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Abstract

After the experimental realization of Bose-Einstein condensation in dilute
gases of alkali atoms, experimentalists started to trap the fermionic isotopes.
The degenerate state for fermions was reported in 1999. The main objective
of these experiments is to obtain superfluidity of fermionic gases. When
there are attractive interactions between the fermions, the Fermi sea becomes
unstable with respect to the formation of atomic Cooper pairs and the system
becomes a superfluid. It turns out that the existing experimental cooling
techniques allow minimum temperatures for fermions of the order of the
Fermi temperature. Using Feshbach resonances induced by magnetic fields
enhances the effective interactions between the atoms leading to superfluid
transition temperatures of the order of the Fermi energy. This is a completely
new regime of fermionic superfluidity far from the BCS superconductors, �He
and even high-�� superconductors. The achievement of superfluidity on gases
of fermionic alkalis is currently being pursued in many experimental groups.

In this thesis, different signatures of the superfluid transition have been
considered. The use of almost on-resonant laser light for coupling between
the different internal states of the atoms as a method for probing superfluidity
has been analyzed. Coupling between the paired states has been proposed as
a way to directly detect the Cooper pair size. The Josephson effect, related
to the phases of two coupled superfluids, is shown to present an asymmetry
when the internal states of the atoms forming the pairs are coupled with
different detunings. Vortices, intimately related to superfluidity, have also
been considered. The single vortex solution of the Ginzburg-Landau equation
for the superfluid order parameter has been numerically computed and a new
vortex core size reflecting the trapping geometry has been obtained. Bloch
oscillations have been analyzed for fermionic atoms both in the degenerate
regime and in the superfluid regime. Superfluidity is found to supress the
amplitude of the Bloch oscillations.
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Chapter 1

Introduction

Superconductivity was discovered in 1911 by H. Kamerlingh Onnes [1] just
three years after he had first liquified �He. He was interested in studying the
electrical properties of pure metals in this new range of temperatures. He
observed that the resistance of a thread of mercury dropped almost to zero
at � � ��� K and he named this new state a superconductor. Although at
that time there were hints that something was peculiar about liquid helium
near � K it was not until 1938 that superfluidity was discovered and named.

In 1924 S. Bose derived the Planck distribution for photons using a new
type of statistics [2]. Einstein generalized the statistics to ideal monoatomic
gases assuming that if the particles were waves, they would have the same
statistics as the photons [3]. This work led to the prediction that below a
certain critical temperature, there would be a macroscopic occupation of the
ground state of the system. This discovery was made at a time when not
much was known about the distinction of bosons and fermions. The Fermi
statistics was discovered in 1926 [4], and the relation between spin and stat-
istics elucidated later. These theories on bosons and fermions were considered
as a mere mathematical artefact until in late 30’s Fritz London [5] connected
the macroscopic occupation of the ground state in the Bose-Einstein stat-
istics with the superfluid properties of �He. He had also introduced a new
theory of superconductivity based on the idea of a "macroscopic wave func-
tion". The ideas of London could not develop until many body theory was
developed. During the 40’s Landau and Bogoliubov developed their theories
and in the 50’s Feymann developed the diagram techniques.

It was 1957 when J. Bardeen, N. Cooper and J. R. Schrieffer developed
the BCS theory (named after the authors’ names) [6] explaining the phys-
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14 CHAPTER 1. INTRODUCTION

ics of superconductors. One year later Bogoliubov extended his method of
understanding superfluidity to superconductivity [7].

BEC (Bose Einstein condensation) is closely related to the BCS mechan-
ism of superconductivity which can be viewed as a simultaneous formation
and condensation of pairs of fermions. Ginzburg and Landau introduced a
time and space dependent macroscopic wave function for studying spatially
inhomogeneous superconductors [8]. During the 1950’s and 1960’s a remark-
ably complete and satisfactory theoretical picture of the classic supercon-
ductors emerged. This situation was overturned in 1986, when a new class of
high-temperature superconductors was discovered by Bednorz and Müller [9].
These new superconductors seem to obey the same general phenomenology
as classic superconductors but the basic microscopic mechanism remains an
open question. Superfluidity in �He was not discovered until 1972 by D. Osh-
eroff, R. Richardson and D. Lee because it requires even lower temperatures,
the transition temperature being �� � ��� mK.

In helium the interaction length is of the order of the distance between
atoms and that makes it very difficult to study it theoretically. In the 1960’s
began an extensive search for BEC in a dilute, weakly interacting bosonic gas
in which the phenomenon would not be smeared by strong correlation effects.
After pioneering attempts with H atoms that did not turn into BEC until
very recently [10], the improvement in the laser cooling techniques made
alkali atoms better candidates for condensation. In 1995, both ��Rb and
��Na were succesfully driven into the Bose Einstein condensation transition
at JILA and MIT [11]. Experiments with bosonic atoms have gone beyond
the achievement of Bose Einstein condensation generating a quantum systems
revolution ranging from the development of atom lasers [12] to the study of
quantum phase transitions as the Mott-Insulator transition [13].

For �He and alkali bosonic atoms the fermionic neutrons, protons and
electrons bind to form a composite boson at temperatures much higher than
the superfluid transition temperature. There are other physical systems in
which the binding energy of the fermions to form composite bosons and the
condensation of bosons into a macroscopically occupied state occurs simul-
taneously like in the BCS mechanism. Prior to the observation of BEC in
dilute atomic gases, the laboratory system which most closely realized the
original idea of Einstein was excitons in cuprous oxide [14]. Actually excitons
are bound pairs of electrons and holes formed by pulsed laser excitation.

Fermionic alkali atoms have been predicted [15] to undergo a superfluid
transition analogous to the BCS transition in superconductors if atoms are
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trapped in different hyperfine states with attractive interactions between
them. Due to the attraction between the atoms the Fermi sea becomes
unstable with respect to the formation of atomic Cooper pairs with zero
momentum if the attraction is weak. If the attraction is very strong, the fer-
mions form composite bosons (pairs in real space not in momentum space)
that Bose condense at low enough temperatures.

It was 1999 when fermionic atoms of ��K were cooled below the Fermi
temperature at JILA [16] and it begun an experimental outbreak compar-
able to the one provoked by the BEC of bosonic atoms, now degenerate Fermi
gases of both ��K [17, 18] and �Li [19, 20, 21, 22, 23] being realized in several
experimental groups. The ultimate goal of these experiments is to obtain su-
perfluidity for fermions. It turns out that the existing cooling techniques are
not sufficient to obtain the superfluid transition temperature for the natural
scattering lengths in the system. The controllability of these gases allows
to manipulate the interaction strength between the different states and one
can tune the interactions using laser fields [24] and magnetic fields [25] tak-
ing advantage of resonances that occur when the collision energy of two free
atoms coincides with that of a quasi-bound molecular state. Because it is
possible to tune the interaction strength, it will be experimentally possible to
study the BCS-BEC crossover in fermionic superfluidity. Note that for �He,
����� � ���� while for high-�� superconductors that ratio is at most ����.
With Feshbach resonances, the maximum �� considered are of �� � �����
and one is in a completely new regime of superfluidity.

The creation and trapping of molecules out of a degenerate gas of atomic
fermions trapped in two different hyperfine states using Feshbach resonances
has been reported [17, 19, 22, 23] very recently. The molecules remain
trapped in the optical trap and the Bose Einstein condensation of these
molecules is being pursued. This molecular BEC would be the first step in
obtaining a strongly interacting fermionic superfluid in the BEC part (or ef-
fective repulsive interactions) of the crossover. By adiabatically sweeping the
magnetic field along the resonance, it might be possible to obtain a weakly
interacting superfluid Fermi gas in the BCS regime [26].

The superfluidity in atomic Fermi gases will reproduce and help to under-
stand the physics of other systems. Many properties of the high temperature
superconductors may be understood in the Bose Einstein condensation of
pairs of holes in states with � symmetry. The Bose Einstein condensation
of pairs of fermions is observed experimentally in atomic nuclei where the
effect of pairing may be seen in the excitation spectrum and in the reduced
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momentum of inertia. The pair size in nuclear matter is large compared to
the nuclear size. Pairing is expected to take place also in the interiors of
neutron stars and observation of glitches in the rate of pulsars have been in-
terpreted in terms of neutron superfluidity. Moreover the superfluid fermions
present new physics on their own due to the controllability of the geometry,
interactions and internal states of the atoms.

The trapping and cooling of atomic gases has opened a new field in fun-
damental physics. The cold atomic clouds behave as coherent matter and
one might expect the same applications as for coherent light. Cold atomic
gases have also been proposed as systems for developing and testing quantum
information [27] and quantum communication [28].

The objective of this thesis is to study and analyze different signatures
of superfluidity in dilute atomic Fermi gases. In chapter 2, the trapping and
cooling techniques are reviewed as well as some basic scattering theory. The
interaction of light with atoms is especially considered because it has been
used in publications I to IV. In chapter 3 the theory describing the system
is summarized both for the degenerate gas and for the superfluid state. We
review the BCS algebra used to describe the system in the superfluid state
also in the presence of a supefluid current and we show the solutions of the
BCS equation both in the weak and strong coupling limits. These techniques
have been used to describe the fermionic cloud in publications I to VI. For
completeness and due to its experimental relevance we also compile the recent
studies of superfluidity in the presence of a Feshbach resonance.

In the publications I to VI we have mainly concentrated on the superfluid
state of the fermionic cloud. We have proposed different methods to probe
the superfluid transition in the fermionic systems. In the first papers I to IV
we have used an analogy to electron current between two superconductors
and between a superconductor and a normal state. In the atomic case, the
coupling is done with lasers or radio frequency fields. In these systems there
are more degrees of freedom for coupling between the states and this leads to
new results. In publication II we have analyzed the possibility of excitation
of collective modes that would conceal the results in papers I, III and IV.
In paper V we have studied vortices within the Ginzburg Landau approach
of superfluidity. The difference to any other existing fermionic superfluids is
the trapping geometry and we show in paper V that it leads to a different
healing length. In publication VI we consider fermions in an optical lattice.
By applying a constant force one could produce Bloch oscillations and we
analyze them for the fermionic clouds both in the superfluid and in the normal
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case. We show how the amplitude of the oscillations is changed through the
BCS-BEC crossover.





Chapter 2

Dilute atomic gases

If one looks at the equilibrium phase diagram of any atomic substance, the
Bose condensed region is thermodynamically forbidden except at such high
densities that the equilibrium configuration is crystalline. Thus, a dilute
quantum gas at equilibrium is impossible but at sufficiently low densities a
metastable quantum gas can be created. Solidification is achieved through
three-body collisions whereas kinetic or thermal equilibrium is obtained via
two-body collisions. If the densities are low enough, two-body collisions
dominate and one can have a dilute quantum gas before it finds its solid
state equilibrium configuration. The cold alkali atoms remain in the gas
phase for a few minutes, time long enough to perform measurements.

Atomic alkali are robust systems easy to manipulate that provide an
unique opportunity for exploring quantum phenomena on a macroscopic
scale. Collective phenomena are expected to take place when the inter-
particle distance ����� is comparable to the thermal de Broglie wavelength
�� � �������	
�� 	���. Bosons condense in the lowest single-particle state
while fermions tend towards a state with a filled Fermi sea.

Setting the interparticle distance ����� and the thermal deBroglie wavelength
equal provides a rough estimate for the Bose Einstein transition temperature
of a non-interacting Bose system to

�� � ���������

	
�
� (2.1)

For alkali atoms the achieved densities range from ���� cm�� to ���	 cm��

corresponding to transition temperatures from 100 nK to few �K. In trapped
systems the density can be estimated like � � ��
� with the radius given
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20 CHAPTER 2. DILUTE ATOMIC GASES

by 
 � �
���	��
�	���. Inserting them in Eq. (2.1) sets the BEC transition

temperature for a trapped ideal gas to 
��� � ������
��� where �� is the

trapping frequency and � � 
�
 is obtained with the exact calculation [29].
Typical trap frequencies are of the order of ��� Hz and the number of atoms
� range from ��	 to ���. Typical cloud sizes are of the order of 1 �m.

For degenerate fermions the interparticle distance 
��
� is determined by

the Pauli exclusion principle. For a three-dimensional symmetric trap, the de-
generacy of the energy levels gives the Fermi temperature 
��� � ���	�������.
Note that this is of the order of �� for BEC but in the fermionic case there
is no phase transition. To have a fermionic superfluid transition one needs
interactions.

The total spin of a boson particle must be an integer, whilst a fermion
particle has half integer total spin. Neutral atoms are made up of fermions
(neutrons, electrons and protons) and contain equal number of protons and
electrons. Therefore the statistics of an atom is determined only by the num-
ber of neutrons. If the number of neutrons is even the atom is a boson, and if
it is odd, the atom is a fermion. Alkalis have odd number of protons, isotopes
with odd number of neutrons are less abundant than those with even, since
they have both an unpaired neutron and an unpaired proton which increases
the energy.

Alkali atoms have only one electron out of the closed shells that is in an
orbital � (angular momentum � � �). The total electronic spin � � � � �

is � � �
�
. The nuclear spin is � and the total spin of the atoms is � � � � �

that for alkalis gives � � � � �
�
. The electron and nuclear spin are coupled

by the hyperfine interaction that splits the atomic levels in the absence of
a magnetic field ��� � ���� � �. The hyperfine splitting between the levels
� � � � �

�
and � � �� �

�
is ���� � �� ����	��� � ��� MHz, where ��� � �

. When an external magnetic field is applied, the energy levels are even fur-
ther splitted and for small magnetic fields the atomic states can be labeled by
the quantum numbers ��� �� 	. The two fermionic isotopes currently being
trapped are �Li and ��K that have � � � and � � � respectively. �Li has
positive magnetic moment � and the lowest energy state has � � ���. For
��K ��� � � and the lowest energy corresponds to total spin � � 
��.
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2.1 Atom-light interaction
In this section we consider the influence of light on an atom. Light is used
to trap and cool the atomic cloud. This is reviewed in next section. Further-
more, electric fields can be used to manipulate the trapped atoms and we
have proposed the coupling of laser light between different hyperfine states
to observe different phenomena in publications I-IV.

Absorption and emission of photons by an atom irradiated by a laser beam
can be analyzed for times scales longer than the spontaneous emission time in
terms of radiative forces. For an atom moving slowly or at rest the radiative
force can be split in two parts, the radiation pressure related to real atomic
transitions and the dipole force associated with virtual transitions between
the atomic states that in the dressed atom picture can be regarded as an
effective potential in which the atom moves. We will now derive the latter
using the dipole and rotating-wave approximations for a two-level atom.

The interaction between an atom and the electric field is given in the
dipole approximation (valid when the size of the atomic wave packet is small
compared to the laser wavelength) by

�
��
� � �� ��� (2.2)

where � is the atomic dipole moment and � the electric field.
Let us consider a two-level atom with the internal ground state ��	 and the

excited state ��	 coupled by a monochromatic classical laser field of frequency
�, ���	 � E��	 ������ � �	�	 . From an appropriate reference energy, the
Hamiltonian of the two level system reads

�� �
����	

�
�������� � ���	��		� ��d�	 � �	E��	 ��� ��� � �	�������	 � ���	���	� (2.3)

where ���, ���� are the destruction and creation operators of atoms in the state
��	. The evolution of ����		 is given by the Schrödinger equation

 ��
�

��
����		 � ������		� (2.4)

One can change into the interaction picture and use �����		 � �
��
�
�����������������
����		.

Inserting it into Eq.(2.4) one obtains

 ��
�

��
�����		 � �������		 � ���

�
�������� � ���	��		�����		 (2.5)
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Figure 2.1: Energy level
scheme for the dressed-states
in the RWA. At � � �, the
excited and ground states are
separated by energy Æ. For
� �� �, the splitting between
the two states is given by
�
�
�� � �Æ����. As explained

in the text, Æ � � implies
��� � ��� at � � � while
��� � ��� for Æ � �.

� �

�

�

��

δ (δ/2)2 + Ω2                           2

�

�

where �� � �
��
�
�����������������
 ����

��
�
�����������������
. Using the quantum commutation

rules one obtains the following Hamiltonian

�� �
����	

�
�������� � ���	��		�

��d�	 � �	E��	���

�
�����

 � �	������	 � �����

 � �	���	�����(2.6)

One should notice that the optical frequencies (� ���	�!) available with
lasers are much bigger than any other energies in the system. The hyperfine
splitting is of the order ����!. Trapping frequencies are of the order of
����! and this gives Fermi energies of ��	�!. Collective excitations in the
harmonic trap are of the order of the trapping energy. Therefore, when
using optical light one can use the rotating wave approximation (RWA) that
consists on time averaging the above Hamiltonian.

The effective Hamiltonian for the state �����		 is thus

�� � ���

�
�������� � ���	��		 � �����	������	 � ������	���	��� �

��Æ

�
�������� � ���	��		� (2.7)

where the laser detuning Æ � ��	 � � and the Rabi frequency ���	 �
�
��d � �	E��	��������	�� were introduced. Thus, in the rotating wave ap-
proximation the interaction of the laser light with the matter fields can be
described by a time independent Hamiltonian in which the detuning Æ plays
the role of an externally imposed difference in the energies of the two states.
One can diagonalize this two level matrix and obtain for the rotated states

��	 � �������� ��� "��	��	� ��������� ��� "��	��	
��	 � ��������� ��� "��	��	� ��������� ��� "��	��	� (2.8)
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where the angle "��	 is defined as ��� �"��	 � Æ���
�

� Æ
�
	� � ����	 and ��� �"��	 �

�����
�

� Æ
�
	� � ����	. The eigenenergies are �� � ���

�
� Æ
�
	� � ����. This is de-

picted in Fig 2.1. The states that diagonalize the atom+laser Hamiltonian
are called “dressed states”. One can derive them including the photon field
operators in the formalism; see e.g. [30]. If the laser is far detuned, i.e.
�Æ� � ��� one can see that the energies �� � � �Æ�

�
��� ���

Æ�
	. For blue detuned

light Æ # �, ��	 � ��	 and ��	 � ��	 and when the light is red detuned Æ � �,
��	 � ��	 and ��	 � ��	. An atom initially in the state ��	 and following
the field interaction adiabatically remains in the ground state and feels the
optical potential

$ ��	 �
��Æ���	�

Æ�
� (2.9)

Thus, when the laser is far detuned one can adiabatically eliminate the ex-
cited state. Note that the dipole potential is r-dependent and a periodic
configuration constitutes an optical lattice.

To include the spontaneous emission from the excited state ��, the term
� ����	������� has to be added to the initial Hamiltonian (2.3). One can then
just replace Æ by the complex quantity Æ �  ���� in the optical potential
Eq.(2.9) and obtain the complex potential $	 �  ���	 where

$	 �
����Æ

Æ� � ��
���

(2.10)

�	 � �� ����

Æ� � �����	�
� (2.11)

The complex part �	 is the finite lifetime of the ground state due to trans-
itions to the excited state. It is is proportional to ��Æ�. Far detuned po-
tentials have negligible spontaneous emission from the ground state. Higher
intensities imply also higher spontaneous emission rates and therefore a red
detuned optical lattice where the potential minima coincides with the points
of higher laser intensity has higher spontanteous emission than the blue de-
tuned ones.

Usually in experiments with alkali atoms one wants to couple different
atomic hyperfine levels. The typical frequency separation is of the order of
GHz. Such frequencies can be provided by a time-dependent electric field
(rf-field) or by using two lasers in a Raman scheme as showed in Fig. 2.2.
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∆1

∆2

ω2

ω1

�

�

	

ω� 	

ω� �

Ω1

Ω2

Figure 2.2: Raman laser scheme. The
��	 and �%	 states are coupled through
an intermediate state �&	 using two
lasers of frequencies �� and �� and de-
tunings �� and ��.

The Hamiltonian for such a scheme reads

�� � �������
�
���� � �������

�
���� � ���d�� �E� �������	��

�
���� � �����

����d�� �E� �������	��
�
���� � ������ (2.12)

We define slowly varying fields in the interaction picture by ��� � ��
�
���,
��� � ���
��
��
��� and ��� � ���. For the electric fields ���

� � ��
�
��
� and

���
� � ��
�
��

� where + denotes the positive frequency component of the
electric field. Inserting this in the Hamiltonian, and in the limit of large
laser detuning one can adiabatically eliminate the intermediate state �&	 like
��� � �

����
���� ���

� ��� � ��� ���
� ����. Using this ��� the Hamiltonian becomes

� �� � ��Æ�������� � ��Æ�������� � �
����

���

��
������� � ����� (2.13)

where Æ� �
��
�

��
and Æ� � �� � �� �

��
�

��
are the effective detunings. This

solution for the two level system is asymmetric but it can be made symmetric
just by adding a phase to the solution.

2.2 Trapping and cooling

The trapping and cooling of atoms is done by the application of external
fields. Ions can be trapped by electric and magnetic fields due to their charge.
External fields interact with neutral atoms only through their permanent
magnetic moments or induced electric dipole moments resulting in smaller
forces and trap depths at most few Kelvins.
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When an external magnetic field is applied, the energy of the atom changes
due to the interaction of the magnetic moments of the electron and the
nucleus with the magnetic field. This is called the Zeeman effect and for a
magnetic field ' in the ! direction, the spin Hamiltonian is

����� � ���� � � � ����' � �� � �

�
' � ��� (2.14)

where �� is the Lande factor for the electron (�� � �) and � the magnetic
momentum of the nucleus. The magnetic moment of the nucleus is a factor
of �� � �	��	�	�� � �� and the interaction with the nucleus can be
neglected. The Hamiltonian

����� � ���

�
���� �

�

�
����� � ����	

�
� ����' � �� (2.15)

couples only states with the same value of the sum 	��	� . This reflects the
invariance of interactions under rotations about the ! axis. For low magnetic
fields it can be shown [29] that the energy may be written as ���� 	� 	 �
��� 	����� 	� 	'. If the magnetic moment of the state ���� 	� 	 is positive,
the atom experiences a force that drives it to regions of high field and if the
magnetic moment is negative the force is towards regions of lower field. States
with positive � are refered to as high-field seekers and those with a negative
one as low-field seekers. The Earnshaw’s theorem forbids a local maximum in
the magnetic field if there are no electrical currents. Thus the case of interest
is a local minimum in the magnetic field ' and the only states to be trapped
magnetically are the low field seekers. The energy depth of magnetic traps
is given by the Zeeman energy. Atomic magnetic moments are of the order
of the Bohr magneton that in temperature units is approximately 0.67K/T
giving trap depths of much less than a Kelvin for magnetic fields less than
one Tesla.

The simplest magnetic trap is the quadrupole trap in which the magnetic
field varies linearly with distance in all directions. Because 
 � 
 � �,

 � '��(� )���!	. An atom is assumed to remain in the same quantum state
and follow adiabatically the magnetic field variations. However, a moving
atom experiences a time-dependent magnetic field that induces transitions
to other hyperfine states. In particular low field seeking states may change
into high field seeking states that will leave the trap. This effect becomes
important if the frequency of the time dependent magnetic field is comparable
or greater than the frequencies of transitions between magnetic sublevels
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(�'). When the magnetic field vanishes this effect is thus very important
and the trap has a "hole". One way of removing the hole is applying an
oscillating magnetic field 
 � �'�( � '� ��� ��� '�) � '� ��� �����'�!	 that
moves the instantaneous position of the node in the magnetic field. This is
known as the time-averaged orbiting potential (TOP) trap. The frequency
of the bias field � is taken such that � � ��'� for the atom to remain in the
same hyperfine state and such that the frequencies of atomic motion � �
to average on time. Close to the origin � � � the atom feels the magnetic
field 
'	
 � '� � ���

���
�(� � )� � �!�	 [31]. Another way of removing the hole

in the quadrupole trap is using a blue detuned laser that expels the atoms
from the ' � �. To avoid the disadvantage of the node in the origin, there
are other magnetic configurations like the Ioffe-Pritchard traps that have a
finite value at the minimum.

The influence of light on an atom results in two types of forces, the ra-
diation pressure and the dipole force. The expression of the optical dipole
potential was derived in Section 2.1, and the lifetime of the ground state �	
was obtained when considering the influence of spontaneous emission.

The dipole force is the force exerted on an atom due to coherent redistri-
bution of photons

���� � ��$	��	

��
(2.16)

where $	 is the optical dipole potential Eq. (2.10). A red detuned (Æ � �)
laser attracts atoms to the low intensity region and a blue detuned laser Æ # �
expels atoms from the high intensity regions in space. The simplest optical
trap is a single focused red detuned laser and the depth is given by (2.10).
In optical traps one can trap simultaneously different hyperfine states but
they have the difficulty of inducing heating due to optical excitation of the
trapped atoms.

The radiation force is the force on an atom corresponding to absorption
of a photon of momentum q followed by spontaneous emission

������	 � ����	� (2.17)

that depends on the velocity of the atom v. The radiation pressure can
be also used to confine atoms. This is done in the magneto-optical trap
(MOT) that combines laser fields with spatially varying magnetic fields. The
magnetic fields induce space dependent energy levels that induce a radiation
pressure depending on the position.
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The primary application of the radiation force is Doppler cooling. When
an moving atom is subjected to a red detuned laser field the kinetic energy
can provide the extra energy needed to achieve the transition to the excited
state. Spontaneous decay to the ground state means that kinetic energy is
lost during the process. Let us consider two counterpropagating plane waves
acting on an atom moving with velocity *�. The radiation forces are

���*�	 � ���+�� ����

��� � +*� � ��		� � �����	�
� (2.18)

Due to the Doppler effect, a moving atom “sees” the counterpropagating
running wave more than the other. It experiences then a force opposed to
its velocity and the atom loses energy. The total force exterted on the atom
reads

�
�
 � �� � �� � �,*� �
�-�
��

� (2.19)

, � ����+��� ����

�Æ� � �����	���
Æ (2.20)

If the laser is red detuned, , is positive and the force damps the velocity at
a rate ��.���� � ���*��*���� � ,�	. The cooling rate is then �

�


-�	����
 �

� ��
�
��

�����
. On the other hand there is diffusion heating due to the random nature

of spontaneous emission. This fact limits the lowest temperatures obtainable
with Doppler cooling. The radiation force Eq. (2.17) is the average force
on an atom in the laser field. It arises from discrete photon scattering and
must fluctuate around its average. These fluctuations result in heating of the
atoms. Considering a random walk of the atomic momentum, the heating
rate results in �

�


-�	�
 �� � ��	���+	� � /� . An estimate of the lowest

temperatures obtainable with Doppler cooling can be obtained by equating
the heating and cooling rates that results in 
-�	 � �

�
/�.����. Using the

equipartition theorem the lowest achievable temperature


�� � ��
Æ� � �����	�

��Æ
(2.21)

is obtained. It has a minimum 
��� � ��!�
�

, that is known as the Doppler
limit. Typical widths �� give temperatures of the order of hundreds of �K.

Temperatures below the Doppler limit can be realized using other laser
cooling techniques. Two counterpropagating lasers with different polariza-
tions result in a standing wave whose polarization varies in a sub-wavelength
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distance scale. The atomic alkalis are not simple two level systems and their
ground state is degenerate at zero magnetic field. The optical potential per-
turbing the states depends on position and is different for the degenerate
ground states. The variation of polarization with space is such that at each
point atoms are transferred to the state with less effective energy at that
point. This results in an energy difference between the absorbed and emited
photons of the order of the dipole potential light shift (2.10). This process
is called Sisyphus cooling. It leads to temperatures of the order of the recoil
energy (energy imparted to an atom at rest when it absorbs a photon of
momentum ��+) which is of the order of ���� ��0.

In order to achieve quantum degeneracy for bosons and fermions, one
has to obtain even lower temperatures. This is realized using evaporative
cooling. Particles with higher energy are forced to leave the trap and the
remaining particles rethermalize into a lower average temperature. This is
done by applying an rf-field that induces transitions from a low-field seeking
state into a high-field seeking state. The magnetic trap makes the resonant
frequency depend on position. By choosing the frequency of the rf-field one
can selectively remove the atoms at the edges of the trap that have higher
energy. Another way of directly evaporatively cool the cloud is by lowering
the potential height, e.g. the optical dipole potential is reduced by lowering
the intensities of the lasers. Evaporative cooling relies on the thermalization
of the cloud of atoms. This is done mainly through 2-body collisions and a
high enough scattering rate is necessary to achive low temperatures in short
enough times. This is a problem for identical fermions that do not interact at
low temperatures. One needs either fermionic atoms in at least two different
hyperfine states trapped in an optical trap or bosonic and fermionic clouds
overlapping in a significant region of space. This process is called sympathetic
cooling and it has been demonstrated to be a very efficient way of cooling fer-
mions. The bosonic cloud can be cooled into a big Bose Einstein condensate
that cools the fermionic cloud by rethermalization. The process is however
only effective while the specific heat of the Bose cloud is bigger than the
specific heat of the fermions. This sets a limit for sympathetic cooling and
the lowest temperatures achieved for fermions at the time of this writing are
of � 
�nK [21].

The rate of collisions is influenced not only by the statistics of the atoms
but also by the degree of degeneracy. Due to stimulated emission, degeneracy
increases collisions rates for bosons (factors � � 1� in rates of processes). For
fermions the sign in the corresponding factors is the opposite (��1�) because
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transitions to occupied final states are blocked by Pauli blocking. Thus, it is
the last step in cooling (evaporative cooling) what makes the achievement of
low temperatures difficult for fermions.

One can create optical lattices using standing waves and superpose
this potential to the harmonic trapping potential. Two counterpropagating,
equal-intensity linearly polarized laser beams with the same frequency create
a standing wave with intensity � � �� �����
 � �	. The lattice spacing & is
given by & � ���. For a sufficiently large detuning between the laser and the
atomic transition frequency, as shown in Section 2.1, the atom remains in
the ground state and feels a potential proportional to the intensity Eq.(2.9).
Thus, the intensity of the laser beam characterizes the well depth of the
lattice $�. The well depth of the lattice is typically several times the one
photon recoil energy �� � ���
���	 (�� is the energy of an atom if it
acquires the momentum of a photon from the light field). One can easily
accelerate optical lattices. Instead of forming the standing wave with two
counterpropagating waves having equal frequencies 2�, the wave coming from
the left is upshifted in frequency by a small amount Æ2, while the wave coming
from the right is downshifted by the same amount. In the laboratory frame,
the lattice moves with velocity * � �Æ2. One can ramp the frequency shift
linearly with time and the potential is then effectively accelerated with an
acceleration proportional to ��Æ2	���. This method has been used to observe
Bloch oscillations [32] and Wannier states [33] in bosonic clouds.

2.3 Interatomic interactions

Atomic interactions are of crucial importance to experimentally obtain quantum
degeneracy in trapped gases because at sufficiently low temperatures the two
body collision rate dominates the three body rate and the gas reaches kin-
etic equilibrium (thermal equilibrium=metastable) long before it reaches its
chemical equilibrium into a stable solid state. Atomic interactions are im-
portant to dilute BEC also in the mean self-energy 3 � �����&���	 that
determines the size and shape of the condensate as well as its excitation spec-
trum. Further, the sign of & determines whether the condensate stabilizes or
collapses. However, interactions are not essential to Bose condensation (it
happens also in an ideal gas) but having interactions between fermions is an
essential prerequisite for a phase transition to a superfluid state. Especially
important are Feshbach Resonances [25] that consists of tuning the value
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of the scattering length using magnetic fields when a quasi-bound molecu-
lar state couples resonantly to the free state of colliding atoms. The use of
Feshbach resonances brings up the possibility of realizing strongly correlated
systems and the tuning from the weakly correlated to the strongly correlated
regime.

Neutral atoms interact as a consequence of the electric dipole-dipole in-
teractions between atoms. This results in the Van der Waals interaction
$ �4	 � 4�� where 4 is the distance between the interacting atoms. Two col-
liding alkali atoms have spins � � ��� that result in total spin 5 � �� �. The
interaction depends dramatically on the total spin 5 and one can separate
the interaction potential in the contributions from the triplet state 5 � � and
the singlet state 5 � � as $ � 6�$� � 6�$�. To understand this we recall
that the interaction between atoms with electrons outside closed shells have
an attractive contribution because two electrons with opposite spin can oc-
cupy the same orbital. If the electrons are in the same spin state they can not
have the same spatial wave function and there is no attractive contribution.

Let us consider the scattering of two atoms in the relative reference frame.
This is equivalent to the scattering of a particle of relative mass 	� � 	��
(for identical scattering particles) against a fixed potential $ ��	 that for
simplicity we consider to be spherically symmetric $ �4	. The asymptotic
solution of the wave function of the relative particle is given by

7 � ����� � 7���4	� (2.22)

One can define a scattering amplitude 1�
� "	 as 7���4	 � 1�
� "	������4
when the scattering potential between two particles $ �4	 goes to zero when
4 goes to infinity. The total scattering cross-section is given by 8�
	 �� �1�
� "	����. A scattering process between two identical particles with
a spherically symmetric potential gives a scattering cross section 8�
	 �
���
��

���9 � �	 ���� Æ��
	 with 9 even for bosons and odd for fermions. The
phase shifts Æ��
	 follow from the asymptotic solution of the radial Schrödinger
equation

� ���

�	

��:�
�4�

�

�
$ �4	 �

���9�9 � �	

�	�4�
� �

�
:� � � (2.23)

where the radial wave function has the asymptotic form (4 � �) :� �
����
4 � 9��� � Æ�	. When the scattering potential decreases faster than
�
��

, the potential created by the centrifugal part ���9�9 � �	��	�4
� creates a
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centrifugal barrier that will reflect the particle for low enough energies. Only
the partial wave 9 � � will lead to non-zero scattering. A careful treatment of
the limiting case 
 � � shows that the phase shifts must vary at low energy
as Æ� � 
������ and the scattering length is defined as

&� � � ���
�	�

Æ��
	


����
� (2.24)

The total cross section for identical boson s-wave scattering reaches the finite
value 8� � ��&� as 
 � �. The s-wave scattering is supressed for identical
fermions and the first nonzero contribution to scattering is through p-wave
scattering. The scattering length can only be calculated from the knowledge
of the interaction potential for atomic hydrogen. For the rest of atoms it is
determined from spectroscopic mesurements [34]. It can also be determined
by the thermalization rate of trapped atomic gases.

In order to treat the renormalization problem of the scattering length
we explicitely write the two particle scattering problem in the momentum
representation. The wave function describing the relative motion of the two
particles (2.22) written in momentum representation is

7�
�	 � ���	�Æ�
� � 
	 � 7���

�	� (2.25)

One can define the scattering T matrix as 1�
��
	 � �  
�!���

� �
��
� � � �����

 
	.

The scattering T matrix satisfies the Lippmann-Schwinger (LS) equation

� �
��
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��
	�
�
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	������

���

	
� Æ	��� �


��

�
� �	� (2.26)

where 3�
� � 
	 is the Fourier transform of the atom-atom interaction po-
tential $ �4	, $ is the system volume and Æ is an infinitesimal that ensures
that only outgoing waves ares included. The LS equation follows from the
Schrödinger equation for the wave the function (2.25). The T matrix is
related to the scattering length as

� ��� �� �	 �
�����&

	
� (2.27)

A priori the simplest approximation to the interaction potential between two
particles is the contact interaction potential

$ ��� � ��	 � �Æ��� � ��	� (2.28)
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Figure 2.3: Energy level scheme of a res-
onance between the open (O) channel and
the closed channel (C). The detuning � is
the difference between the threshold en-
ergy ��
 and the energy of the resonance
�� �.

As sketched above, given the scattering potential one can determine the scat-
tering length by the asymptotic behaviour of the solution. Doing so for the
Æ��	 potential leads to & � �. This approximation leads to an ultraviolet
divergent theory reflecting the fact that the contact interaction is an effect-
ive low energy interaction invalid for high energies. One way to deal with
this divergence is to introduce an energy cut-off in the interaction. This
approach has been used to describe the superconductivity in metals where
the Debye frequency is a natural cut-off. Another method is to express the
coupling constant in terms of the two-body scattering matrix obtained from
the Lipmann-Schwinger equation (2.26)

� ��	 �
3

�� 3;���	
(2.29)
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�
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� (2.30)

where ;� is the free particle Green’s function and <� � 
����		. Note that
the scattering length increases from�� for a very weak attraction to �� for
strongly attractive interaction. In the inhomogeneous case, the divergency
can be removed by the use of a pseudo-potential [35, 36]

$ ��	=��	 � �Æ��	
>

>4
�4=��		� (2.31)

This type of potential removes the problem at 4 � � for wave funtions of the
type :�4	�4.

We have so far neglected the internal degrees of freedom of the atoms due
to the nuclear and electronic spins. Including these degrees of freedom makes
the scattering of atoms a multichannel process. The coupling of channels has
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two effects. First, the atoms can be scattered between different magnetic sub-
states inducing trap losses. Second, the elastic scattering amplitude and the
effective interaction are altered. The main effect is that the elastic scattering
in one channel can be altered dramatically if there is a low energy bound
state in a second channel (closed channel). To first order in the coupling
between ? (open) and � (closed) channels the scattering is unaltered. How-
ever two particles in the channel ? can scatter to an intermediate state in a
closed channel � which subsequently decays to give two particles in channel
?. Such a second order process can be treated with perturbation theory and
one expects terms of the form & � ���� ��� �	 that give huge contributions
for energies close to resonance. The effective interaction in the open channel
includes the coupling with the closed channel as a non-local potential �#$ .
The Lippmann-Schwinger equation to first order in 3# [29] gives

�����&

	
�

�����&#
	

�
�
�� ���#$���	��

��
 � �� �
� (2.32)

Atomic interactions can be tuned by exploiting the fact that the energies
of the states depend on external parameters like the strength of the magnetic
field. Assuming an external magnetic field and �� � � ��
 � �' � '�	, the
scattering length is therefore given by

& � &#

�
�� ��'�

' � '�

�
(2.33)

where &# is the nonresonant or background scattering length. For magnetic
fields around '� the effective scattering length diverges to ��. A resonance
between an open channel and an closed channel is depicted in Figure 2.3. In
the closed channel there are bound states of the two atoms. By tuning the
magnetic field one can vary the energy difference between the two channels
2 � ��
 � �� �. If the energy of the bound state �� � is lower than the dis-
sociation threshold energy, the bound state can be effectively populated and
bound molecules are created. This corresponds to the side of the resonance
with repulsive effective atom-atom interactions.

If one traps fermionic atoms in two different hyperfine states with attract-
ive interactions between them, they can form atomic Cooper pairs and the
system becomes superfluid. In the weak coupling regime the transition tem-
perature is orders of magnitude smaller than the Fermi temperature. One can
exploit the resonances between the different hyperfine states to increase the
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interaction strength to values that predict experimentally accesible temperat-
ures. Feshbach resonances in fermionic alkali atoms have also been predicted
to rise the transition temperature �� to values comparable to the Fermi tem-
perature �� [37, 38, 39]. This has been called Resonance superfluidity. For
�Li there is a extremely broad Feshbach resonance between the states ��

�
� �
�
	,

��
�
���

�
	 around '� � ��mT [22, 23]. A much narrower resonance occurs for

the same states at '� � ���
mT [19]. For ��K, the states ��
�
��	

�
	 and ��

�
���

�
	

present a narrow resonance of width � ���mT around '� � ����mT [17].
Apart form elastic collisions there are also inelastic collision processes that

make the experiments more difficult as they can induce trap losses. There
are three types inelastic processes and they can be measured by atom losses

��

��
� ��� �



0������



������� (2.34)

The first term accounts for collisions with background atoms at density in-
dependent rate �, the second term is due to two-body inelastic processes like
two-body spin dipolar relaxation (spin flips) and the third one corresponds to
three body recombination processes. Since the density will always decrease
with time at sufficiently long times, a log plot of N versus time is a straight
line whose slope gives �. At short times the slope might be due to 0 or �
which can be determined from a fit to the plot.



Chapter 3

Description of the System.

In this chapter we review the microscopic theory of dilute Fermi gases. We
include here the methods that we have used to describe the system in pub-
lications I to VI.

Another way of describing the system is the macroscopic or semiclassical
formalism in which one introduces a distribution function 1����	 [35] in the
phase space � �

�
�����
. The semiclassical approximation holds provided

the temperature � is much larger than the single particle energy spacing ���.
We will review the static semiclassical (or Thomas-Fermi) approximation in
the next section. Dynamics can be also described with the semiclassical form-
alism by introducing a time-dependent distribution function 1����� �	. The
equation describing the dynamics of fermions in the normal state [40] is the
Landau-Vlasov equation that is a Boltzmann equation with an interaction
term. It is valid in the collisionless regime and one can add to it a collisional
term to treat interatomic interactions . When interactions are very strong
one can apply the hydrodynamic description that holds provided the colli-
sional relaxation time . is much smaller than the time scale of the typical
frequencies characterizing the dynamic phenomena (in this case the trapping
frequency �). The same hydrodynamic equations hold for the the superfluid
case [41], assuming that the relevant physical quantities change slowly on dis-
tances larger than the healing length. This implies that ��� � � (superfluid
gap). It further assumes that the local density approximation (or semiclas-
sical approximation) to the equation of state is justified. This macroscopic
description of the system is specially useful for analyzing the collective excit-
ations of the trapped system and has been extensively used by S. Stringari’s
group in Trento.

35
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3.1 Degenerate Fermi gas

We begin by considering � fermions in the same hyperfine state of the atom.
At low temperatures identical fermions do not interact and we consider a non-
interacting degenerate Fermi gas. Fermi particles obey the Pauli exclusion
principle that prevents two fermions from being in the same quantum state.
The ground state of an ideal Fermi gas is the antisymmetrized product of
the lowest � single particle states.

To calculate the thermodynamic properties of the system we have to con-
vert the sums over states into integral using the density of states. For results
in the homogenous case see Ref. [42]. We also consider non-interacting fermi-
ons in a three-dimensional harmonic trap, because it is the typical geometry
in experiments with alkali atoms.

The density of states ��<	 gives the number of states with energy within
< and < � �<. It is given by

��<	 � �%<
%�� (3.1)

���� �
$ 	���

�
������

�� �
�

������	�
(3.2)

where , � 
�� corresponds to the three dimensional homogenous gas and
, � 
 to the three dimensional harmonic trap where �� � ��&�'��	

��� is the
average trapping frequency.

The number of particles is given by

� �

 


�
��<	1�<	�< (3.3)

where 1�<	 � �����(�)� � �	 is the Fermi distribution function and � the
chemical potential. The normalization condition (3.3) is used to obtain the
chemical potential.

At � � �, 1�<	 � "�< � �	 and Eq.(3.3) reduces to � � �%
)�

%
. For the

3D harmonic trap, and defining ��� � �	 � �� ,

�� � ���	�������� (3.4)

The characteristic size of the trapped degenerate Fermi gas is defined as

� �

�
����� ��.
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The chemical potential at � �� � is obtained solving numerically Eq.(3.3)[43].
One can find analytic expressions for the chemical potential in the low tem-
perature limit 
�� � �� using the Sommerfeld expansion of the above
integral
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In the high temperature limit (
�� � �� ),
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The total energy of the system 3 � �%
�

� <%1�<	�< can be calculated in

a similar way and for low temperatures (
�� � �� ) 3�� �
�
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%��
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�

�
�
��

��
� � ?������ 	�.

Since all the exact eingenstates and eigenenergies of the harmonic trap
are known, one can calculate all the observables of the system by summing
up over the � states [44]. The density can be obtained by squaring the
antisymetrized combination of single particle eigenfunctions. One can also
use approximations. The semiclassical or Thomas-Fermi approximation for
the dilute trapped Fermi gas [43] consists of characterizing each atom by a
position r, and a momentum k, and energy ����
	, where � is the classical
Hamiltonian. One should integrate

1���
	 �
�

���	�
�

!"#�@�����
		� ��� �
(3.7)

over the six dimensional phase space ��
���. This approximation is valid
when one can divide the sample in cells with a big number of particles in
which the potential energy is nearly constant so that one can define a local
Fermi sea. This is the case provided the number of particles � is large
enough. Note that (3.7) is one of the static solutions of the Boltzmann
equation (also the Bose and the Boltzmann distribution functions are). The
density is given by

���� � 	 �



��
1���
	 (3.8)

where the chemical potential is obtained by normalization of (3.7) to � . At
� � � one may define a “local” Fermi wave number 
� ��	 as

���
� ��	�

�	
� $ ��	 � �� (3.9)
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The density is then ���	����� � � �	 � �
�
�
� ��	� which gives

���� � � �	 �
�
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����
(3.10)

where �� � ������	. The absorption measurements when releasing the trap
reflect the momentum distribution that a � � � is given by ��
� � � �	 ��

���1���
	 � ������0�
� 	 ��� 
��0�

� �
��� where 0� is given by �� . The

momentum distribution for a non-interacting Fermi gas is isotropic even for
anisotropic potentials due to the isotropy of the mass but the density in space
���	 is anisotropic when the trapping potential is different in the different
directions.

The two component system of fermions has been studied in [45] treating
the attractive interactions within the mean field approximation �����	 with
� � �!�����

 
. In [45] the authors show good agreement between the numerical

calculation using the sums of harmonic oscillator eigenstates and the Thomas-
Fermi solutions given by the simultaneous self-consistent equations

��
� �	 �
���
�

�	
� ����	� ���	 (3.11)
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where 1 is the Fermi distribution function (3.7). Attractive interactions
lower the chemical potential and the energy 3 with respect to the non-
interacting gas and the momentum distribution is more spread than for the
non-interacting case.

3.2 Superfluid transition
A superfluid phase transition has been predicted [15] for fermionic atoms with
attractive interatomic interactions. It was proposed that a BCS transition
would take place and the fermions would form atomic Cooper pairs due to
the weak attractive interactions. Due to the tuneability of the interatomic
interactions one can go to stronger regimes of fermionic superfluidity [37,
38, 39] that provide superfluid transition temperatures within the limits of
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the cooling techniques currently available and the possibility of scanning the
BCS-BEC crossover.

Let us consider a two-component fermionic gas of atoms in two different
hyperfine states and equal densities for both components. As shown in section
2.3, one needs fermions in different hyperfine states to have s-wave scattering
between them1. The equal density configuration is the optimal for pairing.
For a detailed calculation of the superfluid gap for nonequal densities see Ref.
[47]. The Hamiltonian of the system including only two particle interactions
in the second quantization formalism reads
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where the two trapped hyperfine states are denoted by � and � and �7�
*, �7*

are field operators. Assuming point-like interactions in 3 dimensions, the
interaction coefficient is given by :�� � �!���

 
&� � ��3 �. Thus, the interaction

term reads

��

�
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���	 �7���	 �7���	� (3.15)

We have included the chemical potentials �* and we are working with the
grand-canonical Hamiltonian valid for the description of a system in contact
with a thermal bath and fixed average number of particles. We consider the
general case of an inhomogeneous single particle Hamiltonian with potential
$*��	. This is the experimental case due to the harmonic trap or optical
lattice. The use of a periodic potential has been predicted [48] to increase
the superfluid transition temperature. In an optical lattice the effective in-
teraction depends on the potential barrier and one can scan the BCS-BEC
crossover just by controlling the laser intensity.

During the thesis we have worked mainly on the superfluid state of the
Fermi gas. We have assumed that the above Hamiltonian can be solved

1Superfluidity for identical fermions through p-wave pairing [46] leads to lower trans-
ition temperature but avoids the experimental problem of having almost equal atomic
densities in both states (�����

�����
�

��

��
).
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within the BCS approximation. During the next sections we review the
methods that we have used during the thesis. Experiments are turning into
the strong coupling regime or intermediate regime of superfluidity. As first
shown by Nozières and Schmitt-Rink [49], the BCS algebra can be used both
in the weak coupling regime as well as in the strong coupling regime. Due
to its importance in the field we review here also the BCS-BEC crossover
and resonance superfluidity (i.e. superfluidity in the presence of a Feshbach
resonance). The last section is devoted to the solution of the BCS algebra
with a current. This is necessary for our description of Bloch oscillations in
publication VI.

It is well known that the static Hartree-Fock-Bogoliubov theory does not
fullfil the sum rules obtained from particle current conservation [50]. The
density-density response function obtained with this approximation shows
an unphysically large response at small wavevectors. The mean field solution
assumes that the particle spectrum has a gap and therefore it ignores the pos-
sible below gap excitations. One can go beyond the BCS approximation by
using the time dependent Hartree-Fock-Gorkov approximation or Random-
Phase-Approximation (RPA) to obtain the collective excitations and obtain
a collective mode [50] with phonon dispersion relation that lies in the gap.
We only review here the static theory but the RPA was used in publication
II.

3.3 Mean field solution
We review here the mean field solution of the Hamiltonian �0 following Ref.
[51]. To simplify the interaction term, let us use the following mean field
approximation in the spirit of the Wick’s theorem

�7�
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���	 �7���	 (3.16)

that leads to linear equations of motion. This is called the Hartree-Fock-
Bogoliubov approximation where we have defined the pairing (gap) and the
Hartree fields as

���	 � ��3 �
 �7���	 �7���		 � �3 �
 �7���	 �7���		 (3.17)
A*��	 � ��3 �
 �7�

*��	
�7*��		� (3.18)
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Note that we have neglected the Fock terms 
 �7�
*��	

�7,��		 8 �� @. The effective
Hamiltonian reads
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Using the commutation relations for the fermionic operators, one obtains

the following equations �
�7�� �0���

�
� 0�� �7� � � �7�
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�7�� �0���

�
� 0�� �7� ��� �7�

�� (3.20)

where 0�* � ��* � �* and ��* � ����
�

� 
� $*��	 � A*��	.

One can expand the field operators in the Bogoliubov operators �B-*
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Using the commutation relations for the field operators, one can see that the
commutation relations for the Bogoliubov operators must be

��B��*� �B�,� � Æ��Æ*,

��B�*� �B�,� � �� (3.23)

The Bogoliubov transformation is chosen in such a way that it diagonalizes
the effective Hamiltonian

�0��� � �. �
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���B
�
�*�B�*� (3.24)

Using Eqs.(3.23), one can see that�
�B�*� �0���

�
� ���B�* (3.25)�

�B��*� �0���
�

� ����B
�
�*� (3.26)

Inserting the transformation (3.22) in eqs (3.20), and equating the coefficients
in front of the Bogoliubov operators one obtains the Bogoliubov-deGennes
[51] equations

��:���	 � 0����	:���	 � ���	*���	

��*���	 � �0�
��*���	 � ����	:���	� (3.27)
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that one has to solve self-consistently with the gap equation

���	 � �3 �	
�

���� �1���		 *��:�� (3.28)

where we have used that 
�B��*�B�,	 � Æ��Æ*,1� and 
�B�*�B�,	 � �. The self-
consistent solution of equations (3.27) and (3.28) gives :�, *� and ��.

3.3.1 BdG Equations

For simplicity we assume the same single particle Hamiltonian �� for both
spin states�
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��
:���	
*���	

�
� ��

�
:���	
*���	

�
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Note that we keep the � dependence because experimentally these atomic
systems are confined in a harmonic or a periodic trap. We use the following
ansatz

:���	 � ����=���	:�

*���	 � ����=���	*�� (3.30)

where =���	 are the single particle eigenstates. Multiplying Eq.(3.29) by�
:����	 *����	

�
and integrating in space , one obtains

C��:��� � :��*��� � ���:���
�C��*��� � *��:��

�
� � ���*��� (3.31)

where we have introduced the space-independent gap �� � 
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��. These two equations lead to the well known result
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where �� � �
�

C�
� � ��

�. Note that for the Bogoliubov transformation to
make sense we need �� # � for the quasiparticle energies. The - branch is
the “hole” branch. Using (3.32) one can easily obtain the relation
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3.3. MEAN FIELD SOLUTION 43

3.3.2 Gap Equation

One can thus obtain :���	 and *���	 inserting the single particle energies C�
and eigenstates =���	 and ��. The gap is given by the following equation
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���� �1���		 *����	:���	 (3.34)

where :���	, *���	 solve the BdG equations (3.27). One can simplify � �
�1���	 � $%�&
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and using the ansatz (3.30), the gap equation reads
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One can define ���	 � �
�����	 where

����	 � �3 ��=���	�� $%�&

�
@��

�

�
��

�
�

C�
� � ��

� (3.36)

so that
�

������	 �� ��. Note that the r-independent gap used in equations
(3.31) is given by

�� � �3 �	
-

$%�&

�
@�-

�

�
�-

�
�

C�
- � �-



���=���	���=-��	��� (3.37)

In case of no k-dependence of the gap �� � �,
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where we have used that
�

���=���	���=-��	�� �
�

���=-��	�� � � that must be
momentum independent. Then, the self consistent equation for � is Eq.(3.38)
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In the homogeneous case, the single particle eigenstates reduce to plane
waves and Eq. (3.37) reduces to the familiar equation
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that implies 
-independence of the gap �� � �. The self consistent equation
reduces to ���3 � �

�
- $%�&

�
�
�
@�-

�
����

�
C�
- � ��	. Using the renormalized

interaction (2.30) to remove the ultraviolet divergence, the gap equation
reads
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where one takes the maximum contribution to the single particle Green’s
function ;��� � ��	. In general, the chemical potential � is also unknown
and apart from equation (3.41) one needs to solve simultaneously the num-
ber equation
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3.4 Weak coupling superfluidity
In the case of weak-coupling superfluidity one can solve analytically both the
gap and the number equation. By weak coupling we mean that the attraction
will just affect a few states close to the Fermi energy, �� � <� . One can also
assume that the gap is 
-independent �� � �.

The transition temperature is given by setting � � � in (3.41) which
reduces to 
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where ��<	 � 	���<�����
�

������	 is the density of states for the homogeneous
case. For ��<� 	�����&��	 � �, 
��� � <� and one can evaluate the above
integral at low temperatures 
��� � � which implies � � <� . Thus, one
does not need the number equation. This gives [29],
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<� ��!���� ���� (3.44)

where B � �$ � ��'�� and C is the Euler constant. The superfluid gap at
� � � is calculated in a similar way (note that 3� � �����&��	)
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which gives

� �
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The ratio between the zero-temperature gap and the transition temperature
is given by
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Until now we have considered only the bare scattering length. As shown in
the context of dilute alkali Fermi gases by Heiselberg et al. [52] the medium
produces induced interactions. The induced interactions correspond to one
fermion polarizing the medium and the second fermion being influenced by
this polarization. The induced interaction by the medium corresponds to
density-density fluctuations
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� �3�

�D��-� � -�	� (3.48)

where D�+	 is the density-density response function that we have used in
publication II. Inserting ���3� � 
3���		 � ��3� � 
D�+		 in (3.44) one can
see that fermionic induced interactions decrease the transition temperature
by a factor ���	���. In the Bose-Fermi mixture case the Bose cloud creates
an induced interaction in the fermions because a moving fermion can ex-
cite a sound wave in the Bose gas, which will perturb at a large distance
another fermion, 3�-��+� �	 � �3�

�� �3����� � �C�+	�	 where C� is the co-
herence length of the condensate. If the boson-boson interaction and the
fermion-boson interaction are of the same size, the induced interaction is of
the same order of magnitude as the bare interaction and it will increase the
transition temperature (for a Bose gas such that 3�� # �). This effect has
been shown to increase dramatically the p-wave transition temperature [53].

3.5 BCS-BEC crossover

The weak coupling or BCS limit corresponds to a Fermi sea undergoing a
pairing instability at a temperature �� � <� . The formation of Cooper
pairs and their condensation occurs simultaneously at ��. The opposite limit
corresponds to the Bose condensation of preformed bosons, i.e. pairs. The
composite particles form at some very high temperature scale of the order



46 CHAPTER 3. DESCRIPTION OF THE SYSTEM.

������� and then they condense at the BEC �� � �������. The possibility
of using the BCS algebra, Eqs.(3.41) and (3.42) to study the crossover was
suggested by Leggett [54] for �He. Nozières and Schmitt-Rink [49] took up
the same formalism for concerning superconductivity of excitons and a recent
review has been given by M. Randeria [55]. To show that the BEC limit can
be studied with the BCS algebra, they propose the creation operator for the
bosons �%�� �

�
� =���

�
���

�
��� with =� � ����	����*��:� where :� and *� are the

BCS functions (3.32). They show that the gap equation (3.41) rewritten in
terms of =� reduces in the strong coupling limit to the Schrödinger equation
for a single bound pair. They solve the Eqs.(3.41) and (3.42) in the strong
coupling limit to obtain the transition temperature and the gap at � � �.
For ��& � � the solutions are � � �����, � � ����
�	���<��

�

�&�,

and �� � ���� �� ����<� 	��� where �� � �����	&�
�	 is the binding energy

of the tightly bound pairs. However, this temperature is of the order of
the dissociation energy and does not correspond to the superfluid transition
temperature. This temperature is the BEC transition temperature for bosons
of mass �	 and density ���. This can be seen when including quantum
fluctuations to the mean field � [49, 55]. The transition from BCS to BEC
regime is believed to be a smooth one. Analyzing the quasiparticle excitation
energies, one can see that for � # �, the gap is just �. For � � � the
energy gap is ����� � ��	 [i.e. min��� �

�
�� � �C� � �	�] that tends to the

dissociation energy in the limit of tightly bound pairs. Thus, the qualitative
transition from diatomic molecule to Cooper pairs takes place at � � �,
which corresponds to the value 
�&� � � [54].

Periodic potential

The BCS-BEC crossover problem for a lattice potential was first considered
in [49]. In the case of a periodic potential, one can use the Hubbard model.

When the potential is periodic, the one-particle Hamiltonian is solved
using the Bloch ansatz. For single atoms the energy eigenstates are Bloch
wave functions, and an appropiate superposition of Bloch states yields a set
of Wannier functions �E-�(� (�	��+- ( is lattice site and � band index) well
localized on the individual lattice sites. One can expand the field operators in
terms of Wannier functions and on-site fermionic annihilation operators ��0*,
�7*��	 �

�
0 ��0*E��� ��	. Note that we have considered only the first band

Wannier functions. Including more bands leads to the degenerate Hubbard
model. The one band approximation is valid as long as the energies involved
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in the system dynamics are small compared to the excitation energies to the
second band and when the density is low such that the average number of
particles per well does not exceed 2. The Hamiltonian (3.14) becomes
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where 
 � F	 denotes summation over nearest neighbours and
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is the tunneling matrix element between adjacent sites  , F and
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corresponds to the strength of the onsite repulsion (or attraction depending
on the sign of &�) of two atoms in the lattice site  . When using the Hubbard
model two approximations are implied : first, the excitation energies to the
second band are high enough and secondly that hopping to next nearest
neighbours can be neglected. Using the WBK approximation [48], 3 �

���&���&
�

�� �$����	��� and � � ��
!
�� �$����	��� !"#

�
��

�
$����

�
where

$� is the potential height barrier, and �� � ���
����		 where 
 � ��& and
& is the lattice period.

The Hubbard Hamiltonian (3.49) does not need any renormalization of
3 because it implies a momentum cutoff given by the band width A � �!�
where ! is the coordination number. In the continuum model there is just
one dimensionless parameter ��
�&� but in the Hubbard Hamiltonian there
are two, the interaction strength 3�� and the filling factor � � �

1

�
*
�*	,

� � ��� �� and � is the number of lattice sites. Note that there is a symmetry
between filled and empty spaces around � � � and one can just consider
� � ��� ��.

In the weak coupling limit, the lattice and the continuum model describe
the same physics, since the Cooper pair size is much larger than the lattice
spacing &. This is true as long as there are enough free spaces � � �. The
effect of the band filling comes as factors

�
���� �	 [56] in the expression

for the gap (3.46) and the transition temperature 
��� (3.44). In the strong
coupling limit, the physics is quite different because when the pair size be-
comes comparable to &, lattice effects become very important. These pairs
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Figure 3.1: The transition temperature
for a half filled CO� laser lattice with �Li
atoms with scattering length �� � ��	� �
	����. The �� is the recoil energy and
��� is the Fermi energy for free fermions
with the same density. The other line
corresponds to the gap in tunneling rate
units as a function of the lattice depth

����.

behave as hard core bosons [56] (the hard core reflecting the Fermi exclusion
principle) with an effective hopping ���3 . In the case of small density � � �,
the boson gas is dilute and the effect of the hard core is weak. One recovers
the same result as in the continuum, the superfluid transition temperature
is given by the BEC transition temperature for bosons of mass �	 $ with
the effective mass given 	 $ � 3���. For very strong coupling the trans-
ition temperature tends to zero (in the continuum it was constant). On the
contrary, hard core correlations are very important for densities close to half
filling � � � and e.g the gap reads � � �

�
�3 �

�
���� �	. For a given band

filling, the transition temperature is small for both the BCS and the BEC
limits. The maximum of �� and � is achieved for some value of 3�� in
between. In three-dimensional simple cubic lattice at half filling, numerical
simulations [57] give a maximum of �� � ����� for 3�� � �� and � � ��
3 .
The transition temperature and the superfluid gap for �Li atoms with scat-
tering length &� � ���� � ���&� in a half-filled 3D CO� laser lattice & � ���m
are depicted in figure 3.1 as a function of the lattice depth $�.

3.6 Superfluidity with a Feshbach resonance

A Feshbach resonance occurs when the collision energy of two free atoms co-
incides with that of a molecular state in a closed channel. Atoms populating
this closed channel form composite bosons and they can be included in the
formalism describing the process. As discussed in Section 2.3 the scattering
length changes dramatically in the vicinity of a Feshbach resonance. The
model Hamiltonian including explicitely the coupling between the atomic
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(�&�) and molecular gases (�%2) reads [37, 39, 38]
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(3.52)

where the chemical potentials � � ��� � ��� � ���� have been included.
The coupling between bosons and fermions is characterized by the parameter
� and 2 is the threshold energy of the composite Bose particle energy band.

Kokkelmans et al. [58] considered the resonances for the experiment-
ally trapped hyperfine states of �Li where a double resonance occurs. They
explicitely obtain

& � &�	 � 	

�����

� �����
2�

�
�����
2�

�
(3.53)

where 2� and �� are the detuning and the coupling strength to state 1. In
Eq.(2.32), 2 � �� ����
. Note that this is equivalent to defining an effective
potential

3��� � 3�	 � �� �

2 � ��
� (3.54)

where we include the effective interaction between the fermions mediated by
a molecular boson.

One should also note that the ultraviolet divergences of the Hamiltonian
(3.52) where �, 3�	 and 2 are taken to be constants have to be removed. The
scattering equations of both channels (open and closed channels) are used to
obtain the Lippman-Schwinger equation [58]

� ��	 � $ � � ,$ �� ��	 �
�������� ,� ��		

�2�

�
�������� ,� ��		

�2�

(3.55)

where , � 	0��������	 and 0 is the arbitrary momentum cut-off and 3�

is the effective renormalized potential in the open channel.
Using 3�	 � �����&�	�	 and � � ���,3�		

�� one can see that the renormaliz-
ation of the coefficients is done by [58] 3� � �3�	, ��� � ���, 2�� � 2��,���

�
� ,

��� � ����,��
��2� � ���	 and 2�� � 2� � ,���

�
� .

The Hamiltonian (3.52) was solved using the Hartree-Fock-Bogoliubov
(mean field) theory by the JILA theory group [37] and E. Timmermans et al.
[38]. This approximation takes both the pairing field � � 3�	

�
�
&���&��	
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and the molecule field = � 
%�#�	 to be classical fields. The value = is
obtained from the static solution of the bosonic equation which gives

= �
�

2 � ��

�

3�	
� (3.56)

The fermionic fields satisfy the BCS algebra, with a composite order para-
meter �� � �� �= that satisfies the following gap equation

�� � 3 $
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The theory group at JILA has studied the thermodynamic properties of the
mean field Hamiltonian. Timmermans et al. [38] calculated the dynamics
and showed that the system responds to changes in the threshold energy 2 by
means of the Josephson-like oscillations of the atomic and molecular popu-
lations. This coherent oscillation between the molecular condensate and the
atomic pairs would happen on times of the order ���<� . In the first publica-
tions [37, 38] the number equation � � �(�

 �
�
�

�
�� C���� $%�& ,/


�

�
was

used.
In the homogeneous case, it was shown by Nozières and Schmitt-Rink [49]

that one should go beyond the mean field approximation and that including
Gaussian or second order fluctuations around the mean field order parameter
� and = leads to a considerable correction in the transition temperature
��. These second order fluctuations correspond to considering Cooper pairs
and molecules of momentum � # � (non condensed bosons). They leave the
gap equation unchanged but there will be new terms in the number equation
[49]. Including these terms sets the maximum transition temperature for the
homogenoeus case around �� � �����<� corresponding to the condensation
of bosons of mass �	 and density ���. The Feshbach resonances have been
included in this scheme by Griffin et al. [59] and later in [60] giving the
maximum transition temperature of ����� � ����.

The first experimental observation of molecules created out of fermionic
atoms has recently been reported [17, 19, 22, 23]. This corresponds to the
repulsive part of the Feshbach resonance where the energy level of the bound
molecular state is below the energy of the free atoms. The Bose Einstein
condensation of these molecules would constitute the first step in achieving
fermionic superfluidity. Adiabatically sweeping the magnetic field across the
resonance might be the way to obtain a weakly coupled superfluid Fermi gas
of alkali atoms [26].
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The creation of bosonic molecules out of fermionic atoms is reversible.
The molecules remain trapped in the optical trap and the phase space dens-
ities and temperatures are just a factor of two [22] from Bose condensation at
the time of this writing. The inelastic molecule-molecule and atom-molecule
collision rates depend on � ��&� [61], where & is the effective scattering
length. Thus, the molecule life time can be very long in the center of the
resonance and longest times reported are 10 s [23]. The estimated molecule-
molecule elastic collision rate is of the order of 1 �s and therefore it should
be possible to evaporate the molecules further to reach the Bose Einstein
condensation threshold.

3.7 Current carrying state

In this section we summarize the solution of the BCS equations for a current
carrying state. The current carrying superconducting state for a homogen-
eous system [62] was considered just after the derivation of the BCS theory.
We generalize here the BCS algebra for a current carrying state for a space
dependent potential. This algebra has been used when considering the Bloch
oscillations of superfluid Fermi gas in publication VI.

In the BCS ansatz, a common momentum q can be added to all particles,
and the momentum of one pair becomes �� in the homogeneous case. This
can be formally done solving (3.29) with the ansatz

:���	 � ���������=�����	�:�
�

*���	 � ���������=�����	�*��� (3.58)

One can define a current dependent superfluid gap

��
� �
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Defining the average energy �3 � �
�
�C��� � C���	 and the energy difference

�� � �
�
�C��� � C���	, one obtains
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as solutions of the BdG equations (3.29). Note that the � solutions corres-
pond to the “particle branch” and the � solutions to the “hole” branch.

It is well known that a BCS-superconductor can carry a persistent current
� until a � � � critical velocity, *� � ��-� . For higher current values, even
at � � �, it is energetically favorable to break Cooper pairs and create a
pair of quasiparticles [62]. This costs �� in binding energy and decreases the
quasiparticle energy by �C��� � C���� � �����. Therefore, the condition for
the current to be stable is

���� � �� (3.61)

This is the Landau criterion of superfluidity. One has to impose ���
� # �,

to obtain sensible solutions of the BCS equations because the transformed
Hamiltonian (3.24) has to be positive defined. This is the same condition as
the Landau criteria i.e. min�

�
��
3 � �����	 � ���� # ��.

Inserting the ansatz (3.58) in the gap equation (3.28) gives
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which leads to the space independent gap
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where '��� �
�

��=�����	=������	=�����	=������	.
The quasiparticle velocity (current) is defined for the BCS state in terms

of : and * [63] like 
�	 �
�

� 1�
	�
:����:�	 � 
*����*�	�. Using the particle
and hole velocities the quasi-particle current for the current carrying BCS
state is given by
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Actually, Eq.(3.64) gives the same result as 
*&	 �
�

� 1�
	 �
��

�/��
�

���
. The

distribution function for quasi-particles is 1�
	 � 1���	.
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3.7.1 Superfluid velocity

When solving the BCS algebra for a current carrying state a momentum
dependent order parameter wave function ����	 was introduced. In the ho-
mogenoeus case [51] one can introduce ����	 � �������, where � is a constant
in �. Expectation values like momentum (� � � >�>�) can be calculated:

�	 � 
����	� �  >�>������		�
����	�����		 � ��. This is the momentum
of one pair in the superfluid. The order parameter wave function is defined
in the spirit of the Ginzburg-Landau [8] theory with a space dependent wave
function whose absolute value equals the gap. We generalize the above form-
alism to define a superfluid velocity in the inhomogeneous case


�	 � �
����	� )r�����		 (3.65)

where � � 
����	�����		��. The gap Eq. (3.62) can be rewritten as
����	 �

�
� ��

���	, where
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and � �
��	 � �3 ��� � �1����
� 	��:�

��*��� . One can interpret Eq. (3.66) as an
internal wave funtion of a pair carrying momentum 2� in the composite boson
limit, resembling the internal wave funtions introduced by Leggett [54] and
Nozières and Schmitt-Rink [49]. Using 
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C���, the superfluid velocity becomes
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Chapter 4

Signatures of superfluidity

In recent years many different theoretical proposals for detecting experiment-
ally the superfluidity in fermionic gases have been made. They mainly involve
the response of the atomic cloud to a modulation of the trapping frequency
[64] and the excitation of low energy collective modes in a trap including the
monopole, quadrupole and spin dipole modes [65]. Other type of proposals
point out signatures in the far off-resonant light scattered by the atomic cloud
[66] or in the absorption spectra [67]. The density-density correlations in the
image of an expanding gas have also been predicted to indicate the superfluid
behaviour [68]. The momentum of inertia of the Fermi cloud has been shown
to decrease for a superfluid gas [69] with respect to the rigid body value in
the normal case. The difference in the density profile [70] of a normal gas
and a superfluid one close to a Feshbach resonance has been pointed out too.
The anisotropy in the expansion [40] of a superfluid gas can be contrasted to
the isotropy of the momentum distribution of collisionless normal Fermi gas.
Nevertheless, a strongly interacting Fermi gas close to a Feshbach resonance
and a superfluid Fermi gas can be both described with the hydrodynamic
equations and both expand anisotropically [41]. The only difference between
a superfluid and a strongly interacting Fermi gas is that the velocity field for
the former is irrotational for angular velocities below the creation of vortices.
One can exploit this difference to detect superfluidity and the splitting of
the quadrupole modes [41] for a rotating normal hydrodynamic gas has been
proposed as a signature.

In publications I to VI we have studied different aspects of Fermi gases
related to their superfluidity. Mainly we have been looking for signatures of
superfluidity in two component superfluid Fermi gases (denoted by � and �

55
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in the following ) in the weak coupling regime. In papers I to IV we consider
almost on-resonant laser coupling between different hyperfine states. This is
reviewed in section 4.1. One of the main phenomena inherent to superfluids
is the existence of quantized vortices. We have studied the singly quantized
vortex state in trapped fermionic gases in publication V. An introduction to
the paper is given in section 4.2. In publication VI we consider the amplitude
of Bloch oscillations (BO) as a signature of superfluidity in a Fermi gas in an
optical lattice. We analyze the Bloch oscillations in both the degenerate and
the superfluid state and show how the amplitude varies along the BCS-BEC
superfluid crossover. Section 4.3 reviews the main results of the publication.

4.1 Laser probing

Electron tunneling has given the most detailed experimental examination of
the density of states in metallic superconductors. This powerful technique
was pioneered by Giaver [71] who used it to confirm the density of states
and temperature dependence of the energy gap predicted by BCS. We have
considered the analogy of electron tunneling from a normal metal (or su-
perconductor) to a superconductor induced by an external voltage [72] in
Fermi gases. We consider atoms in different internal hyperfine states coupled
with almost on-resonant laser light. The coupling of a normal and a su-
perfluid state was considered in publication I. Publications III and IV deal
with the coupling of two superfluid states. For small intensities, the laser
interaction can be treated as a perturbation. In our case the tunneling is
between two internal states rather than two spatial regions, resembling the
idea of internal Josephson oscillations in two component Bose Einstein con-
densates [73]. A major advantage of fermionic atoms compared to electrons
in condensed matter is the richness of their internal energy structure and
the possibility to accurately and efficiently manipulate these energy states
by laser light. This leads to new effects, unique to atomic Fermi gases like an
asymmetry in the Josephson current (see publication III) or the possibility
of directly probing the spatial coherence of the superfluid (see publication
IV).

In publication II we have analyzed the linear density response of a per-
turbation created by laser light to see if it excites any below-gap mode that
would wash out the results in [74] and publications I, III and IV. Those pub-
lications rely on the validity of the BCS or static mean field theory. A time
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dependent Hartree-Fock-Bogoliubov approach shows the existence of below
gap excitations with a phonon-like dispersion relation [50]. We have shown
that because the BCS Hamiltonian is preserved under rotation, most of the
considered laser schemes can be transformed into a density perturbation. In
this form the perturbation potential is proportional to ���� where � is the
(effective) Rabi frequency. Therefore, even when the laser light provides mo-
mentum and energy (� � ��������
�
), the transformed potential acting as a
density perturbation is not time- and space-dependent. This leads to absence
of a density response whenever ���� is a constant spatially and temporally.
For Bragg scattering [75], ���� � 1��� �	. In this case Anderson-Bogoliubov
phonons [50] can be excited, in general. The exception is the case when the
laser(s) couple between the two paired components of the gas (the states �
and �). We have shown that, in the homogeneous case, the density response
becomes zero because the contributions of the components cancel each other.
In a harmonic trap, spin-dipole response is predicted for temperatures near
��. Therefore, the presence or absence of low-energy collective excitations
under a perturbation of the type 3��� 
	��� � ��	 could be used to observe
whether the trapped system can be approximated by a homogeneous system
(local density approximation) or whether the trapping effects are dominant.

4.1.1 Normal-Superfluid Interface

The idea of using a normal-superfluid interface for probing superfluidity in
atomic Fermi gases was proposed in [74]. It consists on transferring atoms
from one internal hyperfine state for which the atoms are Cooper paired to
another state for which the interatomic interaction is not strong enough to
lead to a BCS state. This effectively creates a superconducting-normal state
interface across which the atomic population can move.

The basic result in the proposal [74] is that the absorption peak is shifted
and becomes asymmetric because of the existence of the gap – the laser
has to provide energy for breaking the Cooper pairs in order to transfer
atoms from the paired state to the unpaired one. The assymetry is due to
the different density of states in the superfluid case in contrast to a mean
field shift that would leave the symmetry unchanged. This behaviour is,
however, strongly influenced by the specific physical situation. In publication
I we investigated in detail how the choice of the chemical potentials for the
superfluid and the normal state, and the choice of the interaction strengths
and laser profiles affect the absorption. We also compared the results in the
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cases of a homogeneous system and a trapped gas.
We consider atoms with three internal states available, say ��	, ��	, and

���	. They are chosen so that the interaction between atoms in states ��	 and
���	 is relatively strong and their chemical potentials are nearly equal so that
��	 and ���	 can be assumed to be Cooper-paired. All other interactions are
small enough and/or the chemical potentials of the corresponding states are
different enough in order to assume the ��	 atoms to be in a normal state.
The laser frequency is chosen to transfer population between ��	 and ��	, but
is not in resonance with any transition which could move population away
from the state ���	. We treat the atom-light interaction within the rotating
wave approximation as explained in section 2.1.

The observable carrying essential information about the superfluid state
is the change in the population of the state ��	, we call this the current

���	 � �
 )��	 �
>

>�
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The current ���	 is calculated considering the laser coupling part of the
Hamiltonian as a perturbation; it becomes the first order response to the
external perturbation caused by the laser.

In the homogenoeus case and equal chemical potentials �	 � �	� � �� and
assuming the laser field to be a constant (i.e. a running wave ���	 � �������

with very small momentum 
� compared to the momentum of the atoms
that is the case for a Raman process), the current reads

� � ���� ��

Æ�
G�Æ	�"��Æ ��	� "�Æ ��	�� (4.1)

where � is the Rabi frequency of the laser, Æ the laser detuning, � the
BCS gap and the density of states G�Æ	 � 4

�!�

�
��� � Æ�	�Æ � ��	. The term

with the � sign corresponds to Æ � � i.e. current from ��	 to ��	, and the
positive term to current from ��	 to ��	. In order to transfer one atom from
the state ��	 to ��	 the laser has to break a Cooper pair. The minimum
energy required for this is the gap energy �, therefore the current does not
flow before the laser detuning provides this energy – this is expressed by
the first step function in (4.1). As �Æ� increases further, the current will
decrease quadratically. This is because the case �Æ� � � corresponds to the
transfer of particles with - � -� , whereas larger �Æ� means larger momenta,
and there are simply fewer Cooper-pairs away from the Fermi surface. This
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behaviour is very different from the electron tunneling where the current
grows as

�
��$ 	� ��� [72] (the voltage �$ corresponds to the detuning Æ in

our case) because all momentum states are coupled to each other. The second
step function in (4.1) corresponds to tunneling into the superconductor. In
this case one has to provide extra energy because a single particle tunneling
into a superconductor becomes a quasi-particle excitation with the minimum
energy given by the gap energy.

The assumption of spatial homogeneity is appropriate when the atoms are
confined in a trap potential which changes very little compared to character-
istic quantities of the system, such as the coherence length and the size of the
Cooper pairs. This assumption is also valid when the laser profile is chosen
so that it only probes the middle of the trap where the order parameter is
nearly constant in space.

In the case of harmonic confinement, the current is
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where �� is the Fermi distribution function at temperature � , �-, :-��	
and *-��	 are given by the BdG equations (3.27) for the state ��	 and C �
� � ��, where � are the single particle energies for a trap potential for
the state ��	 and �Æ � Æ � �� � �	. This is the standard Fermi Golden rule
result. Due to the non-orthogonality of the trap and the BdG wavefunctions
transitions between many quantum numbers are allowed and the total current
is the sum of all these. For a harmonic trapping potential there are in-gap
low-energy excitations that make it more difficult to resolve the gap energy.
In publication I we show that even for a harmonic trapping configuration one
can still see clearly the effect of the superfluidity for different configurations.
In the case of a constant laser profile the most clear case is when the Hartree
fields seen by the ��	 and ��	 atoms are the same ��		� � �	� � �	��	. In
this case the normal-normal current is a Lorentzian centered at Æ � �. The
superconductor-normal current is asymmetric and is shifted to negative Æ.
In order to enhance the effect of pairing on the observed signal one could
also trap initially some atoms in the state ��	 taking care that �	 � �� � �
so that ��	 and ��	 atoms do not pair, even if ��	 � �. By having the lower
states of the ��	 atoms filled, there will be only transitions around the Fermi
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energy, the states most influenced by pairing. It is important to have the
Hartree fields of ��	 and ��	 atoms approximately the same because otherwise
not even the normal-normal current is a Lorentzian. To avoid the problems
arising from nonhomogenous trapping potential, we propose to probe only
the middle of the trap. The order parameter is effectively homogenoeus in
the middle and the in-gap excitations are located away from the center. In
practice this kind of probing can be done by using two orthogonal Raman
beams that intersect in the middle of the trap.

It is worth noting that recently a similar scheme has been used experi-
mentally [76] to measure the mean field shift in strongly interacting Fermi
gases. The three level scheme is such that when applying a magnetic field
there is a Feshbach resonance between � and ��. Initially, a mixture of
atoms in the � and � states are trapped and a rf-field is applied to trans-
fer atoms from the � to the �� state. When the Feshbach resonance is on
there is a shift in the rf spectra due to the different mean field interactions
Æ2 � ���

 
�	�&		� � &�		 that can be used for direct measuring the scattering

length &		� in the presence of a resonance. Similar methods have been used
in �Li atomic clouds [77]. One can infer from Ref. [76, 77] that the scheme
considered in publication I can be experimentally realized for probing the
superfluid state in Fermi gases. We expect the asymmetry in the shifted ab-
sorption curves to signal superfluidity within the � and �� states, in contrast
to the symmetric mean field shift.

4.1.2 Superfluid-Superfluid Interface

Josephson effect in superfluid Fermi gases

In 1962, Josephson predicted that at zero voltage, the flow between two
weakly coupled superconductors is given by � � �� ��� �=, where �= is the
phase difference between the two superconducting order parameters. When
a voltage was applied he further predicted that the phase difference would
evolve according to ���=	��� � ��$��� leading to an electron current between
the superconductors that oscillates on time.

To have an analogous effect in atoms we need fermionic atoms in four
different hyperfine states (we label them ��	, ���	, ��	 and ���	) trapped simul-
taneously. This can be done in an optical trap. The s-wave scattering lengths
are assumed to be large and negative between atoms in states ��	 and ���	,
as well as between those in ��	 and ���	, and the chemical potentials �	 � �	�
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and �� � ���. For all other combinations of two atoms in different states
the scattering length is assumed to be small and/or the chemical potentials
unequal. This leads potentially to the existence of two superfluids, one con-
sisting of Cooper pairs of atoms in the states ��	 and ���	, and the other
of ��	–���	 pairs. The two superfluids are coupled by driving laser-induced
transitions between the states ��	 and ��	 with the laser Rabi frequency �
and detuning Æ, and between the states ���	 and ���	 with the Rabi frequency
�� and detuning Æ�. For metallic superconductors the d.c. Josephson current
is driven by applying a voltage over the junction – here the role of the voltage
is played by the laser detunings. The difference is that the detunings can be
different for the two states forming the pair; in the metallic superconductor
analogy this would mean having a different voltage for the spin-up and spin-
down electrons, a situation which has not been investigated in the context of
metallic superconductors.

We assume again that the interaction with the laser can be treated as a
perturbation and the current (e.g. of atoms in the state ��	 ) is calculated
using linear response theory.

We split the current �� into a part corresponding to the Josephson current
��� and the single particle current ���. Using the BCS approximation for
the superfluid states, the result for the single particle current for positive
detunings at � � � is

��� � ���
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Again the triplet �:-� *-	� <- is a solution of the (nonuniform) Bogoliubov-de
Gennes equations for superconductors (3.27) and �Æ � ����	�Æ. The current
��� is zero when �Æ � � � �� since pair breaking is required for single particle
excitations.
The Josephson current reduces to

��� � ����Æ�	 ������Æ � �Æ�	�� (4.4)
���� � ����Æ	 ������Æ � �Æ�	�� (4.5)

for a homogenous geometry and constant laser profile. Both partners of
the pair thus oscillate in phase, with the same frequency �Æ � �Æ�. But the
amplitudes are different whenever the detunings �Æ and �Æ� differ. This means
that more atoms are transferred, say, in the ��	 � ��	 oscillation than in the
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���	����	 one. As shown in publication III, the asymmetry is more pronounced
in the time scale of the Cooper pairs.

In the conventional intuitive picture of the Josephson effect, the particles
forming a Cooper-pair tunnel “together” through the junction. Therefore
our result seems counterintuitive at first glance. We show in publication III
that the asymmetry is related to the fact that the intermediate states of the
transfer processes for “spin up” and “spin down” atoms have different energies
and the asymmetry is a result of the dynamics of the superfluid state. An
estimate of the atoms involved in the process shows that this asymmetry is
within the present experimental detection limits.

Coupling between the paired states

Atomic Fermi gases provide different degrees of freedom than solid state sys-
tems. For example one can study the single particle current between two
superfluids just by coupling with a rf field or a Raman transition the states
� and � forming the pairs. This can be used to directly probe the Cooper
pair coherence across different regions in the superfluid by using an interfer-
ometric scheme as depicted in figure 1 of publication IV. The laser beam is
split and focused into two regions with separation !. After the beams have
passed through the gas they are recombined and the amount of absorption
is measured. As shown in the previous section, one obtains two parts of the
current when coupling two superfluids. For ��r	 � � �Æ�! � !�	 � Æ�! � !�	�
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Here 
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� , ! � !��!�, and the integral symbol means� � �

� �GG
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� �+�. Note that we do not use the same notation as

in the previous section but the � corresponds to the single particle current
and the � to the Josephson current. If the superfluid state is not coherent,
:��r	 and *��r	 would have phase factors to describe the random space-
and time-dependent fluctuations. Those factors make the cosine-dependent
term in ��+� as well as the whole current ��+� to disappear. By varying !
and checking the dependence of the current on ! one can see if coherence is
preserved or not. If the current is constant, oscillating terms are not present
and coherence is not preserved for that distance. As shown in publication
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IV, the current oscillates at distances of the order of the Cooper pair size
($5 � ���

�
����		 providing a direct measure of the size of the pairs.

4.2 Vortices

The main macroscopic effect of superfluidity is the observation of quant-
ized vortices. Bose Einstein condensates of alkali atoms have been shown to
support even vortex lattices becoming giant quantum objects with sizes of

 � �� m. Once the superfluid state of the fermionic atoms is obtained, the
creation of vortices on it seems to be a natural step forward. In publication
V we have studied the single vortex solution for a superfluid Fermi gas in
the weak coupling regime using the Ginzburg-Landau equation [8]. Baranov
and Petrov [78] derived this equation for the trapped atoms in two different
hyperfine states using the Thomas-Fermi approximation. Close to ��, the
order parameter fulfills a nonlinear Schrödinger equation with effective fre-
quency �� �

�
�� � ��	���	�	, effective mass 	� � �

�
��!�

�6���
�
�����	� �����	

�

and effective chemical potential.
The nonlinear term is small compared to the kinetic and potential energies

and as elucidated for BEC [79] the healing length (or the vortex core size) is
in this case given by the first excited state size or the oscillator ground state
length

C� �
�

	��� �

�
'I�
	

����

�
��
�


�
�


���


�
�

�� � �
� (4.8)

where � � �-���
� �&������	 and � is the trapping frequency. Note that this

leads to a healing length that does not diverge as � � �� in contrast to what
happens for helium and superconductors.

4.3 Bloch oscillations

Bloch oscillations are a pure quantum phenomenon that occurs when a
particle in a periodic potential moves under the influence of a constant force.
The particle oscillates instead of moving uniformly. Bloch oscillations were
predicted [80] when analyzing the electrical conductivity in crystal lattices.

A periodic potential of period & leads to a band structure in the en-
ergy spectrum J-�
	 of the particle. The eigenstates (Bloch states) can be
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Figure 4.1: Energy, velocity and effect-
ive mass of an atom in a periodic poten-
tial as a function of the momentum us-
ing the tight-binding dispersion relation
for the energy.

represented by ��� 
	, where � labels the band index and 
 is a continu-
ous quasimomentum. Both J-�
	 and ��� 
	 are periodic functions of 
 with
period ���& and therefore 
 is conventionally restricted to the first Brillouin
zone �� ��&� ��&�.

Semiclassically, when a particle in a given Bloch state ��� 
�	 is affected by
a constant external force � weak enough not to induce interband transitions
it evolves up to a phase factor into the state ��� 
��		 according to


��	 � 
� �
��

��
� (4.9)

This time evolution of the momentum is periodic with a period .� � ���� �&,
corresponding to the time required for the quasimomentum to scan the whole
Brillouin zone. Thus, when a constant force � is applied, a wave packet with
a well defined quasimomentum 
 (the band index is omitted from now on),
will have a time dependent velocity with zero mean. If the force is applied
adiabatically and so that there are no interband transitions, the constant
force provides momentum to the system but not energy because the effective
mass is not always positive as shown in Fig. 4.1.

Bloch oscillations have never been observed in a natural lattice for electrons
because the scattering time of the electrons by lattice defects or impurities
is much shorter than the Bloch period. However, they have been recently
observed in semiconductor superlattices where the lattice period has been
increased (from less than a nm to few tens of nm) and the band width de-
creased [81]. Impurity scattering can be made negligible for atomic gases.
Atomic Bose gases have been proved to support Bloch oscillations both at
temperatures above condensation [82] and in the superfluid regime [83]. In
publication VI we have considered Bloch oscillations in fermionic atomic
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gases both in the degenerate and the superfluid regime. We consider atoms
in a 3 dimensional simple cubic lattice and a constant force F � �&�� ap-
plied in one of the directions. The potential barrier is high enough to use
the tight-binding approximation [84] for the lowest energy band dispersion
relation J�
	 � � �
�����
&&	�����
'&	�����
�&	�. The Hamiltonian of the
system can be mapped into the attractive Hubbard model with only onsite
interactions 3 . For the experimental regime the interaction 3 is smaller
than the band gap. Thus, the energies involved are not enough to induce
interband transitions and the one band approximation is valid.

In the degenerate state, fermions occupy many states and we calculate
the velocity by averaging over the whole Fermi sea and show that increasing
temperatures and band fillings decrease the oscillation amplitude. In the
superfluid case the Landau criterion Eq.(3.61) imposes Cooper pair sizes or
the order or smaller than the lattice spacing for observing robust bloch oscil-
lations in the presence of momentum changing collisions. We calculate the
superfluid velocity in the periodic potential and show that pairing supresses
Bloch oscillations. Inserting the tight-binding dispersion relation in the su-
perfluid velocity Eq.(3.67) we obtain


*&�	 �
�&

��
��� �+&	�	

�

������
��� �1���

�	� ���
��
3 � �����

������
�

��� 
&&�

The 
-dependent prefactor in the sum over momentum states reflects the
occupation over the Fermi sea. For very strong interactions the wave function
is a Æ-function in space and integration extends to the whole 
 space and the
velocity goes to zero. This case corresponds to no empty spaces available for
the atoms to move. On-site wave functions produce non-vanishing velocity
amplitudes and the amplitude of the oscillations varies dramatically along
the BCS-BEC crossover as shown in publication VI.
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