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Vortices in Trapped Superfluid Fermi Gases
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We consider a superfluid of trapped fermionic atoms and study the single vortex solution in the
Ginzburg-Landau regime. We define simple analytical estimates for the main characteristics of the sys-
tem, such as the vortex core size, temperature regimes for the existence of a vortex, and the effects of
rotation and interactions with normal fermions. The parameter dependence of the vortex core size (heal-
ing length) is found to be essentially different from that of the healing length in metallic superconductors
or in trapped atomic Bose-Einstein condensation in the Thomas-Fermi limit. This is an indication of the
importance of the confining geometry for the properties of fermionic superfluids.
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Experiments on cooling of trapped gases of Fermionic
alkali-metal atoms [1–4] are at the level where the achieve-
ment of the predicted BCS transition [5,6] can be antic-
ipated. Cooper-paired trapped atoms allow us to study
and test the BCS theory in a controlled manner— for in-
stance the classic problem of the BCS-BEC (Bose-Einstein
condensation) crossover when the interparticle attraction
varies [7] could be studied using the possibility to tune the
interatomic scattering length. Several methods for observ-
ing the existence of a gap in the excitation spectrum of the
superfluid Fermi gas have been proposed [8,9].

Vortices are a macroscopic signature of the superflu-
idity, and the vortex core size reflects the typical coher-
ence lengths of the system. Vortices have played a major
role in experimental and theoretical studies of superfluid
helium [10] and lately, of condensates of Bosonic atoms
[11]. We consider vortex solutions for superfluid trapped
Fermi gases. Fermionic alkali gases are dilute and weakly
interacting; moreover, the origin of superfluidity is s-wave
(singlet) pairing between atoms in two different hyper-
fine states, whereas p-wave (triplet) scattering is negligible
[6,12]. Thus the system is very different from superfluid
3He and can be described by simple BCS theory with a
single complex-number order parameter.

Although a full description of the system would require a
careful investigation of the Bogoliubov– de Gennes (BdG)
equations [13,14], we have chosen as a first attempt to
characterize the system using the Ginzburg-Landau (GL)
equation in a trapped geometry [15]. This allows us to de-
fine intuitive estimates for the vortex core size and for the
temperature regimes where a vortex solution exists. Fur-
thermore, the effects of rotation as well as of interactions
with normal fermions [position-dependent Hartree fields
(HF)] can be incorporated into the formalism. We estimate
their effects on the critical temperature and the vortex so-
lution, and develop a self-consistent method for treating
the effect of the Hartree fields. We also discuss how our
results can be used in estimating the possibilities for ob-
serving a vortex.
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The GL equation for atoms in two different hyperfine
states confined in a symmetric trap of frequency V is given
by [15]∑
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where l � 2p
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F jaj��h̄p� is the interaction parameter

(,1 for dilute systems), T �0�
c is the critical temperature for

the corresponding homogeneous system, D�R � r�RTF�
is the spatially dependent order parameter, and RTF is
the cloud size RTF � �2EF��mV2��1�2 given by the
Thomas-Fermi (TF) approximation [16].
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equation becomes analogous to the Gross-Pitaevskii
(GP) equation for bosonic atoms [11] for particles of
an effective mass m� in a harmonic confining potential
with an effective frequency v� and v�

z � v�
p

A. The
nonlinear term plays the role of repulsive interparticle
interaction, and Em�T� is the “chemical potential” of the
system. Strong superfluidity, compared to trap energy
scales, means large effective mass and small effective
trapping frequency.

We consider a two-dimensional geometry where the
single vortex is uniform along its axis (z axis). Equa-
tion (3) then reads∑
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and now Em�T � � ln�Tc�T� 1 ṽ. We have used the
steepest descent method described, e.g., in [17] using
imaginary time propagation to search for the ground state
solution of Eq. (6). We applied the Crank-Nicholson finite
differencing method used to solve the GP equation, but
without normalization after each step as the size of D is
determined by the nonlinear term.

Vortex core sizes.—The size of the vortex core reflects
the healing length of a superfluid because within this dis-
tance, the order parameter “heals” from zero up to its bulk
value. The first guess to estimate the healing length in
our case would be to equate the “kinetic energy” term in
Eq. (6), �1��2m�j2� to the “interaction energy,” as was
done in the case of trapped atomic BEC (GP equation)
[18]. This yields (j is in RTF units)

j2 � 1��2m�C�T� jDj2� , (7)

where jDj2 is the “density” of Cooper pairs (in kBTc units).
In the case of the TF approximation for BEC, the or-
der parameter is substituted by its value in the middle of
the trap. Making a corresponding substitution here gives
j2 �

1
2m�Em�T� which is the same as the definition of the

correlation length in metallic superconductors in the GL
regime. However, it does not correctly describe the nu-
merically obtained values for the healing length because,
for the experimentally feasible parameters used here, the
energy scales in the GL equation do not correspond to the
TF limit of BEC.

We propose a measure for the vortex core size by de-
manding that the kinetic plus potential energy term in
Eq. (6) has its minimum value. This term corresponds to
a vortex in a harmonic trap, that is, the first excited state.
The energetically favored position is thus the maximum of
the first excited state wave function which coincides with
the oscillator ground state length. We thus define
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Figure 1 shows the order parameter for a selected set
of parameters, together with the two estimates, Eqs. (7)
and (8) for the healing length. The results fit excel-
lently with Eq. (8), whereas the deviation from Eq. (7)
is considerable and qualitatively different for small
and large D. The definition of Eq. (8) is a function of
temperature decreasing as T approaches Tc (we have
confirmed this temperature dependence also numerically).
This is an opposite behavior to that of the GL healing
length jGL � 1�

p
1 2 T�Tc appearing in studies of

metallic superconductors and helium. The trapping
energy becomes relatively stronger as T ! Tc because
D decreases. This means stronger confinement for D�r�
and decreasing j. Note that also in BEC, the confinement
determines the healing length if one is away from the TF
regime [19]. Differences to BEC arise, however, from the
temperature dependence of the GL equation and from the
normalization.

Critical temperature for a trapped system.—As pointed
out in [15] one can use the GL equation to estimate the
critical temperature of the trapped system, as compared
to the corresponding homogeneous case. Close to Tc the
nonlinear term is negligible and the GL equation reduces
to the Schrödinger equation for a trapped particle, Em�T�
now denoting the energy. The smallest possible energy
Em�Tc� �

3
2 ṽ is then simply the ground state energy of

the trap, v� 1
1
2 v�

z . Equating 3
2ṽ � v� 1

1
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FIG. 1. Vortex solutions for the order parameter in kBTc units
and in trap units. Solid lines are for V � 2p 3 100 Hz, 1 kHz,
and 3 kHz (N � 3 3 105, jaj � 1140 Å, and T � 0.89Tc).
Dashed lines correspond to N � 105, 3 3 105, 106 (T � 0.8Tc ,
V � 820 Hz, and jaj � 1140 Å). Dot-dashed lines are for
jaj � 985, 1118, and 1608 Å (N � 3 3 105, V � 820 Hz,
and T � 0.89Tc). In all three cases, the highest value of V, N ,
or jaj corresponds to the curve with the largest maximum D.
The healing lengths given by Eqs. (8) and (7) are represented
by * and + , respectively. The estimate for Dmax given by
Eq. (11) is represented by �.
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temperatures when the effects of rotation and Hartree fields
are added. Below we estimate the temperature regimes for
vortex solutions using a similar argument.

Temperature regimes for the existence of a vortex solu-
tion.— The ground state energy of the trapped superfluid
in the quasilinear regime can be estimated as above to
be Em�Tc� � v� (in 2D). A vortex has a higher energy,
and Em�T� � ln�Tc�T� 1 v� must have a large enough
value in order for the GL equation to have a solution. The
minimum extra energy that a vortex in a trapped non-
interacting superfluid requires is the 2D harmonic oscil-
lator energy v� (this is also the vortex energy for a
noninteracting BEC [20]). Thus the maximum tempera-
ture Ty at which Em�T � can provide this extra energy
is given by ln�Tc�Ty� � v�. We have checked the
validity of this estimate for a system of N � 3 3 105

atoms, scattering length jaj � 1140 Å, and trap frequency
V � 820 Hz. The maximum T at which a vortex solution
can exist, estimated by Tc � Tyev�

� Tye0.0146�Tc�Ty�,
is Ty � 0.98Tc. The actual maximum T where the GL
equation gives a numerical solution was about 0.97Tc.
The deviation is due to neglecting the nonlinear term,
and Ty can be understood as the upper bound for the
maximum temperature.

Hartree fields and rotation.— In practical systems,
the Cooper-paired atoms are always interacting with the
normal part of the gas whose density distribution is now
position dependent. Moreover, the whole system may
be rotating, cf. vortices in atomic BEC [11]. The GL
equation used in this paper was derived in [15] using
the TF approximation [16] for the density profile of the
trapped Fermi gas in a harmonic symmetric potential.
We follow this derivation and add a new potential term
V �r� in the local density approximation. This potential
can describe, e.g., the Hartree fields or rotation. It is
assumed to be small enough in the sense that one can still
use the quasiclassical expression for the product of two
Green’s functions in Eq. (7) of [15]. We obtain the GL
solution as given by Eq. (9) of [15] but with a new term
in the expansion of the Fermi energy around R � 0 (see
also [21]) given by ´F �R��´F � 1 2 R2 2 V �R�, where
R � r�RTF and the RTF � yF�V. Note that RTF and V

might have changed because of adding V �r�. Expanding
to second order and derivating with respect to D� the
“potential term” in the GL equation now reads

1 1 2l

2l
�R2 1 V �2��R�� , (9)

where V �2��R� denotes an expansion of V to second order.
The potential V �R� has to be smooth enough for a second
order expansion to be sufficient.

Effect of rotation on the critical temperature and the
healing length.—The TF approximation with a rotation
term V �r� � 2vLz � 2

1
2 mv2r2 gives ´F �R��´F �

1 2 r2 2 �zg�2 in the rotating frame of reference,
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where now RTF � yF�
p

�V2 2 v2� and g � �AV2�
�V2 2 v2��1�2, and A is the asymmetry in the trapping
potential as defined earlier. This means that both m� and
v� change. As the trapping frequency of the atoms is
smaller now, V

r
ho � ��V2 2 v2�V�1�3, the Fermi energy

and l decrease: we define lr � l�1 2 � v

V �2�1�6. This
gives the new homogeneous system critical temperature
Tr�0�

c , and using the same kind of procedure as above for a
nonrotating system, the new healing length jr and critical
temperature Tr

c can be calculated. In the limit � v

V �2 ! 1,
the critical temperature Tr�0�

c ! 0 as for BEC [22] and jr

as well as ln�Tr�0�
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Effect of the normal fermions.—The TF approximation

including the nonpaired fermions was introduced in
[12] giving ´F�R�

´F
� 1 2 R2 1

1
´F

4p h̄2jaj
m n�R�, where

n�R� is the density distribution of the atoms in one
hyperfine state. It was shown that the Hartree field
increases the critical temperature of the system. This
result is also given by our GL treatment: Consider
again the weakly nonlinear regime close to Tc. We
have a Schrödinger equation for a spherically symmetric
potential but with a new term given by the Hartree
field. Because of the smooth shape of the fermionic
distribution one can assume n�R� � n�2��R� and use
V �2��R� � 2

1
´F

4p h̄2jaj
m n�R� in Eq. (9). Thus we have ef-

fectively a new harmonic symmetric potential m��v��2R2�
2 2 C0n�R� � 2EHF 1 m��v�HF�2R2�2 with s �
�v�HF�v��2 . 1. That is, the potential is now deeper
and with higher “frequency.” Because of the new higher
Fermi energy ´

HF
F � ´F 1 EHF the critical temperature

in the corresponding homogeneous system, T �0�HF
c , in-

creases. Simple considerations give ln�THF�0�
c �THF

c � �
ln�T �0�

c �Tc�s1�2. This means that THF
c actually deviates

more from THF�0�
c than Tc from T �0�

c ; the effect of trapping
is enhanced because also the normal fermions feel the
trapping potential. On the other hand, THF�0�

c . T �0�
c ,

and for the parameter values we have considered the
total effect is that the Hartree fields increase the critical
temperature (THF

c � 2Tc�.
Self-consistent solution of normal and superfluid fermi-

ons.—As a nonrigorous but intuitive first guess towards a
self-consistent treatment, we calculate n�r�, instead of the
TF approximation, by the BCS theory in local density ap-
proximation but with D�r� given by the GL equation:

n�r� �
Z d3k

�2p�3 	juk�r�j2f�Ek� 1 jyk�r�j2�1 2 f�Ek��
 ,

(10)

where juk�r�j2, jyk�r�j2 � 1�2�1 6 jk�
q

j
2
k 1 jD�r�j2�

and jk�r� �
h̄2k2

2m 2
4p h̄2 jaj

m n�r� 2 �m 2
1
2mV2r2�, and

f is the Fermi-Dirac distribution. We solve n�r� from
this equation, use it in the GL equation, and iterate until
sufficient convergence is found.
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FIG. 2. Vortex solutions for the order parameter are given in
kBTc units and density of normal fermions in one hyperfine
state in 1012 atoms�cm3. Solid lines are the independent initial
solutions for Eq. (11) and the GL equation; the dot-dashed lines
are the self-consistent solutions. Here T � 0.9Tc, N � 3 3
105, V � 820 Hz, and jaj � 1140 Å.

The results of the self-consistent calculation are
presented in Fig. 2. The order parameter increases con-
siderably, mainly because of the increase in the critical
temperature when the Hartree field is added (T was
fixed). Quasiparticles fill the vortex core: there is a small
increase of n�0� compared to n�j�. It would be interesting
to compare our simple self-consistent treatment to the
rigorous description by the BdG equations.

Observation of a vortex.— For the parameters used in
our calculations, the vortex core sizes/healing lengths vary
between 2 10 mm. This is close to but still above the
diffraction limit of light. In principle, for instance, the laser
probing method of [9] could be extended to the observation
of a vortex: the applied Raman beams are focused so
that they intersect either only in the core or only in the
superfluid region, and these two choices give absorption
peaks at different frequencies.

Also the smallness of the superfluid fraction makes the
observation a challenge. In our results, the maximum value
of the order parameter (vortex height) is of the same order
of magnitude as the temperature. To estimate how it de-
pends on temperature and other parameters, we approxi-
mate Dmax � D�r � j�: we insert r � j into the GL
equation, neglect the first derivative (maximum), and ap-
proximate the second derivative by assuming a parabolic
shape of D�r�. This gives (for comparison with the nu-
merics, see Fig. 1)

Dmax �
q

�ln�Tc�T � 2 v���C�T� . (11)

Note that our estimate for the maximum vortex tempera-
ture Ty corresponds to Dmax being real.

We have used the Ginzburg-Landau equation in a
trapped geometry to define analytical estimates for the
basic quantities describing a trapped superfluid Fermi gas:
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the vortex core size and height, maximum temperature for
a vortex solution, and the changes caused by additional
potentials such as rotation or spatially varying Hartree
fields. A striking difference to metallic superconductors
was found in the temperature and system parameter
dependence of the vortex core size/healing length. Our
results indicate that the effect of the confining geometry is
essential for mesoscopic fermionic superfluids, especially
when considering excited state solutions such as vortices.
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