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The possibility of Bloch oscillations for a degenerate and superfluid Fermi gas of atoms in an optical lattice
is considered. For a one-component degenerate gas the oscillations are suppressed for high temperatures and
band fillings. For a two-component gas, Landau criterion is used for specifying the regime where robust Bloch
oscillations of the superfluid may be observed. We show how the amplitude of Bloch oscillations varies along
the BCS-BEC crossover.
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The experimental realization of optical lattices for bosonicthe system is treated as homogeneous when calculating super-
atoms has led to several landmark experiments [1-3]. Vengcurrents. We calculate the superfluid velocity in geeiodic
recently similar potentials have become available for trappingpotential and show that pairing, leading to smoothening of the
the fermionic isotopes as well [4, 5]. An increase in the su- Fermi edge, suppresses Bloch oscillations.
perfluid transition temperature when using potentials created Using six counter-propagating laser beams of wavelength
by standing light waves has been predicted [6]. For trapped., an isotropic 3D simple cubic lattice potential can be created
cold atoms, the famous BCS-BEC crossover problem [7, 8which is of the form
could be studied by tuning the interaction strength between X ny w7
the atoms using Feshbach resonances [5, 9]. In optical lattices V (r) = Vo [co§ (—) + cog (—) + cog (—)] . )
the whole BCS-BEC crossover could be scanned experimen- a a a
tally also in an even simpler way by modulating the light in- whereVy is proportional to the laser intensity and= 1/2.
tensity. We consider Bloch oscillations in these systems angvith the Bloch ansatz the Sabainger equation leads to a
show that they can be used as a tool for studying the crossovesand structure in the energy spectraptk). One-component

Bloch oscillations are a pure quantum phenomenon occurdegenerate Fermi gas at low temperatures can be consid-
ing in a periodic potential. They have never been observed irered ason-interacting since p-wave scattering is negligible
a natural lattice for electrons as predicted in [10] because thand s-wave scattering suppressed by Fermi statistics. We
scattering time of the electrons by lattice defects or impuri-are interested in high enough values \&%§ such that tun-
ties is much shorter than the Bloch period. However, Blochneling is small and tight binding approximation can be ap-
oscillations have recently been observed in semiconductor siplied. The dispersion relation for the lowest band becomes
perlattices [11], for quasiparticles penetrating the cores of &(k) = J[3 — cogkxa) — cogkya) — cogkza)], where the
vortex lattice in a cuprate superconductor [12], and for peri-band widthd = Lﬂ Er (Vo/ER)¥* exp(—zm) is ob-
odic optical systems such as _vvav_eguid_e arrays [13]. Also COIqained using the WKB-approximation aritk = h?/(8ma2)
bosonic atoms and superfluids in optical lattices have bee the recoil enerayv of the latti

. gy of the lattice [6].
shown to be clean and controllable systems well suited for the In a two-component Fermi gas, atoms in two different

observation of Bloch oscillations [2, 3]. hyperfine states ("}, 41 ") may interact with each other.

Several novel aspects of the physics of Bloch oscillationsre jnteraction can be assumed pointlike, characterized by
arise for fermionic atoms in optical lattices. i) Impurity scat- scattering lengttas. The system Hamiltoniard =

tering can be made negligible, and the particle number con 3, 5t A 3, Tt

trolled at will to produce any band filling. Even when Bloch Lo /d rzwa(r)(T +V)ve(n 10l d VvV I/I.T’ where
oscillations were originally proposed for fermions, the effect 9 = 47h“as/mcan the? be mapped toTthqrattractlve Hubbard
of the Fermi sea has not played a major role. Due to impuritynodelH = 33 1\, &, Cjo — U 3 €;,¢;, ¢, Cjp, where
and defect scattering, the studies of transport in presence & = Er+/8r|as|/a (Vo/Er)¥“. Note that the BCSI >> U)

a constant force have focused on drift velocities rather tharto BEC U > J) cross-over can be controlled g alone.
oscillations. In this paper we generalize the semiclassical sinOne-band description is used in the Hubbard model also in
gle particle description of Bloch oscillations to arbitrary band the case of strong interactions [14]. We define the limits of
fillings. ii) The possibility of an oscillating fermionic super- the one-band approximation for the physical potential Eq.(1)
fluid becomes relevant. We use the Landau criterion for theby demanding the lowest band gap to be bigger than the ef-
optical lattice imposing the Cooper pair size to be of the ordeffective interactionJ (note thatU > |g| for the parameters

or smaller than the lattice spacing. For solid state systemsf interest). The band gap can be estimated by approximating
the Cooper pair radius is usually much larger than the latticahe cosine potential well by a quadratic one. Demanding the
spacing and periodicity irrelevant for the superfluid, thereforecorresponding harmonic oscillator energy to be greatertthan



gives the condition/p/Er < ?12 (a/las|)®. Sincea > |ag|
imposed by considering on-site interactions only, the condi-
tion is easily valid in general, and for the parameters of Fig.
2 in particular. Estimates made using exact numerical band
gaps in 1D support this argument. One-band approximation
is sufficient because larg¥f means steeper optical potential
wells which not only increase the effective interactldrbut
also the band gaps.

Bloch oscillations for a single atom can be characterized
considering the mean velocity of a particle in a Bloch state
v(n, k) = (n, k|f|n, k) given by

1 ‘n ‘ 2n én 2T['[/TB
v(n, k) = Hvkt?n(k)~ (2)
FIG. 1: The average velocity ida/h units as a function of time for a

e : : : - half filled band. The plotted lines correspond to atoms in the normal
When a particle in the Bloch staps, ko) is adiabatically af state at different temperaturds = J, 0.5J and < 0.1J. Larger

fected .by a anstant externa! forEe; Fx% weak enough amplitudes correspond to lower temperatures.

not to induce interband transitions, it evolves up to a phase

factor into the statén, k(t)) according tdk(t) = ko + Ft/h.

The time evolution has a periats = h/(|Fx|a), correspond-  Fermj gas, atoms in the different hyperfine states interact with
ing to the time required for the quasimomentum to scan thesach other which may lead to a superfluid state. Abbye
whole Brillouin zone. If the force is applied adiabatically, it weak interactions can be described by a mean field shift in the
provides momentum to the system but not energy because théhemical potential, leading to no qualitative changes in Bloch
effective mass (given bjn(s) ~1 = h—%%) is not always pos- oscillations. Inelastic scattering and consequent damping of
itive. For optical lattices the force (or tilty = —F -r term  Bloch oscillations can be described e.g. by balance equations
in the Hamiltonian) can be realized by accelerating the latticd15]. In the following we consider the superfluid case where

[2, 3]. Using the tight-binding dispersion relation the velocity qualitative changes are expected.

of an atom oscillates like In order to observe robust Bloch oscillations of a superfluid
] E.t Fermi gas, the critical velocity of the superfluid should not
vk (t) = Ta sin(koxa + ?a). (3)  be reached before the edge of th_e _Brillouin zone in the pres-

ence of momentum changing collisions. When the superfluid

For cold bosonic atoms and condensates [2, 3] nearly all oPréaks, one has to use a normal state description. A BCS-
the population is in the lowest mode of the optical potential,SUPerconductor can carry a persistent curcgnntil a criti-
Eq.(3) therefore describes the oscillation of the whole gas. W&@l Velocity,ve = A/pr. For higher current values, even at
generalize the result for the case when many momentum statds = 0, it is energetically favorable to break Cooper pairs and
of the band (al = 0, the states with wave vecttk| < k) create a pair of quasiparticles [16]. This costs & bmdmg
are occupied. We calculate the velocity of the whole gas a§N€rdy and decreases the Bloch enekgs: (¢ — 1, wherey is
the average over the normalized temperature-dependent di§€ chemical potential) ke +q — &ke —ql = 2|Ep|. There-

tribution function (the Fermi distributior) of the particles: ~ fore, for the currentto be stablEp| < A. Thisis the Landau
criterion of superfluidity. For the tight-binding dispersion re-

lation, we rewrite the condition asin(gqa) sinkpa < A. To
complete a Bloch oscillation, siga) should achieve its max-
imum value 1, i.e.

1 Ft
(ox(®) = = > (ko) Vigee (ko + ). 4
ko

Using the tight-binding dispersion relation for the Bloch en-
ergies we obtain the oscillations shown in Fig. 1. At= 0,
Eq.(4) reduces to

sinkpa < A/J. (6)

For weak couplingA /J is given by the BCS theory, and in
Jasin(kgra) . <Fxta) the attractive Hubbard model in the strong coupling limit the

(vx(®) = H (5)  gapatT = 0is given byA = 3U for half filling [14]. Using
these estimates, we show in Fig. 2 the relation (6) for a gas
This shows that the macroscopic coherent oscillation can stilbf 6Li atoms together with the transition temperature. To re-
be observed if the band is not full, but the amplitude is sup-late the criterion to the Cooper pair size, we rewrite Eq.(6) in
pressed by the band fillinkkra. The effect of the tempera- terms of the BCS coherence lendgth= hvg /7 A and insert
ture can be seen in Fig. 1: the amplitude starts to decrease dtsin(kra) = hvg/a which yieldséy < a/n. The observa-
temperatures of the ord&r > 0.1J but is still non-negligible  tion of robust Bloch oscillations is thus restricted to superflu-
at half J. These results are valid for a one-component de-ids with BCS coherence length smaller than the lattice period-

generate Fermi gas at low temperatures. In a two-componeitity. This is the intermediate — strong coupling regime. The
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! only in x-direction). The solutions of the BdG equations take
s the form

’ ) = XTI TP q(N: vl = €N TeT Ty q(r)
A%y = ) jgllL — 2F (B D]ud (v o), (10)
k
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Ef = (Brg — £q-0/2 % [ (Bsq + Eg102/4+ A2 =

Ep + ,/E,%+ |A9)2, where Ep is the energy difference
and E the average energy. The holds for the particle
and hole branch, respectively, and the particle branch eigen-

H functions argdy |2, |5|> = (1 £ Ea/\/EZ +|A92)/2. The
Hamiltonian transformed under the Bogoliubov transforma-

FIG. 2: The transition temperature, Landau criterioat 0 and  tjon leading to (7) has to be positive definite. This means

the amplitude of the velocity Bloch oscillations firi atoms in hy- that one should use the solutions for WhiEJirq > 0 ie.
perfine states with scattering length= —2.5-103a for a half filled '

3D CO;, laser lattice & = 10°ag) as a function of the lattice depth. min(,/ Ei +|AY912) = |AY] > |Ep(K))|, wherek’ minimizes

The amplitudes of the oscillations &t= 5Tc"* (long dashed line)  £2 Remarkably, this condition is closely related to the Lan-
are denoted by for the normal state oscillations, for the super- dau criterion A| > Ep(kg)

fluid velocity atT = 0 Eq.(12) and in the boson limit Eq.(13) pair
sizel = a/3 by x and+ for pair sizel = a/4. The Landau criterion Inthe BCS ansatz, a common momenirean be added to

) ‘ , ¢
condition Eq.(6) requires/J > 1 (1 marked by short dashed line) all particles, leading to correlations of the ty@]%+qc—k+q)-

for the half filled band. Her&g is the recoil energy ang&," isthe ~ 1® momentum per pair becomes. 0ne can formally cal-
Fermi energy for free fermions with the same density. culate this obvious result also by using the plane wave ansatz

uk = |ukle®FDT ye = oKD [17] (Eq.(10) with

¢ = 1) and introducing an (unnormalized) order-parameter
length argument can be also understood by thinking that thevave functionA%(r) = €247 C, whereC is given by Eq.(10)
pairs have to be smaller than the lattice sites in order to see ib be a constant im. Expectation values like momen-
as a periodic potential. tum (o = —id/0r) can be calculatedi{p) = (AY(r)| —

For calculating the superfluid velocity a space dependenid/ar|A9(r))/(A9(r)|A%r)) = 29. The order-parameter
description of the superfluid has to be used. We combine thevave function is defined in the spirit of (but not with a one-
BCS ansatz with the Bloch ansatz for the lattice potential usto-one correspondence to) the Ginzburg-Landau theory with a
ing the Bogoliubov — de Gennes (BdG) equations [17]. Asspace dependent wave function whose absolute value equals
given by the Landau criterion above, the interesting regimethe gap. In case of Fermionic atoms the Ginzburg-Landau
is the intermediate — strong coupling one. Note that even irapproach has been used to describe harmonic confinement
the strong-coupling limit, the algebra of the BCS theory can[19] and vortices [20]. For the periodic potential we intro-
be applied to all coupling strengths [8, 18] together with anduce the order parameter wave function in the fax¥(r) =
extra definition for the chemical potential which in the weak " Aﬂ(r), where using Eq.(10),
coupling limit is given just by the Fermi energy of the non- , ,
interacting gas. The BdG equations are: AR(r) = F(K, Q)px4q€ (k+q”¢|2r_qef'(qu>r (11)

Hr) — u A(r) ur)\ u(r) @) andF(k,q) = |gI[1 — 2f(E ]G5, We calculate the
AMY* —[H() — u] v(r) ) v(r) )’ superfluid velocity usingvs) = N(Aq(r)|f|Aq(r)>,dwhere
N = (AIN)AYM)) L USINg (F) 1 ivar = —f gicék—
When the external potential is periodic one can use the Bloch d the tight-bindi gd_ Pq® q>| i ta dk qﬂ id
ansatz fou andv because by self-consistency the Hartree and?NC the tignt-binding energy dispersion refation the supertiul

pairing fields are also periodic. We obtain velocity becomes

10r

. . Ja .
ue(r) = €K k() 5 () = X i) (8) (vxs) = NZ IF (K, q)IZT coskxasinga (12)
AM =Y 1gllL - 2f Bl Ovi ), (9) “ ,
k 1-2f(EH] Al
= Bsin(qa)/\/z [1-2E0]A7 coskya.
wheregi are the fully periodic part of the Bloch functions, h K /E% + |AQJ2

such that H (r) — u]oke®" = &g kr.

To describe Bloch oscillations we impose the adiabatic con-The superfluid velocity for selected parameters is shown in
dition, that is, momenta evolve according ko — k + Fig. 2. We have also calculated the thermal quasiparticle con-
Ft/h = k + g, i.e. we consider BCS state with a drift (again tribution but it turns out to be negligible for half filling.
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In the composite boson limit, one could describe thepresses the amplitude in the same way as band filling in the
center-of-mass movement of the composite particle by definhon-interacting gas. Achievement of superfluidity is still a
ing J* = Jim — 2m). In order to give a simple es- great challenge, but even @t>» T, the effect of collisions
timate for the effect of the Fermi statistics, we interpreton Bloch oscillations can be studied producing information
IF(k,q)|> ~ |Fk)|?in Eq.(12) as reflecting the internal useful for applications of Bloch oscillations such as produc-
wavefunction of the pair in the composite boson limit, c.f. tion of Terahertz radiation [15, 22]. Observation of oscillat-
[7, 8]. The average velocity for the bosons becomigg) ing fermionic atoms in optical lattices would contribute to the
JT*"" singa )y |F(k)|2coskya. If the pairs were extremely quest for a steadily driven fermionic Bloch oscillator.
strongly bound, the internal wave function in real space is a
delta-function, corresponding to a constant in k-space. Thi
means(vg) = O since the cosine integration in Eq.(12)
would extend to the whole k-space with equal weight, i.e.
there are no empty states in the Brillouin zone as required
for Bloch oscillations. For on-site pairs, we uge(r)|? «
exp(—r2/12) leading to|F (k)|2 o« N exp(—I2k2/4), there-
fore the suppression factor for the Bloch oscillations becomes[1] F. S. Cataliottiet al., Science293, 843 (2001).; J. H. Denschlag
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