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The possibility of Bloch oscillations for a degenerate and superfluid Fermi gas of atoms in an optical lattice
is considered. For a one-component degenerate gas the oscillations are suppressed for high temperatures and
band fillings. For a two-component gas, Landau criterion is used for specifying the regime where robust Bloch
oscillations of the superfluid may be observed. We show how the amplitude of Bloch oscillations varies along
the BCS-BEC crossover.
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The experimental realization of optical lattices for bosonic
atoms has led to several landmark experiments [1–3]. Very
recently similar potentials have become available for trapping
the fermionic isotopes as well [4, 5]. An increase in the su-
perfluid transition temperature when using potentials created
by standing light waves has been predicted [6]. For trapped
cold atoms, the famous BCS-BEC crossover problem [7, 8]
could be studied by tuning the interaction strength between
the atoms using Feshbach resonances [5, 9]. In optical lattices
the whole BCS-BEC crossover could be scanned experimen-
tally also in an even simpler way by modulating the light in-
tensity. We consider Bloch oscillations in these systems and
show that they can be used as a tool for studying the crossover.

Bloch oscillations are a pure quantum phenomenon occur-
ing in a periodic potential. They have never been observed in
a natural lattice for electrons as predicted in [10] because the
scattering time of the electrons by lattice defects or impuri-
ties is much shorter than the Bloch period. However, Bloch
oscillations have recently been observed in semiconductor su-
perlattices [11], for quasiparticles penetrating the cores of a
vortex lattice in a cuprate superconductor [12], and for peri-
odic optical systems such as waveguide arrays [13]. Also cold
bosonic atoms and superfluids in optical lattices have been
shown to be clean and controllable systems well suited for the
observation of Bloch oscillations [2, 3].

Several novel aspects of the physics of Bloch oscillations
arise for fermionic atoms in optical lattices. i) Impurity scat-
tering can be made negligible, and the particle number con-
trolled at will to produce any band filling. Even when Bloch
oscillations were originally proposed for fermions, the effect
of the Fermi sea has not played a major role. Due to impurity
and defect scattering, the studies of transport in presence of
a constant force have focused on drift velocities rather than
oscillations. In this paper we generalize the semiclassical sin-
gle particle description of Bloch oscillations to arbitrary band
fillings. ii) The possibility of an oscillating fermionic super-
fluid becomes relevant. We use the Landau criterion for the
optical lattice imposing the Cooper pair size to be of the order
or smaller than the lattice spacing. For solid state systems,
the Cooper pair radius is usually much larger than the lattice
spacing and periodicity irrelevant for the superfluid, therefore

the system is treated as homogeneous when calculating super-
currents. We calculate the superfluid velocity in theperiodic
potential and show that pairing, leading to smoothening of the
Fermi edge, suppresses Bloch oscillations.

Using six counter-propagating laser beams of wavelength
λ, an isotropic 3D simple cubic lattice potential can be created
which is of the form
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whereV0 is proportional to the laser intensity anda = λ/2.
With the Bloch ansatz the Schr¨odinger equation leads to a
band structure in the energy spectrumεn(k). One-component
degenerate Fermi gas at low temperatures can be consid-
ered asnon-interacting since p-wave scattering is negligible
and s-wave scattering suppressed by Fermi statistics. We
are interested in high enough values ofV0 such that tun-
neling is small and tight binding approximation can be ap-
plied. The dispersion relation for the lowest band becomes
ε(k) = J [3 − cos(kxa) − cos(kya) − cos(kza)], where the
band widthJ = 2√

π
ER (V0/ER)

3/4 exp
(−2

√
V0/ER

)
is ob-

tained using the WKB-approximation andE R = h2/(8ma2)

is the recoil energy of the lattice [6].
In a two-component Fermi gas, atoms in two different

hyperfine states (”↓,↑ ”) may interact with each other.
The interaction can be assumed pointlike, characterized by
a scattering lengthaS . The system HamiltonianĤ =∑
α

∫
d3rψ̂†

α(r)(T + V )ψ̂α(r)−|g| ∫ d3rψ̂†
↑ψ̂

†
↓ψ̂↓ψ̂↑, where

g = 4π h̄2aS/m can then be mapped to the attractive Hubbard
model Ĥ = J

∑
〈i, j 〉σ ĉ†

iσ ĉ jσ − U
∑

j ĉ†
j↑ĉ†

j↓ĉ j↓ĉ j↑, where

U = ER
√

8π |as |/a (V0/ER)
3/4. Note that the BCS (J � U )

to BEC (U � J ) cross-over can be controlled byV0 alone.
One-band description is used in the Hubbard model also in
the case of strong interactions [14]. We define the limits of
the one-band approximation for the physical potential Eq.(1)
by demanding the lowest band gap to be bigger than the ef-
fective interactionU (note thatU > |g| for the parameters
of interest). The band gap can be estimated by approximating
the cosine potential well by a quadratic one. Demanding the
corresponding harmonic oscillator energy to be greater thanU
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gives the conditionV0/ER < 1
4π2 (a/|as|)4. Sincea > |aS|

imposed by considering on-site interactions only, the condi-
tion is easily valid in general, and for the parameters of Fig.
2 in particular. Estimates made using exact numerical band
gaps in 1D support this argument. One-band approximation
is sufficient because largerV0 means steeper optical potential
wells which not only increase the effective interactionU but
also the band gaps.

Bloch oscillations for a single atom can be characterized
considering the mean velocity of a particle in a Bloch state
v(n,k) = 〈n,k|ṙ|n,k〉 given by

v(n,k) = 1

h̄
∇kεn(k). (2)

When a particle in the Bloch state|n,k0〉 is adiabatically af-
fected by a constant external forceF = Fx x̂ weak enough
not to induce interband transitions, it evolves up to a phase
factor into the state|n,k(t)〉 according tok(t) = k0 + Ft/h̄.
The time evolution has a periodτB = h/(|Fx |a), correspond-
ing to the time required for the quasimomentum to scan the
whole Brillouin zone. If the force is applied adiabatically, it
provides momentum to the system but not energy because the

effective mass (given bym(ε)−1 = 1
h̄2
∂2ε

∂k2 ) is not always pos-
itive. For optical lattices the force (or tilt:V = −F · r term
in the Hamiltonian) can be realized by accelerating the lattice
[2, 3]. Using the tight-binding dispersion relation the velocity
of an atom oscillates like

vx (t) = Ja

h̄
sin(k0xa + Fx ta

h̄
). (3)

For cold bosonic atoms and condensates [2, 3] nearly all of
the population is in the lowest mode of the optical potential,
Eq.(3) therefore describes the oscillation of the whole gas. We
generalize the result for the case when many momentum states
of the band (atT = 0, the states with wave vector|k| ≤ k F )
are occupied. We calculate the velocity of the whole gas as
the average over the normalized temperature-dependent dis-
tribution function (the Fermi distributionf ) of the particles:

〈vx (t)〉 = 1

h̄

∑
k0

f (k0)∇k0x ε(k0 + Ft

h̄
). (4)

Using the tight-binding dispersion relation for the Bloch en-
ergies we obtain the oscillations shown in Fig. 1. AtT = 0,
Eq.(4) reduces to

〈vx (t)〉 = Ja

h̄

sin(kx F a)

kx Fa
sin

(
Fx ta

h̄

)
. (5)

This shows that the macroscopic coherent oscillation can still
be observed if the band is not full, but the amplitude is sup-
pressed by the band fillingkx F a. The effect of the tempera-
ture can be seen in Fig. 1: the amplitude starts to decrease at
temperatures of the orderT ≥ 0.1J but is still non-negligible
at half J . These results are valid for a one-component de-
generate Fermi gas at low temperatures. In a two-component
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FIG. 1: The average velocity inJ a/h̄ units as a function of time for a
half filled band. The plotted lines correspond to atoms in the normal
state at different temperaturesT = J , 0.5J and ≤ 0.1J . Larger
amplitudes correspond to lower temperatures.

Fermi gas, atoms in the different hyperfine states interact with
each other which may lead to a superfluid state. AboveTc,
weak interactions can be described by a mean field shift in the
chemical potential, leading to no qualitative changes in Bloch
oscillations. Inelastic scattering and consequent damping of
Bloch oscillations can be described e.g. by balance equations
[15]. In the following we consider the superfluid case where
qualitative changes are expected.

In order to observe robust Bloch oscillations of a superfluid
Fermi gas, the critical velocity of the superfluid should not
be reached before the edge of the Brillouin zone in the pres-
ence of momentum changing collisions. When the superfluid
breaks, one has to use a normal state description. A BCS-
superconductor can carry a persistent currentq until a criti-
cal velocity,vc = 	/pF . For higher current values, even at
T = 0, it is energetically favorable to break Cooper pairs and
create a pair of quasiparticles [16]. This costs 2	 in binding
energy and decreases the Bloch energy (ξ = ε−µ, whereµ is
the chemical potential) by|ξkF +q − ξkF −q | ≡ 2|ED|. There-
fore, for the current to be stable|E D| < 	. This is the Landau
criterion of superfluidity. For the tight-binding dispersion re-
lation, we rewrite the condition asJ sin(qa) sink F a < 	. To
complete a Bloch oscillation, sin(qa) should achieve its max-
imum value 1, i.e.

sinkF a < 	/J. (6)

For weak coupling,	/J is given by the BCS theory, and in
the attractive Hubbard model in the strong coupling limit the
gap atT = 0 is given by	 = 1

2U for half filling [14]. Using
these estimates, we show in Fig. 2 the relation (6) for a gas
of 6Li atoms together with the transition temperature. To re-
late the criterion to the Cooper pair size, we rewrite Eq.(6) in
terms of the BCS coherence lengthξ0 = h̄vF/π	 and insert
J sin(kF a) = h̄vF/a which yieldsξ0 < a/π . The observa-
tion of robust Bloch oscillations is thus restricted to superflu-
ids with BCS coherence length smaller than the lattice period-
icity. This is the intermediate – strong coupling regime. The
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FIG. 2: The transition temperature, Landau criterion atT = 0 and
the amplitude of the velocity Bloch oscillations for6Li atoms in hy-
perfine states with scattering lengthas = −2.5·103a0 for a half filled
3D CO2 laser lattice (a = 105a0) as a function of the lattice depth.
The amplitudes of the oscillations atT = 2

3T max
c (long dashed line)

are denoted by∗ for the normal state oscillations,� for the super-
fluid velocity atT = 0 Eq.(12) and in the boson limit Eq.(13) pair
sizel = a/3 by× and+ for pair sizel = a/4. The Landau criterion
condition Eq.(6) requires	/J > 1 (1 marked by short dashed line)

for the half filled band. HereER is the recoil energy andE f
F is the

Fermi energy for free fermions with the same density.

length argument can be also understood by thinking that the
pairs have to be smaller than the lattice sites in order to see it
as a periodic potential.

For calculating the superfluid velocity a space dependent
description of the superfluid has to be used. We combine the
BCS ansatz with the Bloch ansatz for the lattice potential us-
ing the Bogoliubov – de Gennes (BdG) equations [17]. As
given by the Landau criterion above, the interesting regime
is the intermediate – strong coupling one. Note that even in
the strong-coupling limit, the algebra of the BCS theory can
be applied to all coupling strengths [8, 18] together with an
extra definition for the chemical potential which in the weak
coupling limit is given just by the Fermi energy of the non-
interacting gas. The BdG equations are:
(

H (r)− µ 	(r)
	(r)∗ −[H (r)− µ]

) (
u(r)
v(r)

)
= E

(
u(r)
v(r)

)
. (7)

When the external potential is periodic one can use the Bloch
ansatz foru andv because by self-consistency the Hartree and
pairing fields are also periodic. We obtain

uk(r) = eik·rũkφk(r) ; vk(r) = eik·rṽkφk(r) (8)

	(r) =
∑

k

|g|[1 − 2 f (Ek)]uk(r)v∗
k(r), (9)

whereφk are the fully periodic part of the Bloch functions,
such that [H (r)− µ]φkeik·r = ξkφkeik·r.

To describe Bloch oscillations we impose the adiabatic con-
dition, that is, momenta evolve according tok −→ k +
Ft/h̄ ≡ k + q, i.e. we consider BCS state with a drift (again

only in x-direction). The solutions of the BdG equations take
the form

uq
k(r) = eik·reiq·rũq

kφk+q(r); vq
k(r) = eik·re−iq·rṽq

kφk−q(r)

	q(r) =
∑

k

|g|[1 − 2 f (E+q
k )]uq

k(r)v
q∗
k (r), (10)

Eq
k = (ξk+q − ξq−k)/2 ±

√
(ξk+q + ξq−k)2/4 + |	q|2 ≡

ED ±
√

E2
A + |	q|2, where 2E D is the energy difference

and E A the average energy. The± holds for the particle
and hole branch, respectively, and the particle branch eigen-

functions are|ũq
k|2, |ṽq

k |2 = (1 ± E A/

√
E2

A + |	q|2)/2. The
Hamiltonian transformed under the Bogoliubov transforma-
tion leading to (7) has to be positive definite. This means
that one should use the solutions for whichE +q

k > 0, i.e.

min(
√

E2
A + |	q|2) = |	q| > |ED(k′)|, wherek′ minimizes

E2
A. Remarkably, this condition is closely related to the Lan-

dau criterion|	| > E D(kF).
In the BCS ansatz, a common momentumq can be added to

all particles, leading to correlations of the type〈c†
k+qc†

−k+q〉.
The momentum per pair becomes 2q. One can formally cal-
culate this obvious result also by using the plane wave ansatz
uk = |uk|ei(k+q)·r, vk = |vk|ei(k+q)·r [17] (Eq.(10) with
φ = 1) and introducing an (unnormalized) order-parameter
wave function	q(r) = ei2q·rC , whereC is given by Eq.(10)
to be a constant inr. Expectation values like momen-
tum (p = −i∂/∂r) can be calculated:〈p〉 = 〈	q(r)| −
i∂/∂r|	q(r)〉/〈	q(r)|	q(r)〉 = 2q. The order-parameter
wave function is defined in the spirit of (but not with a one-
to-one correspondence to) the Ginzburg-Landau theory with a
space dependent wave function whose absolute value equals
the gap. In case of Fermionic atoms the Ginzburg-Landau
approach has been used to describe harmonic confinement
[19] and vortices [20]. For the periodic potential we intro-
duce the order parameter wave function in the form	 q(r) =∑

k	
q
k(r), where using Eq.(10),

	
q
k(r) = F(k,q)φk+qei(k+q)rφ

†
k−qe−i(k−q)r (11)

and F(k,q) = |g|[1 − 2 f (E+q
k )]ũq

kṽ
q∗
k . We calculate the

superfluid velocity using〈vS〉 = � 〈	q(r)|ṙ|	q(r)〉, where
� = 〈	q(r)|	q(r)〉−1. Using〈ṙ〉

φ
†
k−qe−i(k−q)·r = − 1

h̄
d

dkξk−q

and the tight-binding energy dispersion relation the superfluid
velocity becomes

〈vx S〉 = �
∑

k

|F(k,q)|2 Ja

h̄
coskxa sinqa (12)

= Ja

h̄
sin(qa)�

∑
k

∣∣∣∣∣∣
[
1 − 2 f (Eq

k)
]
	q√

E2
A + |	q|2

∣∣∣∣∣∣
2

coskxa.

The superfluid velocity for selected parameters is shown in
Fig. 2. We have also calculated the thermal quasiparticle con-
tribution but it turns out to be negligible for half filling.
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In the composite boson limit, one could describe the
center-of-mass movement of the composite particle by defin-
ing J ∗ = J (m → 2m). In order to give a simple es-
timate for the effect of the Fermi statistics, we interpret
|F(k,q)|2 ∼ |F(k)|2 in Eq.(12) as reflecting the internal
wavefunction of the pair in the composite boson limit, c.f.
[7, 8]. The average velocity for the bosons becomes〈v x B〉 ∝
J ∗a
h̄ sinqa

∑
k |F(k)|2 coskxa. If the pairs were extremely

strongly bound, the internal wave function in real space is a
delta-function, corresponding to a constant in k-space. This
means〈vB〉 = 0 since the cosine integration in Eq.(12)
would extend to the whole k-space with equal weight, i.e.
there are no empty states in the Brillouin zone as required
for Bloch oscillations. For on-site pairs, we use|F(r)|2 ∝
exp(−r 2/ l2) leading to|F(k)|2 ∝ � exp(−l2k2/4), there-
fore the suppression factor for the Bloch oscillations becomes
S ∼ � ∫

dk exp(−l2k2/4) coska, wherel is the pair size. As
a rough estimate for the average velocity we thus obtain

〈vx B〉 ∼ S
J ∗a

h̄
sin(

Fx ta

h̄
). (13)

This is shown in Fig. 2 for pair sizesl = a/3 andl = a/4. It
gives an order-of-magnitude estimate, approaching the results
given by the BCS algebra.

Another way of treating the composite boson limit is to
derive a Gross-Pitaevskii type of equation for the composite
bosons withM = 2m and with a repulsive non-linear interac-
tion termn BUB = nB4π h̄2aB/M , aB = 2as whereas is the
renormalized s-wave scattering length [21]. If the non-linear
term is small compared to the Bloch energyE B = h2/(Ma2),
the nonlinearity leads only to a change in the band widthJ
[3]. Therefore, composite bosons oscillate but with a mod-
ified amplitude. Large non-linearity would not allow Bloch
oscillations, corresponding to a large suppression factor in the
above discussion. Note that the Landau criterion for a super-
fluid Bose gas gives the critical velocityvsound= √

UBnB/M
which is orders of magnitude bigger than Eq.(13) for half fill-
ing and parameters in Fig. 2. Problems arise only in the ex-
tremely empty lattice limit.

In summary, we have defined a set of tools for qualita-
tive and quantitative description of Bloch oscillations for the
BCS-BEC crossover regime. The amplitude of the oscilla-
tions decreases when the crossover is scanned, in general due
to the shrinking of the bandwidth. However, the change from
the normal to the superfluid state description leads to a dras-
tic change in the amplitude. This is due to smoothening of
the Fermi-edge by pairing. Bloch oscillations could be used
for exploring pairing correlations since any localization in
space (pair size) leads to broadening in momentum which sup-

presses the amplitude in the same way as band filling in the
non-interacting gas. Achievement of superfluidity is still a
great challenge, but even atT � Tc, the effect of collisions
on Bloch oscillations can be studied producing information
useful for applications of Bloch oscillations such as produc-
tion of Terahertz radiation [15, 22]. Observation of oscillat-
ing fermionic atoms in optical lattices would contribute to the
quest for a steadily driven fermionic Bloch oscillator.
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