas, density response is
always absent in a homogeneous system.
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[. INTRODUCTION and time is needed for providing momentum and energy
transfer for density perturbations. We show that when the
Fermionic atoms have already been cooled well below théaser light is coupled between the two paired hyperfine com-
Fermi temperaturg¢l]. Once the quantum regime has beenponents, phonons cannot be excited even when the light
achieved, the predicted BCS superfluid transifidhfor two ~ forms an intensity grating. We will also discuss the connec-
different hyperfine states with attractive interactions betweeiion to other light-induced collective excitations such as po-
them would be the next goal to achieve. There are severd®fitons[8]. o .
methods proposed for probing the Superconducting gap In Sec. ”, the Ham||t0n|a.n fOI‘ a tWO—Component Fermi
[3—6]. Some of them are based on the use of laser light. Fo#as is given and the density response is defined. The laser
instance’ it has been proposed to measure the Superﬂuid C@[Obing schemes considered in this article are summarized in
herence and the existence Of the Superﬂuid gap by the a§.ec. I1l. In Sec. IV we transform the perturbation caused by
sorption of almost on-resonance laser light coupled betweefie probing lasers into a density perturbation by appropiate
the two hyperfine statef4] or between one of them and rotation of the coupled states. The results are presented in
another atomic hyperfine Stat@] The use of off-resonant detail in Sec. V anq Summarizeq in Sec. VI. The linear re-
(or very low intensity laser light[5] has also been proposed. sPonse calculation is presented in the Appendix.
There both hyperfine components are coupled to other ex-
cited states not involved in the pairing, and the excited state
populations remain negligible. l. THE SYSTEM
In this paper we review and analyze the linear density The Hamiltonian for the two-component Fermi gas, in-

response of the system to the different laser excitations in thguding only two-body interactions between the atoms reads
collisionless regime where the lifetime of the quasiparticles
is much longer than the period of the applied field. The mo-

tivation for studying the response is twofold. First, in the 2
HOZ dr 2

v
| lpa(r) __+Va(r)_lu’a ¢a(r)

above-mentioned probing schemes for the gap a below-gap om

density response(e.g., Anderson-Bogoliubov phongns

a=T,

would be undesirable because the schemes rely on the ab- 1 ) ,
sence of below-gap excitations. Therefore it is of interest to ts Z er drigap(r—r’)
o 4 . . aB=1,l
clarify in what kind of laser probing schemes density re-
ponses can be avoided. Second, the density response itself xlpl(r)lp;(r')lpﬁ(r’)lpa(r), 1)

may be the object of study and the laser excitation schemes
that can produce a response are of interest.

Off-resonant laser excitation caused by two intersectingvhere the two hyperfine states trapped are denotef dnyd
waves which form a density grating in space and tiBegg  |. When the interactioy, (r—r’) is attractive, the system
spectroscopyhas been used to induce collective excitationshas been predicted to undergo a BCS transif@nassoci-
in atomic Bose-Einstein condenstaf&$ In the case of near- ated with the appearance of an order parameter. We assume
resonant laser excitations, we transform the nondiagondhe system to be below the critical temperature and the
atom-light interaction Hamiltonian into a form of a density HamiltonianH,, is treated within the BCS approximation.
perturbation. We show that the initial Hamiltonian of the  The density response of the system to perturbations,
interacting two-component Fermi gas is preserved by thisaused by, e.g., probe lasers or the trapping fields, is studied
transformation in case of a contact interaction and therefore i the linear response regini@]. The density perturbation is
standard linear density response calculation for a BCS sys linear function of an external potentibl(r,t) expressed
tem can be applied. In general, an intensity grating in spacthrough the density-density response functigm,t;r’,t"):
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on(r,t)=on.(r,t)+on(r,t o o
rUzem oy H#=§f drwkrwa(r)—zf dryl(nye(r).  (5)
=f drdty(r,t;r',t")U(r,t), (2 ) .
(c) Far-off-resonant lightln [3,4] the coupled light was
proposed to be almost on resonance, that is, atomic popula-
where the density operators are defined in the usual wayon is transferred in the excitation process|%hcoupling of
Ng—1,(r)= 4! (r),(r). Fourier transforming the previous the paired states with some excited states was assumed to be

expression one obtains done by far-off-resonant or very weak intensity light, mean-
ing that the excited state population remains negligible and
on(k,w)=x(k,w)U(k,w). (3)  the excited state can be eliminated from the problem. Far-

off-resonance coupling can be treated by starting with an
The poles of the reponse functiop give the collective initial Hamiltonian of the same form as E¢p); then after
modes of the system while its modulus gives the Spec»[raeptdiabatically eliminating the excited states one arrives at
weight of the modes. (1912 8) gl (cf. Sec. V).

It is known that a perturbation of the fornu(r,t) Polaritons are predicted to appear in thermal atomic gases
X[,ﬂ%r(r)(pT(r)_{_ lﬂf(f)lm(r)] leads in the long wavelength and_ Bose condensat[a&] whenever the V\_/aveleng_vh of 'Fhe
limit to appearance of the Anderson-Bogoliubov phonon€Xciting laser is large compared to the interparticle distance,
[10-12, that is, a collective mode with energy below the \’n>1, and the process is nearly resonant, idsnd’
superconducting gap. =yn\3. Heren is the density of the gas the dipole mo-

In this paper we study the reponse functiptk,») and ~ Ment of the atomi(-:.tragsitiorp(ﬂ) gndy the degay rate. In
potentialU (k, ) for a perturbatiorH’ created by different OUr case the condition®n>1 is valid. However, in cas¢s)
laser probing schemes. Most of the schemes have been ca@P?d(b), the transfer of population is between two long-lived

sidered in the literature as proposed techniques for observirfgyPerfine stategrather than a transfer to some highly excited
the superconducting gap. statg. The transfer process is realized by a Ran@nmi-

crowave transition where both of the participating laser
fields are far detuned from the intermediate excited state.
lll. PROBING SCHEMES Thus the second condition is valid neither in casggb) nor
A. Laser coupling between two states in case(c). Existence of polaritons in a BCS-paired gas un-

i , der suitable conditions would be an interesting topic of fur-
(@) Coupling the two paired stateket us assume that the iher study.

states] and | are coupled by ligh{4]. Using the rotating-
wave approximatiofRWA) [13], the interaction of the laser
light with the matter fields can be described by a time-
independent Hamiltonian in which the detunidgplays the (d) Spatial variation of the intensitythe common way of
role of a chemical potential and a Rabi frequetibfr) char- ~ creating intensity gratings used, e.g., for creating collective
acterizes the local strength of the interaction. The perturbaéxcitations in Bose-Einstein condensal&s is to use two
tion Hamiltonian is H'=H,+Hy, where the transfer intersecting_ waves. Wh(_an two intersecting waves with the
Hamiltonian Hy) andH, are given by same polarization but different wave vector and frequency
are coupled to the same t\ivo-leveL srysi,te{n, the total Rabi
_ + . T frequency isQ =0 e v et el e et After mak-
HT_J dr(n) (N gy (r) + Q7 (N g () ¢(r), ing the RWA for the frequencyw;, Q=0qe*1"
+Qe'ke ot wherew;,= w;— wy.
5 5 Also the beam profile may vary spatially on the cloud size
H#ZEJ dryl(r) g (r) - Ef dry{(ny(r). (4  scale. The Rabi frequency would then be, for instance,
Q(r)=e "2 for a Gaussian beam shape.
L . . . ) As will be shown in the following section, the essential
In principle, one can imagine a direct coupling of the States (ga¢re in considering a possible density response is whether
and | by one field, in which cas@ and ) correspond di- )2 5 ime and space dependent. Clearly, for Bragg spec-
rectly to that field. In practice, for coupling of two hyperfine 55000y as considered above this is true. For the Gaussian
states which have an energy difference far from any lasefeam profile| (1|2 is dependent on position but not on time.
frequency one may prefer a Raman transition. In that casg, -ntrast for a single lasd =|Q|e/*"~i“t and for a Ra-
the Rabi frequencies andl depend on the parameters from man excita,tionQM|Ql||Qzleikl-r—iwlte—ik2~r+iw2t; thus in
both lasers, especial Q7 Q.. both cases$)|? is a constant.

(b) Coupling to a nonpaired stat#/hen one of the states ¢y Time dependence of the perturbatiéys discussed
a={7 or |} is coupled to some excited hyperfine stef@],  apove, Bragg scattering schemes lead to a time-varying in-
the perturbation reads tensity grating, that is, the eneray;, is transferred to the

system via a perturbation that is proportional to the intensity.
_ Another possible source of time dependence is the turning
HT_j drQ(r) gl (r) gre(r) + Q* (NP (1), on of the perturbation. As is usually done in the linear re-

B. Space and time dependence of the perturbation
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sponse theor)[g],. we consider smooth turning on of the Hrﬁ}u(r)%(r)ﬂﬂ(r)%(r). The kinetic energy term
perturbing potential. . . transforms as VYV (N+ VgV (r)
Direct intensity modulation of the probing lag®rwould ViV VIV it th wum k
be one more source of time dependence. = Vi (N Vi(n) ‘ﬂl(.r) g (r) 1 € momentumK
transferred by the laser is small. The extra terms coming into
the transformation of the kinetic energy aré,k?. The mo-
mentum of the laser and the recoil energy are very small
compared to the momentum of the atoms participating in the

In order to use linear response theory we have to conveRrocessitypically close to the Fermi surface;ke).
all the perturbing Hamiltonians of the previous section into a TTheT Interaction  term N',?N TtDeL Hamiltonian  transforms
density perturbation. P () (r) g (r) gy (1) — b by by i the case of a con-

(a) The perturbation ternH; involves products of the tact interactiong(r—r")<d(r—r'). As ¢, is a linear com-
field operators of the different atomic states. In the mearbination of the two species and |, one might expect inter-
field approach they correspond to the Fock termsaction terms between the same species for the new matter
(#1(r)y,(r)), which are zero. Therefore no linear responsefields (interactions between boih, andy, , and betwee,
theory can be directly applied. and|). But the interactions of the typg, i, are forbidden

A perturbation of the typénote that the two-componert by fermionic behaviocommutation rules are preserved by
here isnotthe same as that in the standard BCS theory, usedhe rotation. The requirement of a contact interaction is ob-
for instance, in the Appendjix vious here:g,(r)i,(r)=0, but,(r)¢,(r') can be non-
zero. As a summary, since the fermionic field commutator

IV. TRANSFORMING Ht INTO A DENSITY
PERTURBATION

(wT(r)W(r))( 812 Q(r) ) ( '/ﬁ(f)) — (1) Wi(r) relations are preserved by the rotation, for contact interaction
PR ax () —a2)\ gy (r) Ho=Ho,.
(6) We have thus shown that the system can be transformed

) ) ) in such a way that one can study the collective mode spectra
can be diagonalized for any and() by an appropiate rota- py |inear response theory for a BCS system for a perturba-

tioninthespaceofthetwostateandl,Where¢=ul~pand tion of the type U(n;—n;), where U(k ,w)

U=R,(a)Ry(B)R,(y) with R;(8)=explo;6), j={x,y,z}, =FNO(r,t)Q(r,t)* +(8/2)?], and the rest of the Hamil-
and g is the corresponding Pauli spin matrix. The transfor-tonian still corresponds to the BCS Hamiltonian. The main
mation matrix is difference from the standard linear density response treat-
(et )12 (e )2 ment for a BCS system is the minus sign betweeandn .
u=| € cospl2 € sinpl2 7 e will show that this leads to zero overall response in the

homogeneous case.

(b) When diagonalizing the interaction Hamiltonian of
The rotated perturbation matrix i8"W/. The off-diagonal  Eq.(5) in the same way as in caé®, the initial Hamiltonian
terms are Hy is not preserved. We thus obtain a perturbatidiin,

0 ) S —ng) with U(k,w) as given above, but with the initial
e [(/2)sin(B) — €' "Q*si’( B12) Hamiltonian modifiedH o+ Ho.
+Q co(BI2)e 1] (8) (c) In the case of coupling to an excited state by far-
detuned light the rotation does not modify the initial Hamil-
and the complex conjugate. Off-diagonal terms that are zertpnian because at the limj|>|Q| the transformed states
can be obtained by a rotation with the Euler ang{es are very close to the initial oneg,,~ 1, andy,~ i, ; more-
=0,cosa=(Q+0*)/2|Q|,tang= —2|Q|/ 8} which yields over, the excited state population is assumed to be negligible.
Thus the light-atom interaction Hamiltonian is in the form of

[[o 2 a density perturbation, and the initial Hamiltonian is pre-
— * ’
2 +Q0 0 served.

5 9 In all these casesU(k,w) can be either a constant
U(k,w)=U" or dependent ok and w. The latter happens
when the intensityQ|? is space and time dependent. Note

, _ _ , _ that thek dependencée'®" is not sufficient, that is, the

for the perturbation matrix. This procedure is extensivelyjager momentum given in a single-laser or Raman two-level

used in describing the mtergchon of laser light with a tWo- oy citation (near-resonant or off-resonaris not enough to
level system. The form€|*/5 for far-off-resonant light  {ansfer momentum through a density perturbation.

comes from Eq(9) for |8]>|Q|.

One has to check whether the rotated states experience the V. RESULTS

same two-body interaction as the nonrotated ones, that is,

whether the rotated states are still described by a Hamil-

tonian of the initial form which implies BCS pairing. Assum-

ing, for simplicity, thaty, and ¢, experience the same po-  The response of the system to the perturbatit(k, w)

tential V,—u,, we obtain w{(r)z//T(r)Jr z,/z](r)wl(r) X(n;—n)) in a homogenous system is calculated in the Ap-

—e (@ Nl2ginglp e (et N2cosp/2)"

0 _ *
QQ+2

A. GRPA for the case of light coupled between two
paired states
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pendix using the generalized random-phase approximatioand the ratio between them Bg=7%w1/fAg. For typical
(GRPA) following the derivation in[11]. The result is that parameters, this could be a non-negligible number; however,
for the homogeneous case the responses of the two comptlis alone is not enough to produce a density response be-
nents are equal but with opposite signs and no collectivéause of the lack of time dependence, i.&l(w, k)
modes are excited at any frequencies. *6(w)f(k). . ) ) .

The response of one of the spin components jis=(a (b) Coupling to an excited stat&#/hen diagonalizing the

. interaction Hamiltonian in this case the initial Hamiltonian
+ b)(1+goR)/(1—goR)(go+_a+ b.)’ where we use the in- . oodified. Therefore the linear response calculation for a
tegralsa, b, ¢, d, andR as defined iff11]. The reponse of the BCS system cannot be directly applied. One may guess,

spin component has the factaa{b) which atT=0 inthe  powever, that the arguments about the perturbatidseing
low-q, region is a+b~—N(e:)cgg?/(12A%) where time and space dependent will hold also in this case even
N(eg) is the density of states at the Fermi surface and thevhen the response functignhas a different form. Therefore
sound velocityc3=v?2/3. This factor is very small and it we do not expect a density response except when a Bragg
makes the response for one spin component negligible evelPectroscopy scheme is used. _

without the cancellation effect. This is because the superfluid (¢) Far-off-resonant couplingVhen both paired states are
cannot participate in the relative motion of the two spin com-COUpled to some excited states and the light is far detuned,

. the density perturbation potential is proportional| €]/ 5.
ponents[_lS]._AboveTC, bvam_sr_\es and the_respo_nse of O"€No collective mode of the system is excited if there is no
of the spins is no longer negligible, as the integrdd some

; ! intensity variation in space and time. When considering in-
fraction ofN(eg). However, due to the cancellation the over- tensity modulations of the typl|2~|Q,|22 cosgt—k-r),

all response is zero. . an Anderson-Bogoliubov phonon can be excifé—17.

We have considered the homogeneous case, that is, when
the Frapping_poter!tifal treated within the local density ap- VI. CONCLUSIONS
proximation is sufficient. The strongly trapped case can be _ _ .
approached by using multipole expansigfs]: the overall We have reviewed the density response of some typical
response is not zero for spin-dipole excitations in the trappetSer excitation schemes. We have shown that, since the BCS
case abovel.. The difference in our results is a conse- Hamiltonian for a contact interaction is preserved under a
quence of the geometry, as in the homogeneous case we dggation, most of the considered laser excitations can be ex-
the same spatially uniform response in opposite directionfressed in terms of a perturbation acting on the denszlty. In
for both spin species. A§—0, one gets vanishing response this form, the perturbation potential is proportional|f|
also for the inhomogeneous calE], at least at energies Where(} is the (effective) Rabi frequency. Therefore, even
below the gap, because one needs to break pairs in order Y§1en the laser light provides momentum and enerfly (

have relative motion of the two components. xe'tTelent), the transformed potential acting as a density
perturbation is not time and space dependent. This leads to

absence of a density response whend¢Hf is a constant
_ _ ) spatially and temporally. This makes many proposed laser-
(a) Coupling the paired statesthe perturbation reads proping schemes well suited for observing the superconduct-
U(n;—n;) for the rotated states, whereU(k,w) ing gap since they do not induce below-gap collective exci-
=FV|Q(r,t)|“+ 6%]. When the light is far off resonant, one tations.
can take the limitJ (k,»)~ 7| Q(r,1)[?/5]. In the case of For Bragg scattering()|?ef(r,t). In this case Anderson-
homogeneous laser intensi) =[Q|e’", Uxd(w)8(k).  Bogoliubov phonons can be excited, in general. The excep-
There is no density reponse simply becallsdoes not pro-  tion is the case when the laggrcouple between the two
vide the momentum and energy for a collective excitation. paired components of the gas. We have shown that, in the
A different behavior arises when using a Bragg scatterinthomogeneous case, the density response becomes zero be-
scheme to provide an intensity grating. Assumiffd,|  cause the contributions of the components cancel each other.
=[Q,| [Q,,Q, as introduced in Sec. IlIB cas@)] one  |n a harmonic trap, spin-dipole response is predicted for tem-
obtains |Q12=]Q4]7[2+2 cos@it—ki2 T)]  peratures neafl,. Therefore, the presence or absence of
~[04]?2 cosyt —ky, 1) and the density responsgw,k)  low-energy collective excitations under a perturbation of the
has to be analyzed at(w1,,k12). The density response  type U(w,k)(n;—n;) could be used to observe whether the
gives zero in the homogeneous case for all temperatures, aapped system can be approximated by a homogeneous sys-
one component annihilates the response of the other, and fesm (local density approximationor whether the trapping
the inhomogeneous case well beldw[16], as considered in  effects are dominant.
the previous subsection.
For a general case where the beam profile of the laser ACKNOWLEDGMENTS
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B. Density response for different probing schemes

033601-4



LASER-INDUCED COLLECTIVE EXCITATIONS INA . .. PHYSICAL REVIEW A66, 033601 (2002

APPENDIX Lagij(Qi@n)g(@)Ly (diwp)

The formalism used is based on the functional differentia- il (% @n) = Lij (Gl @n) + 1—g: () Lagy(Qi
. . ; X e 11 Agll(Qsiwy)
tion technique as described [ii4] following the derivation (A3)
in [11]. The response functioy is viewed as a functional
derivative of the one-particle matrix Green’s functio@s
with respect to the external field(r,t). To allow for pairing
in the superconducting phase, it is convenient to work with
single-particle Green’s functios given by a 2<2 matrix
defined as

where equal indices mean summation over the possible val-
ues. We denote by the subindex AB the three-point correla-
&ion functions for the Anderson-Bogoliubov phonon type of
perturbation.

The sum of diagonal terms reduces to

G(1,2=—(T¥(1)¥'(2))
(G122 F(12
F*(12 -G(2)

x(Q,iwq)=L11(0,i wp) + L0, i )
(Al) El(qu wn)

B 1-g;(@)Lagn(gio,)

(A4)
where\Pz(wﬂpDT and 1=(rq,7;). Imaginary timeqMat-

subara formalisthare used so that one can deal with finiteT is sh that all li turbati h th |
temperatures. In the absence of external fields, the equal tim&IS Snows that all finear perturbations nave the same poles

(r,=7]) single-particle Green’s function components re_a_s_the Anderson-Bogoliubov pho_n(mus possibly some ad-
duce toF(r)=(y,(r):(r)), the swave order parameter, ditional oneg, but the spectral weight depends on the trace of

Z the irreducible two-particle Green’s functiohs (q,i of
andGT,L(r)—(nT,l(_r». ; ; the specific erturbgtion Ba(aten
From the equation of motion of the Green’s function one P pertur " )
gets the generalized Dyson equation @(1,2) in terms of For a contact interactiofg; | (q) =go], the equation for

Go, the noninteracting single-particle Green's function, thethe irreducible correlation functiofil1] reduces to a set of

matrix self-energy2 (1,2) which is evaluated in the pairing linear algebraic equations
approximation(Hartree-Fock-Bogoliubgy andW(1) which - -
is the the ex.ternal perturbing fi.eld. matrix.. . Lij(aiwy) = Lﬂ(q,iwn)— L%Bik”(q,iwn)goLk|(q,iwn),
The density response matrix is obtained in the random (A5)
phase approximatiofRPA) by taking the functional deriva-
tive of the Green’s function with respect to the external field
E( 1(;n5e)Eca|; ggf(lrllez)jgi (g])ree'svoh'gtsecorlrﬁrll?'ml (flug)cnoncating components of the two factor matrices. Defining col-
164, — 03 l I 3 T /7 7 7 7 AT .
=L(1,1%,2) will give the density-density response function UM vectors L=(LiLiabay Lo and a 4<4 matrix
¥(1,2)=L14(1,2)+ L,(1,2). Hereos is the third Pauli ma-  L(agmn @S in[11], Eq. (AS5) reduces to
trix.
When Qeriving the Dyson equatiqn f@(l,Z)_with re- L=[1+goL%g] L. (AB)
spect toU in order to get the three-point correlation function
L, both the self-energy matrix and the external field matyix ) ) 0
contribute. The lowest-ordésingle-bubblgresult[11] for L AS discussed irf11] one can geLj,, by Matsubara fre-

where we have defined the four-index tenk@rsiklj, indi-

is given by quency summ_ation$Eq. (4.27) in [11]]_ and using the sym-
metry properties they then reduce just to six independent
[ —  _oW3E4 elements. For the weak-coupling limit and contact interac-
L%(1,2,5 = —03J d3J’ d4G(1’3)WG(4’2)' tion, the independent elements are reduced to faub, c,
(5) A2) andd, which are integrals defined [A1] [Eqg. (A8)]. L% can

be calculated from the X4 matrix by L9
For the Anderson-Bogoliubov phondsee[10,11]) the per- = (L LYo Loy L)

tubation matrix W(1)=U(1)os, and L%g(1,2,5) Now we derive the %4 matrix for our case when
=3(1,5)5(5,2), where we have introduce@=o5G. In W(1)=UZ by reconsidering the symmetry properties of the

our case 81,25)- GLSYG(5.2) because the peruraton AU SETENS 1 order 9 Coree e veckh v
matrix W(1)=U(1)Z due to the minus sign iJ(n;—n). q: ' P

From now on, we denote by the subindex AB the quantitie®f Lm contributes to Eq(A4) and characterizes the spectral
that are calculated for the perturbation matria/(1)  Weight and perhaps some additional poles of the response
—U(1)os. function. Such a perturbation gives frorD EGA2) the

It is useful to rewrite the GRPA integral equations in lowest-order correlation functioh®(1,2,5)=G(1,5)G(5,2)
terms of irreducible two-particle Green's functions [cf. L35(1,2,5)=G(1,5)G(5,2)]. We calculate the 44 ma-
Lij(1,2,5), and for the homogeneous system, to Fourietrix LY, using the symmetry properties of the ne\?yk| ele-
transform in order to solve coupled equations. The resuliments, in the same fashion ag ] (see Appendix A thepe
reads[11] obtaining
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a c —-c¢c b

0 c —-d b -

L b d —c (A7)
-b ¢ —-c -—-a

This leads toL%'=(a+b 0 0 —a—b). Multiplying L,
by [1+9oL%s] "t as in Eq.(A6) one getsLT =((a+b)/
(gota+b) 0 0 —(a+b)/(get+a+h)). This means
Ly;=—Ly,, and the spectral weight in EGA4) vanishes
and y=0.

Inserting the well-known resulf11,10 Lg;=2R/(1

+goR) into Eqg.(A4), one obtains the spin-density response

Lii=(a+b)(1+ggR)/(1—-goR)(go+a+b), where R=A
+4c?/(1+9gyB) andB=b+d, A=a—Db are defined if11].
In the case of a general perturbation

1 0
0 ¢/’

wherec, is any real number, the single-bubble result is

goeaft 2
ijkl = 3ij -
g 0 ¢y, u

(A8)

(A9)

PHYSICAL REVIEW A 66, 033601 (2002

By calculating the symmetry properties of the elements of
Lnn, One obtains L%Tz(a+cub c—c,Cc c—Cc,C —c,a
—b), which leads to

T _(cyt 1)(a+b) AL0
117 k22— 1+go(a+ b) ( )
and
[t Ly R A1l
ntla 11 goR (A11)
The reponse for one spin would be
r
- (A12)

LT T gR) (17 00B)

where r,=goAB+go2c?[(1—c,)+2go(a+b)]/[1+gy(a
+b)]+{(a+c,b)+go[a®+c b?+db(1+cy) 1}/[1+go(a
+h)].
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